
Stability and Robustness Analysis for a
Multispecies Chemostat Model with Delays in

the Growth Rates and Uncertainties

Frederic Mazenc
Michael Malisoff
Gonzalo Robledo

0/8



Background on Chemostats

B Chemostat: Laboratory apparatus for continuous culture of
microorganisms, with many biotechnological applications..

B Models: Represent cell or microorganism growth, wastewater
treatment, or natural environments like lakes..

B States: Microorganism and substrate concentrations, prone
to model uncertainties..

B Our goals: Input-to-state stabilization of equilibria that allow
co-existence of species with one limiting nutrient

B O. Bernard, D. Dochain, J. Gouze, J. Harmand, J. Monod, ....
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Review of Simple Chemostat

Three vessels: feed bottle, culture vessel, collection vessel.

Contents go in and out of culture vessel at constant rate F (l3/t).

Constant culture volume V (l3).

Constant input nutrient concentration sin (mass/l3).

rate of change of nutrient = input - washout - consumption.

rate of change of organism = growth - washout.
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Review of Simple Chemostat

Without organisms or consumption, (Vs)′(t) = sinF − s(t)F .

s = concentration of nutrient in culture vessel.

Consumption: msx
a+s , x = concentration of organism (mass/l3).

m = maximum growth rate (1/t). a = half-saturation constant.{
s′ = (sin − s)D − ms

a+s
x
γ

x ′ = x
(

ms
a+s − D

) (SC)
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Our Models and Theorem

 ṡ(t) = D[sin−s(t)]−
n∑

i=1
µi(s(t))xi(t) + δ0(t)

ẋi(t) = xi(t)µi(s(t−τi)) + D[x0
i −xi(t)] + δi(t), 1 ≤ i ≤ n

(M)

µi(s) = mi s
ai +s . Equilibria: E∗ = (s∗, x1∗, . . . , xn∗) ∈ (0,∞)×[0,∞)n.

Assumptions. The equilibria and disturbance bounds satisfy:

1) maxi µi(s∗)<D<µn(sin), sin =s∗+
n∑

i=1

µi (s∗)x0
i

D−µi (s∗) , xi∗=
Dx0

i
D−µi (s∗)

2) δi(t) ∈ [d i , d̄i ] for all i where Dsin + d0 > 0, d̄0 < 0.5Ds∗,
Dx0

i + d i > 0 for all indices i ∈ P, and d i = 0 for all indices
i ∈ {1,2, . . . ,n} \ P, where P = {i ∈ {1,2, . . . ,n} : x0

i > 0}.

Assumption 2) maintains forward invariance of (0,∞)n+1 for (M).
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n∑

i=1
µi(s(t))xi(t) + δ0(t)
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Constant Controls: x0
i and sin. x0

i : inputs from other chemostats.
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We also have an Assumption 3) with a bound τ̄ on the delays τi .
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ISS on a set S means there are class K∞ functions γi such that
|E(t)| ≤ γ1(γ2(|E(0)|)e−t ) + γ3(|δ|[0,t]) for all t ≥ 0 if E(0) ∈ S.

K∞ is the set of all continuous strictly increasing unbounded
functions γ : [0,∞)→ [0,∞) such that γ(0) = 0. Sontag, ’89.
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n∑

i=1
µi(s(t))xi(t) + δ0(t)
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n∑

i=1
µi(s(t))xi(t) + δ0(t)
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s̄ ≥ sin, the dynamics for the error vector E = (s, x)− E∗ satisfy
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Significance: Uniform persistence of all species for which
x0

i > 0. ISS for arbitrarily large upper bounds d̄i on δi(t) for i ≥ 1.
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Main Idea of Proof: Undelayed Case

Construct a function T ∈ K∞ and constants ci > 0 and ki > 0
such that the time derivative of

V (E) = s̃ − s∗ ln
(

s̃+s∗
s∗

)
+

n∑
i=1

1
ci

Ψi(x̃i), where

Ψi(x̃i) = x̃i − xi∗ ln
(

x̃i +xi∗
xi∗

)
for all i ∈ P

and Ψi(x̃i) = xi for all i ∈ {1,2, . . . ,n} \ P

along all solutions of (M) starting in any Ss̄,x with τi = 0 satisfies

d
dt V (E(t)) ≤ −k1

(
s̃2(t)
s(t) +

n∑
i=1

x̃2
i (t)

xi (t)

)
+ k2|δ|[0,t] (1)

for all t ≥ T (|E(0)|), where x̃i = xi − xi∗ for all i and s̃ = s − s∗.
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Simulations

n = 2, D = 0.4, s∗ = 0.5, x0
1 = 1, x0

2 = 0.55, sin = 1.34412,
µ1(s) = s

5+s , µ2(s) = s
2+s , x1∗ = 1.29412, x2∗ = 1.1, τ = (0.14,0)

δ(t) = (δ0(t), δ1(t), δ2(t)) = (0,−0.1 sin(t),0.1 cos(t)).
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x1(t) and x2(t) are Green and Red Curves, Respectively. s(t) is
Blue Curve. Initial State (s(0), x1(0), x2(0)) = (0.2,0.1,1).
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Conclusions

B Chemostats play a central role in microbial ecology.

B Persistence and asymptotic stability of equilibria are desirable.

B Gouze-Robledo showed coexistence by constant inputs x0
i .

B This arises in chains of chemostats with multiple substrates.

BWe generalized their work to prove ISS and added delays.

Mazenc, F., G. Robledo, and M. Malisoff. Stability and
robustness analysis for a multispecies chemostat model with
delays in the growth rates and uncertainties. Discrete and
Continuous Dynamical Systems Series B.

Thank you for your attention!
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Backup Slides to Use if
Time Allows or Questions Warrant



Our Models and Theorem ṡ(t) = D[sin−s(t)]−
n∑

i=1
µi(s(t))xi(t) + δ0(t)

ẋi(t) = xi(t)µi(s(t−τi)) + D[x0
i −xi(t)] + δi(t), 1 ≤ i ≤ n

(M)

µi(s) = mi s
ai +s . Equilibria: E∗ = (s∗, x1∗, . . . , xn∗) ∈ (0,∞)×[0,∞)n.

Reduces to Gouze-Robledo model when uncertainties δi and
delays τi are 0 and usual model when the inputs x0

i ≥ 0 are zero.

Theorem: Under our assumptions, for all constants x > 0 and
s̄ ≥ sin, the dynamics for the error vector E = (s, x)− E∗ satisfy
ISS on the set Ss̄,x = {E : E + E∗ ∈ (0, s̄]× (0,∞)n−1× (x ,∞)}.�

Significance: Since x > 0 and s̄ ≥ sin are arbitrary, we get ISS
properties on all of (0,∞)n+1 under our disturbance bounds.



Main Idea of Proof: Undelayed Case

Construct a function T ∈ K∞ and constants ci > 0 and ki > 0
such that the time derivative of

V (E) = s̃ − s∗ ln
(

s̃+s∗
s∗

)
+

n∑
i=1

1
ci

Ψi(x̃i), where

Ψi(x̃i) = x̃i − xi∗ ln
(

x̃i +xi∗
xi∗

)
for all i ∈ P

and Ψi(x̃i) = xi for all i ∈ {1,2, . . . ,n} \ P

along all solutions of (M) starting in any Ss̄,x with τi = 0 satisfies

d
dt V (E(t)) ≤ −k1

(
s̃2(t)
s(t) +

n∑
i=1

x̃2
i (t)

xi (t)

)
+ k2|δ|[0,t] (1)

for all t ≥ T (|E(0)|), where x̃i = xi − xi∗ for all i and s̃ = s − s∗.
Extend this to ISS estimate on [0,∞) by a trajectory analysis.



Main Idea of Proof: Delayed Case

Build T ∈ K∞ and positive constantsM∗, v0, and N̄ such that

V ](s̃t , α̃(t)) = V (s̃(t), α̃(t)) +M∗
∫ t

t−τ
∫ t
`

s̃2(r)
s(r) dr d` (2)

satisfies
.︷ ︸︸ ︷

V ](s̃t , α̃(t)) ≤ −v0

(
s̃2(t)
s(t) +

n∑
i=1

α̃2
i (t)
αi (t) +

∫ t
t−τ
∫ t
`

s̃2(r)
s(r) dr d`

)
+ N̄|δ|[0,t]

along all solutions of the (s̃, α̃) system for all t ≥ T (|E(0)|) where

αi(t) = xi(t)e
∫ t

t−τi
[µi (s(`))−µi (s∗)]d` (3)

for all i , V is the Lyapunov construction from the undelayed case,
s̃ = s − s∗ is as before, and α̃i = αi − xi∗ and τi ≤ τ for all i .
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