Lyapunov Function Constructions for Slowly Time-Varying Systems

MICHAEL MALISOFF

Department of Mathematics Louisiana State University

Joint with Frédéric Mazenc, Projet MERE INRIA-INRA

Stability Regular Session Paper FrA15.3 45th IEEE Conference on Decision and Control Manchester Grand Hyatt Hotel, San Diego, CA December 13-15, 2006

Goals: For large constants $\alpha > 0$, prove input-to-state stability (ISS) for

$$\dot{x} = f(x, t, t/\alpha) + g(x, t, t/\alpha)u, \ x(t_0) = x_o$$
 (Σ)

and construct explicit corresponding ISS Lyapunov functions.

Goals: For large constants $\alpha > 0$, prove input-to-state stability (ISS) for

$$\dot{x} = f(x, t, t/\alpha) + g(x, t, t/\alpha)u, \quad x(t_0) = x_o \tag{\Sigma}$$

and construct explicit corresponding ISS Lyapunov functions.

Literature: Uses exponential-like stability of $\dot{x} = f(x, t, \tau)$ aka (Σ_{fro}) for all relevant values of the scalar τ to show stability for $u \equiv 0$ but does not lead to explicit Lyapunov functions for (Σ) (Peuteman-Aeyels, Solo).

Goals: For large constants $\alpha > 0$, prove input-to-state stability (ISS) for

$$\dot{x} = f(x, t, t/\alpha) + g(x, t, t/\alpha)u, \quad x(t_0) = x_o \tag{\Sigma}$$

and construct explicit corresponding ISS Lyapunov functions.

Literature: Uses exponential-like stability of $\dot{x} = f(x, t, \tau)$ aka (Σ_{fro}) for all relevant values of the scalar τ to show stability for $u \equiv 0$ but does not lead to explicit Lyapunov functions for (Σ) (Peuteman-Aeyels, Solo).

Our Contributions: We explicitly construct Lyapunov functions for (Σ) in terms of given Lyapunov functions for $(\Sigma_{\rm fro})$ without assuming any exponential-like stability of $(\Sigma_{\rm fro})$ and we allow τ to be a vector.

Goals: For large constants $\alpha > 0$, prove input-to-state stability (ISS) for

$$\dot{x} = f(x, t, t/\alpha) + g(x, t, t/\alpha)u, \quad x(t_0) = x_o \tag{\Sigma}$$

and construct explicit corresponding ISS Lyapunov functions.

Literature: Uses exponential-like stability of $\dot{x} = f(x, t, \tau)$ aka (Σ_{fro}) for all relevant values of the scalar τ to show stability for $u \equiv 0$ but does not lead to explicit Lyapunov functions for (Σ) (Peuteman-Aeyels, Solo).

Our Contributions: We explicitly construct Lyapunov functions for (Σ) in terms of given Lyapunov functions for $(\Sigma_{\rm fro})$ without assuming any exponential-like stability of $(\Sigma_{\rm fro})$ and we allow τ to be a vector.

Significance: Lyapunov functions for (Σ_{fro}) are often readily available. Explicit Lyapunov functions and slowly time-varying models are important in control engineering e.g. control of friction, pendulums, etc.

MAIN ASSUMPTION and MAIN THEOREM

We first assume our (sufficiently regular) system (Σ) has the form

$$\dot{x} = f(x, t, p(t/\alpha)) \tag{Σ_p}$$

where $p : \mathbb{R} \to \mathbb{R}^d$ is bounded and $\bar{p} := \sup\{|p'(r)| : r \in \mathbb{R}\} < \infty$.

MAIN ASSUMPTION and MAIN THEOREM

We first assume our (sufficiently regular) system (Σ) has the form

$$\dot{x} = f(x, t, p(t/\alpha)) \tag{(\Sigma_p)}$$

where $p : \mathbb{R} \to \mathbb{R}^d$ is bounded and $\bar{p} := \sup\{|p'(r)| : r \in \mathbb{R}\} < \infty$.

Assume: $\exists \delta_1, \delta_2 \in \mathcal{K}_{\infty}$; constants $c_a, c_b, T > 0$; a continuous function $q : \mathbb{R}^d \to \mathbb{R}$; and a $C^1 V : \mathbb{R}^n \times [0, \infty) \times \mathbb{R}^d \to [0, \infty)$ s.t. $\forall x \in \mathbb{R}^n$, $t \ge 0$, and $\tau \in \mathcal{R}(p) := \{p(t) : t \in \mathbb{R}\}$: (i) $|V_{\tau}(x, t, \tau)| \le c_a V(x, t, \tau)$, (ii) $\delta_1(|x|) \le V(x, t, \tau) \le \delta_2(|x|)$, (iii) $\int_{t-T}^t q(p(s)) ds \ge c_b$, and (iv) $V_t(x, t, \tau) + V_x(x, t, \tau) f(x, t, \tau) \le -q(\tau) V(x, t, \tau)$ all hold.

MAIN ASSUMPTION and MAIN THEOREM

We first assume our (sufficiently regular) system (Σ) has the form

$$\dot{x} = f(x, t, p(t/\alpha)) \tag{(\Sigma_p)}$$

where $p : \mathbb{R} \to \mathbb{R}^d$ is bounded and $\bar{p} := \sup\{|p'(r)| : r \in \mathbb{R}\} < \infty$.

Assume: $\exists \delta_1, \delta_2 \in \mathcal{K}_{\infty}$; constants $c_a, c_b, T > 0$; a continuous function $q : \mathbb{R}^d \to \mathbb{R}$; and a $C^1 V : \mathbb{R}^n \times [0, \infty) \times \mathbb{R}^d \to [0, \infty)$ s.t. $\forall x \in \mathbb{R}^n$, $t \ge 0$, and $\tau \in \mathcal{R}(p) := \{p(t) : t \in \mathbb{R}\}$: (i) $|V_{\tau}(x, t, \tau)| \le c_a V(x, t, \tau)$, (ii) $\delta_1(|x|) \le V(x, t, \tau) \le \delta_2(|x|)$, (iii) $\int_{t-T}^t q(p(s)) ds \ge c_b$, and (iv) $V_t(x, t, \tau) + V_x(x, t, \tau) f(x, t, \tau) \le -q(\tau) V(x, t, \tau)$ all hold.

Theorem A: For each constant $\alpha > 2Tc_a \bar{p}/c_b$, (Σ_p) is UGAS and

$$V_{\alpha}^{\sharp}(x,t) := e^{\frac{\alpha}{T} \int_{\frac{t}{\alpha}}^{\frac{t}{\alpha}} - T \int_{s}^{\frac{t}{\alpha}} q(p(l)) \mathrm{d}l \, \mathrm{d}s} V(x,t,p(t/\alpha))$$

is a Lyapunov function for (Σ_p) . [UGAS: $|\phi(t; t_o, x_o)| \leq \beta(|x_o|, t - t_o)$]

SKETCH of PROOF of THEOREM A

Step 1: Set $\hat{V}(x,t) := V(x,t,p(t/\alpha))$. Along trajectories of (Σ_p) ,

$$\frac{d}{dt}\hat{V} \le \left[-q(p(t/\alpha)) + \frac{c_a\bar{p}}{\alpha}\right]\hat{V}(x,t). \tag{(\star)}$$

Important: The term involving α in (\star) vanishes if $V_{\tau} \equiv 0$.

SKETCH of PROOF of THEOREM A

Step 1: Set $\hat{V}(x,t) := V(x,t,p(t/\alpha))$. Along trajectories of (Σ_p) ,

$$\frac{d}{dt}\hat{V} \le \left[-q(p(t/\alpha)) + \frac{c_a\bar{p}}{\alpha}\right]\hat{V}(x,t). \tag{(\star)}$$

٠

Important: The term involving α in (\star) vanishes if $V_{\tau} \equiv 0$.

Step 2: Substitute (*) into

$$\begin{split} \dot{V}_{\alpha}^{\sharp} &= E(t,\alpha) \left[\frac{d}{dt} \hat{V} + \left\{ q(p(t/\alpha)) - \frac{1}{T} \int_{\frac{t}{\alpha} - T}^{\frac{t}{\alpha}} q(p(l)) dl \right\} \hat{V} \right] \\ &\leq E(t,\alpha) \left[\frac{c_a \bar{p}}{\alpha} - \frac{c_b}{T} \right] \hat{V}(x,t), \end{split}$$

where $V_{\alpha}^{\sharp}(x,t) = E(t,\alpha)\hat{V}(x,t)$ and

$$E(t,\alpha) := e^{\frac{\alpha}{T} \int_{\frac{t}{\alpha} - T}^{\frac{t}{\alpha}} \left[\int_{s}^{\frac{t}{\alpha}} q(p(l)) \mathrm{d}l \right] \mathrm{d}s}$$

EXAMPLE 1: STABILITY for ALL PARAMETER VALUES

The assumptions of Theorem A hold for

$$\dot{x} = f(x, t, \cos^2(t/\alpha)) := \frac{x}{\sqrt{1+x^2}} \left[1 - 90 \cos^2\left(\frac{t}{\alpha}\right) \right]$$
$$V(x, t, \tau) \equiv \bar{V}(x) := e^{\sqrt{1+x^2}} - e.$$

EXAMPLE 1: STABILITY for ALL PARAMETER VALUES

The assumptions of Theorem A hold for

$$\dot{x} = f(x, t, \cos^2(t/\alpha)) := \frac{x}{\sqrt{1+x^2}} \left[1 - 90 \cos^2\left(\frac{t}{\alpha}\right) \right]$$
$$V(x, t, \tau) \equiv \bar{V}(x) := e^{\sqrt{1+x^2}} - e.$$

This follows from the estimates

$$\nabla \bar{V}(x) f(x,t,\tau) \leq \left[\frac{2e^{\sqrt{2}}}{e-1} - 45\tau \right] \bar{V}(x)$$
$$\int_{t-\pi}^{t} \left[45\cos^2(s) - \frac{2e^{\sqrt{2}}}{e-1} \right] \mathrm{d}s = \pi \left(\frac{45}{2} - \frac{2e^{\sqrt{2}}}{e-1} \right) > 0$$

EXAMPLE 1: STABILITY for ALL PARAMETER VALUES

The assumptions of Theorem A hold for

$$\dot{x} = f(x, t, \cos^2(t/\alpha)) := \frac{x}{\sqrt{1+x^2}} \left[1 - 90\cos^2\left(\frac{t}{\alpha}\right)\right]$$
$$V(x, t, \tau) \equiv \bar{V}(x) := e^{\sqrt{1+x^2}} - e.$$

This follows from the estimates

$$\nabla \bar{V}(x) f(x,t,\tau) \leq \left[\frac{2e^{\sqrt{2}}}{e-1} - 45\tau \right] \bar{V}(x)$$
$$\int_{t-\pi}^{t} \left[45\cos^2(s) - \frac{2e^{\sqrt{2}}}{e-1} \right] \mathrm{d}s = \pi \left(\frac{45}{2} - \frac{2e^{\sqrt{2}}}{e-1} \right) > 0$$

so for all $\alpha > 0$ we get UGAS and the Lyapunov function

$$V_{\alpha}^{\sharp}(x,t) := e^{\frac{\alpha}{\pi} \int_{\frac{t}{\alpha}}^{\frac{t}{\alpha}} -\pi} \left[\int_{s}^{\frac{t}{\alpha}} \left[45\cos^{2}(l) - \frac{2e^{\sqrt{2}}}{e-1} \right] \mathrm{d}l \right] \mathrm{d}s}_{\bar{V}(x)}$$
$$= e^{45\frac{\alpha}{4} \left[\sin(\frac{2t}{\alpha}) + \pi - \frac{4\pi e^{\sqrt{2}}}{45(e-1)} \right]} \left[e^{\sqrt{1+x^{2}}} - e \right]$$

EXAMPLE 2: MECHANICAL SYSTEM with FRICTION

Model: Dynamics for x_1 =mass position and x_2 =velocity:

$$\dot{x}_{1} = x_{2}$$

$$\dot{x}_{2} = -\sigma_{1}(t/\alpha)x_{2} - k(t)x_{1} + u$$

$$- \left\{ \sigma_{2}(t/\alpha) + \sigma_{3}(t/\alpha)e^{-\beta_{1}\mu(x_{2})} \right\} \operatorname{sat}(x_{2})$$
(MSF)

 σ_i are positive friction-related coefficients; β_1 is a positive constant corresponding to Stribeck effect; $\mu \in \mathcal{PD}$ is related to Stribeck effect; k is a positive time-varying spring stiffness-related coefficient; and $\operatorname{sat}(x_2) = \operatorname{tanh}(\beta_2 x_2)$, where β_2 is a large positive constant. $\alpha > 1$.

EXAMPLE 2: MECHANICAL SYSTEM with FRICTION

Model: Dynamics for x_1 =mass position and x_2 =velocity:

$$\dot{x}_{1} = x_{2}$$

$$\dot{x}_{2} = -\sigma_{1}(t/\alpha)x_{2} - k(t)x_{1} + u$$

$$- \left\{ \sigma_{2}(t/\alpha) + \sigma_{3}(t/\alpha)e^{-\beta_{1}\mu(x_{2})} \right\} \operatorname{sat}(x_{2})$$
(MSF)

 σ_i are positive friction-related coefficients; β_1 is a positive constant corresponding to Stribeck effect; $\mu \in \mathcal{PD}$ is related to Stribeck effect; k is a positive time-varying spring stiffness-related coefficient; and $\operatorname{sat}(x_2) = \operatorname{tanh}(\beta_2 x_2)$, where β_2 is a large positive constant. $\alpha > 1$.

Assumptions: (a) $\sigma_i \in C^1$, valued in (0, 1], σ'_i bounded; (b) \exists constants $c_b, T > 0$ such that $\int_{t-T}^t \sigma_1(r) dr \geq c_b \ \forall t \geq 0$; (c) $k \in C^1$, k' bounded, $\exists k_o, \bar{k} > 0$ s.t. $k_o \leq k(t) \leq \bar{k}$ and $k'(t) \leq 0 \ \forall t \geq 0$.

EXAMPLE 2: MECHANICAL SYSTEM with FRICTION

Model: Dynamics for x_1 =mass position and x_2 =velocity:

$$\dot{x}_{1} = x_{2}$$

$$\dot{x}_{2} = -\sigma_{1}(t/\alpha)x_{2} - k(t)x_{1} + u$$

$$- \left\{ \sigma_{2}(t/\alpha) + \sigma_{3}(t/\alpha)e^{-\beta_{1}\mu(x_{2})} \right\} \operatorname{sat}(x_{2})$$
(MSF)

 σ_i are positive friction-related coefficients; β_1 is a positive constant corresponding to Stribeck effect; $\mu \in \mathcal{PD}$ is related to Stribeck effect; k is a positive time-varying spring stiffness-related coefficient; and $\operatorname{sat}(x_2) = \operatorname{tanh}(\beta_2 x_2)$, where β_2 is a large positive constant. $\alpha > 1$.

Assumptions: (a) $\sigma_i \in C^1$, valued in (0, 1], σ'_i bounded; (b) \exists constants $c_b, T > 0$ such that $\int_{t-T}^t \sigma_1(r) dr \geq c_b \ \forall t \geq 0$; (c) $k \in C^1$, k' bounded, $\exists k_o, \bar{k} > 0$ s.t. $k_o \leq k(t) \leq \bar{k}$ and $k'(t) \leq 0 \ \forall t \geq 0$.

We apply our theorem to (MSF) with $p(t) = (\sigma_1(t), \sigma_2(t), \sigma_3(t))$.

EXAMPLE 2: MECHANICAL SYSTEM with FRICTION (cont'd)

The function

$$V(x,t,\tau) = A(k(t)x_1^2 + x_2^2) + \tau_1 x_1 x_2, \quad A = 1 + \frac{k_o}{2} + \frac{(1+2\beta_2)^2}{k_o}$$

satisfies the following for the corresponding frozen dynamics:

$$\frac{1}{2}(x_1^2 + x_2^2) \le V(x, t, \tau) \le A^2 \bar{k} (|x_1| + |x_2|)^2 \le 2A^2 \bar{k} |x|^2$$
$$V_t(x, t, \tau) + V_x(x, t, \tau) f(x, t, \tau) \le -\frac{\tau_1 k_o}{4A^2 \bar{k}} V(x, t, \tau)$$

EXAMPLE 2: MECHANICAL SYSTEM with FRICTION (cont'd)

The function

$$V(x,t,\tau) = A(k(t)x_1^2 + x_2^2) + \tau_1 x_1 x_2, \quad A = 1 + \frac{k_o}{2} + \frac{(1+2\beta_2)^2}{k_o}$$

satisfies the following for the corresponding frozen dynamics:

$$\frac{1}{2}(x_1^2 + x_2^2) \le V(x, t, \tau) \le A^2 \bar{k} (|x_1| + |x_2|)^2 \le 2A^2 \bar{k} |x|^2$$
$$V_t(x, t, \tau) + V_x(x, t, \tau) f(x, t, \tau) \le -\frac{\tau_1 k_o}{4A^2 \bar{k}} V(x, t, \tau)$$

Corollary: There exists a constant $\alpha_o > 0$ such that for all $\alpha > \alpha_o$, (MSF) is UGAS and admits the Lyapunov function

$$V_{\alpha}(t,x) := V(x,t,p(t/\alpha)) e^{\frac{\alpha \bar{b}}{T} \int_{\frac{t}{\alpha}}^{\frac{t}{\alpha}} \int_{s}^{\frac{t}{\alpha}} \sigma_{1}(l) \mathrm{d}l \, \mathrm{d}s}$$

where V is above, $\overline{b} = k_o/(4A^2\overline{k})$, and $p(t) = (\sigma_1(t), \sigma_2(t), \sigma_3(t))$.

INPUT-TO-STATE STABILITY (ISS)

Additional Assumptions: To show ISS for

$$\dot{x} = \mathcal{F}(x, t, u, \alpha) := f(x, t, p(t/\alpha)) + g(x, t, p(t/\alpha))u \qquad (\Sigma_u)$$

for large constants $\alpha > 0$ and f, g, and p as before, we also assume: For all $t \ge 0$, $\alpha > 0$, and $x \in \mathbb{R}^n$, (v) $|V_x(x, t, p(t/\alpha))| \le c_a \sqrt{\delta_1(|x|)}$, and (vi) $|g(x, t, p(t/\alpha))| \le c_a \{1 + \sqrt[4]{\delta_1(|x|)}\}.$

INPUT-TO-STATE STABILITY (ISS)

Additional Assumptions: To show ISS for

$$\dot{x} = \mathcal{F}(x, t, u, \alpha) := f(x, t, p(t/\alpha)) + g(x, t, p(t/\alpha))u \qquad (\Sigma_u)$$

for large constants $\alpha > 0$ and f, g, and p as before, we also assume: For all $t \ge 0$, $\alpha > 0$, and $x \in \mathbb{R}^n$, (v) $|V_x(x, t, p(t/\alpha))| \le c_a \sqrt{\delta_1(|x|)}$, and (vi) $|g(x, t, p(t/\alpha))| \le c_a \{1 + \sqrt[4]{\delta_1(|x|)}\}.$

ISS: $\exists \beta \in \mathcal{KL}, \gamma \in \mathcal{K}_{\infty}$ s.t. $|\phi(t; t_o, x_o, \mathbf{u})| \leq \beta(|x_o|, t - t_o) + \gamma(|\mathbf{u}|_{\infty})$. ISS-CLF: $\exists \mu_1, \mu_2, \chi \in \mathcal{K}_{\infty}, \mu_3 \in \mathcal{PD}$ s.t. $\mu_1(|x|) \leq W(x, t) \leq \mu_2(|x|)$ and $|u| \leq \chi(|x|) \Rightarrow W_t(x, t) + W_x(x, t)\mathcal{F}(x, t, u, \alpha) \leq -\mu_3(|x|)$.

INPUT-TO-STATE STABILITY (ISS)

Additional Assumptions: To show ISS for

 $\dot{x} = \mathcal{F}(x, t, u, \alpha) := f(x, t, p(t/\alpha)) + g(x, t, p(t/\alpha))u \qquad (\Sigma_u)$

for large constants $\alpha > 0$ and f, g, and p as before, we also assume: For all $t \ge 0$, $\alpha > 0$, and $x \in \mathbb{R}^n$, (v) $|V_x(x, t, p(t/\alpha))| \le c_a \sqrt{\delta_1(|x|)}$, and (vi) $|g(x, t, p(t/\alpha))| \le c_a \{1 + \sqrt[4]{\delta_1(|x|)}\}.$

ISS: $\exists \beta \in \mathcal{KL}, \gamma \in \mathcal{K}_{\infty}$ s.t. $|\phi(t; t_o, x_o, \mathbf{u})| \leq \beta(|x_o|, t - t_o) + \gamma(|\mathbf{u}|_{\infty})$. ISS-CLF: $\exists \mu_1, \mu_2, \chi \in \mathcal{K}_{\infty}, \mu_3 \in \mathcal{PD}$ s.t. $\mu_1(|x|) \leq W(x, t) \leq \mu_2(|x|)$ and $|u| \leq \chi(|x|) \Rightarrow W_t(x, t) + W_x(x, t)\mathcal{F}(x, t, u, \alpha) \leq -\mu_3(|x|)$.

Theorem B: \forall constants $\alpha > 4Tc_a \bar{p}/c_b$, the dynamics (Σ_u) are ISS and

$$V_{\alpha}^{\sharp}(x,t) := e^{\frac{\alpha}{T} \int_{\frac{t}{\alpha}-T}^{\frac{t}{\alpha}} \int_{s}^{\frac{t}{\alpha}} q(p(l)) \mathrm{d}l \, \mathrm{d}s} V(x,t,p(t/\alpha))$$

is an ISS-CLF for (Σ_u) .

• The authors thank the referees and Patrick De Leenheer, Marcio de Queiroz, and Eduardo Sontag for their helpful comments on earlier presentations of this work.

- The authors thank the referees and Patrick De Leenheer, Marcio de Queiroz, and Eduardo Sontag for their helpful comments on earlier presentations of this work.
- A journal version will appear in *Mathematics of Control, Signals, and Systems*. The authors thank J.H. van Schuppen for the opportunity to publish their work in his esteemed journal.

- The authors thank the referees and Patrick De Leenheer, Marcio de Queiroz, and Eduardo Sontag for their helpful comments on earlier presentations of this work.
- A journal version will appear in *Mathematics of Control, Signals, and Systems*. The authors thank J.H. van Schuppen for the opportunity to publish their work in his esteemed journal.
- Part of this work was done while F. Mazenc visited the Louisiana
 State University (LSU) Department of Mathematics. He thanks LSU for the kind hospitality he enjoyed during this period.

- The authors thank the referees and Patrick De Leenheer, Marcio de Queiroz, and Eduardo Sontag for their helpful comments on earlier presentations of this work.
- A journal version will appear in *Mathematics of Control, Signals, and Systems*. The authors thank J.H. van Schuppen for the opportunity to publish their work in his esteemed journal.
- Part of this work was done while F. Mazenc visited the Louisiana
 State University (LSU) Department of Mathematics. He thanks LSU for the kind hospitality he enjoyed during this period.
- Malisoff was supported by NSF Grant 0424011. He thanks Zvi Artstein for illuminating discussions at the International Conference on Hybrid Systems and Applications in Lafayette, Louisiana.