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REVIEW of MODEL and LITERATURE '

Goals:For large constants > 0, prove input-to-state stability (ISS) for

T = f(z,t, t/a) + gz, t, t/a)u, x(ty) = x, (>)

and construct explicit corresponding ISS Lyapunov functions.

Literature:Uses exponential-like stability of = f(z,t,7) aka(Z¢,) for
all relevant values of the scalarto show stability foru = 0 but does not
lead to explicit Lyapunov functions fg2:) (Peuteman-Aeyels, Solo).

Our ContributionsWe explicitly construct Lyapunov functions foE) in
terms of given Lyapunov functions f@k,,) without assuming any
exponential-like stability of>s,,) and we allowr to be a vector.

SignificanceLyapunov functions fo(3;,,) are often readily available.
Explicit Lyapunov functions and slowly time-varying models are
Important in control engineering e.g. controlfattion, pendulumsetc.
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MAIN ASSUMPTION and MAIN THEOREM '

We first assume our (sufficiently regular) systén) has the form

i = f(z,t,p(t/a)) (Xp)
wherep : R — R% is bounded ang := sup{|p/(r)| : r € R} < ooc.

Assumedd, b2 € Ko; constants,,, ¢, 1" > 0; a continuous function
q:R? - R;andaC' V : R™ x [0,00) x R? — [0,00) s.t.V 2 € R”,
t > 0,andr € R(p) :={p(t) : t € R}: (I)

(i) , (i) ft ~q(p(s))ds > ¢, and

(V) Vi(x,t, 7) + Vie(a, t,7) f(a,t,7) < —q(T )V(a:,t,T) all hold.

Theorem A: For each constant > 27°c,p/cp, (X,) is UGAS and

/__ / pr: V(z,t,p(t/a))

Is a Lyapunov function fo(X,,). [UGAS: |o(t;t,. x0)| < B(|xo|,t —t5)]
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SKETCH of PROOF of THEOREM A '

Step 1:SetV (z,t) := V(x,t,p(t/c)). Along trajectories of%,),
d .

SV < [~atp(t/a) + “F| Ve, 1). )

Important The term involvingx in (x) vanishes ift. = 0.

Step 2:Substitutg ) into

Vi = E(t,a)

«

< E(ta) {@ . @}V(az,t),



EXAMPLE 1: STABILITY for ALL PARAMETER VALUES '

The assumptions of Theorem A hold for

T = f(x,t,cos?(t/a)) := \/117 1 —90cos? ()]




EXAMPLE 1: STABILITY for ALL PARAMETER VALUES '

The assumptions of Theorem A hold for
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This follows from the estimates

VV (@) f(zt,7) < |25
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EXAMPLE 1: STABILITY for ALL PARAMETER VALUES '

The assumptions of Theorem A hold for
T = f(xz,t,cos?(t/a)) := i [1—90cos? (L)]
Ve, t,7)=V(z)=e !t —e.

This follows from the estimates

V() f(x,t,7) < [%-457} V(z)

IN i {456082(8)— iej/f}ds = W(%_QeeT\/f) > 0

t—

so for alla > 0 we get UGAS and the Lyapunov function

- = 20V2
o 4 2(1) — dl
W/tw[/s [5608() 61]

ds

V()




EXAMPLE 2: MECHANICAL SYSTEM with FRICTION '

Model: Dynamics forz;=mass position angs=velocity:
r1 = X9
Ty = —o1(t/a)re — k(t)x, +u (MSF)
—{o2(t/a) + o3(t/a)e PrH@2) L sat(z)
o; are positive friction-related coefficients; is a positive constant
corresponding to Stribeck effegt;c PD is related to Stribeck effect;

k Is a positive time-varying spring stiffness-related coefficient; and
sat(x2) = tanh(fB2x3), Wheres, is a large positive constant. > 1.
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EXAMPLE 2: MECHANICAL SYSTEM with FRICTION '

Model: Dynamics forr;=mass position ang,=velocity:
T = I
Ty = —o1(t/a)re — k(t)z: +u (MSF)
—{o2(t/a) + o3(t/a)e Pri@2) L sat(z)
o; are positive friction-related coefficients; is a positive constant
corresponding to Stribeck effegt;c PD is related to Stribeck effect;

k is a positive time-varying spring stiffness-related coefficient; and
sat(xo) = tanh(Bsxs), Wheress is a large positive constant. > 1.

Assumptions(a) o; € C*,valued in(0, 1], o/ bounded{b) 3 constants
¢y, I" > 0 such tha’gftt_T o (r)dr > ¢, Vt > 0; (c) k € C*, k' bounded,
ko k>0 s.t. ko, < k(t) <k and k'(t) <0 Vt> 0.

We apply our theorem to (MSF) with(t) = (01(t), 02(t), o3(%)).



EXAMPLE 2: MECHANICAL SYSTEM with FRICTION (cont’d) '

The function
k (14 205)?

Viz,t,7) = A(k(t)zz:% + x%) +Tmzire, A=1+ ?O + .

satisfies the following for the corresponding frozen dynamics:

2@+ 2d) < V(z,t,7) < A%k(Jaq] + |z2])? < 24%k|z|?

Vi, t,7) 4+ Va(z, t,7) f(2,t,7) < —2reV(x,t,7)



EXAMPLE 2: MECHANICAL SYSTEM with FRICTION (cont’d) '

The function

k, 1+ 2035)?
V(:C7t77-) — A(k(t).fl?% + ZC%) + T1X1T2, A=1 + ? + ( +k /82)

satisfies the following for the corresponding frozen dynamics:

L@t +23) < V(z,t,7) < A%k(|z1| + |22])? < 2A%k|z|?
Vilz,t,7) + Vy(z,t,7)f(x,t,7) < —TXZ;V(JJ t,T)

Corollary: There exists a constant, > 0 such that for albv > «,,, (MSF)
IS UGAS and admits the Lyapunov function

—b/ / o1(l)dl ds
Vo(t,z) ==V (x,t,p(t/a)) a”

whereV is abovep = k,/(4A%k), andp(t) = (o1 (1), 02(t), o3(t)).
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INPUT-TO-STATE STABILITY (ISS) '

Additional AssumptionsTo show ISS for

&= F(x,t,u,a) = f(x,t,p(t/a)) + gz, t,p(t/a))u (Xu)
for large constanta > 0 and f, g, andp as before, we also assume:
Forallt > 0,a > 0,andz € R", (V) |V, (z,t,p(t/a))| < cor/01(|x]),

and (Vi) |g(z,t,p(t/))| < catl + 3/01(|2])}.

1SS B € KL v € Koo St [0(F: 1y, 10, 0)] < Bll2ol,t—£0) + (0] ).
ISS_CLF:EIMl?/'LQaX S ICOO! M3 € PD St:ul(‘x‘) < W(Zlﬂ',t) < Mg(‘x‘)
and

Theorem B¥ constantsy > 47¢c,p/cp, the dynamicg>:,, ) are ISS and

/ / ))dlds
VEi(x,t) o

IS an ISS-CLF for(3,).

V(z,t,p(t/a))
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