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ẋ = f(x, t, t/α) + g(x, t, t/α)u, x(t0) = xo (Σ)

and construct explicit corresponding ISS Lyapunov functions.

Literature:Uses exponential-like stability oḟx = f(x, t, τ) aka(Σfro) for
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Goals:For large constantsα > 0, prove input-to-state stability (ISS) for

ẋ = f(x, t, t/α) + g(x, t, t/α)u, x(t0) = xo (Σ)

and construct explicit corresponding ISS Lyapunov functions.

Literature:Uses exponential-like stability oḟx = f(x, t, τ) aka(Σfro) for
all relevant values of the scalarτ to show stability foru ≡ 0 but does not
lead to explicit Lyapunov functions for(Σ) (Peuteman-Aeyels, Solo).

Our Contributions:We explicitly construct Lyapunov functions for(Σ) in
terms of given Lyapunov functions for(Σfro) without assuming any
exponential-like stability of(Σfro) and we allowτ to be a vector.

Significance:Lyapunov functions for(Σfro) are often readily available.
Explicit Lyapunov functions and slowly time-varying models are
important in control engineering e.g. control offriction, pendulums, etc.
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(ii) δ1(|x|) ≤ V (x, t, τ) ≤ δ2(|x|), (iii)

∫ t

t−T
q(p(s))ds ≥ cb, and

(iv) Vt(x, t, τ) + Vx(x, t, τ)f(x, t, τ) ≤ −q(τ)V (x, t, τ) all hold.

Theorem A: For each constantα > 2Tcap̄/cb, (Σp) is UGAS and

V ]
α(x, t) := e

α
T

∫ t
α

t
α−T

∫ t
α

s

q(p(l))dl ds

V (x, t, p(t/α))

is a Lyapunov function for(Σp). [UGAS: |φ(t; to, xo)| ≤ β(|xo|, t− to)]



SKETCH of PROOF of THEOREM A

Step 1:SetV̂ (x, t) := V (x, t, p(t/α)). Along trajectories of(Σp),
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[
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d

dt
V̂ ≤

[
−q(p(t/α)) +

cap̄

α

]
V̂ (x, t). (?)

Important: The term involvingα in (?) vanishes ifVτ ≡ 0.

Step 2:Substitute(?) into

V̇ ]
α = E(t, α)

[
d
dt V̂ +

{
q(p(t/α))− 1

T

∫ t
α

t
α−T

q(p(l))dl

}
V̂

]

≤ E(t, α)
[cap̄

α
− cb

T

]
V̂ (x, t),

whereV ]
α(x, t) = E(t, α)V̂ (x, t) and

E(t, α) := e

α
T

∫ t
α

t
α−T

[∫ t
α

s

q(p(l))dl

]
ds

.
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so for allα > 0 we get UGAS and the Lyapunov function

V ]
α(x, t) := e

α
π

∫ t
α

t
α−π

[∫ t
α

s

[
45 cos2(l)− 2e

√
2

e− 1

]
dl

]
ds

V̄ (x)

= e
45 α

4

[
sin( 2t

α )+π− 4πe
√

2
45(e−1)

]

[e
√

1+x2 − e]



EXAMPLE 2: MECHANICAL SYSTEM with FRICTION

Model:Dynamics forx1=mass position andx2=velocity:

ẋ1 = x2

ẋ2 = −σ1(t/α)x2 − k(t)x1 + u

−{
σ2(t/α) + σ3(t/α)e−β1µ(x2)

}
sat(x2)

(MSF)

σi are positive friction-related coefficients;β1 is a positive constant

corresponding to Stribeck effect;µ ∈ PD is related to Stribeck effect;

k is a positive time-varying spring stiffness-related coefficient; and

sat(x2) = tanh(β2x2), whereβ2 is a large positive constant.α > 1.
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We apply our theorem to (MSF) withp(t) = (σ1(t), σ2(t), σ3(t)).



EXAMPLE 2: MECHANICAL SYSTEM with FRICTION (cont’d)
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1 + x2
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2
+

(1 + 2β2)2

ko

satisfies the following for the corresponding frozen dynamics:

1
2 (x2

1 + x2
2) ≤ V (x, t, τ) ≤ A2k̄(|x1|+ |x2|)2 ≤ 2A2k̄|x|2

Vt(x, t, τ) + Vx(x, t, τ)f(x, t, τ) ≤ − τ1ko

4A2k̄
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Corollary:There exists a constantαo > 0 such that for allα > αo, (MSF)
is UGAS and admits the Lyapunov function

Vα(t, x) := V (x, t, p(t/α)) e

αb̄
T

∫ t
α

t
α−T

∫ t
α

s

σ1(l)dl ds

whereV is above,̄b = ko/(4A2k̄), andp(t) = (σ1(t), σ2(t), σ3(t)).



INPUT-TO-STATE STABILITY (ISS)

Additional Assumptions:To show ISS for

ẋ = F(x, t, u, α) := f(x, t, p(t/α)) + g(x, t, p(t/α))u (Σu)

for large constantsα > 0 andf , g, andp as before, we also assume:

For all t ≥ 0, α > 0, andx ∈ Rn, (v) |Vx(x, t, p(t/α))| ≤ ca

√
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and (vi)|g(x, t, p(t/α))| ≤ ca{1 + 4
√
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for large constantsα > 0 andf , g, andp as before, we also assume:
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Theorem B:∀ constantsα > 4Tcap̄/cb, the dynamics(Σu) are ISS and

V ]
α(x, t) := e

α
T

∫ t
α

t
α−T

∫ t
α

s

q(p(l))dl ds

V (x, t, p(t/α))

is an ISS-CLF for(Σu).
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