Adaptive Tracking and Parameter Identification for Nonlinear Control Systems

Michael Malisoff
Adaptive Control Problems: Basic Framework

\[Y'(t) = \mathcal{F}(t, Y(t), u(t, \hat{\Gamma}(t), Y(t)), \Gamma, \delta(t)), \quad Y(t) \in \mathcal{Y}. \quad (1) \]

\(\mathcal{Y} \subseteq \mathbb{R}^n. \) \(\delta : [0, \infty) \rightarrow \mathcal{D} \) is (nonstochastic) uncertainty. \(\mathcal{D} \subseteq \mathbb{R}^m. \)

The vector \(\Gamma \) is constant but unknown. \(u \) is a control.
Adaptive Control Problems: Basic Framework

\[Y'(t) = \mathcal{F}(t, Y(t), u(t, \hat{\Gamma}(t), Y(t)), \Gamma, \delta(t)), \quad Y(t) \in \mathcal{Y}. \]

\(\mathcal{Y} \subseteq \mathbb{R}^n. \) \(\delta : [0, \infty) \rightarrow \mathcal{D} \) is (nonstochastic) uncertainty. \(\mathcal{D} \subseteq \mathbb{R}^m. \)

The vector \(\Gamma \) is constant but unknown. \(u \) is a control.

The control \(u \) and \(\hat{\Gamma}'(t) = \mathcal{H}(t, \hat{\Gamma}(t), Y(t), u(t, \hat{\Gamma}(t), Y(t))) \) will be chosen so that each solution \(Y : [t_0, t_{\text{max}}) \rightarrow \mathcal{Y} \) of (2) for each initial state \(Y(t_0) \in \mathcal{Y} \) and each \(\delta \) is uniquely defined in \([t_0, \infty) \).
Adaptive Control Problems: Basic Framework

\[Y'(t) = F(t, Y(t), u(t, \hat{\Gamma}(t), Y(t)), \Gamma, \delta(t)), \quad Y(t) \in \mathcal{Y}. \quad (1) \]

\(\mathcal{Y} \subseteq \mathbb{R}^n. \quad \delta : [0, \infty) \rightarrow \mathcal{D} \) is (nonstochastic) uncertainty. \(\mathcal{D} \subseteq \mathbb{R}^m. \)

The vector \(\Gamma \) is constant but unknown. \(u \) is a control.

The control \(u \) and \(\hat{\Gamma}'(t) = H(t, \hat{\Gamma}(t), Y(t), u(t, \hat{\Gamma}(t), Y(t))) \) will be chosen so that each solution \(Y : [t_0, t_{\text{max}}) \rightarrow \mathcal{Y} \) of (2) for each initial state \(Y(t_0) \in \mathcal{Y} \) and each \(\delta \) is uniquely defined in \([t_0, \infty) \).

Problem: Given \(Y_R : [0, \infty) \rightarrow \mathcal{Y} \), find \(u \) and a dynamics for an estimate \(\hat{\Gamma} \) of \(\Gamma \) such that the dynamics for the augmented error \(\mathcal{E}(t) = (Y(t) - Y_R(t), \Gamma - \hat{\Gamma}(t)) \) satisfies ISS with respect to \(\delta \).
Adaptive Control Problems: Basic Framework

\[Y'(t) = F(t, Y(t), u(t, \hat{\Gamma}(t), Y(t)), \Gamma, \delta(t)), \quad Y(t) \in \mathcal{Y}. \quad (1) \]

\(\mathcal{Y} \subseteq \mathbb{R}^n. \) \(\delta : [0, \infty) \rightarrow \mathcal{D} \) is (nonstochastic) uncertainty. \(\mathcal{D} \subseteq \mathbb{R}^m. \)

The vector \(\Gamma \) is constant but unknown. \(u \) is a control.

The control \(u \) and \(\hat{\Gamma}'(t) = H(t, \hat{\Gamma}(t), Y(t), u(t, \hat{\Gamma}(t), Y(t))) \) will be chosen so that each solution \(Y : [t_0, t_{\text{max}}) \rightarrow \mathcal{Y} \) of (2) for each initial state \(Y(t_0) \in \mathcal{Y} \) and each \(\delta \) is uniquely defined in \([t_0, \infty)\).

Problem: Given \(Y_R : [0, \infty) \rightarrow \mathcal{Y} \), find \(u \) and a dynamics for an estimate \(\hat{\Gamma} \) of \(\Gamma \) such that the dynamics for the augmented error \(\mathcal{E}(t) = (Y(t) - Y_R(t), \Gamma - \hat{\Gamma}(t)) \) satisfies ISS with respect to \(\delta \).

Persistent excitation. Required nondegeneracy condition on \(Y_R \).
Adaptive Control Problems: Basic Framework

\[Y'(t) = \mathcal{F}(t, Y(t), u(t, \hat{\Gamma}(t), Y(t)), \Gamma, \delta(t)), \quad Y(t) \in \mathcal{Y}. \]

\(\mathcal{Y} \subseteq \mathbb{R}^n. \delta : [0, \infty) \rightarrow \mathcal{D} \) is (nonstochastic) uncertainty. \(\mathcal{D} \subseteq \mathbb{R}^m. \) The vector \(\Gamma \) is constant but unknown. \(u \) is a control.

The control \(u \) and \(\hat{\Gamma}'(t) = \mathcal{H}(t, \hat{\Gamma}(t), Y(t), u(t, \hat{\Gamma}(t), Y(t))) \) will be chosen so that each solution \(Y : [t_0, t_{\text{max}}) \rightarrow \mathcal{Y} \) of (2) for each initial state \(Y(t_0) \in \mathcal{Y} \) and each \(\delta \) is uniquely defined in \([t_0, \infty)\).

Problem: Given \(Y_R : [0, \infty) \rightarrow \mathcal{Y} \), find \(u \) and a dynamics for an estimate \(\hat{\Gamma} \) of \(\Gamma \) such that the dynamics for the augmented error \(\mathcal{E}(t) = (Y(t) - Y_R(t), \Gamma - \hat{\Gamma}(t)) \) satisfies ISS with respect to \(\delta \).

Lavretsky-Wise, Narendra-Annaswamy, Sastry-Bodson,...
Adaptive Control Problems: Basic Framework

\[Y'(t) = F(t, Y(t), u(t, \hat{\Gamma}(t), Y(t)), \Gamma, \delta(t)), \quad Y(t) \in \mathcal{Y}. \quad (2) \]

\(\mathcal{Y} \subseteq \mathbb{R}^n \). \(\delta : [0, \infty) \rightarrow \mathcal{D} \) is (nonstochastic) uncertainty. \(\mathcal{D} \subseteq \mathbb{R}^m \). The vector \(\Gamma \) is constant but unknown. \(u \) is a control.

The control \(u \) and \(\hat{\Gamma}'(t) = H(t, \hat{\Gamma}(t), Y(t), u(t, \hat{\Gamma}(t), Y(t))) \) will be chosen so that each solution \(Y : [t_0, t_{\text{max}}) \rightarrow \mathcal{Y} \) of (2) for each initial state \(Y(t_0) \in \mathcal{Y} \) and each \(\delta \) is uniquely defined in \([t_0, \infty)\).

Problem: Given \(Y_R : [0, \infty) \rightarrow \mathcal{Y} \), find \(u \) and a dynamics for an estimate \(\hat{\Gamma} \) of \(\Gamma \) such that the dynamics for the augmented error \(\mathcal{E}(t) = (Y(t) - Y_R(t), \Gamma - \hat{\Gamma}(t)) \) satisfies ISS with respect to \(\delta \).

Basar, Cortes, Dixon, Duncan, Krstic, Morse, Ortega, Yucelen,...
Input-to-State Stability or ISS (Sontag, ’89)

Definition: A system \(\dot{E}(t) = G(t, E(t), \Gamma) \) is uniformly globally asymptotically stable to 0 provided there are \(\gamma_1 \) and \(\gamma_2 \) in \(K_\infty \) such that for all of its solutions \(E : [t_0, t_{\text{max}}) \rightarrow S \), we have

\[
|E(t)| \leq \gamma_1(e^{t_0-t}\gamma_2(|E(t_0)|)) \quad \text{for all} \quad t \geq t_0.
\]
Input-to-State Stability or ISS (Sontag, ’89)

Definition: A system $\mathcal{E}'(t) = \mathcal{G}(t, \mathcal{E}(t), \Gamma)$ is uniformly globally asymptotically stable to 0 provided there are γ_1 and γ_2 in \mathcal{K}_∞ such that for all of its solutions $\mathcal{E} : [t_0, t_{\text{max}}) \to S$, we have $|\mathcal{E}(t)| \leq \gamma_1(e^{t_0-t} \gamma_2(|\mathcal{E}(t_0)|))$ for all $t \geq t_0$.

$\gamma_i \in \mathcal{K}_\infty$: γ_i’s continuous, 0 at 0, strictly increasing, unbounded.
Input-to-State Stability or ISS (Sontag, ’89)

Definition: A system $\mathcal{E}'(t) = G(t, \mathcal{E}(t), \Gamma)$ is uniformly globally asymptotically stable to 0 provided there are γ_1 and γ_2 in \mathcal{K}_∞ such that for all of its solutions $\mathcal{E} : [t_0, t_{\text{max}}) \rightarrow S$, we have $|\mathcal{E}(t)| \leq \gamma_1(e^{t_0-t}\gamma_2(|\mathcal{E}(t_0)|))$ for all $t \geq t_0$.

$\gamma_i \in \mathcal{K}_\infty$: γ_i’s continuous, 0 at 0, strictly increasing, unbounded.

Definition: A system $\mathcal{E}'(t) = G(t, \mathcal{E}(t), \Gamma, \delta(t))$ satisfies ISS provided there are γ_i’s in \mathcal{K}_∞ such that for all of its solutions $\mathcal{E} : [t_0, t_{\text{max}}) \rightarrow S$ and all measurable $\delta : [0, \infty) \rightarrow \mathcal{D}$, we have $|\mathcal{E}(t)| \leq \gamma_1(e^{t_0-t}\gamma_2(|\mathcal{E}(t_0)|)) + \gamma_3(|\delta|_{[t_0, t]})$ for all $t \geq t_0$.
Input-to-State Stability or ISS (Sontag, ’89)

Definition: A system $E'(t) = G(t, E(t), \Gamma)$ is uniformly globally asymptotically stable to 0 provided there are γ_1 and γ_2 in \mathcal{K}_∞ such that for all of its solutions $E : [t_0, t_{\text{max}}) \rightarrow S$, we have $|E(t)| \leq \gamma_1(e^{t_0-t}\gamma_2(|E(t_0)|))$ for all $t \geq t_0$.

$\gamma_i \in \mathcal{K}_\infty$: γ_i’s continuous, 0 at 0, strictly increasing, unbounded.

Definition: A system $E'(t) = G(t, E(t), \Gamma, \delta(t))$ satisfies ISS provided there are γ_i’s in \mathcal{K}_∞ such that for all of its solutions $E : [t_0, t_{\text{max}}) \rightarrow S$ and all measurable $\delta : [0, \infty) \rightarrow D$, we have $|E(t)| \leq \gamma_1(e^{t_0-t}\gamma_2(|E(t_0)|)) + \gamma_3(|\delta|_{[t_0,t]})$ for all $t \geq t_0$.

Prove ISS by building certain strict Lyapunov functions.
Summary of Some of My Teams’ Research

For many systems, we design controls $u(t, \Gamma, Y(t))$ that ensure ISS under uncertainties δ.

Interconnect the systems with dynamics for estimators $\hat{\Gamma}(t)$ that converge to Γ from all $\hat{\Gamma}(0)$'s, and then replace Γ in u by $\hat{\Gamma}$.

For state space subsets $Y^{\flat} \subseteq Y$, compute maximal perturbation sets $D^{\flat} \subseteq D$ that ensure strong forward invariance of Y^{\flat}.

Bioreactors, DC motors, general theory, heart rate controllers, helicopters, human-computer interactions, magnetic bearings, marine robots, microelectromechanical relays, neuromuscular electrical stimulation, unmanned air vehicles,..
Summary of Some of My Teams’ Research

For many systems, we design controls $u(t, \Gamma, Y(t))$ that ensure ISS under uncertainties δ.
Summary of Some of My Teams’ Research

For many systems, we design controls \(u(t, \Gamma, Y(t)) \) that ensure ISS under uncertainties \(\delta \).

Interconnect the systems with dynamics for estimators \(\hat{\Gamma}(t) \) that converge to \(\Gamma \) from all \(\hat{\Gamma}(0) \)'s, and then replace \(\Gamma \) in \(u \) by \(\hat{\Gamma} \).
Summary of Some of My Teams’ Research

For many systems, we design controls $u(t, \Gamma, Y(t))$ that ensure ISS under uncertainties δ.

Interconnect the systems with dynamics for estimators $\hat{\Gamma}(t)$ that converge to Γ from all $\hat{\Gamma}(0)$’s, and then replace Γ in u by $\hat{\Gamma}$.

For state space subsets $\mathcal{Y}^b \subseteq \mathcal{Y}$, compute maximal perturbation sets $\mathcal{D}^b \subseteq \mathcal{D}$ that ensure strong forward invariance of \mathcal{Y}^b.
Summary of Some of My Teams’ Research

For many systems, we design controls $u(t, \Gamma, Y(t))$ that ensure ISS under uncertainties δ.

Interconnect the systems with dynamics for estimators $\hat{\Gamma}(t)$ that converge to Γ from all $\hat{\Gamma}(0)$’s, and then replace Γ in u by $\hat{\Gamma}$.

For state space subsets $\mathcal{Y}^b \subseteq \mathcal{Y}$, compute maximal perturbation sets $\mathcal{D}^b \subseteq \mathcal{D}$ that ensure strong forward invariance of \mathcal{Y}^b.

Bioreactors, DC motors, general theory, heart rate controllers, helicopters, human-computer interactions, magnetic bearings, marine robots, microelectromechanical relays, neuromuscular electrical stimulation, unmanned air vehicles,..
Summary of Some of My Teams’ Research

For many systems, we design controls $u(t, \Gamma, Y(t))$ that ensure ISS under uncertainties δ.

Interconnect the systems with dynamics for estimators $\hat{\Gamma}(t)$ that converge to Γ from all $\hat{\Gamma}(0)$’s, and then replace Γ in u by $\hat{\Gamma}$.

For state space subsets $Y^b \subseteq Y$, compute maximal perturbation sets $D^b \subseteq D$ that ensure strong forward invariance of Y^b.

Bioreactors, DC motors, general theory, heart rate controllers, helicopters, human-computer interactions, magnetic bearings, marine robots, microelectromechanical relays, neuromuscular electrical stimulation, unmanned air vehicles,..
Summary of Some of My Teams’ Research

For many systems, we design controls $u(t, \Gamma, Y(t))$ that ensure ISS under uncertainties δ.

Interconnect the systems with dynamics for estimators $\hat{\Gamma}(t)$ that converge to Γ from all $\hat{\Gamma}(0)$’s, and then replace Γ in u by $\hat{\Gamma}$.

For state space subsets $\mathcal{Y}^b \subseteq \mathcal{Y}$, compute maximal perturbation sets $D^b \subseteq D$ that ensure strong forward invariance of \mathcal{Y}^b.

Bioreactors, DC motors, general theory, heart rate controllers, helicopters, human-computer interactions, magnetic bearings, marine robots, microelectromechanical relays, neuromuscular electrical stimulation, unmanned air vehicles, ..
Sample Theorem (M-Mazenc-de Queiroz)

We solved the tracking and parameter identification problem for

\[
\begin{align*}
\dot{x} &= f(\xi) \\
\dot{z}_i &= g_i(\xi) + k_i(\xi)\theta_i + \psi_i u_i, \quad i = 1, 2, \ldots, s.
\end{align*}
\]

(3)

\[\xi = (x, z) \in \mathbb{R}^{r+s}.\]
Sample Theorem (M-Mazenc-de Queiroz)

We solved the tracking and parameter identification problem for

\[
\begin{align*}
\dot{x} &= f(\xi) \\
\dot{z}_i &= g_i(\xi) + k_i(\xi)\theta_i + \psi_i u_i, \quad i = 1, 2, \ldots, s.
\end{align*}
\]

(3)

\[\xi = (x, z) \in \mathbb{R}^{r+s}. \quad (\theta, \psi) = (\theta_1, \ldots, \theta_s, \psi_1, \ldots, \psi_s) \in \mathbb{R}^{p_1+\ldots+p_s+s}.\]
Sample Theorem (M-Mazenc-de Queiroz)

We solved the tracking and parameter identification problem for

\[
\begin{align*}
\dot{x} &= f(\xi) \\
\dot{z}_i &= g_i(\xi) + k_i(\xi)\theta_i + \psi_i u_i, \quad i = 1, 2, \ldots, s.
\end{align*}
\]

(3)

\[\xi = (x, z) \in \mathbb{R}^{r+s}, \quad (\theta, \psi) = (\theta_1, \ldots, \theta_s, \psi_1, \ldots, \psi_s) \in \mathbb{R}^{p_1+\ldots+p_s+s}.\]

The \(C^2\) reference trajectory \(\xi_R = (x_R, z_R)\) is assumed to have some period \(T > 0\) and satisfy \(\dot{x}_R(t) = f(\xi_R(t))\) for all \(t \geq 0\).
Sample Theorem (M-Mazenc-de Queiroz)

We solved the tracking and parameter identification problem for

\[
\begin{align*}
\dot{\xi} &= f(\xi) \\
\dot{z}_i &= g_i(\xi) + k_i(\xi)\theta_i + \psi_i u_i, \quad i = 1, 2, \ldots, s.
\end{align*}
\]

(3)

\(\xi = (x, z) \in \mathbb{R}^{r+s}. (\theta, \psi) = (\theta_1, \ldots, \theta_s, \psi_1, \ldots, \psi_s) \in \mathbb{R}^{p_1+\ldots+p_s+s}.\)

The \(C^2\) reference trajectory \(\xi_R = (x_R, z_R)\) is assumed to have some period \(T > 0\) and satisfy \(\dot{x}_R(t) = f(\xi_R(t))\) for all \(t \geq 0.\)

Main PE Assumption: positive definiteness of the matrices

\[
\mathcal{M}_i = \int_0^T \lambda_i^\top(t)\lambda_i(t) \, dt \in \mathbb{R}^{(p_i+1)\times(p_i+1)}, \quad 1 \leq i \leq s,
\]

(4)

where \(\lambda_i(t) = (k_i(\xi_R(t)), \dot{z}_{R,i}(t) - g_i(\xi_R(t)))\) for \(i = 1, 2, \ldots, s.\)
Two Other Key Assumptions

A1 We know v and a are continuous on $\mathbb{R}_{r+s} \rightarrow [0, \infty)$ for
\[
\dot{X} = f(X, Z, \xi) - f(\xi) \\
\dot{Z} = v f(t, X, Z)
\] (5)
such that $-\dot{V}$ and V have a lower bound $\bar{c} \mid (X, Z)$ near 0 (with $\bar{c} > 0$ constant), and V and $v f$ have period T in t.

Key: Reduces the LF construction problem to (5).

A2 There are known positive constants θ_M, ψ and ψ_i such that $\psi < \psi_i < \psi$ and $|\theta_i| < \theta_M$ (6) for each $i \in \{1, 2, ..., s\}$.

Known directions for the ψ_i's.
Two Other Key Assumptions

A1 We know v_f and a C^1 LF $V : [0, \infty) \times \mathbb{R}^{r+s} \to [0, \infty)$ for

\[
\begin{align*}
\dot{X} & = f((X, Z) + \xi_R(t)) - f(\xi_R(t)) \\
\dot{Z} & = v_f(t, X, Z)
\end{align*}
\]

such that $-\dot{V}$ and V have a lower bound $\bar{c}|(X, Z)|^2$ near 0 (with $\bar{c} > 0$ constant), and V and v_f have period T in t.

Key: Reduces the LF construction problem to (5).
Two Other Key Assumptions

A1 We know \(\nu_f \) and a \(C^1 \) LF \(V : [0, \infty) \times \mathbb{R}^{r+s} \rightarrow [0, \infty) \) for

\[
\begin{aligned}
\dot{X} &= f((X, Z) + \xi_R(t)) - f(\xi_R(t)) \\
\dot{Z} &= \nu_f(t, X, Z)
\end{aligned}
\]

such that \(-\dot{V}\) and \(V\) have a lower bound \(\bar{c}(X, Z)^2 \) near 0 (with \(\bar{c} > 0 \) constant), and \(V\) and \(\nu_f\) have period \(T\) in \(t\).

Key: Reduces the LF construction problem to (5).

A2 There are known positive constants \(\theta_M, \underline{\psi}, \overline{\psi}\) such that

\[
\underline{\psi} < \psi_i < \overline{\psi} \quad \text{and} \quad |\theta_i| < \theta_M
\]

for each \(i \in \{1, 2, \ldots, s\}\). Known directions for the \(\psi_i\)’s.
Dynamic Feedback

The estimator has state space $\hat{S} = \{\prod_{i=1}^{s}(-\theta_M, \theta_M)^{p_i}\} \times (\underline{\psi}, \overline{\psi})^s$:

$$
\begin{align*}
\dot{\hat{\theta}}_{i,j} &= (\hat{\theta}_{i,j}^2 - \theta_M^2) \varpi_{i,j}(t, \tilde{\xi}), \quad 1 \leq i \leq s, 1 \leq j \leq p_i \\
\dot{\hat{\psi}}_i &= (\hat{\psi}_i - \underline{\psi}) (\hat{\psi}_i - \overline{\psi}) \Upsilon_i(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}), \quad 1 \leq i \leq s
\end{align*}
$$

(7)

Here $\hat{\theta}_i = (\hat{\theta}_{i,1}, \ldots, \hat{\theta}_{i,p_i})$ for $i = 1, 2, \ldots, s$, $\tilde{\xi} = (\tilde{x}, \tilde{z}) = \xi - \xi_R$,

$$
\varpi_{i,j}(t, \tilde{\xi}) = -\frac{\partial V}{\partial \tilde{z}_i}(t, \tilde{\xi}) k_{i,j}(\tilde{\xi} + \xi_R(t))
$$

(9)
Dynamic Feedback

The estimator has state space \(\hat{S} = \{ \prod_{i=1}^{s}(-\theta_M, \theta_M)^{p_i} \} \times (\underline{\psi}, \overline{\psi})^s \):

\[
\begin{align*}
\dot{\hat{\theta}}_{i,j} &= (\hat{\theta}_{i,j}^2 - \theta_M^2) \varpi_{i,j}(t, \tilde{\xi}), \quad 1 \leq i \leq s, \ 1 \leq j \leq p_i \\
\dot{\hat{\psi}}_i &= (\hat{\psi}_i - \underline{\psi}) (\hat{\psi}_i - \overline{\psi}) \Upsilon_i(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}), \quad 1 \leq i \leq s
\end{align*}
\]

(7)

Here \(\hat{\theta}_i = (\hat{\theta}_{i,1}, \ldots, \hat{\theta}_{i,p_i}) \) for \(i = 1, 2, \ldots, s \), \(\tilde{\xi} = (\tilde{\chi}, \tilde{\zeta}) = \xi - \xi_R \),

\[
\varpi_{i,j}(t, \tilde{\xi}) = -\frac{\partial V}{\partial \tilde{z}_i}(t, \tilde{\xi}) k_{i,j}(\tilde{\xi} + \xi_R(t)) \quad \text{and}
\]

\[
\Upsilon_i(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}) = -\frac{\partial V}{\partial \tilde{z}_i}(t, \tilde{\xi}) u_i(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}).
\]

(8)

\[
u_{f,i}(t, \tilde{\xi}) = \frac{v_{f,i}(t, \tilde{\xi}) - g_i(\xi) - k_i(\xi) \hat{\theta}_i + \hat{\zeta}_{R,i}(t)}{\hat{\psi}_i}
\]

(9)
Dynamic Feedback

The estimator has state space $\hat{S} = \{\prod_{i=1}^{s}(-\theta_M, \theta_M)^{p_i}\} \times (\underline{\psi}, \overline{\psi})^s$:

$$\begin{align*}
\dot{\hat{\theta}}_{i,j} &= (\hat{\theta}_{i,j}^2 - \theta_M^2) \varpi_{i,j}(t, \tilde{\xi}), \quad 1 \leq i \leq s, 1 \leq j \leq p_i \\
\dot{\hat{\psi}}_i &= \left(\hat{\psi}_i - \underline{\psi}\right) \left(\hat{\psi}_i - \overline{\psi}\right) \Upsilon_i(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}), \quad 1 \leq i \leq s
\end{align*}$$

(7)

Here $\hat{\theta}_i = (\hat{\theta}_{i,1}, \ldots, \hat{\theta}_{i,p_i})$ for $i = 1, 2, \ldots, s$, $\tilde{\xi} = (\tilde{x}, \tilde{z}) = \xi - \xi_R$,

$$\begin{align*}
\varpi_{i,j}(t, \tilde{\xi}) &= -\frac{\partial V}{\partial \tilde{z}_i}(t, \tilde{\xi}) k_{i,j}(\tilde{\xi} + \xi_R(t)) \quad \text{and} \\
\Upsilon_i(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}) &= -\frac{\partial V}{\partial \tilde{z}_i}(t, \tilde{\xi}) u_i(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}).
\end{align*}$$

(8)

$$u_i(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}) = \frac{v_{f,i}(t, \tilde{\xi}) - g_i(\xi) - k_i(\xi) \hat{\theta}_i + \dot{z}_{R,i}(t)}{\hat{\psi}_i}$$

(9)

Barrier terms ensure $\underline{\psi} < \hat{\psi}_i(t) < \overline{\psi}$ and $|\hat{\theta}_{i,j}(t)| < \theta_M$ for all $t \geq 0$
Augmented Error Dynamics

Tracking error: $\tilde{\xi} = (\tilde{x}, \tilde{z}) = \xi - \xi_R = (x - x_R, z - z_R)$

Estimation errors: $\tilde{\theta}_i = \theta_i - \hat{\theta}_i$ and $\tilde{\psi}_i = \psi_i - \hat{\psi}_i$.
Augmented Error Dynamics

Tracking error: $\tilde{\xi} = (\tilde{x}, \tilde{z}) = \xi - \xi_R = (x - x_R, z - z_R)$

Estimation errors: $\tilde{\theta}_i = \theta_i - \hat{\theta}_i$ and $\tilde{\psi}_i = \psi_i - \hat{\psi}_i$. $\mathcal{E} = (\tilde{\xi}, \tilde{\theta}, \tilde{\psi})$.
Augmented Error Dynamics

Tracking error: \(\tilde{\xi} = (\tilde{x}, \tilde{z}) = \xi - \xi_R = (x - x_R, z - z_R) \)

Estimation errors: \(\tilde{\theta}_i = \theta_i - \hat{\theta}_i \) and \(\tilde{\psi}_i = \psi_i - \hat{\psi}_i \). \(\mathcal{E} = (\tilde{\xi}, \tilde{\theta}, \tilde{\psi}) \).

\[
\begin{align*}
\dot{\tilde{x}} &= f(\tilde{\xi} + \xi_R(t)) - f(\xi_R(t)) \\
\dot{\tilde{z}}_i &= v_{f,i}(t, \tilde{\xi}) + k_i(\tilde{\xi} + \xi_R(t)) \tilde{\theta}_i \\
&\quad + \tilde{\psi}_i u_i(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}), \quad 1 \leq i \leq s \\
\dot{\tilde{\theta}}_{i,j} &= -\left(\hat{\theta}_{i,j}^2 - \theta_M^2\right) \varpi_{i,j}, \quad 1 \leq i \leq s, 1 \leq j \leq p_i \\
\hat{\psi}_i &= -\left(\hat{\psi}_i - \psi\right) (\hat{\psi}_i - \overline{\psi}) \gamma_i, \quad 1 \leq i \leq s.
\end{align*}
\] (AED)
Augmented Error Dynamics

Tracking error: $\tilde{\xi} = (\tilde{x}, \tilde{z}) = \xi - \xi_R = (x - x_R, z - z_R)$

Estimation errors: $\tilde{\theta}_i = \theta_i - \hat{\theta}_i$ and $\tilde{\psi}_i = \psi_i - \hat{\psi}_i$. $\mathcal{E} = (\tilde{\xi}, \tilde{\theta}, \tilde{\psi})$.

\[
\begin{align*}
\dot{\tilde{x}} &= f(\tilde{\xi} + \xi_R(t)) - f(\xi_R(t)) \\
\dot{\tilde{z}}_i &= v_{f,i}(t, \tilde{\xi}) + k_i(\tilde{\xi} + \xi_R(t))\tilde{\theta}_i \\
&\quad + \tilde{\psi}_i u_i(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}), \quad 1 \leq i \leq s \\
\dot{\tilde{\theta}}_{i,j} &= -\left(\hat{\theta}_{i,j}^2 - \theta_M^2\right)\varpi_{i,j}, \quad 1 \leq i \leq s, 1 \leq j \leq p_i \\
\dot{\tilde{\psi}}_i &= -\left(\hat{\psi}_i - \psi\right)\left(\hat{\psi}_i - \bar{\psi}\right)\gamma_i, \quad 1 \leq i \leq s.
\end{align*}
\]

(AED)

\[
S = \mathbb{R}^{r+s} \times \left(\prod_{i=1}^s \left\{\prod_{j=1}^{p_i} (\theta_{i,j} - \theta_M, \theta_{i,j} + \theta_M)\right\}\right) \\
\times \left(\prod_{i=1}^s (\psi_i - \bar{\psi}, \psi_i - \bar{\psi})\right).
\]
Stabilization Analysis

We build a strict LF for the augmented error dynamics for \(E = (\tilde{\xi}, \tilde{\theta}, \tilde{\psi}) = (\xi - \xi_R, \theta - \hat{\theta}, \psi - \hat{\psi}) \) on its state space \(S \).

We start with this nonstrict barrier type LF on \(S \):

\[
V_1(t, E) = V(t, \tilde{\xi}) + s \sum_{i=1}^{p} \int_{0}^{\theta_i,j} m \theta_i^2 M - (m - \theta_i,j)^2 dm + s \sum_{i=1}^{p} \int_{0}^{\psi_i} m(\psi_i - \psi_m)(\psi - \psi_i + \psi_m) dm.
\]

There is a positive definite function \(W \) such that \(\dot{V}_1 \leq -W(\tilde{\xi}) \) along all solutions \(E : [0, \infty) \rightarrow S \) of (AED). This allows \(\dot{V}_1 = 0 \) at some nonzero \(E \)'s, so \(V_1 \) is nonstrict.
Stabilization Analysis

We build a strict LF for the augmented error dynamics for $\mathcal{E} = (\tilde{\xi}, \tilde{\theta}, \tilde{\psi}) = (\xi - \xi_R, \theta - \hat{\theta}, \psi - \hat{\psi})$ on its state space \mathcal{S}.
Stabilization Analysis

We build a strict LF for the augmented error dynamics for $\mathcal{E} = (\tilde{\xi}, \tilde{\theta}, \tilde{\psi}) = (\xi - \xi_R, \theta - \hat{\theta}, \psi - \hat{\psi})$ on its state space S.

We start with this nonstrict barrier type LF on S:

$$V_1(t, \mathcal{E}) = V(t, \tilde{\xi}) + \sum_{i=1}^{s} \sum_{j=1}^{p_i} \int_{0}^{\tilde{\theta}_{i,j}} \frac{m}{\theta_M^2 - (m - \theta_{i,j})^2} \, dm$$

$$+ \sum_{i=1}^{s} \int_{0}^{\tilde{\psi}_i} \frac{m}{(\psi_i - m - \psi)(\psi - \psi_i + m)} \, dm.$$

There is a positive definite function \mathcal{W} such that $\dot{V}_1 \leq -\mathcal{W}(\tilde{\xi})$ along all solutions $\mathcal{E} : [0, \infty) \rightarrow S$ of (AED).
Stabilization Analysis

We build a strict LF for the augmented error dynamics for $\mathcal{E} = (\tilde{\xi}, \tilde{\theta}, \tilde{\psi}) = (\xi - \xi_R, \theta - \hat{\theta}, \psi - \hat{\psi})$ on its state space S.

We start with this nonstrict barrier type LF on S:

$$V_1(t, \mathcal{E}) = V(t, \tilde{\xi}) + \sum_{i=1}^{s} \sum_{j=1}^{p_i} \int_{0}^{\tilde{\theta}_{i,j}} m \frac{\theta_{i,j}^2 - (m - \theta_{i,j})^2}{\theta_{i,j} M} \, dm + \sum_{i=1}^{s} \int_{0}^{\tilde{\psi}_i} m \frac{(\psi_i - m - \psi)(\psi - \psi_i + m)}{(\psi_i - m - \psi)(\psi - \psi_i + m)} \, dm.$$

There is a positive definite function W such that $\dot{V}_1 \leq -W(\tilde{\xi})$ along all solutions $\mathcal{E} : [0, \infty) \rightarrow S$ of (AED).

This allows $\dot{V}_1 = 0$ at some nonzero \mathcal{E}’s, so V_1 is nonstrict.
Stabilization Analysis

We build a strict LF for the augmented error dynamics for \(\mathcal{E} = (\tilde{\xi}, \tilde{\theta}, \tilde{\psi}) = (\xi - \xi_R, \theta - \hat{\theta}, \psi - \hat{\psi}) \) on its state space \(S \).

We start with this nonstrict barrier type LF on \(S \):

\[
V_1(t, \mathcal{E}) = V(t, \tilde{\xi}) + \sum_{i=1}^{s} \sum_{j=1}^{p_i} \int_{0}^{\tilde{\theta}_{i,j}} \frac{m}{\theta_{M}^2 - (m - \theta_{i,j})^2} \, dm \\
+ \sum_{i=1}^{s} \int_{0}^{\tilde{\psi}_{i}} \frac{m}{(\psi_{i} - m - \bar{\psi})(\bar{\psi} - \psi_{i} + m)} \, dm.
\]

There is a positive definite function \(W \) such that \(\dot{V}_1 \leq -W(\tilde{\xi}) \) along all solutions \(\mathcal{E} : [0, \infty) \to S \) of (AED).

We transform \(V_1 \) into the desired strict LF \(V^\# \) for (AED).
Stabilization Analysis

We build a strict LF for the augmented error dynamics for
\(E = (\tilde{\xi}, \tilde{\theta}, \tilde{\psi}) = (\xi - \xi_R, \theta - \hat{\theta}, \psi - \hat{\psi}) \) on its state space \(S \).

We start with this nonstrict barrier type LF on \(S \):

\[
V_1(t, E) = V(t, \tilde{\xi}) + \sum_{i=1}^{s} \sum_{j=1}^{p_i} \int_0^{\tilde{\theta}_{i,j}} \frac{m}{\theta_{M}^2 - (m - \theta_{i,j})^2} \, dm + \sum_{i=1}^{s} \int_0^{\tilde{\psi}_i} \frac{m}{(\psi_i - m - \psi)(\psi - \psi_i + m)} \, dm.
\]

There is a positive definite function \(W \) such that \(\dot{V}_1 \leq -W(\tilde{\xi}) \) along all solutions \(E : [0, \infty) \rightarrow S \) of (AED).

\(V^\# \) enables proving ISS and rate of convergence analysis.
Our Transformation (M-M-dQ)

Theorem: We can construct a function
$L \in K^\infty \cap C_1$
such that
$V^\#(t, E) = L(V_1(t, E)) + \sum_{i=1}^{\Omega_i(t, E)}$

where
$\Omega_i(t, E) = -\tilde{z}_i^\lambda_i(t) \alpha_i(E) + \frac{1}{T} \psi_i^\top \Omega_i(t) \alpha_i(E)$,
$\alpha_i(E) = [\tilde{\theta}_i^\psi_i - \theta_i \tilde{\psi}_i]$

is a strict LF for (AED) on its state space S, so (AED) is UGAS.
Our Transformation (M-M-dQ)

Theorem: We can construct a function $L \in K_\infty \cap C^1$ such that

$$V^\#(t, \mathcal{E}) = L(V_1(t, \mathcal{E})) + \sum_{i=1}^{s} \Omega_i(t, \mathcal{E}), \quad (10)$$

where

$$\Omega_i(t, \mathcal{E}) = -\tilde{Z}_i \lambda_i(t) \alpha_i(\mathcal{E}) + \frac{1}{T\psi} \alpha_i^\top(\mathcal{E}) \Omega_i(t) \alpha_i(\mathcal{E}),$$

$$\alpha_i(\mathcal{E}) = \begin{bmatrix} \tilde{\theta}_i \psi_i - \theta_i \tilde{\psi}_i \\ \tilde{\psi}_i \end{bmatrix}, \quad \Omega_i(t) = \int_{t-T}^{t} \int_{m}^{t} \lambda_i^\top(s) \lambda_i(s) ds \, dm, \quad (11)$$

and $\lambda_i(t) = (k_i(\xi_R(t)), \dot{z}_{R,i}(t) - g_i(\xi_R(t)))$

is a strict LF for (AED) on its state space S, so (AED) is UGAS.
One Application: Marine Robots

We applied our adaptive approach to curve tracking problems for gyroscopic models for marine robots in a lagoon. We worked with Fumin Zhang’s robotics group in Georgia Tech ECE to search for pollution from the Deepwater Horizon disaster. We combined our adaptive control methods with robust forward invariance to satisfy performance and safety bounds. Robust forward invariance computes maximum allowable disturbance sets D that keep us in state constraint sets Y. We combined mathematical analysis with 2 weeks of field work with robotics students at a polluted lagoon at Grand Isle, LA.
One Application: Marine Robots

We applied our adaptive approach to curve tracking problems for gyroscopic models for marine robots in a lagoon.

We worked with Fumin Zhang’s robotics group in Georgia Tech ECE to search for pollution from the Deepwater Horizon disaster. We combined our adaptive control methods with robust forward invariance to satisfy performance and safety bounds. Robust forward invariance computes maximum allowable disturbance sets \(D \) that keep us in state constraint sets \(Y \).

We combined mathematical analysis with 2 weeks of field work with robotics students at a polluted lagoon at Grand Isle, LA.
One Application: Marine Robots

We applied our adaptive approach to curve tracking problems for gyroscopic models for marine robots in a lagoon.

We worked with Fumin Zhang’s robotics group in Georgia Tech ECE to search for pollution from the Deepwater Horizon disaster.
One Application: Marine Robots

We applied our adaptive approach to curve tracking problems for gyroscopic models for marine robots in a lagoon.

We worked with Fumin Zhang’s robotics group in Georgia Tech ECE to search for pollution from the Deepwater Horizon disaster.

We combined our adaptive control methods with robust forward invariance to satisfy performance and safety bounds.
One Application: Marine Robots

We applied our adaptive approach to curve tracking problems for gyroscopic models for marine robots in a lagoon.

We worked with Fumin Zhang’s robotics group in Georgia Tech ECE to search for pollution from the Deepwater Horizon disaster.

We combined our adaptive control methods with robust forward invariance to satisfy performance and safety bounds.

Robust forward invariance computes maximum allowable disturbance sets \mathcal{D} that keep us in state constraint sets \mathcal{Y}.
One Application: Marine Robots

We applied our adaptive approach to curve tracking problems for gyroscopic models for marine robots in a lagoon.

We worked with Fumin Zhang’s robotics group in Georgia Tech ECE to search for pollution from the Deepwater Horizon disaster.

We combined our adaptive control methods with robust forward invariance to satisfy performance and safety bounds.

Robust forward invariance computes maximum allowable disturbance sets \mathcal{D} that keep us in state constraint sets \mathcal{Y}.

We combined mathematical analysis with 2 weeks of field work with robotics students at a polluted lagoon at Grand Isle, LA.
One Application: Marine Robots

One Application: Marine Robots

One Application: Marine Robots

Hyperlinked Related References

Hyperlinked Related References

Hyperlinked Related References

Our Other Adaptive Control Applications

Brushless DC motors turning a mechanical load with uncertain motor electric parameters including integral ISS analysis. Variants for uncertain parameters Γ that enter the system in a nonlinear way for curve tracking with unknown curvatures. To also allow delays τ in state observations in our controls, we convert our strict LF into Lyapunov-Krasovskii functionals. We used artificial neural network expansions for extensions to cases where the Γ need not be constant.

Joint work with J. Muse from AFRL on model reference adaptive control to reduce oscillations, applied to hovering helicopters.
Our Other Adaptive Control Applications

Brushless DC motors turning a mechanical load with uncertain motor electric parameters including integral ISS analysis.
Our Other Adaptive Control Applications

Brushless DC motors turning a mechanical load with uncertain motor electric parameters including integral ISS analysis.

Variants for uncertain parameters Γ that enter the system in a nonlinear way for curve tracking with unknown curvatures.
Our Other Adaptive Control Applications

Brushless DC motors turning a mechanical load with uncertain motor electric parameters including integral ISS analysis.

Variants for uncertain parameters Γ that enter the system in a nonlinear way for curve tracking with unknown curvatures.

To also allow delays τ in state observations in our controls, we convert our strict LF into Lyapunov-Krasovskii functionals.
Our Other Adaptive Control Applications

Brushless DC motors turning a mechanical load with uncertain motor electric parameters including integral ISS analysis.

Variants for uncertain parameters Γ that enter the system in a nonlinear way for curve tracking with unknown curvatures.

To also allow delays τ in state observations in our controls, we convert our strict LF into Lyapunov-Krasovskii functionals.

We used artificial neural network expansions for extensions to cases where the Γ need not be constant.
Our Other Adaptive Control Applications

Brushless DC motors turning a mechanical load with uncertain motor electric parameters including integral ISS analysis.

Variants for uncertain parameters Γ that enter the system in a nonlinear way for curve tracking with unknown curvatures.

To also allow delays τ in state observations in our controls, we convert our strict LF into Lyapunov-Krasovskii functionals.

We used artificial neural network expansions for extensions to cases where the Γ need not be constant.

Joint work with J. Muse from AFRL on model reference adaptive control to reduce oscillations, applied to hovering helicopters.
Conclusions
Conclusions

Adaptive nonlinear controllers are useful for many engineering control systems with delays and uncertainties.
Conclusions

Adaptive nonlinear controllers are useful for many engineering control systems with delays and uncertainties.

Curve tracking controllers for autonomous marine vehicles are important for monitoring water quality, especially after oil spills.
Conclusions

Adaptive nonlinear controllers are useful for many engineering control systems with delays and uncertainties.

Curve tracking controllers for autonomous marine vehicles are important for monitoring water quality, especially after oil spills.

Our controls identify parameters and are adaptive and robust to the perturbations and delays that arise in field work.
Conclusions

Adaptive nonlinear controllers are useful for many engineering control systems with delays and uncertainties.

Curve tracking controllers for autonomous marine vehicles are important for monitoring water quality, especially after oil spills.

Our controls identify parameters and are adaptive and robust to the perturbations and delays that arise in field work.

Extensions under delays are done using Lyapunov-Krasovskii functions, Razumikhin functions, or sequential predictors.
Conclusions

Adaptive nonlinear controllers are useful for many engineering control systems with delays and uncertainties.

Curve tracking controllers for autonomous marine vehicles are important for monitoring water quality, especially after oil spills.

Our controls identify parameters and are adaptive and robust to the perturbations and delays that arise in field work.

Extensions under delays are done using Lyapunov-Krasovskii functions, Razumikhin functions, or sequential predictors.

Another promising research direction is to study adaptive robust control for PDEs under event-triggered control.
Conclusions

Adaptive nonlinear controllers are useful for many engineering control systems with delays and uncertainties. Curve tracking controllers for autonomous marine vehicles are important for monitoring water quality, especially after oil spills. Our controls identify parameters and are adaptive and robust to the perturbations and delays that arise in field work.

Extensions under delays are done using Lyapunov-Krasovskii functions, Razumikhin functions, or sequential predictors. Another promising research direction is to study adaptive robust control for PDEs under event-triggered control.

Thanks for your interest!