Adaptive Tracking and Parameter Identification

Michael Malisoff

Consider a system of differential equations

$$\dot{\xi} = f(\xi, \boldsymbol{P}, \boldsymbol{u}) \tag{1}$$

with a vector *P* of unknown constant parameters and functions ξ_R and u_R such that $\dot{\xi}_R(t) = f(\xi_R(t), P, u_R(t))$ for all $t \ge 0$.

Consider a system of differential equations

$$\dot{\xi} = f(\xi, \boldsymbol{P}, \boldsymbol{u}) \tag{1}$$

with a vector *P* of unknown constant parameters and functions ξ_R and u_R such that $\dot{\xi}_R(t) = f(\xi_R(t), P, u_R(t))$ for all $t \ge 0$.

Problem:

Consider a system of differential equations

$$\dot{\xi} = f(\xi, \boldsymbol{P}, \boldsymbol{u}) \tag{1}$$

with a vector *P* of unknown constant parameters and functions ξ_R and u_R such that $\xi_R(t) = f(\xi_R(t), P, u_R(t))$ for all $t \ge 0$.

Problem: Find $u(\xi, \hat{P})$ and a system of differential equations $\dot{\hat{P}} = g(\xi, \hat{P})$ (2)

such that with the control choice $u(\xi, \hat{P})$ in (1), all solutions $Y = (\tilde{\xi}, \tilde{P}) = (\xi - \xi_R, P - \hat{P})$ converge to 0 as $t \to +\infty$.

Consider a system of differential equations

$$\dot{\xi} = f(\xi, \boldsymbol{P}, \boldsymbol{u}) \tag{1}$$

with a vector *P* of unknown constant parameters and functions ξ_R and u_R such that $\xi_R(t) = f(\xi_R(t), P, u_R(t))$ for all $t \ge 0$.

Problem: Find $u(\xi, \hat{P})$ and a system of differential equations $\dot{\hat{P}} = g(\xi, \hat{P})$ (2)

such that with the control choice $u(\xi, \hat{P})$ in (1), all solutions $Y = (\tilde{\xi}, \tilde{P}) = (\xi - \xi_R, P - \hat{P})$ converge to 0 as $t \to +\infty$.

Lavretsky-Wise, Narendra-Annaswamy, Sastry-Bodson,...

Consider a system of differential equations

$$\dot{\xi} = f(\xi, \boldsymbol{P}, \boldsymbol{u}) \tag{1}$$

with a vector *P* of unknown constant parameters and functions ξ_R and u_R such that $\xi_R(t) = f(\xi_R(t), P, u_R(t))$ for all $t \ge 0$.

Problem: Find $u(\xi, \hat{P})$ and a system of differential equations $\dot{\hat{P}} = g(\xi, \hat{P})$ (2)

such that with the control choice $u(\xi, \hat{P})$ in (1), all solutions $Y = (\tilde{\xi}, \tilde{P}) = (\xi - \xi_R, P - \hat{P})$ converge to 0 as $t \to +\infty$.

Basar, Cortes, Dixon, Duncan, Krstic, Morse, Ortega, Yucelen,...

Consider a system of differential equations

$$\dot{\xi} = f(\xi, \boldsymbol{P}, \boldsymbol{u}) \tag{1}$$

with a vector *P* of unknown constant parameters and functions ξ_R and u_R such that $\dot{\xi}_R(t) = f(\xi_R(t), P, u_R(t))$ for all $t \ge 0$.

Problem: Find $u(\xi, \hat{P})$ and a system of differential equations $\dot{\hat{P}} = g(\xi, \hat{P})$ (2)

such that with the control choice $u(\xi, \hat{P})$ in (1), all solutions $Y = (\tilde{\xi}, \tilde{P}) = (\xi - \xi_R, P - \hat{P})$ converge to 0 as $t \to +\infty$.

Flight control, mechanical systems, robotics,...

Our more general settings: Perturbations and state constraints, motivated by our robotics field work at Grand Isle, Louisiana..

Our more general settings: Perturbations and state constraints, motivated by our robotics field work at Grand Isle, Louisiana..

Gyroscopic models: Steering command control for convergence to parallel motion to, but positive distance from, curve..

Our more general settings: Perturbations and state constraints, motivated by our robotics field work at Grand Isle, Louisiana.

Gyroscopic models: Steering command control for convergence to parallel motion to, but positive distance from, curve..

Lyapunov function: Needed because of nonlinearities and uncertainties preclude solving for explicit flow maps...

Our more general settings: Perturbations and state constraints, motivated by our robotics field work at Grand Isle, Louisiana.

Gyroscopic models: Steering command control for convergence to parallel motion to, but positive distance from, curve..

Lyapunov function: Needed because of nonlinearities and uncertainties preclude solving for explicit flow maps...

Adaptive control: We identified control gains and curvatures under input delays, perturbations, and state constraints...

Our more general settings: Perturbations and state constraints, motivated by our robotics field work at Grand Isle, Louisiana.

Gyroscopic models: Steering command control for convergence to parallel motion to, but positive distance from, curve..

Lyapunov function: Needed because of nonlinearities and uncertainties preclude solving for explicit flow maps...

Adaptive control: We identified control gains and curvatures under input delays, perturbations, and state constraints...

ZP. Jiang, E. Justh, P. Krishnaprasad, V. Lumelsky, A. Stepanov

We use Lyapunov functions for systems of the form $\dot{Y} = G(Y)$.

We use Lyapunov functions for systems of the form $\dot{Y} = G(Y)$.

Nonstrict (resp., strict) Lyapunov functions are continuously differentiable proper positive definite *V*'s that satisfy the nonstrict (resp., strict) decay condition along all solutions of the systems.

We use Lyapunov functions for systems of the form $\dot{Y} = G(Y)$.

Nonstrict (resp., strict) Lyapunov functions are continuously differentiable proper positive definite *V*'s that satisfy the nonstrict (resp., strict) decay condition along all solutions of the systems.

Positive definiteness: V(0) = 0, V(Y) > 0 for all nonzero Y's.

We use Lyapunov functions for systems of the form $\dot{Y} = G(Y)$.

Nonstrict (resp., strict) Lyapunov functions are continuously differentiable proper positive definite *V*'s that satisfy the nonstrict (resp., strict) decay condition along all solutions of the systems.

Positive definiteness: V(0) = 0, V(Y) > 0 for all nonzero Y's.

Properness: $V(Y) \rightarrow +\infty$ as $|Y| \rightarrow +\infty$ or as Y converges to the boundary of the state space while staying in the state space.

We use Lyapunov functions for systems of the form $\dot{Y} = G(Y)$.

Nonstrict (resp., strict) Lyapunov functions are continuously differentiable proper positive definite *V*'s that satisfy the nonstrict (resp., strict) decay condition along all solutions of the systems.

Positive definiteness: V(0) = 0, V(Y) > 0 for all nonzero Y's.

Properness: $V(Y) \rightarrow +\infty$ as $|Y| \rightarrow +\infty$ or as Y converges to the boundary of the state space while staying in the state space.

Nonstrict decay: $\frac{d}{dt}V(Y(t)) \le 0$ along all solutions of system.

We use Lyapunov functions for systems of the form $\dot{Y} = G(Y)$.

Nonstrict (resp., strict) Lyapunov functions are continuously differentiable proper positive definite *V*'s that satisfy the nonstrict (resp., strict) decay condition along all solutions of the systems.

Positive definiteness: V(0) = 0, V(Y) > 0 for all nonzero Y's.

Properness: $V(Y) \rightarrow +\infty$ as $|Y| \rightarrow +\infty$ or as Y converges to the boundary of the state space while staying in the state space.

Nonstrict decay: $\frac{d}{dt}V(Y(t)) \le 0$ along all solutions of system.

Strict decay: there is a continuous positive definite α such that $\frac{d}{dt}V(Y(t)) \leq -\alpha(Y(t))$ along all solutions of system.

Simpler 2D case: Boundary following with gyroscopic control.

Simpler 2D case: Boundary following with gyroscopic control.

Zhang-Justh-Krishnaprasad, IEEE-CDC'04.

Simpler 2D case: Boundary following with gyroscopic control.

Zhang-Justh-Krishnaprasad, IEEE-CDC'04.

 $\rho = |\mathbf{r_2} - \mathbf{r_1}|, \phi = \text{angle between } \mathbf{x_1} \text{ and } \mathbf{x_2}, \cos(\phi) = \mathbf{x_1} \cdot \mathbf{x_2}$

$$\begin{cases} \dot{\rho} = -\sin(\phi) \\ \dot{\phi} = \frac{\kappa\cos(\phi)}{1+\kappa\rho} - \underline{u}_{b}, \quad (\rho,\phi) \in \mathcal{X} = (0,+\infty) \times (-\pi/2,\pi/2) \end{cases}$$
(3)

$$\begin{cases} \dot{\rho} = -\sin(\phi) \\ \dot{\phi} = \frac{\kappa\cos(\phi)}{1+\kappa\rho} - \boldsymbol{u}_{\boldsymbol{b}}, \quad (\rho,\phi) \in \mathcal{X} = (0,+\infty) \times (-\pi/2,\pi/2) \\ \boldsymbol{u}_{\boldsymbol{b}} = \frac{\kappa\cos(\phi)}{1+\kappa\rho} - \boldsymbol{h}'(\rho)\cos(\phi) + \mu\sin(\phi) \end{cases}$$
(3)
$$(3)$$

$$\begin{cases} \dot{\rho} = -\sin(\phi) \\ \dot{\phi} = \frac{\kappa\cos(\phi)}{1+\kappa\rho} - u_b, \quad (\rho,\phi) \in \mathcal{X} = (0,+\infty) \times (-\pi/2,\pi/2) \end{cases}$$
(3)
$$u_b = \frac{\kappa\cos(\phi)}{1+\kappa\rho} - h'(\rho)\cos(\phi) + \mu\sin(\phi) \qquad (4)\\ h(\rho) = \alpha \left\{ \rho + \frac{\rho_0^2}{\rho} - 2\rho_0 \right\}, \quad \rho_0 = \text{desired value for } \rho \qquad (5) \end{cases}$$

$$\begin{cases} \dot{\rho} = -\sin(\phi) \\ \dot{\phi} = \frac{\kappa\cos(\phi)}{1+\kappa\rho} - u_b, \quad (\rho, \phi) \in \mathcal{X} = (0, +\infty) \times (-\pi/2, \pi/2) \end{cases}$$
(3)
$$u_b = \frac{\kappa\cos(\phi)}{1+\kappa\rho} - h'(\rho)\cos(\phi) + \mu\sin(\phi)$$
(4)
$$h(\rho) = \alpha \left\{ \rho + \frac{\rho_0^2}{\rho} - 2\rho_0 \right\}, \quad \rho_0 = \text{desired value for } \rho$$
(5)
$$\dot{\rho} = -\sin\phi, \quad \dot{\phi} = h'(\rho)\cos\phi - \mu\sin\phi$$
(CL)

$$\begin{cases} \dot{\rho} = -\sin(\phi) \\ \dot{\phi} = \frac{\kappa\cos(\phi)}{1+\kappa\rho} - u_{b}, \quad (\rho, \phi) \in \mathcal{X} = (0, +\infty) \times (-\pi/2, \pi/2) \end{cases}$$
(3)
$$u_{b} = \frac{\kappa\cos(\phi)}{1+\kappa\rho} - h'(\rho)\cos(\phi) + \mu\sin(\phi)$$
(4)
$$h(\rho) = \alpha \left\{ \rho + \frac{\rho_{0}^{2}}{\rho} - 2\rho_{0} \right\}, \quad \rho_{0} = \text{desired value for } \rho$$
(5)
$$\dot{\rho} = -\sin\phi, \quad \dot{\phi} = h'(\rho)\cos\phi - \mu\sin\phi$$
(CL)

 $V(\rho,\phi) = -\ln(\cos(\phi)) + h(\rho), \text{ equilibrium } \mathcal{E} = (\rho_0,0)$ (6)

$$\begin{cases} \dot{\rho} = -\sin(\phi) \\ \dot{\phi} = \frac{\kappa\cos(\phi)}{1+\kappa\rho} - u_b, \quad (\rho, \phi) \in \mathcal{X} = (0, +\infty) \times (-\pi/2, \pi/2) \end{cases}$$
(3)
$$u_b = \frac{\kappa\cos(\phi)}{1+\kappa\rho} - h'(\rho)\cos(\phi) + \mu\sin(\phi)$$
(4)
$$h(\rho) = \alpha \left\{ \rho + \frac{\rho_0^2}{\rho} - 2\rho_0 \right\}, \quad \rho_0 = \text{desired value for } \rho$$
(5)
$$\dot{\rho} = -\sin\phi, \quad \dot{\phi} = h'(\rho)\cos\phi - \mu\sin\phi$$
(CL)

 $V(\rho,\phi) = -\ln(\cos(\phi)) + h(\rho), \text{ equilibrium } \mathcal{E} = (\rho_0,0)$ (6)

Along all solutions of (CL) for all $t \ge 0$, we have $\frac{d}{dt}V(\rho, \phi) \le 0$.

Strict Lyapunov Function (Mazenc-M-Z, TAC)

Theorem 1: The closed loop system (CL) has the strict Lyapunov function

$$U(Y) = -h'(\rho)\sin(\phi) + \frac{1}{\mu}\int_{0}^{V(\rho,\phi)}\gamma(m)dm + \Gamma(V(\rho,\phi)) + V(\rho,\phi),$$

where $\gamma(q) = \frac{2(q+2\rho_{0})^{3}}{\rho_{0}^{4}} + 1 + 0.5\mu^{2} + \mu, \ Y = (\rho - \rho_{0},\phi),$
 $\Gamma(q) = \frac{18}{\rho_{0}}q + 9\left(\frac{2}{\rho_{0}}\right)^{4}q^{4}, \text{ and } V(\rho,\phi) = -\ln(\cos(\phi)) + h(\rho)$
on its state space $\mathcal{X} = (0, +\infty) \times (-\pi/2, \pi/2).$

Strict Lyapunov Function (Mazenc-M-Z, TAC)

Theorem 1: The closed loop system (CL) has the strict Lyapunov function

$$U(Y) = -h'(\rho)\sin(\phi) + \frac{1}{\mu}\int_{0}^{V(\rho,\phi)}\gamma(m)dm + \Gamma(V(\rho,\phi)) + V(\rho,\phi),$$

where $\gamma(q) = \frac{2(q+2\rho_{0})^{3}}{\rho_{0}^{4}} + 1 + 0.5\mu^{2} + \mu, Y = (\rho - \rho_{0},\phi),$
 $\Gamma(q) = \frac{18}{\rho_{0}}q + 9\left(\frac{2}{\rho_{0}}\right)^{4}q^{4}, \text{ and } V(\rho,\phi) = -\ln(\cos(\phi)) + h(\rho)$
on its state space $\mathcal{X} = (0, +\infty) \times (-\pi/2, \pi/2).$
 $U(Y(t)) \ge V(\rho(t), \phi(t))$ (PD)

 $\frac{d}{dt}U(Y(t)) \le -0.5[h'(\rho(t))\cos(\phi(t))]^2 - \sin^2(\phi(t)) \tag{SD}$

$$\begin{cases} \dot{\rho} = -\sin(\phi) \\ \dot{\phi} = \frac{\kappa\cos(\phi)}{1+\kappa\rho} + \mathcal{K}\boldsymbol{u}, \quad \mathcal{K} \in (\boldsymbol{c}_{\min}, \boldsymbol{c}_{\max}) \subseteq (0, \infty) \\ \dot{\hat{\mathcal{K}}} = (\hat{\mathcal{K}} - \boldsymbol{c}_{\min})(\boldsymbol{c}_{\max} - \hat{\mathcal{K}}) \frac{\partial U}{\partial \phi} \boldsymbol{u}, \quad \hat{\mathcal{K}} \in (\boldsymbol{c}_{\min}, \boldsymbol{c}_{\max}) \end{cases}$$
(7)

$$\begin{cases} \dot{\rho} = -\sin(\phi) \\ \dot{\phi} = \frac{\kappa\cos(\phi)}{1+\kappa\rho} + K\boldsymbol{u}, \quad K \in (\boldsymbol{c}_{\min}, \boldsymbol{c}_{\max}) \subseteq (0, \infty) \\ \dot{\hat{K}} = (\hat{K} - \boldsymbol{c}_{\min})(\boldsymbol{c}_{\max} - \hat{K})\frac{\partial U}{\partial \phi}\boldsymbol{u}, \quad \hat{K} \in (\boldsymbol{c}_{\min}, \boldsymbol{c}_{\max}) \\ \boldsymbol{u}(\rho, \phi, \hat{K}) = -\boldsymbol{u}_{b}(\rho, \phi)/\hat{K}. \end{cases}$$
(7)

$$\begin{cases} \dot{\rho} = -\sin(\phi) \\ \dot{\phi} = \frac{\kappa\cos(\phi)}{1+\kappa\rho} + K\boldsymbol{u}, \quad K \in (\boldsymbol{c}_{\min}, \boldsymbol{c}_{\max}) \subseteq (0, \infty) \quad (7) \\ \dot{\hat{K}} = (\hat{K} - \boldsymbol{c}_{\min})(\boldsymbol{c}_{\max} - \hat{K})\frac{\partial U}{\partial \phi}\boldsymbol{u}, \quad \hat{K} \in (\boldsymbol{c}_{\min}, \boldsymbol{c}_{\max}) \\ \boldsymbol{u}(\rho, \phi, \hat{K}) = -\boldsymbol{u}_{b}(\rho, \phi)/\hat{K}. \text{ Built strict Lyapunov functions for} \\ \begin{cases} \ddot{q}_{1} = -\sin(\tilde{q}_{2}) \\ \ddot{q}_{2} = \frac{\kappa\cos(\tilde{q}_{2})}{1+\kappa(\tilde{q}_{1}+\rho_{0})} - \frac{K}{\tilde{K}+K}\boldsymbol{u}_{b} \\ \dot{\tilde{K}} = -(\tilde{K} + K - \boldsymbol{c}_{\min})(\boldsymbol{c}_{\max} - \tilde{K} - K)\frac{\partial U}{\partial \phi}\frac{\boldsymbol{u}_{b}}{\tilde{K}+K} \end{cases} \\ \text{i.e., the dynamics for } Y = (\tilde{q}_{1}, \tilde{q}_{2}, \tilde{K}) = (\rho - \rho_{0}, \phi, \hat{K} - K). \end{cases}$$

$$\begin{cases} \dot{\rho} = -\sin(\phi) \\ \dot{\phi} = \frac{\kappa\cos(\phi)}{1+\kappa\rho} + Ku, \quad K \in (c_{\min}, c_{\max}) \subseteq (0, \infty) \\ \dot{\hat{K}} = (\hat{K} - c_{\min})(c_{\max} - \hat{K})\frac{\partial U}{\partial \phi}u, \quad \hat{K} \in (c_{\min}, c_{\max}) \end{cases}$$
(7)
$$u(\rho, \phi, \hat{K}) = -u_b(\rho, \phi)/\hat{K}. \text{ Built strict Lyapunov functions for} \\ \begin{cases} \dot{\tilde{q}}_1 = -\sin(\tilde{q}_2) \\ \dot{\tilde{q}}_2 = \frac{\kappa\cos(\tilde{q}_2)}{1+\kappa(\tilde{q}_1+\rho_0)} - \frac{K}{\tilde{K}+K}u_b \\ \dot{\tilde{K}} = -(\tilde{K} + K - c_{\min})(c_{\max} - \tilde{K} - K)\frac{\partial U}{\partial \phi}\frac{u_b}{\tilde{K}+K} \end{cases}$$
(8)
i.e., the dynamics for $Y = (\tilde{q}_1, \tilde{q}_2, \tilde{K}) = (\rho - \rho_0, \phi, \hat{K} - K). \\ \xi_B = (\rho_0, 0). \end{cases}$

$$\begin{cases} \dot{\rho} = -\sin(\phi) \\ \dot{\phi} = \frac{\kappa\cos(\phi)}{1+\kappa\rho} + K\boldsymbol{u}, \quad K \in (\boldsymbol{c}_{\min}, \boldsymbol{c}_{\max}) \subseteq (0, \infty) \\ \dot{\hat{K}} = (\hat{K} - \boldsymbol{c}_{\min})(\boldsymbol{c}_{\max} - \hat{K})\frac{\partial U}{\partial \phi}\boldsymbol{u}, \quad \hat{K} \in (\boldsymbol{c}_{\min}, \boldsymbol{c}_{\max}) \end{cases}$$
(7)
$$\boldsymbol{u}(\rho, \phi, \hat{K}) = -\boldsymbol{u}_{b}(\rho, \phi)/\hat{K}. \text{ Built strict Lyapunov functions for}$$

$$\begin{cases} \dot{\tilde{q}}_{1} = -\sin(\tilde{q}_{2}) \\ \dot{\tilde{q}}_{2} = \frac{\kappa\cos(\tilde{q}_{2})}{1+\kappa(\tilde{q}_{1}+\rho_{0})} - \frac{K}{\tilde{K}+K} u_{b} \\ \dot{\tilde{K}} = -(\tilde{K}+K-c_{\min})(c_{\max}-\tilde{K}-K)\frac{\partial U}{\partial \phi}\frac{u_{b}}{\tilde{K}+K} \end{cases}$$
(8)

i.e., the dynamics for $Y = (\tilde{q}_1, \tilde{q}_2, \tilde{K}) = (\rho - \rho_0, \phi, \hat{K} - K)$. $\xi_R = (\rho_0, 0)$. Strictness allowed a robustness analysis to satisfy performance and safety bounds under other uncertainties.

Summer 2011 Field Work at Grand Isle, LA

20 days of field work off Grand Isle. Search for oil spill remnants. Georgia Tech Savannah Robotics (co-led by Fumin Zhang)

Summer 2011 Field Work at Grand Isle, LA

20 days of field work off Grand Isle. Search for oil spill remnants. Georgia Tech Savannah Robotics (co-led by Fumin Zhang)

Summer 2011 Field Work at Grand Isle, LA

20 days of field work off Grand Isle. Search for oil spill remnants. Georgia Tech Savannah Robotics (co-led by Fumin Zhang)

Hyperlinked Related References

Mazenc, F., and M. Malisoff, "Strict Lyapunov function constructions under LaSalle conditions with an application to Lotka-Volterra systems," *IEEE Transactions on Automatic Control*, Volume 55, Issue 4, April 2010, pp. 841-854.

Hyperlinked Related References

Mazenc, F., and M. Malisoff, "Strict Lyapunov function constructions under LaSalle conditions with an application to Lotka-Volterra systems," *IEEE Transactions on Automatic Control*, Volume 55, Issue 4, April 2010, pp. 841-854.

Mukhopadhyay, S., C. Wang, M. Patterson, M. Malisoff, and F. Zhang, "Collaborative autonomous surveys in marine environments affected by oil spills," in *Cooperative Robots and Sensor Networks, 2nd Edition*, Anis Koubaa, Ed., Studies in Computational Intelligence, Springer, New York, 2014, pp. 87-113.

Hyperlinked Related References

Mazenc, F., and M. Malisoff, "Strict Lyapunov function constructions under LaSalle conditions with an application to Lotka-Volterra systems," *IEEE Transactions on Automatic Control*, Volume 55, Issue 4, April 2010, pp. 841-854.

Mukhopadhyay, S., C. Wang, M. Patterson, M. Malisoff, and F. Zhang, "Collaborative autonomous surveys in marine environments affected by oil spills," in *Cooperative Robots and Sensor Networks, 2nd Edition*, Anis Koubaa, Ed., Studies in Computational Intelligence, Springer, New York, 2014, pp. 87-113.

Malisoff, M., and F. Zhang, "Robustness of adaptive control under time delays for three-dimensional curve tracking," *SIAM Journal on Control and Optimization*, 53(4):2203-2236, 2015.

Brushless DC motors turning a mechanical load with uncertain motor electric parameters including integral ISS analysis.

Brushless DC motors turning a mechanical load with uncertain motor electric parameters including integral ISS analysis.

Variants for uncertain parameters *P* that enter the system in a nonlinear way for curve tracking with unknown curvatures.

Brushless DC motors turning a mechanical load with uncertain motor electric parameters including integral ISS analysis.

Variants for uncertain parameters *P* that enter the system in a nonlinear way for curve tracking with unknown curvatures.

To also allow delays in state observations in our controls, we convert our strict LF into Lyapunov-Krasovskii functionals.

Brushless DC motors turning a mechanical load with uncertain motor electric parameters including integral ISS analysis.

Variants for uncertain parameters *P* that enter the system in a nonlinear way for curve tracking with unknown curvatures.

To also allow delays in state observations in our controls, we convert our strict LF into Lyapunov-Krasovskii functionals.

We used artificial neural network expansions for extensions to cases where the P need not be constant.

Brushless DC motors turning a mechanical load with uncertain motor electric parameters including integral ISS analysis.

Variants for uncertain parameters *P* that enter the system in a nonlinear way for curve tracking with unknown curvatures.

To also allow delays in state observations in our controls, we convert our strict LF into Lyapunov-Krasovskii functionals.

We used artificial neural network expansions for extensions to cases where the *P* need not be constant.

Joint work with J. Muse from AFRL on model reference adaptive control to reduce oscillations, applied to hovering helicopters.

Adaptive nonlinear controllers are useful for many engineering control systems for which parameters need to be identified.

Adaptive nonlinear controllers are useful for many engineering control systems for which parameters need to be identified.

Curve tracking controllers can be applied in robotics for environmental sensing and other ME applications.

Adaptive nonlinear controllers are useful for many engineering control systems for which parameters need to be identified.

Curve tracking controllers can be applied in robotics for environmental sensing and other ME applications.

The strictness of our Lyapunov functions provides parameter identifying update laws and robustness to perturbations.

Adaptive nonlinear controllers are useful for many engineering control systems for which parameters need to be identified.

Curve tracking controllers can be applied in robotics for environmental sensing and other ME applications.

The strictness of our Lyapunov functions provides parameter identifying update laws and robustness to perturbations.

Feedback delay compensation uses Lyapunov-Krasovskii functions, Razumikhin functions, or sequential predictors.

Adaptive nonlinear controllers are useful for many engineering control systems for which parameters need to be identified.

Curve tracking controllers can be applied in robotics for environmental sensing and other ME applications.

The strictness of our Lyapunov functions provides parameter identifying update laws and robustness to perturbations.

Feedback delay compensation uses Lyapunov-Krasovskii functions, Razumikhin functions, or sequential predictors.

Another promising research direction is to study adaptive robust stochastic or event-triggered control.

Adaptive nonlinear controllers are useful for many engineering control systems for which parameters need to be identified.

Curve tracking controllers can be applied in robotics for environmental sensing and other ME applications.

The strictness of our Lyapunov functions provides parameter identifying update laws and robustness to perturbations.

Feedback delay compensation uses Lyapunov-Krasovskii functions, Razumikhin functions, or sequential predictors.

Another promising research direction is to study adaptive robust stochastic or event-triggered control.

Thanks for your interest!