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Abstract—We announce new methods for explicitly con- This note continues the search (started in [12]) for
structing strict input-to-state stable (ISS) Lyapunov functions  methods of constructing strict Lyapunov functions for time-
for time-varying nonlinear systems. Our constructions are varying systems. Unlike the value function approach to

expressed in terms of nonstrict ISS Lyapunov functions which L functi th tructi i 112 |
we assume are given. The nonstrict Lyapunov functions can Lyapunov functions, the constructions in [12] apply an

in turn be constructed by known methods for many systems integral smoothing technique to knowmorstrict Lyapunov
of interest. We also provide a new method for explicity functions. This smoothing method has its origins in Lya-

constructing input-to-output stable (I0S) Lyapunov functions  punov theory for time delay systems. For many systems
for time-varying systems with outputs. We illustrate our results ot interest, nonstrict Lyapunov functions can in turn be
using a tra(.:klng problem for_a rota_tmg ”gld. body. _ constructed by backstepping or other known methods (see
ES%)[YtVs(?r?nsbult_}{gPsliggav ;ﬁgﬁﬁgﬂf&g{?&gﬂﬁggbiﬁ,gftems with [5], [13]), so [12] leads to a complete method for explicitly
constructing strict Lyapunov functions for time-periodic
|. INTRODUCTION systems with no controls.

Strict Lyapunov functions provide the foundation for The systems in [12] are assumed to satisfy a nonstrict
much of current nonlinear control analysis and controllegeneralization of global asymptotic stability (GAS) for
design (see [6], [10], [11], [17]). Starting from strict Lya- which the Lyapunov function nonstrictly decays along the
punov functions, one can design feedbacks that render sygjectories of the system. Hence, [12] allows the gradient of
tems asymptotically stable to actuator errors and observatithe Lyapunov function along trajectories of the system to be
noise, develop necessary and sufficient conditions for ma@gro at some points outside the origin. A natural and widely
types of stability, construct state estimators, track referens¢ed generalization of GAS for control systems is the so-
state trajectories, and much more. In many applications, ¢alled input-to-state stable (ISS) property, as introduced by
is necessary to have explicit formulas for strict Lyapunowontag in his seminal paper [16]. For ISS systems, the
functions. This is the case in the design of stabilizingnagnitude of the state decays to zero, locally uniformly
feedbacks, which are usually expressed in terms of Li@ the initial state, but with an overshoot depending on the
derivatives of Lyapunov functions in the directions of themagnitude of the input; see Section Il for the precise 1SS
vector fields that define the systems (see [10], [11], [18])definition. More recently, ISS theory has been extended

On the other hand, the known strict Lyapunov functo systems with outputs and measurement errors in the
tions provided by converse Lyapunov theory are usuallgontrollers; see for example [7], [10], [11], [18], [20], [21].
expressed as optimal control value functions, in which cost The ISS framework has formed the basis for significant
functions are maximized over infinitely many solution path@dvances in controller design and control analysis (such as
(see [2], [19], [22]). While value functions can sometimed10], [18], [19]). Many of these developments are based on
be characterized as unique solutions of Hamilton-JacoBie ISS Lyapunov function existence theory from [19]; see
equations and computed using numerical PDE methodglso [4] for analogues of [19] for time-varying systems, and
such methods can be difficult to implement and therefor&ection Il below for the relevant definitions. However, as in
are not always suitable for computing Lyapunov functionghe case of no controls, the ISS Lyapunov functions from
in practice. This has led to a great deal of current researthe existence theory are optimal control value functions

devoted to finding new ways of constructing strict Lyapuno@nd so do not lend themselves to explicit feedback design.
functions. Moreover, while most theoretical developments for ISS

_ . systems deal with time-invariant systems, it is sometimes
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ISS, the dissipation rate depends on a nonnegative timdenote the unique trajectory of (1) for the inpusatisfying
dependent decay parameter that can be zero along intervals,) = z, and defined on its maximal intervalC [t,, 0o).
of positive length. As in [12], this allows the gradient ofWe letT;_ . . denote the supremum df This trajectory
the Lyapunov function along trajectories to take the values denoted byh — ¢(t, + h) for brevity when this would
zero at some points outside the origin. However, whenot lead to confusion. We say thgtis forward complete
the decay parameter is identically one, our nonstrict ISBrovided each trajectory (*) is defined dn,,c0); i.e.,
property agrees with the usual ISS condition. T, 2, u = +00.

We announce our new strict ISS Lyapunov function A C?! function V' : [0,00) x R™ — [0,00) is said to
constructions in Section Ill. In Section 1V, we provide Lya-be of class UPPD (written V' € UPPD) provided it is
punov characterizations for nonstrict ISS for time-varyinguniformly proper and positive definitevhich means there
systems. In Section V, we present a general method fexist oy, as, a3 € Ko such that for allt > 0 andz € R”,
explicitly constructing strict input-to-output stable (I0OS)

Lyapunov functions for time-varying systems with outputs. a([z]) < V(t, ) < as(|z]) & [VV (L, 2)| < as(|z]). (2)
We close in Section VI by applying our constructions 0 8y say thatV’ has periodr in ¢ provided there exists a
tracking example for a rotating rigid body. This examplegnstantr > 0 such thatV (¢t + 7,2) = V(t,z) for all
also shows how to construct the required nonstrict Lya,f-2 0 andz € R™; in this periodic case, the bound &fl’

punov functions. While our discussions of ISS systemg, (2) is redundant. We can always assumeand a in
will be mainly conceptual, we refer the reader to [9](2) areC'! by taking

where complete proofs of our main ISS results can be

founq. However, tq our knowledge, our strict 'IOS.Lyapunov as(s) = /S az(r)dr
function construction appears here for the first time. 0
Il. DEFINITIONS AND STANDING ASSUMPTIONS and minorizinga; by aC" function of classC... For any

1 H . n
We let K., denote the set of all continuous functionsc function V- 0, 00) x R™ — [0, c0), we set

p 1 [0,00) — [0,00) for which (i) p(0) = 0 and (i) p is . ov ov

strictly increasing and unbounded. Note tia{, is closed V(t @, u) = E(t’x) * %(t’x) RACERDS

“”?er inverse and composition; i.e.,/f, p2 € Koo, then  Throughout this note, we simplify notation whenever no

P15 p1opa € Koo We let KL denote the class of all con- ¢onfysion can arise. For instance, we may deiite =, u)

tinuous functionss : [0, 00) x [0,00) — [0, 00) for which by V. If V € UPPD andy € K., then

(1) B(,t) € K for eacht > 0, (2) (s, -) is nonincreasing _

for eachs > 0, and (3)3(s,t) — 0 ast — +oo for each s+ sup{|V(t,z,u)| : t > 0,]z| < x(s),|u] < s} + 5 (3)

s > 0. When we say that a functiop is smooth(a.k.a.

C'), we mean it is continuously differentiable, in which

case we writep € C. (For functionsp defined on|0, co),

we interpretp’(0) as a one-sided derivative, and continuity t ~

of o/ at0 as one-sided continuity.) /H p(s)ds > ¢ and p(t) <p Vt=>0.  (4)

We study the stability properties of the fully nonlinear ) o ) .
nonautonomous system We write p € P(r,¢,p) to indicate that (i)p € P and (ii)
T,e,p > 0 are constants such that (4) holds. In particular,

&= f{t,x,u), t=0, z€R”, ueR™ (1) any continuous periodic functiop : R — [0,00) that is

not identically zero admits constantse,p > 0 satisfying

4)- On the other hand, (4) also allows nonperiogliwith

arbitrarily large null sets (see [9]). The following basic

properties are easily checked (see [9]):

(P1) forallt >0,

is of classK.,. We let P denote the set of all continuous
p: R — [0,00) admitting constants, ¢, > 0 for which

where we always assumjis locally Lipschitz in(t, z, u)
(but see Section V for the extension to systems wit
outputs). Following [12], we also assunfeis periodic in

t, i.e., there exists a constafit> 0 such that

f@+T,z,u) = f(t,z,u) Vt >0, 2 € R", u e R™.

/t ;(r ¢4 m)p(r)dr
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t t
However, our periodicity assumption can be relaxed to / ( / p(?‘)é”) ds
the uniform local boundedness condition from [1] (see tmr \Js
[9]). The control functions(a.k.a. input9 for the system <
(1) comprise the set of all measurable locally essentially -
bounded functiona1 : [0,00) — R™; we denote this set  (P2) the continuous function

by U. We let|u|; denote the essential supremum of any tth
{ [ s, o} ©)
t

."Bl

®)

2 ‘

control u € U restricted to any interval C [0,00). For h— p(h) = inf

eacht, > 0, z, € R™, andu € U, we let

It ¢(t;x0,to, 1) * is nondecreasing and unbounded [010).



Property ;) is a consequence of Fubini’s Theorem. Theve assume are given. Combined with the existing methods
elements of P serve as decay rates for our Lyapunovor constructing the requiredorstrict Lyapunov functions
functions as follows: (e.g., [5], [13]), this provides a complete strict Lyapunov
Definition 1: Let p € P. A function V € UPPD is function construction for a broad class of nonautonomous
called anonstrict ISS Lyapunov functidar (1) andp, a.k.a. systems. Our constructions have the additional desirable
anISS(p) Lyapunov functiomrovided there exist functions property that ifp € P(r,e,p) and our given DIS(p)
X € Koo andp € Koo N C* such that Lyapunov function both have periodin ¢, then the strict
@ > x(ul) = Vitau) < —pu(la]) ¥ > 0. (7) ISS Lyapunov function we construct also has period ¢.

- a) First Construction: Our main construction is as
An ISS(p) Lyapunov function for (1) ang(¢) = 1 is also  follows:

called astrict ISS Lyapunov function , Theorem 4:Let 7,¢,5 > 0 be constantsp € P(r, ¢, ),
Notice that (7) allowsV'(t,z,u) = 0 at those times ;e 5 pIS(p) Lyapunov function for the system (1), and

wherep(t) = 0. This corresponds to allowin§” to non- s, 1t € KooNC' satisfy the UPPD and DIS(p) requirements

strictly decrease along the trajectoriesfofThe assumption (2) and (8) for somey; € Koo NC' and az,Q € Ko

that, € C'NK is not essential for Definition 1 since we Define V¥ by

can always minorize a function € K, satisfying (7) by

a smoothKC, function that again satisfies (7). " _
Definition 2: Let p € P. We say that (1) isnput-to- v (t,’tx) , Y(t’x) 9)

state stable (ISS) with decay rate a.k.a.ISS(p) provided + {jtf-r (fs p(r) dr) ds} w(V (¢, z)),

there exists € KL and~y € K, such that for allt, > 0,

z, € R", u el andh > 0, the corresponding trajectories where

for f satisfy

1 1 -~ D
toth w=—pody , ds(s) =maxq—,1: (aa(s)+u(s)+s).
0(t, +B)| < 5 <|:co|, / p(s)ds> (). w0 (T}

o

ThenV* is a strict ISS Lyapunov function for (1). I and

If (1) is ISS(p) withp = 1, then we say that (1) iESS 7 have periodr in £, then so does’*.

Notice that ISS(p) systems are automatically forwar ] ]
complete. Moreover, by causality, we can replace the ar- Proof: With the choiceyi := 1 0 a;', we have
gument ofy in the ISS(p) decay estimate by|(;, ). We .
also study dissipation-type decay conditions as follows: Vit,z,u) < —p(&)u(V (¢, x)) + Q(|u|) (10)

Definition 3: Let p € P. A function V € UPPD is
called anonstrict dissipative Lyapunov functidor (1) and  for all ¢ > 0, = € R®, andu € R™. This follows because
p, a.k.a. aDIS(p) Lyapunov functignprovided that there -
exist ) € Ko, andp € Ko N C! such that for allt > 0, -

> > 0.
r € R", andu € R™, we have Ga(s) Z aa(s) 520

V(t,z,u) < —p(t)u(|z]) + Qlul). (8) Also, w € Ko NC. In particular,w’(s) > 0 for all s > 0,

A DIS(p) Lyapunov function for (1) angh(¢) = 1 is also and

called astrict DIS Lyapunov functian

r(~—1
Under our periodicity assumption ofy one can check w/'(s) = %_(18))
(see [9, Section 3]) that a functio € UPPD is a dray(ay - (s))
strict DIS Lyapunov function for (1) if and only if it is < w (G5t (s)) < 1
a strict ISS Lyapunov function for the system; this follows - 47 max{%zﬂ 1w (a3 (s) +1) — 272D

because the functions (3) are /&, wheny € K,,. One

can also check (see Section IV below) that ISS(p) anghr all s > 0. It follows from (5) that for allt > 0 and
ISS are equivalent conditions for any € P. Our main ;. c R» we have

contributions in this note are simple direct constructions

for strict ISS Lyapunov functions for (1) in terms of given t t 5

ISS(p) or DIS(p) Lyapunov functions (but see Section V for 1 + [/ (/ p(r) d?“) dS} w' (V(t,z)) € [1, 4} - (11)
an extension for systems with outputs). t=r \Js

I1l. STRICT ISS LYAPUNOV FUNCTION CONSTRUCTION  Sincew = ﬁ,}, it follows that if

In this section, we provide explicit formulas for strict
ISS Lyapunov functions. Our strict Lyapunov functions are 415
computed in terms of nonstrict Lyapunov functions, which 2l = x(Jul) = oy ow %Q(‘UD ’ (12)



thenQ(|u|) < £w o ay(z]), so IV. NONSTRICTISS QHARACTERIZATIONS

. . We next relate the Lyapunov function and stability no-
Vi = [1 + [/ (/ p(r)dr) ds} w/(y)} v tions we introduced in Section Il. For genegak P, we
t s show that ISS(p) is equivalent to the existence of an ISS(p)
¢ Lyapunov function and to the existence of a strict ISS Lya-
+ [Tp(t) - /t_Tp(r)dr] w(V) punov function. In particular, ISS and ISS(p) turn out to be
5 equivalent. This extends the ISS Lyapunov characterizations
ZQ(|“|) + mp(t)w(V) [4], [19] which only cover the case whepe= 1. The proof
t of our equivalences is based on our strict ISS Lyapunov
- (/ p(T’)dT) w(V) function constructions from the previous sections. For a
e . partial generalization for systems with outputs, see below.
p(r)dr) w(V) Theorem 7:Let p € P and f be as above. Then the
following are equivalent conditions for the system (1):

5
< —ew(aq(|z])) + ZQ(M) (by (2) and (4)) (Cy) (1) admits an 1SS(p) Lyapunov function.
€ C3) (1) admits a strict ISS Lyapunov function.
< —Zw(aa(lal) Oy (12)). ) (1) adm yapunov ur
Cs3) (1) admits a DIS(p) Lyapunov function.
C4) (1) admits a strict DIS Lyapunov function.
Cs) 1SS(p).

and V! € UPPD, it follows that V* is the desired strict (Co) 1SS. _
ISS Lyapunov function. The periodicity assertion is easilyrhe proof of Theorem 7 proceeds by showirg:) =
verified using PropertyP;) above (see [9]). m (C2) = (Cy) = (C1), (C5) & (C4), (C2) & (Co),
Remark 5:Since any ISS(p) Lyapunov function for (1) @nd (Cs) < (Cs). The equivalencgCs) < (Cs) is a
is also a DIS(p) Lyapunov function, the preceding theoreri®nsequence of Property) from Section I, and can be
gives a method for converting a nonstrict 1SS Lyapunoghown as follows. _
function into a strict one. Pickp € P(r,¢,p). If (Cs) holds, then we can fing
b) Second ConstructionThe preceding construction KL such that for alt, > 0, z, € R", u €U, andh > 0,
can be simplified iff takes the control affine form 6(to +h)| < B0, Bh) + vl b0 40)
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IN
[
=z
=
=
=
+

IA
|
|
=

Tonv) + 500 - ( [

—T

Since
woa; € C'NKs, X € Koo,

(
(
(
(

b= f(t,a,u) = h(t,2) + g(t, 2)u, (13) < Bllwol, f;7" pls)ds) +y(lulg, b,4m)

where ¢ is the corresponding trajectory ¢f we defined
in Section 1. Therefore,f is ISS(p) so(Cs) = (Cs).
Conversely, iff is ISS(p), then we can fingd € L with
the property that for alk, > 0, z, € R*, u € U, and

as follows. We fix constants,e,p > 0 andp € P(1,¢, D),
and we assume there exist a time-independi&ént UPPD
and a constang > 0 such that

oW € oW _ h >0,
ax(z)h(t,x)’ < ?W(I) , ’(%(I)g(f,l’) <g toih
P oto+0I < B (lrol. Ji " p(s)ds )+ (e, i)
for all ¢ > 0 andx € R”. < Blwol,p() +7([ult, o).
Theorem 6:Let p, g, h, f, andW be as above. Assume R
thatV € UPPD andy € K. are such that By (P2), B(s,t) := B(s,p(t)) € KL, so0(C5) = (Cs), as
desired.
lz] > x(Jul) = Remark 8:One of the novel features of Theorem 7 is that
it applies to time-varying systems. The (strict) ISS property
oV v for time-varying systems was covered in [4]. In fact, the
— (2 — (2 h(t t < —p(®)W . . . ’
ot (t,2) + 81'( @) [t z) + gt w)u] < —p(O)W (@) implication (Cs) = (C3) was announced in [4, Theorem
for all £ > 0. Then 1] and can also be deduced using the existence theory for

time-varying Lyapunov functions for set valued dynamics

1]/t ¢ from [2]; see [9] for details.
Ult,z) = V(t,z) + = [/t (/ p(r) dr) ds] W(z) Remark 9:Our proof of Theorem 7 shows that ¥ is
T a strict ISS Lyapunov function forf, then V' is also a
is a strict ISS Lyapunov function for (13). #fandV have strict DIS Lyapunov function forf. This implication is no
period in ¢, then so doed/. longer true if our periodicity condition oiff is dropped, as
We leave the proof of this theorem to the reader; see [Hustrated in [4].
for similar arguments. For the complete proof of Theorem 7, see [9].



V. STRICT IOS LYAPUNOV FUNCTION CONSTRUCTION Proof: Suppressing arguments as before gives

The ISS property estimates the decay of the state in . ¢ ¢ .
terms of an overshoot that depends on the magnitude of théV = [1 + (/ (/ p(l)dl) dé’) w/(U(fﬂvt))] U
control. However, in many applications, the current state e
may be difficult if not impossible to measure. Instead, only + [Tp(t) —/ p(D)dl| w(U(t, z)).
output measuremengse available, giving rise to the model < b=

ince
& = f(t,z,u), y=H(x) (14 rw(r) < %,‘%(r) vr >0, (19)

wheref is as before and{ is locally Lipschitz. We assume duw' > 0. it foll hat if > h
for simplicity in this section thaf is forward complete. ~ @ndw’ = 0, it follows that | U(t,z) 2 X(Jul), then
_Many generalizations of ISS for time-invariant systems v (¢, 2, u) < —p(t)&(U(t,x))
with outputs have been proposed; see [7], [18], [20], [21] t
for discussions. It is natural to generalize the ISS condition + {Tp(t) */ p(l)dl} w(U(t, z))
by positing a decay of theutput (instead of the state) R i
with an overshoot depending as before on the magnitude p(?) [—m(U(t@Z) +rw(U(¢ )]
of the input. This is made precise in the following defi- —w(U(t x))/ p(1)di
nitions, which generalize the corresponding definitions for ’
time-invariant systems from [21]. In what follows, we set .
Y(to+ s Ty o) = H(S(to+ s 2, o, u)) for all £, > 0, —5P(OAEU(E 7)) — ew(U(t x)
z, € R, uel, andh > 0. < —ew(U(t,x).
Definition 10: We say that (14) isnput-to-output stable
(10S) provided there exist € KL andy € K, such that

IA

t—7

IN

(20)

Recalling Property®,) for p € P from Section Il and the
structure ofV, and noting thatw(r) < -z for all r > 0,
ly(to + h; 2o, to, )] < B(|lxo],h) + v (‘u‘[to,to+h]) it follows that

forall t, > 0, z, € R, ueld andh > 0. Ut,z) <V(t,z) <
The corresponding Lyapunov function notion is as follows:

Definition 11: A smooth V' : [0,00) x R — [0,00) is ~ for all t > 0 anda € R™. Therefore, ifV(t, z) > 3x(|ul),
called a(strict) I0S Lyapunov functiofior (14) provided thenU(t,x) > X(|u|), so the calculation (20) gives
there exist functionsyy, as,x € Ko andx € KL such .

9 ) < — < —
that the following two conditions hold for all > 0: Vitz,u) < —ew(U(tz) < —ewV(E,2)/3)
" for all ¢ > 0. Moreover,a, (|H(z)|) < V(t,z) < 3as(||)
a([H(@))) < V(t2) < az(jz]) Yo R 15 forallt > 0 andx € R", by (17) and (21). We conclude that
V(t,z) > x(Ju)) = V(t,z,u) < —k(V(t,z),|z|) (16) V satisfies the strict IOS Lyapunov function requirements

U(t,x) (21)

with
For the equivalence of the IOS property to the existence

of an 10S Lyapunov function for a class of time-invariant o, = 4,, ay = §@27 X = §§<’ K(r,s) = w(2r/3)
systems, see [21, Theorem 1.2]. Our methods from Section 2 2 (1+s)
[l can be used to construct strict IOS Lyapunov functionswhich proves the theorem. ]
A first result in this direction is as follows, in whicht{q}
denotes the usual projection gfc R onto [—1, +1]. VI. TRACKING EXAMPLE
Theorem 12:Let f and H be as above and assumes We next use our results to construct a strict ISS Lyapunov

P(r,e,p). LetU : [0,00) x R™ — [0,00) be aC* function function for a tracking problem for a rotating rigid body; see
that admitsay, ao, X € Ko andi € C! N K, that satisfy  [3], [14], [15] for the background and motivation for this

an(H(@))) < Ut 7) < do(jz]) Vo €R?  (17) problem. Following Lefeber [8, p.31], we only consider the

dynamics of the velocities, namely,
Ut,e) = X(Jul) = Ult,z,u) < —p(t)&(U(t,)) (18)

(.Zjl = 12;1[3 Waws + d1 “+ uy
for all t > 0. Definew : [0, 00) — [0,00) by o o (22)
wy = Prtwawy +do +ug, wi = A PRwiwe
1 " .
w(r) = ﬁ/ sat{&’(s)}ds. where thew;’s are the angular velocities, ard > I > 0
D+ 27 Jo o o
andls; > 0 are the principal moments of inertia. The change
. . of feedback and change of coordinate

Vits) = Ult,z) + { /t ( / p(z)dz> ds} w(U(t,)) §1 i BByt dyy B = g 4,

—T 2

2 I3

Then

is a strict 10S Lyapunov function for (14). Z3 = 11[,312 w3



transform (22) as follows: where

d)l :51 +’LL1, d}2:52+U2, Z'3:w1w2‘ (23) S((:)l,(bg,Z?,) = \/@%+@%+Z§+@223+1

We consider the reference state trajectory This .iIIustrates_ how_a time-i_nvariant nonstrict Lyapunov
function can give a time-varying strict Lyapunov function.

wip(t) = cos?(t), war(t) = Zs,(t) = 0 (24) VIl. ACKNOWLEDGEMENTS
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