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3D Curve Tracking by Unit Speed Robot

Speed α = ds/dt 6= 0. Controls: u and v . κn and κg are C1 and
nonpositive valued. Zhang-Justh-Krishnaprasad CDC’04.

Goal: Find u and v such that |r1(t)− r2(t)| → ρc for a desired
ρc > 0 and x1 · x2 → 1, while compensating for additive and
multiplicative control uncertainty, delays, and state constraints.
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Our New Variables and Control Design

(ρ1, ρ2) = ((r2− r1) ·y1, (r2− r1) · z1) has desired value (ρc1, ρc2).

ρc = |(ρc1, ρc2)|. Shape vars: ϕ = x1 · x2, β = y1 · x2, γ = z1 · x2

u = a1(x1 · y2) + a2(y1 · y2) + a3(z1 · y2),

v = a1(x1 · z2) + a2(y1 · z2) + a3(z1 · z2),

a1 = µ, a2 = −h′
1(ρ1) + ακn

ϕ , a3 = −h′
2(ρ2) +

ακg
ϕ , and

hi(ρi) =

{
c̄
(
ρi + ρ2

ci/ρi − 2ρci
)
, ρi ∈ (0, ρci)

c̄
ρci

(ρi − ρci)
2, ρi ≥ ρci

(1)

New State Y = (ρ1, ζ, ρ2, θ) takes its values in X , where
(ϕ, β, γ) =

(
cos(ζ) cos(θ),− sin(ζ) cos(θ), sin(θ)

)
and where

X = (0,∞)× (−π/2, π/2)× (0,∞)× (−π/2, π/2).
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First Key Ingredient: Strict Lyapunov Function

ρ̇1 = − sin(ζ) cos(θ)

ζ̇ = − 1
cos2(θ)

[
ακn sin2(θ)− h′

1(ρ1) cos(ζ) cos(θ)

+ακg sin(θ) sin(ζ) cos(θ) + µ sin(ζ) cos(θ)
]

ρ̇2 = sin(θ)

θ̇ = ακg
sin2(ζ)
cos(ζ) − h′

2(ρ2) cos(θ)− µ cos(ζ) sin(θ)

+
(
−h′

1(ρ1) + ακn
cos(θ) cos(ζ)

)
sin(ζ) sin(θ)

(2)

Theorem (MZ, SICON’15): We can build a function L such that

U(Y ) = −h′
1(ρ1) sin(ζ) cos(θ)+h′

2(ρ2) sin(θ) +
∫ V (Y )

0 L(q)dq

is a strict Lf for (2) for the equilibrium E = (ρc1,0, ρc2,0) on X ,
where V (Y ) = − ln(cos(θ) cos(ζ)) + h1(ρ1) + h2(ρ2).
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Second Key Ingredient: Robust Forward Invariance

Ẏ = F(Y ) +
(

0,
(

G
Ĝ
−1
)
A1(Y ) + δ1,0,

(
G
Ĝ
−1
)
A2(Y ) + δ2

)
˙̂G = (gmax − Ĝ)(Ĝ − gmin) 1

Ĝ

(
∂U
∂ζ (Y )A1(Y ) + ∂U

∂θ (Y )A2(Y )
) (3)

where F(Y ) is the right side of (2), G ∈ IG
def
= (gmin,gmax) is the

unknown control gain, and the right side of the Y subsystem is
obtained by replacing the controls by u/Ĝ and v/Ĝ.

We built compact paired hexagons Si containing E such that
∪∞i=1Si = X , and sequences {δ̄1i} and {δ̄2i}, such that for all i :

(G1) for all constants a ∈ (0, δ̄1i) and b ∈ (0, δ̄2i) , the set Si × IG
is robustly forwardly invariant for (3) and the disturbance set
Di = [−a,a]× [−b,b] and (G2) ..maximality of {δ̄1i} and {δ̄2i}... .

RFI: {Y (t ,Y0, δ) : t ≥ 0,Y0 ∈ Si , δ ∈MEB([0,∞),Di)} ⊆ Si
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Value Added by Our CDC16 Paper

Our SICON paper proved input-to-state stability of (3) to (E ,G)
on each set Si × IG for each of perturbation set Di from (G1).

This gave 3D curve tracking and parameter identification that
was robust to uncertainty under tolerance and safety bounds.

However, the boundaries of our SICON paper tolerance and
safety sets Si converged to boundary(X ) as δ̄ji → +∞.

Our CDC16 algorithm allows arbitrarily large δ̄ji ’s while keeping a
positive distance between the Si ’s and boundary(X ).

It scales the steering constant µ and the penalty functions hi .
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Conclusions

We solved a state constrained 3D curve tracking and parameter
identification problem that arises in marine robotics.

The update law used a new strict Lyapunov function, which we
convert into a barrier Lyapunov function to prove our theorems.

We used robust forward invariance with maximum perturbation
sets, which is a general method that works for many systems.

We hope to prove variants under event-triggered control, using
sequential predictors to compensate delays or finite time control.

Thank you for your attention!
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