Lyapunov Function Constructions for Slowly Time-Varying Systems

MICHAEL MALISOFF

Department of Mathematics Louisiana State University
${ }^{\text {n }}$ Joint with Frédéric Mazenc, Projet MERE INRIA-INRA „
Stability Regular Session Paper FrA15.3
45th IEEE Conference on Decision and Control Manchester Grand Hyatt Hotel, San Diego, CA

December 13-15, 2006

REVIEW of MODEL and LITERATURE

Goals: For large constants $\alpha>0$, prove input-to-state stability (ISS) for

$$
\dot{x}=f(x, t, t / \alpha)+g(x, t, t / \alpha) u, \quad x\left(t_{0}\right)=x_{o}
$$

and construct explicit corresponding ISS Lyapunov functions.

REVIEW of MODEL and LITERATURE

Goals: For large constants $\alpha>0$, prove input-to-state stability (ISS) for

$$
\dot{x}=f(x, t, t / \alpha)+g(x, t, t / \alpha) u, \quad x\left(t_{0}\right)=x_{o}
$$

and construct explicit corresponding ISS Lyapunov functions.
Literature: Uses exponential-like stability of $\dot{x}=f(x, t, \tau)$ aka ($\Sigma_{\text {fro }}$) for all relevant values of the scalar τ to show stability for $u \equiv 0$ but does not lead to explicit Lyapunov functions for (Σ) (Peuteman-Aeyels, Solo).

REVIEW of MODEL and LITERATURE

Goals: For large constants $\alpha>0$, prove input-to-state stability (ISS) for

$$
\dot{x}=f(x, t, t / \alpha)+g(x, t, t / \alpha) u, \quad x\left(t_{0}\right)=x_{o}
$$

and construct explicit corresponding ISS Lyapunov functions.
Literature: Uses exponential-like stability of $\dot{x}=f(x, t, \tau)$ aka ($\Sigma_{\text {fro }}$) for all relevant values of the scalar τ to show stability for $u \equiv 0$ but does not lead to explicit Lyapunov functions for (Σ) (Peuteman-Aeyels, Solo).

Our Contributions: We explicitly construct Lyapunov functions for (Σ) in terms of given Lyapunov functions for $\left(\Sigma_{\text {fro }}\right)$ without assuming any exponential-like stability of $\left(\Sigma_{\mathrm{fro}}\right)$ and we allow τ to be a vector.

REVIEW of MODEL and LITERATURE

Goals: For large constants $\alpha>0$, prove input-to-state stability (ISS) for

$$
\dot{x}=f(x, t, t / \alpha)+g(x, t, t / \alpha) u, \quad x\left(t_{0}\right)=x_{o}
$$

and construct explicit corresponding ISS Lyapunov functions.
Literature: Uses exponential-like stability of $\dot{x}=f(x, t, \tau)$ aka (Σ_{fro}) for all relevant values of the scalar τ to show stability for $u \equiv 0$ but does not lead to explicit Lyapunov functions for (Σ) (Peuteman-Aeyels, Solo).

Our Contributions: We explicitly construct Lyapunov functions for (Σ) in terms of given Lyapunov functions for $\left(\Sigma_{\mathrm{fro}}\right)$ without assuming any exponential-like stability of $\left(\Sigma_{\mathrm{fro}}\right)$ and we allow τ to be a vector.

Significance: Lyapunov functions for $\left(\Sigma_{\mathrm{fro}}\right)$ are often readily available. Explicit Lyapunov functions and slowly time-varying models are important in control engineering e.g. control of friction, pendulums, etc.

MAIN ASSUMPTION and MAIN THEOREM

We first assume our (sufficiently regular) system (Σ) has the form

$$
\dot{x}=f(x, t, p(t / \alpha))
$$

$$
\left(\Sigma_{p}\right)
$$

where $p: \mathbb{R} \rightarrow \mathbb{R}^{d}$ is bounded and $\bar{p}:=\sup \left\{\left|p^{\prime}(r)\right|: r \in \mathbb{R}\right\}<\infty$.

MAIN ASSUMPTION and MAIN THEOREM

We first assume our (sufficiently regular) system (Σ) has the form

$$
\begin{equation*}
\dot{x}=f(x, t, p(t / \alpha)) \tag{p}
\end{equation*}
$$

where $p: \mathbb{R} \rightarrow \mathbb{R}^{d}$ is bounded and $\bar{p}:=\sup \left\{\left|p^{\prime}(r)\right|: r \in \mathbb{R}\right\}<\infty$.
Assume: $\exists \delta_{1}, \delta_{2} \in \mathcal{K}_{\infty}$; constants $c_{a}, c_{b}, T>0$; a continuous function $q: \mathbb{R}^{d} \rightarrow \mathbb{R}$; and a $C^{1} V: \mathbb{R}^{n} \times[0, \infty) \times \mathbb{R}^{d} \rightarrow[0, \infty)$ s.t. $\forall x \in \mathbb{R}^{n}$, $t \geq 0$, and $\tau \in \mathcal{R}(p):=\{p(t): t \in \mathbb{R}\}:$ (i) $\left|V_{\tau}(x, t, \tau)\right| \leq c_{a} V(x, t, \tau)$, (ii) $\delta_{1}(|x|) \leq V(x, t, \tau) \leq \delta_{2}(|x|)$, (iii) $\int_{t-T}^{t} q(p(s)) \mathrm{d} s \geq c_{b}$, and (iv) $V_{t}(x, t, \tau)+V_{x}(x, t, \tau) f(x, t, \tau) \leq-q(\tau) V(x, t, \tau)$ all hold.

MAIN ASSUMPTION and MAIN THEOREM

We first assume our (sufficiently regular) system (Σ) has the form

$$
\begin{equation*}
\dot{x}=f(x, t, p(t / \alpha)) \tag{p}
\end{equation*}
$$

where $p: \mathbb{R} \rightarrow \mathbb{R}^{d}$ is bounded and $\bar{p}:=\sup \left\{\left|p^{\prime}(r)\right|: r \in \mathbb{R}\right\}<\infty$.
Assume: $\exists \delta_{1}, \delta_{2} \in \mathcal{K}_{\infty}$; constants $c_{a}, c_{b}, T>0$; a continuous function $q: \mathbb{R}^{d} \rightarrow \mathbb{R}$; and a $C^{1} V: \mathbb{R}^{n} \times[0, \infty) \times \mathbb{R}^{d} \rightarrow[0, \infty)$ s.t. $\forall x \in \mathbb{R}^{n}$, $t \geq 0$, and $\tau \in \mathcal{R}(p):=\{p(t): t \in \mathbb{R}\}:$ (i) $\left|V_{\tau}(x, t, \tau)\right| \leq c_{a} V(x, t, \tau)$, (ii) $\delta_{1}(|x|) \leq V(x, t, \tau) \leq \delta_{2}(|x|)$, (iii) $\int_{t-T}^{t} q(p(s)) \mathrm{d} s \geq c_{b}$, and (iv) $V_{t}(x, t, \tau)+V_{x}(x, t, \tau) f(x, t, \tau) \leq-q(\tau) V(x, t, \tau)$ all hold.

Theorem A: For each constant $\alpha>2 T c_{a} \bar{p} / c_{b},\left(\Sigma_{p}\right)$ is UGAS and

$$
V_{\alpha}^{\sharp}(x, t):=e^{\frac{\alpha}{T} \int_{\frac{t}{\alpha}-T}^{\frac{t}{\alpha}} \int_{s}^{\frac{t}{\alpha}} q(p(l)) \mathrm{d} l \mathrm{~d} s} V(x, t, p(t / \alpha))
$$

is a Lyapunov function for $\left(\Sigma_{p}\right)$. [UGAS: $\left|\phi\left(t ; t_{o}, x_{o}\right)\right| \leq \beta\left(\left|x_{o}\right|, t-t_{o}\right)$]

SKETCH of PROOF of THEOREM A

Step 1: Set $\hat{V}(x, t):=V(x, t, p(t / \alpha))$. Along trajectories of $\left(\Sigma_{p}\right)$,

$$
\frac{d}{d t} \hat{V} \leq\left[-q(p(t / \alpha))+\frac{c_{a} \bar{p}}{\alpha}\right] \hat{V}(x, t)
$$

Important: The term involving α in (\star) vanishes if $V_{\tau} \equiv 0$.

SKETCH of PROOF of THEOREM A

Step 1: Set $\hat{V}(x, t):=V(x, t, p(t / \alpha))$. Along trajectories of $\left(\Sigma_{p}\right)$,

$$
\frac{d}{d t} \hat{V} \leq\left[-q(p(t / \alpha))+\frac{c_{a} \bar{p}}{\alpha}\right] \hat{V}(x, t)
$$

Important: The term involving α in (\star) vanishes if $V_{\tau} \equiv 0$.
Step 2: Substitute (\star) into

$$
\begin{aligned}
\dot{V}_{\alpha}^{\sharp} & =E(t, \alpha)\left[\frac{d}{d t} \hat{V}+\left\{q(p(t / \alpha))-\frac{1}{T} \int_{\frac{t}{\alpha}-T}^{\frac{t}{\alpha}} q(p(l)) \mathrm{d} l\right\} \hat{V}\right] \\
& \leq E(t, \alpha)\left[\frac{c_{a} \bar{p}}{\alpha}-\frac{c_{b}}{T}\right] \hat{V}(x, t),
\end{aligned}
$$

where $V_{\alpha}^{\sharp}(x, t)=E(t, \alpha) \hat{V}(x, t)$ and

$$
E(t, \alpha):=e^{\frac{\alpha}{T}} \int_{\frac{t}{\alpha}-T}^{\frac{t}{\alpha}}\left[\int_{s}^{\frac{t}{\alpha}} q(p(l)) \mathrm{d} l\right] \mathrm{d} s
$$

EXAMPLE 1: STABILITY for ALL PARAMETER VALUES

The assumptions of Theorem A hold for

$$
\begin{aligned}
& \dot{x}=f\left(x, t, \cos ^{2}(t / \alpha)\right):=\frac{x}{\sqrt{1+x^{2}}}\left[1-90 \cos ^{2}\left(\frac{t}{\alpha}\right)\right] \\
& V(x, t, \tau) \equiv \bar{V}(x):=e^{\sqrt{1+x^{2}}}-e
\end{aligned}
$$

EXAMPLE 1: STABILITY for ALL PARAMETER VALUES

The assumptions of Theorem A hold for

$$
\begin{aligned}
& \dot{x}=f\left(x, t, \cos ^{2}(t / \alpha)\right):=\frac{x}{\sqrt{1+x^{2}}}\left[1-90 \cos ^{2}\left(\frac{t}{\alpha}\right)\right] \\
& V(x, t, \tau) \equiv \bar{V}(x):=e^{\sqrt{1+x^{2}}}-e
\end{aligned}
$$

This follows from the estimates

$$
\begin{aligned}
& \nabla \bar{V}(x) f(x, t, \tau) \leq\left[\frac{2 e^{\sqrt{2}}}{e-1}-45 \tau\right] \bar{V}(x) \\
& \int_{t-\pi}^{t}\left[45 \cos ^{2}(s)-\frac{2 e^{\sqrt{2}}}{e-1}\right] \mathrm{d} s=\pi\left(\frac{45}{2}-\frac{2 e^{\sqrt{2}}}{e-1}\right)>0
\end{aligned}
$$

EXAMPLE 1: STABILITY for ALL PARAMETER VALUES

The assumptions of Theorem A hold for

$$
\begin{aligned}
& \dot{x}=f\left(x, t, \cos ^{2}(t / \alpha)\right):=\frac{x}{\sqrt{1+x^{2}}}\left[1-90 \cos ^{2}\left(\frac{t}{\alpha}\right)\right] \\
& V(x, t, \tau) \equiv \bar{V}(x):=e^{\sqrt{1+x^{2}}}-e
\end{aligned}
$$

This follows from the estimates

$$
\begin{aligned}
& \nabla \bar{V}(x) f(x, t, \tau) \leq\left[\frac{2 e^{\sqrt{2}}}{e-1}-45 \tau\right] \bar{V}(x) \\
& \int_{t-\pi}^{t}\left[45 \cos ^{2}(s)-\frac{2 e^{\sqrt{2}}}{e-1}\right] \mathrm{d} s=\pi\left(\frac{45}{2}-\frac{2 e^{\sqrt{2}}}{e-1}\right)>0
\end{aligned}
$$

so for all $\alpha>0$ we get UGAS and the Lyapunov function

$$
\begin{aligned}
V_{\alpha}^{\sharp}(x, t) & :=e^{\frac{\alpha}{\pi} \int_{\frac{t}{\alpha}-\pi}^{\frac{t}{\alpha}}\left[\int_{s}^{\frac{t}{\alpha}}\left[45 \cos ^{2}(l)-\frac{2 e^{\sqrt{2}}}{e-1}\right] \mathrm{d} l\right] \mathrm{d} s} \bar{V}(x) \\
& =e^{45 \frac{\alpha}{4}\left[\sin \left(\frac{2 t}{\alpha}\right)+\pi-\frac{4 \pi e^{2}}{45(e-1)}\right]}\left[e^{\sqrt{1+x^{2}}}-e\right]
\end{aligned}
$$

EXAMPLE 2: MECHANICAL SYSTEM with FRICTION

Model: Dynamics for $x_{1}=$ mass position and $x_{2}=$ velocity:

$$
\begin{align*}
\dot{x}_{1}= & x_{2} \\
\dot{x}_{2}= & -\sigma_{1}(t / \alpha) x_{2}-k(t) x_{1}+u \tag{MSF}\\
& -\left\{\sigma_{2}(t / \alpha)+\sigma_{3}(t / \alpha) e^{-\beta_{1} \mu\left(x_{2}\right)}\right\} \operatorname{sat}\left(x_{2}\right)
\end{align*}
$$

σ_{i} are positive friction-related coefficients; β_{1} is a positive constant corresponding to Stribeck effect; $\mu \in \mathcal{P D}$ is related to Stribeck effect; k is a positive time-varying spring stiffness-related coefficient; and $\operatorname{sat}\left(x_{2}\right)=\tanh \left(\beta_{2} x_{2}\right)$, where β_{2} is a large positive constant. $\alpha>1$.

EXAMPLE 2: MECHANICAL SYSTEM with FRICTION

Model: Dynamics for $x_{1}=$ mass position and $x_{2}=$ velocity:

$$
\begin{align*}
\dot{x}_{1}= & x_{2} \\
\dot{x}_{2}= & -\sigma_{1}(t / \alpha) x_{2}-k(t) x_{1}+u \tag{MSF}\\
& -\left\{\sigma_{2}(t / \alpha)+\sigma_{3}(t / \alpha) e^{-\beta_{1} \mu\left(x_{2}\right)}\right\} \operatorname{sat}\left(x_{2}\right)
\end{align*}
$$

σ_{i} are positive friction-related coefficients; β_{1} is a positive constant corresponding to Stribeck effect; $\mu \in \mathcal{P D}$ is related to Stribeck effect; k is a positive time-varying spring stiffness-related coefficient; and $\operatorname{sat}\left(x_{2}\right)=\tanh \left(\beta_{2} x_{2}\right)$, where β_{2} is a large positive constant. $\alpha>1$.

Assumptions: (a) $\sigma_{i} \in C^{1}$, valued in $(0,1], \sigma_{i}^{\prime}$ bounded; (b) \exists constants $c_{b}, T>0$ such that $\int_{t-T}^{t} \sigma_{1}(r) d r \geq c_{b} \forall t \geq 0$; (c) $k \in C^{1}, k^{\prime}$ bounded, $\exists k_{o}, \bar{k}>0$ s.t. $k_{o} \leq k(t) \leq \bar{k}$ and $k^{\prime}(t) \leq 0 \quad \forall t \geq 0$.

EXAMPLE 2: MECHANICAL SYSTEM with FRICTION

Model: Dynamics for $x_{1}=$ mass position and $x_{2}=$ velocity:

$$
\begin{align*}
\dot{x}_{1}= & x_{2} \\
\dot{x}_{2}= & -\sigma_{1}(t / \alpha) x_{2}-k(t) x_{1}+u \tag{MSF}\\
& -\left\{\sigma_{2}(t / \alpha)+\sigma_{3}(t / \alpha) e^{-\beta_{1} \mu\left(x_{2}\right)}\right\} \operatorname{sat}\left(x_{2}\right)
\end{align*}
$$

σ_{i} are positive friction-related coefficients; β_{1} is a positive constant corresponding to Stribeck effect; $\mu \in \mathcal{P} \mathcal{D}$ is related to Stribeck effect; k is a positive time-varying spring stiffness-related coefficient; and $\operatorname{sat}\left(x_{2}\right)=\tanh \left(\beta_{2} x_{2}\right)$, where β_{2} is a large positive constant. $\alpha>1$.

Assumptions: (a) $\sigma_{i} \in C^{1}$, valued in $(0,1], \sigma_{i}^{\prime}$ bounded; (b) \exists constants $c_{b}, T>0$ such that $\int_{t-T}^{t} \sigma_{1}(r) d r \geq c_{b} \forall t \geq 0$; (c) $k \in C^{1}, k^{\prime}$ bounded, $\exists k_{o}, \bar{k}>0$ s.t. $k_{o} \leq k(t) \leq \bar{k}$ and $k^{\prime}(t) \leq 0 \quad \forall t \geq 0$.

We apply our theorem to (MSF) with $p(t)=\left(\sigma_{1}(t), \sigma_{2}(t), \sigma_{3}(t)\right)$.

EXAMPLE 2: MECHANICAL SYSTEM with FRICTION (cont'd)

The function

$$
V(x, t, \tau)=A\left(k(t) x_{1}^{2}+x_{2}^{2}\right)+\tau_{1} x_{1} x_{2}, \quad A=1+\frac{k_{o}}{2}+\frac{\left(1+2 \beta_{2}\right)^{2}}{k_{o}}
$$

satisfies the following for the corresponding frozen dynamics:

$$
\begin{aligned}
& \frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right) \leq V(x, t, \tau) \leq A^{2} \bar{k}\left(\left|x_{1}\right|+\left|x_{2}\right|\right)^{2} \leq 2 A^{2} \bar{k}|x|^{2} \\
& V_{t}(x, t, \tau)+V_{x}(x, t, \tau) f(x, t, \tau) \leq-\frac{\tau_{1} k_{o}}{4 A^{2} \bar{k}} V(x, t, \tau)
\end{aligned}
$$

EXAMPLE 2: MECHANICAL SYSTEM with FRICTION (cont'd)

The function

$$
V(x, t, \tau)=A\left(k(t) x_{1}^{2}+x_{2}^{2}\right)+\tau_{1} x_{1} x_{2}, \quad A=1+\frac{k_{o}}{2}+\frac{\left(1+2 \beta_{2}\right)^{2}}{k_{o}}
$$

satisfies the following for the corresponding frozen dynamics:

$$
\begin{aligned}
& \frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right) \leq V(x, t, \tau) \leq A^{2} \bar{k}\left(\left|x_{1}\right|+\left|x_{2}\right|\right)^{2} \leq 2 A^{2} \bar{k}|x|^{2} \\
& V_{t}(x, t, \tau)+V_{x}(x, t, \tau) f(x, t, \tau) \leq-\frac{\tau_{1} k_{o}}{4 A^{2} k} V(x, t, \tau)
\end{aligned}
$$

Corollary: There exists a constant $\alpha_{o}>0$ such that for all $\alpha>\alpha_{o}$, (MSF) is UGAS and admits the Lyapunov function

$$
V_{\alpha}(t, x):=V(x, t, p(t / \alpha)) e^{\frac{\alpha \bar{b}}{T}} \int_{\frac{t}{\alpha}-T}^{\frac{t}{\alpha}} \int_{s}^{\frac{t}{\alpha}} \sigma_{1}(l) \mathrm{d} l \mathrm{~d} s
$$

where V is above, $\bar{b}=k_{o} /\left(4 A^{2} \bar{k}\right)$, and $p(t)=\left(\sigma_{1}(t), \sigma_{2}(t), \sigma_{3}(t)\right)$.

INPUT-TO-STATE STABILITY (ISS)

Additional Assumptions: To show ISS for

$$
\begin{equation*}
\dot{x}=\mathcal{F}(x, t, u, \alpha):=f(x, t, p(t / \alpha))+g(x, t, p(t / \alpha)) u \tag{u}
\end{equation*}
$$

for large constants $\alpha>0$ and f, g, and p as before, we also assume:
For all $t \geq 0, \alpha>0$, and $x \in \mathbb{R}^{n}$, (v) $\left|V_{x}(x, t, p(t / \alpha))\right| \leq c_{a} \sqrt{\delta_{1}(|x|)}$, and (vi) $|g(x, t, p(t / \alpha))| \leq c_{a}\left\{1+\sqrt[4]{\delta_{1}(|x|)}\right\}$.

INPUT-TO-STATE STABILITY (ISS)

Additional Assumptions: To show ISS for

$$
\dot{x}=\mathcal{F}(x, t, u, \alpha):=f(x, t, p(t / \alpha))+g(x, t, p(t / \alpha)) u
$$

for large constants $\alpha>0$ and f, g, and p as before, we also assume:
For all $t \geq 0, \alpha>0$, and $x \in \mathbb{R}^{n}$, (v) $\left|V_{x}(x, t, p(t / \alpha))\right| \leq c_{a} \sqrt{\delta_{1}(|x|)}$, and (vi) $|g(x, t, p(t / \alpha))| \leq c_{a}\left\{1+\sqrt[4]{\delta_{1}(|x|)}\right\}$.

ISS: $\exists \beta \in \mathcal{K} \mathcal{L}, \gamma \in \mathcal{K}_{\infty}$ s.t. $\left|\phi\left(t ; t_{o}, x_{o}, \mathbf{u}\right)\right| \leq \beta\left(\left|x_{o}\right|, t-t_{o}\right)+\gamma\left(|\mathbf{u}|_{\infty}\right)$. ISS-CLF: $\exists \mu_{1}, \mu_{2}, \chi \in \mathcal{K}_{\infty}, \mu_{3} \in \mathcal{P D}$ s.t. $\mu_{1}(|x|) \leq W(x, t) \leq \mu_{2}(|x|)$ and $|u| \leq \chi(|x|) \Rightarrow W_{t}(x, t)+W_{x}(x, t) \mathcal{F}(x, t, u, \alpha) \leq-\mu_{3}(|x|)$.

INPUT-TO-STATE STABILITY (ISS)

Additional Assumptions: To show ISS for

$$
\dot{x}=\mathcal{F}(x, t, u, \alpha):=f(x, t, p(t / \alpha))+g(x, t, p(t / \alpha)) u
$$

for large constants $\alpha>0$ and f, g, and p as before, we also assume:
For all $t \geq 0, \alpha>0$, and $x \in \mathbb{R}^{n}$, (v) $\left|V_{x}(x, t, p(t / \alpha))\right| \leq c_{a} \sqrt{\delta_{1}(|x|)}$, and (vi) $|g(x, t, p(t / \alpha))| \leq c_{a}\left\{1+\sqrt[4]{\delta_{1}(|x|)}\right\}$.

ISS: $\exists \beta \in \mathcal{K} \mathcal{L}, \gamma \in \mathcal{K}_{\infty}$ s.t. $\left|\phi\left(t ; t_{o}, x_{o}, \mathbf{u}\right)\right| \leq \beta\left(\left|x_{o}\right|, t-t_{o}\right)+\gamma\left(|\mathbf{u}|_{\infty}\right)$.
ISS-CLF: $\exists \mu_{1}, \mu_{2}, \chi \in \mathcal{K}_{\infty}, \mu_{3} \in \mathcal{P D}$ s.t. $\mu_{1}(|x|) \leq W(x, t) \leq \mu_{2}(|x|)$ and $|u| \leq \chi(|x|) \Rightarrow W_{t}(x, t)+W_{x}(x, t) \mathcal{F}(x, t, u, \alpha) \leq-\mu_{3}(|x|)$.

Theorem B: \forall constants $\alpha>4 T c_{a} \bar{p} / c_{b}$, the dynamics $\left(\Sigma_{u}\right)$ are ISS and

$$
V_{\alpha}^{\sharp}(x, t):=e^{\frac{\alpha}{T} \int_{\frac{t}{\alpha}-T}^{\frac{t}{\alpha}} \int_{s}^{\frac{t}{\alpha}} q(p(l)) \mathrm{d} l \mathrm{~d} s} V(x, t, p(t / \alpha))
$$

is an ISS-CLF for $\left(\Sigma_{u}\right)$.

ACKNOWLEDGEMENTS

- The authors thank the referees and Patrick De Leenheer, Marcio de Queiroz, and Eduardo Sontag for their helpful comments on earlier presentations of this work.

ACKNOWLEDGEMENTS

- The authors thank the referees and Patrick De Leenheer, Marcio de Queiroz, and Eduardo Sontag for their helpful comments on earlier presentations of this work.
- A journal version will appear in Mathematics of Control, Signals, and Systems. The authors thank J.H. van Schuppen for the opportunity to publish their work in his esteemed journal.

ACKNOWLEDGEMENTS

- The authors thank the referees and Patrick De Leenheer, Marcio de Queiroz, and Eduardo Sontag for their helpful comments on earlier presentations of this work.
- A journal version will appear in Mathematics of Control, Signals, and Systems. The authors thank J.H. van Schuppen for the opportunity to publish their work in his esteemed journal.
- Part of this work was done while F. Mazenc visited the Louisiana State University (LSU) Department of Mathematics. He thanks LSU for the kind hospitality he enjoyed during this period.

ACKNOWLEDGEMENTS

- The authors thank the referees and Patrick De Leenheer, Marcio de Queiroz, and Eduardo Sontag for their helpful comments on earlier presentations of this work.
- A journal version will appear in Mathematics of Control, Signals, and Systems. The authors thank J.H. van Schuppen for the opportunity to publish their work in his esteemed journal.
- Part of this work was done while F. Mazenc visited the Louisiana State University (LSU) Department of Mathematics. He thanks LSU for the kind hospitality he enjoyed during this period.
- Malisoff was supported by NSF Grant 0424011. He thanks Zvi Artstein for illuminating discussions at the International Conference on Hybrid Systems and Applications in Lafayette, Louisiana.

