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Adaptive Tracking and Parameter Identification

Consider triply parameterized families of ODEs of the form

Y ′(t) = F
(
t ,Y (t),u(t ,Y (t − τ)), Γ, δ(t)

)
, Y (t) ∈ Y. (1)

Y ⊆ Rn. δ : [0,∞)→ D represents uncertainty. D ⊆ Rm.
The vector Γ is constant but unknown. τ is a constant delay.

Specify u to get a doubly parameterized closed loop family

Y ′(t) = G(t ,Y (t),Y (t − τ), Γ, δ(t)), Y (t) ∈ Y, (2)

where G(t ,Y (t),Y (t − τ), Γ,d) = F(t ,Y (t),u(t ,Y (t − τ)), Γ,d).

Problem: Given a desired reference trajectory Yr , specify u and
a dynamics for an estimate Γ̂ of Γ such that the augmented error
E(t) = (Y (t)− Yr (t), Γ− Γ̂(t)) satisfies ISS with respect to δ.
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2D Curve Tracking for Marine Robots

Motivation: Pollutants from Deepwater Horizon oil spill.

ρ = |r2 − r1|, φ = angle between x1 and x2, cos(φ) = x1 · x2
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Nonadaptive Unperturbed 2D Curve Tracking

Interaction of a unit speed robot and its projection on the curve.

ρ̇ = − sinφ, φ̇ = κ cosφ
1+κρ − u , X = (ρ, φ) ∈ X . (Σ)

ρ = relative distance. φ = bearing. X = (0,+∞)× (−π/2, π/2).
κ = positive curvature at the closest point. u = steering control.

Lumelsky-Stepanov. Micaelli-Samson. Morin-Samson. Zhang..

Control Objectives in Undelayed Nonadaptive Case:
(A) Design u to get UGAS of an equilibrium X0 = (ρ0,0).
(B) Prove ISS properties under actuator errors δ added to u.

ISS: |(ρ, φ)(t)|X0 ≤ γ1
(
γ2(|(ρ, φ)(0)|X0)e−ct)+ γ3(|δ|[0,t]).

Feedback linearization with z = sin(φ) cannot be applied.
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Review of Zhang-Justh-Krishnaprasad CDC’04

They realized the nonadaptive UGAS objective using

u = κ cos(φ)
1+κρ − h′(ρ) cos(φ) + µ sin(φ). (3)

Assumption 1: h : (0,+∞)→ [0,∞) is C1, h′ has only finitely
many zeros, limρ→0+ h(ρ) = limρ→∞ h(ρ) =∞, and h ∈ PD(ρ0).

Strategy: Use the Lyapunov function candidate

V (ρ, φ) = − ln
(

cos(φ)
)

+ h(ρ) . (4)

Along ρ̇ = − sin(φ), φ̇ = h′(ρ) cos(φ)− µ sin(φ), we get

V̇ = −µ sin2(φ)
cos(φ) ≤ 0 . (5)

This gives UGAS, using LaSalle Invariance.
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Our Adaptive Robust Curve Tracking Controller

{
ρ̇ = − sin(φ)

φ̇ = κ cos(φ)
1+κρ + Γ[u + δ]

(ρ, φ) ∈
full state space︷ ︸︸ ︷

(0,∞)× (−π/2, π/2) (Σc)

Control : u(ρ, φ, Γ̂) = −1
Γ̂

(
κ cos(φ)

1+κρ − h′(ρ) cos(φ) + µ sin(φ)
)

(6)

Estimator : ˙̂
Γ = (Γ̂− cmin)(cmax − Γ̂)∂V ](ρ,φ)

∂φ u(ρ, φ, Γ̂) (7)

V ](ρ, φ) = −h′(ρ) sin(φ) +

∫ V (ρ,φ)

0
γ(m)dm (8)

γ(q) = 1
µ

(
2

α2ρ4
0
(q + 2αρ0)3 + 1

)
+ µ

2 + 2 + 18α
ρ0

+ 576
ρ4

0α
2 q3 (9)

V (ρ, φ) = − ln
(

cos(φ)
)

+ h(ρ) (10)
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Robustly Forwardly Invariant Hexagonal Regions

Restrict the perturbations δ(t) to keep the state X = (ρ, φ) from
leaving the state space X = (0,∞)× (−π/2, π/2).

View the state space (0,∞)× (−π/2, π/2)
as a nested union of compact hexagonally
shaped regions H1 ⊆ H2 ⊆ . . . ⊆ Hi ⊆ . . ..
[For each i , all trajectories of (Σc) starting
in Hi for all δ : [0,∞)→ [−δ∗i , δ∗i ] stay in
Hi .] The tilted legs have slope cminµ/cmax.

For each index i , we take δ∗i to be the largest allowable
disturbance bound to maintain forward invariance of Hi .

Then we prove ISS of the tracking and parameter identification
system on each set Hi , with the disturbance set D = [−δ∗i , δ∗i ].
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Conclusions

Adaptive nonlinear controllers are useful for many engineering
control systems with delays and uncertainties.

Curve tracking controllers for autonomous marine vehicles are
important for monitoring water quality, especially after oil spills.

Our controls identify parameters and are adaptive and robust to
the perturbations and delays that arise in field work.

We can prove these properties using input-to-state stability,
dynamic extensions, and Lyapunov-Krasovskii functionals.

We used our controls on student built marine robots to map
residual crude oil from the Deepwater Horizon spill.

In our future work, we will study adaptive robust control for
heterogeneous fleets of autonomous marine vehicles.
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