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Adaptive Control Problems: Basic Framework

Y ′(t) = F
(
t ,Y (t),u(t , Γ̂(t),Y (t)), Γ, δ(t)

)
, Y (t) ∈ Y. (1)

Y ⊆ Rn. δ : [0,∞)→ D is (nonstochastic) uncertainty. D ⊆ Rm.
The vector Γ is constant but unknown. u is a control.

The control u and Γ̂′(t) = H(t , Γ̂(t),Y (t),u(t , Γ̂(t),Y (t))) will be
chosen so that each solution Y : [t0, tmax)→ Y of (2) for each
initial state Y (t0) ∈ Y and each δ is uniquely defined in [t0,∞).

Problem: Given YR : [0,∞)→ Y, find u and a dynamics for an
estimate Γ̂ of Γ such that the dynamics for the augmented error
E(t) = (Y (t)− YR(t), Γ− Γ̂(t)) satisfies ISS with respect to δ.

Persistent excitation. Required nondegeneracy condition on YR.
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Input-to-State Stability or ISS (Sontag, ’89)

Definition: A system E ′(t) = G(t , E(t), Γ) is uniformly globally
asymptotically stable to 0 provided there are γ1 and γ2 in K∞
such that for all of its solutions E : [t0, tmax)→ S, we have
|E(t)| ≤ γ1(et0−tγ2(|E(t0)|)) for all t ≥ t0.

γi ∈ K∞: γi ’s continuous, 0 at 0, strictly increasing, unbounded.

Definition: A system E ′(t) = G
(
t , E(t), Γ, δ(t)

)
satisfies ISS

provided there are γi ’s in K∞ such that for all of its solutions
E : [t0, tmax)→ S and all measurable δ : [0,∞)→ D, we have
|E(t)| ≤ γ1

(
et0−tγ2(|E(t0)|)

)
+ γ3(|δ|[t0,t]) for all t ≥ t0.

Prove ISS by building certain strict Lyapunov functions.
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Summary of Some of My Teams’ Research

For many systems, we design controls u(t , Γ,Y (t)) that ensure
ISS under uncertainties δ.

Interconnect the systems with dynamics for estimators Γ̂(t) that
converge to Γ from all Γ̂(0)’s, and then replace Γ in u by Γ̂.

For state space subsets Y[ ⊆ Y, compute maximal perturbation
sets D[ ⊆ D that ensure strong forward invariance of Y[.

Bioreactors, DC motors, general theory, heart rate controllers,
helicopters, human-computer interactions, magnetic bearings,
marine robots, microelectromechanical relays, neuromuscular
electrical stimulation, unmanned air vehicles,..
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Sample Theorem (M-Mazenc-de Queiroz)

We solved the tracking and parameter identification problem for{
ẋ = f (ξ)
żi = gi(ξ) + ki(ξ)θi + ψiui , i = 1,2, . . . , s .

(3)

ξ = (x , z) ∈ Rr+s.

(θ, ψ) = (θ1, ..., θs, ψ1, . . . , ψs) ∈ Rp1+...+ps+s.

The C2 reference trajectory ξR = (xR, zR) is assumed to have
some period T > 0 and satisfy ẋR(t) = f (ξR(t)) for all t ≥ 0.

Main PE Assumption: positive definiteness of the matrices

Mi =
∫ T

0 λ>i (t)λi(t) dt ∈ R(pi+1)×(pi+1), 1 ≤ i ≤ s, (4)

where λi(t) = (ki(ξR(t)), żR,i(t)− gi(ξR(t))) for i = 1,2, . . . , s.
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where λi(t) = (ki(ξR(t)), żR,i(t)− gi(ξR(t))) for i = 1,2, . . . , s.

4/12



Sample Theorem (M-Mazenc-de Queiroz)

We solved the tracking and parameter identification problem for{
ẋ = f (ξ)
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Two Other Key Assumptions

A1 We know vf and a C1 LF V : [0,∞)× Rr+s → [0,∞) for{
Ẋ = f

(
(X ,Z ) + ξR(t)

)
− f (ξR(t))

Ż = vf (t ,X ,Z )
(5)

such that −V̇ and V have a lower bound c̄|(X ,Z )|2 near 0
(with c̄ > 0 constant), and V and vf have period T in t .

Key: Reduces the LF construction problem to (5).

A2 There are known positive constants θM , ψ and ψ such that

ψ < ψi < ψ and |θi | < θM (6)

for each i ∈ {1,2, . . . , s}. Known directions for the ψi ’s.
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Dynamic Feedback

The estimator has state space Ŝ = {
∏s

i=1(−θM , θM)pi} × (ψ,ψ)s:
˙̂θi,j = (θ̂2

i,j − θ2
M)$i,j(t , ξ̃), 1 ≤ i ≤ s ,1 ≤ j ≤ pi

˙̂ψi =
(
ψ̂i − ψ

)(
ψ̂i − ψ

)
Υi(t , ξ̃, θ̂, ψ̂), 1 ≤ i ≤ s

(7)

Here θ̂i = (θ̂i,1, . . . , θ̂i,pi ) for i = 1,2, . . . , s , ξ̃ = (x̃ , z̃) = ξ − ξR,

$i,j(t , ξ̃) = −∂V
∂z̃i

(t , ξ̃)ki,j
(
ξ̃ + ξR(t)

)

and

Υi(t , ξ̃, θ̂, ψ̂) = −∂V
∂z̃i

(t , ξ̃)ui(t , ξ̃, θ̂, ψ̂) .
(8)

ui(t , ξ̃, θ̂, ψ̂) =
vf ,i (t ,ξ̃)−gi (ξ)−ki (ξ)θ̂i+żR,i (t)

ψ̂i
(9)

Barrier terms ensure ψ < ψ̂i(t) < ψ and |θ̂i,j(t)| < θM for all t ≥ 0
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∏s

i=1(−θM , θM)pi} × (ψ,ψ)s:
˙̂θi,j = (θ̂2

i,j − θ2
M)$i,j(t , ξ̃), 1 ≤ i ≤ s ,1 ≤ j ≤ pi

˙̂ψi =
(
ψ̂i − ψ

)(
ψ̂i − ψ

)
Υi(t , ξ̃, θ̂, ψ̂), 1 ≤ i ≤ s

(7)

Here θ̂i = (θ̂i,1, . . . , θ̂i,pi ) for i = 1,2, . . . , s , ξ̃ = (x̃ , z̃) = ξ − ξR,

$i,j(t , ξ̃) = −∂V
∂z̃i

(t , ξ̃)ki,j
(
ξ̃ + ξR(t)

)
and

Υi(t , ξ̃, θ̂, ψ̂) = −∂V
∂z̃i

(t , ξ̃)ui(t , ξ̃, θ̂, ψ̂) .
(8)

ui(t , ξ̃, θ̂, ψ̂) =
vf ,i (t ,ξ̃)−gi (ξ)−ki (ξ)θ̂i+żR,i (t)
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Augmented Error Dynamics

Tracking error: ξ̃ = (x̃ , z̃) = ξ − ξR = (x − xR, z − zR)

Estimation errors: θ̃i = θi − θ̂i and ψ̃i = ψi − ψ̂i .

E = (ξ̃, θ̃, ψ̃).

˙̃x = f (ξ̃ + ξR(t))− f (ξR(t))

˙̃zi = vf ,i(t , ξ̃) + ki(ξ̃ + ξR(t))θ̃i

+ψ̃iui(t , ξ̃, θ̂, ψ̂), 1 ≤ i ≤ s
˙̃
θi,j = −

(
θ̂2

i,j − θ2
M

)
$i,j , 1 ≤ i ≤ s ,1 ≤ j ≤ pi

˙̃
ψi = −

(
ψ̂i − ψ

)(
ψ̂i − ψ

)
Υi , 1 ≤ i ≤ s .

(AED)

S = Rr+s ×
(∏s

i=1

{∏pi
j=1(θi,j − θM , θi,j + θM)

})
×
(∏s

i=1
(
ψi − ψ,ψi − ψ

))
.
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Stabilization Analysis

We build a strict LF for the augmented error dynamics for
E = (ξ̃, θ̃, ψ̃) = (ξ − ξR, θ − θ̂, ψ − ψ̂) on its state space S.

We start with this nonstrict barrier type LF on S:

V1(t , E) = V (t , ξ̃) +
s∑

i=1

pi∑
j=1

∫ θ̃i,j

0

m
θ2

M − (m − θi,j)2
dm

+
s∑

i=1

∫ ψ̃i

0

m
(ψi −m − ψ)(ψ − ψi + m)

dm .

There is a positive definite function W such that V̇1 ≤ −W (ξ̃)
along all solutions E : [0,∞)→ S of (AED).

This allows V̇1 = 0 at some nonzero E ’s, so V1 is nonstrict.
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Our Transformation (M-M-dQ)

Theorem: We can construct a function L ∈ K∞ ∩ C1 such that

V ](t , E) = L
(
V1(t , E)

)
+

s∑
i=1

Ωi(t , E) , (10)

where

Ωi(t , E) = −z̃iλi(t)αi(E) + 1
Tψ
α>i (E)Ωi(t)αi(E) ,

αi(E) =

[
θ̃iψi − θi ψ̃i

ψ̃i

]
, Ωi(t) =

∫ t
t−T

∫ t
m λ
>
i (s)λi(s)ds dm,

and λi(t) = (ki(ξR(t)), żR,i(t)− gi(ξR(t)))

(11)

is a strict LF for (AED) on its state space S, so (AED) is UGAS.
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One Application: Marine Robots

We applied our adaptive approach to curve tracking problems for
gyroscopic models for marine robots in a lagoon.

We worked with Fumin Zhang’s robotics group in Georgia Tech
ECE to search for pollution from the Deepwater Horizon disaster.

We combined our adaptive control methods with robust forward
invariance to satisfy performance and safety bounds.

Robust forward invariance computes maximum allowable
disturbance sets D that keep us in state constraint sets Y.

We combined mathematical analysis with 2 weeks of field work
with robotics students at a polluted lagoon at Grand Isle, LA.
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One Application: Marine Robots

20 days of field work off Grand Isle. Search for oil spill remnants.
Georgia Tech Savannah Robotics Team. Joint with F. Zhang. v
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http://www.math.lsu.edu/~malisoff/research/videos/SM.mov
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Our Other Adaptive Control Applications

Brushless DC motors turning a mechanical load with uncertain
motor electric parameters including integral ISS analysis.

Variants for uncertain parameters Γ that enter the system in a
nonlinear way for curve tracking with unknown curvatures.

To also allow delays τ in state observations in our controls, we
convert our strict LF into Lyapunov-Krasovskii functionals.

We used artificial neural network expansions for extensions to
cases where the Γ need not be constant.

Joint work with J. Muse from AFRL on model reference adaptive
control to reduce oscillations, applied to hovering helicopters.
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Conclusions

Adaptive nonlinear controllers are useful for many engineering
control systems with delays and uncertainties.

Curve tracking controllers for autonomous marine vehicles are
important for monitoring water quality, especially after oil spills.

Our controls identify parameters and are adaptive and robust to
the perturbations and delays that arise in field work.

Extensions under delays are done using Lyapunov-Krasovskii
functions, Razumikhin functions, or sequential predictors.

Another promising research direction is to study adaptive robust
control for PDEs under event-triggered control.

Thanks for your interest!
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