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Background and Motivation

Input delay compensation involves finding feedback controls that
depend on time-lagged instead of current state values.

Input delays arise from time-lagged communication and require
delay tolerant globally asymptotically stabilizing feedbacks.

One approach solves the feedback problem with the delay set to
zero and then checks how large a delay can be tolerated.

Reduction and standard prediction can compensate for any
constant delay but can lead to computational difficulties.
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Systems and Assumptions

ẋ(t) = A(t)x(t) + B(t)u(t − h(t)), x(t) ∈ Rn. (LTV)

Assumption 1: The functions A and B are bounded and
continuous, and there is a known bounded continuous function
K : [0,∞)→ Rm×n such that ẋ(t) = [A(t) + B(t)K (t)]x(t) is
uniformly globally exponentially stable to 0.

Assumption 2: The function h : R→ [0,∞) is C1 and bounded
from above by a constant ch > 0. Also, its derivative ḣ is
bounded from below, and ḣ is bounded from above by a constant
lh ∈ (0,1), and ḣ has a global Lipschitz constant nh > 0.

The control u will be specified by our theorem.
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bounded from below, and ḣ is bounded from above by a constant
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K : [0,∞)→ Rm×n such that ẋ(t) = [A(t) + B(t)K (t)]x(t) is
uniformly globally exponentially stable to 0.

Assumption 2: The function h : R→ [0,∞) is C1 and bounded
from above by a constant ch > 0. Also, its derivative ḣ is
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Example: Smoothed Sawtooth Wave

Sawtooth wave delay represents sampling in control.

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

Gaussian smoothing and interpolation. 1000 interpolation points
and standard deviation 0.2 of smoothing on [0,1]. Scale by 0.98.

Assumption 2 holds with ch = 0.924, lh = 0.98, and nh = 592.72.
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Preliminaries for Theorem

We use an pn-dimensional dynamic extension to build our delay
compensating control for any number of predictors

p > max
{

2,4
(

b1√
2

+ b2

)
ch

1−lh

}
, (LB)

where

b1 =

[
1 +

(
1 + uc

p

)p
|A|∞

](
1 + uc

p

)p
|A|∞,

b2 =

[
1 +

(
1 + uc

p

)p
|A|∞

]2 (
1 + uc

p

)
, and uc = chnh

(1−lh)
2 + lh

1−lh
.

p sequential predictors for ẋ(t) = A(t)x(t) + B(t)u(t − h(t))

Ωi(t) = t − (i/p)h(t) and θi(t) = Ω−1
p−i+1(Ωp−i(t)), i ∈ {0, ...,p}.

R1(t) = θ̇1(t), Ri(t) = θ̇i(t)Ri−1(θi(t)) for i > 1. Ωp(t) = t − h(t)

4/7



Preliminaries for Theorem

We use an pn-dimensional dynamic extension to build our delay
compensating control for any number of predictors

p > max
{

2,4
(

b1√
2

+ b2

)
ch

1−lh

}
, (LB)

where

b1 =

[
1 +

(
1 + uc

p

)p
|A|∞

](
1 + uc

p

)p
|A|∞,

b2 =

[
1 +

(
1 + uc

p

)p
|A|∞

]2 (
1 + uc

p

)
, and uc = chnh

(1−lh)
2 + lh

1−lh
.
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Theorem (Automatica, M and M, 2017)

Let Assumptions 1-2 hold and p satisfy (LB). Then if we use the
control u(t) = K (Ω−1

p (t))zp(t) in (LTV), where zp is the last n
components of the system

ż1(t) = R1(t)A(θ1(t))z1(t) + R1(t)B(θ1(t))u(Ωp−1(t))

+ L1(t)[z1(θ1
−1(t))− x(t)]

żi(t) = Ri(t)A(Gi(t))zi(t) + Ri(t)B(Gi(t))u(Ωp−i(t))

+ Li(t)[zi(θi
−1(t))− zi−1(t)], i ∈ {2, . . . ,p}

(1)

where Li(t) = −In − Ri(t)A(Gi(t)) and Gi = Ω−1
p ◦ Ωp−i , then the

dynamics for (x , E) are globally exponentially stable to 0, where
E(t) = (z1(t)−x(θ1(t)), z2(t)−z1(θ2(t)), . . . , zp(t)−zp−1(θp(t))).
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Pendulum Example{
ṙ1(t) = r2(t)
ṙ2(t) = −g

l sin(r1(t)) + 1
Ml2 v(t − h(t))

(2)

Change of feedback and linearizing the tracking dynamics for
tracking (ωt , ω) for any ω > 0 gives{

ẋ1(t) = x2(t)

ẋ2(t) = −g
l cos(ωt)x1(t) + u(t − h(t))

(3)

Theorem applies with h(t) = 1 + α sin(t) with α ∈ (0,1).

E.g., if l > g and ω > 0 and α = 1/7, can pick p = 47.
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Conclusions

We compensated for arbitrarily long input delays with new
predictive controls that lend themselves to implementation.

Our general conditions on the time-varying delays allow us to
approximate sawtooth shaped delays from sampling.

Our extensions cover nonlinear systems under constant delays,
and robustness with respect to actuator uncertainty.

For nonlinear systems, our sequential predictor allows us to
satisfy the same input constraints as the original nominal control.

We hope to prove generalizations for ODE-PDE cascades.

Thank you for your attention!
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