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1 Introduction

Viscosity solutions form the basis for much current work in control theory and
optimization (cf. [3, 4, 6, 11, 25, 29]). In a recent series of papers (cf. [17, 18,
19, 20, 22]), we presented results characterizing the value function in optimal con-
trol as the unique viscosity solution of the corresponding Hamilton-Jacobi-Bellman
equation (HJBE) that satisfies appropriate side conditions. These results apply to
very general classes of exit time problems with unbounded dynamics and nonneg-
ative Lagrangians, including H.J. Sussmann’s Reflected Brachystochrone Problem
(cf. [34, 35]) and other problems with non-Lipschitz dynamics (cf. [18, 20]). They
also apply to the Fuller Problem and eikonal equations where the Lagrangians are
not bounded below by positive constants and may even vanish outside the target
for some values of the control (cf. [17, 19, 20, 22]). In this note, we extend some
results of [17, 19] on proper viscosity solutions of the HJBE by characterizing the
exit time value function as the unique bounded-from-below viscosity solution of the
corresponding HJBE that is null on the target. (Recall that properness of a func-
tion w : RN → R is the condition that w(x)→ +∞ as ‖x‖ → ∞, which is a more
stringent requirement than boundedness from below.) This refinement applies to a
large class of deterministic exit time problems for which the Lagrangian is not uni-
formly bounded below by a positive constant and for which an extra affordability
condition (namely, (H6) below) is also satisfied. We apply this result to several
physical problems studied in [19, 29], including eikonal and shape-from-shading
equations, as well as variants of the Fuller Problem which are not tractable using
the well-known results or using our earlier results. (For example, see [29], which
imposes the requirement, which is not needed below, that the light intensity I for
shape-from-shading satisfies I(x) ≤ C < 1 for all x and some constant C; [30],
which considers solutions of eikonal and shape-from-shading equations on bounded
sets; [16, 26] for uniqueness of bounded solutions of shape-from-shading equations;
and [22, 29] which impose asymptotics, given in (11) below, which will not in
general be satisfied for the problems we consider here.)

Value function characterizations of this kind have been studied by many
authors for a variety of stochastic and deterministic optimal control problems
and for dynamic games. The characterizations have been applied to the con-
vergence of numerical schemes for approximating value functions and differential
game values with error estimates, synthesis of optimal controls, singular pertur-
bation problems, asymptotics problems, H∞-control, and much more. See for
example [3, 13] and the hundreds of references in these books. For surveys of
numerical analysis applications of viscosity solutions, see [5, 31], and for unique-
ness characterizations for the HJBE of discounted exit time problems, see [3]. For
uniqueness characterizations for general Hamilton-Jacobi equations that do not
necessarily arise as Bellman equations, see [1, 10, 14]. For an appropriate stronger
solution concept for a subclass of problems, leading to a characterization of a maxi-
mal solution as a unique solution, see [8]. However, these earlier characterizations
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cannot in general be applied to exit time problems whose Lagrangians are not
uniformly bounded below by positive constants. In fact, one easily finds exit time
problems for which the Lagrangian is not bounded below by a positive constant
and for which the corresponding HJBE has more than one bounded-from-below
solution that vanishes on the target. Here is an example from [19] where this
occurs:

Example 1.1 Choose the dynamics and Lagrangian

ẋ(t) = u(t) ∈ [−1, 1], �(x, a) ≡ L(x) := (x + 2)2 (x− 2)2x2(x + 1)2(x− 1)2, (1)

respectively. Let v1 and v2 denote the value functions for the exit time problem of
bringing points to the targets T1 = {0} and T2 = {0, 2,−2}, respectively, using the
data (1) (cf. (8) below). Therefore, if we let M denote the set of all measurable
functions u : [0,∞)→ [−1, +1], then

vj(x) = inf
u∈M

{∫ t�j

0
L(φ(s)) ds : t�j <∞, φ(0) = x, φ̇ = u a.e.

}
for j = 1, 2

where t�j = inf{t ≥ 0 : φ(t) ∈ Tj} for j = 1, 2. One can easily check that v1
and v2 are both viscosity solutions of the associated HJBE

‖Dv(x)‖ = (x + 2)2 (x− 2)2x2(x + 1)2(x− 1)2 (2)

on R \ T with the target T := T1 that vanish on T . One checks that with the
target T := T1, the problem satisfies all hypotheses of the well-known theorems
that characterize value functions of exit time control problems as unique viscosity
solutions of the HJBE that are zero on T (cf. [3, 7, 27]) except that the positive
lower bound requirement on � is not satisfied.

Remark 1.2 One of the hypotheses we will make on the exit time problems in the
rest of this paper is that the running costs of trajectories starting outside T and
running for any positive time are always positive (cf. condition (H5) below). This
positivity hypothesis is not satisfied in the previous example, since the trajectory
x(t) ≡ −1 	∈ T gives

∫ t

0 L(x(s)) ds ≡ 0 for all t. On the other hand, all other
hypotheses we make in §2 below do hold for Example 1.1. Therefore, under the
set of assumptions in our setting, condition (H5) cannot be removed.

This note is organized as follows. In §2, we introduce the notation and
hypotheses in force throughout most of the sequel, including the definitions of
the exit time HJBE, relaxed controls and viscosity solutions. In §3, we state our
main result, and we also explain how this result improves what was already known
about viscosity solutions of the HJBE. Our results apply to exit time problems
that violate the usual positivity condition on the Lagrangian (namely, (10) below)
and that are also not tractable by means of [17, 18, 19, 20, 22]. This is followed
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in §4 by statements of the main lemmas. In §5, we prove our main result, and
§6 gives physical applications, including cases which are not tractable using the
known results or any of our earlier results. This is followed in §7 by variants of our
main result for discontinuous viscosity solutions and local solutions. We conclude
in §8 by showing how to use the methods of [19] to extend our results to cases
where the control set is unbounded.

2 Definitions and Hypotheses

This note is concerned with problems of the form

For each x ∈ RN , infimize
∫ tx(β)

0
�r(yx(s, β), β(s)) ds

over all β ∈ A for which tx(β) <∞, (3)

where yx(·, β) is defined to be the solution of the initial value control problem

ẏ(t) = fr(y(t), β(t)) a.e. , y(0) = x (4)

for each x ∈ RN and each β ∈ A := {measurable functions [0,∞) → Ar} for
a given fixed compact metric space A and possibly unbounded nonlinear con-
trol system f , and tx(β) := inf{t ≥ 0 : yx(t, β) ∈ T } for a given fixed set
T ⊂ RN . (Depending on f , some choices of x could give tx(β) = +∞ for all β,
in which case the infimum for (3) is +∞.) Here, Ar denotes the set of all Radon
probability measures on A viewed as a subset of the dual of the set C(A) of all
real-valued continuous functions on A, and A has the weak-� topology, so A is
the set of relaxed controls from [2, 3, 36]. Notice that A includes all measurable
α : [0,∞)→ A, which can be viewed as Dirac measure valued relaxed controls,
and that Ar is compact. We also consider (3) for cases where A ⊂ RM is closed
but not bounded, in which case we set Ar = A and

A := {measurable functions [0,∞)→ Sr : S ⊆ A compact}⋃
{measurable functions [0,∞)→ A} (5)

which of course reduces to the usual definition of A when A is compact. For
compact S ⊆ A and measurable αn, α, m : [0,∞) → Sr, we set hr(x, m) :=∫

S
h(x, a)dm(a) for x ∈ RN and h = f, � for suitable f and � specified below, and

αn → α weak-� means that for all t ≥ 0 and for all Lebesgue integrable functions
B : [0, t]→ C(S), we have

lim
n→∞

∫ t

0

∫
S

(B(s))(a) d(αn(s))(a) ds =
∫ t

0

∫
S

(B(s))(a) d(α(s))(a) ds (6)

Also, recall that STCT is the small-time controllability condition that

T ⊆ int (Rε) for all ε > 0,
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where

Rε := {x ∈ RN : ∃t ∈ [0, ε) & β ∈ A s.t. yx(t, β) ∈ T }.

Roughly speaking, STCT means points near T can be brought to T in small
time. We remark for later reference that STCT is a property of the restriction
of the vector fields f(·, a) to neighborhoods of T . In most of what follows, we
assume the following standing hypotheses (but see §8 for analogs for cases where
the control set A is not assumed to be compact):

(H1) A is a nonempty compact metric space.

(H2) T ⊂ RN is closed and nonempty, STCT .

(H3) f is continuous, and ∃L > 0 such that ‖f(x, a) − f(y, a)‖ ≤ L‖x − y‖
∀x, y ∈ RN & a ∈ A.

(H4) � : RN ×A→ [0,∞) is continuous.

(H5) If t ∈ (0,∞), β ∈ A, and x ∈ RN \ T , then
∫ t

0 �r(yx(s, β), β(s)) ds > 0.

(H6) If x ∈ RN and β ∈ A are such that lim sups→∞ ‖yx(s, β)‖ = ∞, then∫ ∞
0 �r(yx(s, β), β(s)) ds = +∞.

Remark 2.1 Assumptions (H5)–(H6) are expressed in terms of the trajectories,
rather than the HJBE data. From the PDE point of view, it is desirable to be able
to check all of our assumptions directly from the data fr = (f1, f2, . . . , fN ), �r, and
T from the PDE, rather than assuming complete knowledge of the trajectories.
One set of conditions on the data implying (H5) is (i) there are constants K > 0
and C > 0 such that �(x, a) ≥ K|x1|C for all a ∈ A and x = (x1, x2, . . . , xN ) ∈ RN ,
and (ii) if y ∈ RN−1 and (0, y) ∈ RN \ T , then 0 	∈ {f1(0, y, m) : m ∈ Ar}.
Conditions (i)–(ii) ensure that there is a positive cost assigned to staying outside
T on each interval of positive length. These conditions will hold for example in
the Fuller Problem discussed below (cf. §6.1). By using a generalized version of
“Barbălat’s lemma”, (H6) can also be checked from the HJBE data (cf. [21], §2).

Before discussing the motivation for these hypotheses, note that by the
Filippov Selection Theorem (cf. [36]), all of our results remain true if A is replaced
by {measurable functions [0,∞) → A} throughout the preceding definitions and
hypotheses as long as the sets

D(x) := {(f(x, a), �(x, a)) : a ∈ A}
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are convex for all x ∈ RN . This follows from the fact that if all the sets D(x) are
convex, then each relaxed control β ∈ A admits a measurable function
α : [0,∞)→ A for which∫ t

0
hr(yx(s, β), β(s)) ds =

∫ t

0
h(yx(s, α), α(s)) ds ∀t ≥ 0, h = f, �

We call T , A, f , and � the target, control set, dynamics, and
Lagrangian for the problem (3), respectively. We let ∂S and S̄ denote the bound-
ary and closure for any set S ⊆ RM , respectively.

The interpretation of our standing hypotheses is as follows. Condition (H5)
has the economic interpretation that all movement outside the target states is
costly. Notice that (H5) is less stringent than requiring �(x, a) > 0 for all x ∈ RN

and a ∈ A, since it could be that points p for which min{�(p, a) : a ∈ A} = 0 have
the property that all inputs immediately bring p to points x where min{�(x, a) :
a ∈ A} > 0, which can give (H5) (cf. §6 for problems with this property). The con-
dition (H6) has the interpretation that trajectories which go further and further
from the starting point without bound are unaffordable. In other words, trajecto-
ries which give finite total costs over [0,∞) must stay in some bounded set. As we
show in §6 below, (H6) holds for a general class of shape-from-shading equations
from image processing, as well as for problems with vanishing Lagrangians that
are not tractable using the known results (cf. §6.1 below). However, (H6) does
not follow from (H1)–(H5) (cf. Remark 6.5 below). Finally, we recall (cf. [3],
Chapter 3) that (H3) guarantees that (4) admits a unique solution yx(·, β) defined
on [0,∞) which satisfies

sup
u∈A
‖yx(t, u)− x‖ ≤Mxt for all t ∈ [0, 1/Mx], (7)

where Mx := sup{‖f(z, a)‖ : a ∈ A, ‖z− x‖ ≤ 1} if this supremum is nonzero and
Mx = 1 otherwise.

The value function v of (3) is defined by

v(x) = inf

{∫ tx(β)

0
�r(yx(s, β), β(s)) ds : β ∈ A, tx(β) <∞

}
∈ [0,∞] (8)

(but see Remark 3.1 for extensions to problems with exit costs). This note will
study viscosity solutions w of the HJBE

sup
a∈Ar

{−fr(x, a) ·Dw(x)− �r(x, a)} = 0, x 	∈ T (9)

associated with the exit problem (3) which satisfy the following side condition:

(SCw) w is bounded-from-below, and w ≡ 0 on T

We remark that the LHS in (9) equals sup{−f(x, a) · Dw(x) − �(x, a) : a ∈ A}
(cf. [3]). When we say that a function w is bounded-from-below, we mean that
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there is a finite constant b so that w(x) ≥ b for all x in the domain of w. In some
of what follows, we use the notation

HB(x, p) := sup
a∈B
{−f(x, a) · p− �(x, a)}

for closed B ⊆ A. From (H1)–(H4), we know that HB is continuous for all compact
sets B ⊆ A. We sometimes write H(x, p) to mean HA(x, p). We also set

Bq(p) := {x ∈ RN : ‖x− p‖ < q} ∀q > 0, p ∈ RN .

Letting C1(S) denote the set of all real-valued continuously differentiable functions
on any open subset S of a Euclidean space, the definition of viscosity solutions
can then be stated as follows:

Definition 2.2 Assume G ⊆ RN is open, S ⊇ G, and F : RN × RN → R and
w : S → R are continuous. We will say that w is a viscosity solution of
F (x, Dw(x)) = 0 on G provided the following conditions hold:

(C1) If γ ∈ C1(G) and xo ∈ G are such that xo is a local minimizer of w − γ,
then F (xo, D γ(xo)) ≥ 0.

(C2) If λ ∈ C1(G) and x1 ∈ G are such that x1 is a local maximizer of w − λ,
then F (x1, D λ(x1)) ≤ 0.

We also use the following equivalent definition of viscosity solutions based on the
superdifferentials D+w(x) and subdifferentials D−w(x) of w. Let G, S, F ,
and w be as in Definition 2.2, and define

D+w(x) :=
{

p ∈ RN : lim sup
G�y→x

w(y)− w(x)− p · (y − x)
‖x− y‖ ≤ 0

}

D−w(x) :=
{

p ∈ RN : lim inf
G�y→x

w(y)− w(x)− p · (y − x)
‖x− y‖ ≥ 0

}

One checks (cf. [3]) that conditions (C1) and (C2) are equivalent to

(C′
1) F (x, p) ≥ 0 for all x ∈ G and p ∈ D−w(x)

(C′
2) F (x, p) ≤ 0 for all x ∈ G and p ∈ D+w(x)

respectively. Therefore, we equivalently define viscosity solutions by saying that
w is a viscosity solution of F (x, Dw(x)) = 0 on G provided conditions (C′

1)–(C′
2)

hold. Our results can also be extended to the case of discontinuous viscosity
solutions (cf. §7.1 below for the definitions and extensions).
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3 Statement of Main Result and Remarks

Our main result will be the following:

Theorem 1 Assume (H1)–(H6). If w : RN → R is a continuous function which
is a viscosity solution of the HJBE (9) on RN \ T , and if w satisfies (SCw), then
w ≡ v.

Remark 3.1 Under the standing hypotheses (H1)–(H6), if the value function v
is finite and continuous on RN , then v itself is a viscosity solution of the HJBE
(9) on RN \T (cf. [3]). Since v satisfies (SCv), Theorem 1 then characterizes v as
the unique viscosity solution of the HJBE (9) on RN \T in the class of continuous
functions w : RN → R which satisfy (SCw). The assumption that the control set
A is compact can be relaxed in various ways (cf. §8 below). Also, the statement
of the theorem remains true, with minor changes in the proof, if we replace v with

vg(x) = inf

{∫ tx(β)

0
�r(yx(s, β), β(s)) ds + g(yx(tx(β), β)) : β ∈ A, tx(β) <∞

}

for any continuous bounded-from-below final cost function g : RN → R, except
that the boundary condition in (SCw) that w ≡ 0 on T is replaced by w ≡ g
on T . For extensions of Theorem 1 to discontinuous and local viscosity solutions
with possibly unbounded control sets, see §§7-8.

Remark 3.2 Theorem 1 applies to problems which are not tractable by means
of the standard results from [3] or using [17, 18, 19, 20, 22]. For example, the
undiscounted exit time problem results of [3, 27] require

∀ε > 0, ∃Cε > 0 s.t. �(x, a) ≥ Cε ∀a ∈ A & ∀x 	∈ B(T , ε), (10)

where dist(x, T ) := inf{‖x−b‖ : b ∈ T } and B(T , ε) := {p ∈ RN : dist(p, T ) < ε},
i.e., uniform positive lower bounds for �, outside neighborhoods of T . In particular,
(10) does not allow infa �(·, a) to vanish at any point outside T , nor does it allow
control values a for which �(x, a)→ 0 as ‖x‖ → ∞ when T is compact. Moreover,
as we saw in Example 1.1 above, this condition cannot be dropped. The examples
we consider in this paper do not in general satisfy (10) (cf. §6 below). The
results of [17, 19] apply to exit time problems violating (10) and give conditions
guaranteeing that v is the unique viscosity solution of the HJBE in a certain class
of functions which are either proper (where properness of a function w means
that w(x)→ +∞ as ‖x‖ → ∞) or which satisfy a suitable generalized properness
notion. The results of [17, 19] require the positivity condition (H5), but they do
not require (H6). In [22], uniqueness results are given for problems which violate
(10) but which do satisfy∫ ∞

0
�r(yx(s, β), β(s)) ds <∞ ⇒ lim

s→∞ yx(s, β) ∈ T . (11)
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As we will show in §6 below, Theorem 1 applies to physical problems from optics
and image processing and to problems violating both (10) and (11), including
variants of the Fuller Problem (cf. [17, 19]). We remark that while the results of
[17, 19] apply to cases where (10) and (11) both fail, the conclusions of those results
are that if the value function is proper, then it is the unique proper solution of
the HJBE satisfying appropriate side conditions. Since we do not need to assume
properness in Theorem 1, our results can be viewed as an improvement of the
results of [17] and [19] for cases where the extra affordability condition (H6) is
also satisfied. Notice too that (H6) can be expressed as∫ ∞

0
�r(yx(s, β), β(s)) ds <∞ ⇒ sup

s
‖yx(s, β)‖ <∞, (12)

which is of course less restrictive than (11) for problems with bounded targets
(cf. §6.1 below).

4 Main Lemmas

Under our standing hypotheses (H1)–(H6), one proves (cf. [3]) that the value
function v is a viscosity solution of the HJBE (9) on RN \ T when v is finite and
continuous. The proof follows easily from the fact that v satisfies the Dynamic
Programming Principle, which asserts that

v(x) = inf
α∈A

{∫ t

0
�r(yx(s, α), α(s)) ds + v(yx(t, α))

}
∀ x ∈ RN (13)

for all t ∈ [0, infα tx(α)[. Our uniqueness characterizations are based on the
following representation lemmas which say that viscosity solutions of the HJBE
(9) on RN \ T satisfy analogs of (13). The proofs of these lemmas are based on
uniqueness characterizations for finite horizon control (cf. Chapter 3 of [3]).

Lemma 4.1 Assume (H1)–(H4) are satisfied and u ∈ C(Ē) is a viscosity solution
of H(x, Du(x)) = 0 on E, where E ⊂ RN is bounded and open. If we set τq(β) =
inf{t ≥ 0 : yq(t, β) ∈ ∂E} for each β ∈ A and q ∈ E, then, for all β ∈ A and
q ∈ E, we have

u(q) ≤
∫ δ

0
�r(yq(s, β), β(s)) ds + u(yq(δ, β)) (14)

for 0 ≤ δ < τq(β).

Lemma 4.2 Assume that the standing hypotheses (H1)–(H4) hold and that
w ∈ C(B̄) is a viscosity solution of the HJBE H(x, Dw(x)) = 0 on B, where
B is open and bounded. Set

Tδ(p) := inf{ t : dist(yp(t, α), ∂B) ≤ δ, α ∈ A}
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for each p ∈ B and δ > 0. Then for any p ∈ B and any δ ∈ ]0, dist(p, ∂B)/2], we
have

w(p) ≥ inf
α∈A

{∫ t

0
�r(yp(s, α), α(s)) ds + w(yp(t, α))

}
(15)

for all t ∈ ]0, Tδ(p)[.

Notice for future use that we can also put δ = τq(β) in (14) when τq(β) <∞. We
also need the following consequence of the Bellman-Gronwall Inequality and the
sequential compactness of A (cf. [36]):

Lemma 4.3 Let A be a compact metric space, let {αn} be a sequence in A, and let
c > 0. Assume f : RN ×A→ RN satisfies (H3). Then there exists a subsequence
of {αn} (which we do not relabel) and an α ∈ A such that the following conditions
hold:

1. αn → α weak-� on [0, c].

2. If xn → x in RN , then yxn
(·, αn)→ yx(·, α) uniformly on [0, c].

Finally, we need the following variant of Barbălat’s Lemma shown in [22]. Recall
(cf. [22]) that a continuous function g : R → [0,∞) is said to be of class MK
provided that g(0) = 0 and that g is even and strictly increasing on [0,∞). For
example, x �→ |x|q is of classMK for all constants q > 1. Also, if G is any function
of Sontag’s Class K (cf. [12]), then g(s) := G(|s|) is of class MK. From [22], we
recall the following:

Lemma 4.4 Let g be of class MK, φ : [0,∞) → R be differentiable, φ′ be Lips-
chitz, and

∫ ∞
0 g(φ(s)) ds <∞. Then lim

s→∞ φ(s) = lim
s→∞φ′(s) = 0.

5 Proof of Main Result

The proof that w ≤ v pointwise is a repeated application of Lemma 4.1 which
we leave to the reader (cf. [17] for details). It remains to show that w ≥ v. We
omit the superscripts r to simplify notation in some of what follows. The proof
that w ≥ v is similar in spirit to an argument from [17, 19] but with a weak-�
argument and a localization based on (H6) replacing the ‘strong controllability’
and properness conditions used in [17]. Fix x ∈ RN \T , a constant κ > w(x), and
an integer J for which x ∈ BJ(0). Set

Sκ = {x ∈ RN : w(x) < κ},

which is open by the hypothesis that w is continuous. Set S = Sκ ∩BJ(0), which
is bounded and open. For each p ∈ RN and β ∈ A, set

τp(β) := inf{t ≥ 0 : yp(t, β) ∈ ∂(S \ T )}.
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Fix
ε ∈]0, κ− w(x)[.

Set

I(x, t, α) :=
∫ t

0
�(yx(s, α), α(s))ds + w(yx(t, α))

wherever the RHS is defined. We also set

Tδ(p) = inf {t ≥ 0 : dist (yp(t, α), ∂(S \ T )) < δ, α ∈ A}

for all p ∈ RN and δ > 0, and we define x1 := x, τ1 := T1(x1) when T1(x1) < +∞,
and τ1:=10 when T1(x1) = +∞. We can then use (15) of Lemma 4.2 to get an
α1 ∈ A such that

w(x1) ≥ I(x1, τ1, α1)− ε/4.

(We will always assume that δ of that lemma can be taken to be 1. Otherwise,
replace T1/k(xk) in what follows with Tδk

(xk) for an appropriate sequence δk ↓ 0.)
Note that yx1(τ1, α1) ∈ S \ T . By induction, we define

xk := yxk−1(τk−1, αk−1) ∈ S \ T for k = 2, 3, . . . , where

τk :=
{

T1/k(xk) if T1/k(xk) < +∞
10k otherwise . (16)

Since xk ∈ S \ T , we can use (15) to get an αk ∈ A such that

w(xk) ≥ I(xk, τk, αk) − 2−(k+1)ε for all k ∈ N. (17)

We also set σo = 0, σk := τ1 + · · · + τk, σ̄J = lim supk σk, and, for an arbitrary
ā ∈ A,

ᾱJ(s) :=




α1(s) if 0 ≤ s < σ1,
α2(s− σ1) if σ1 ≤ s < σ2,
...
αk(s− σk−1) if σk−1 ≤ s < σk,
...
ā if σ̄J ≤ s,

with the last line used if σ̄J < +∞. (We use the subscript J to indicate the choice
of radius in BJ(0).) From the definitions of xk and ᾱJ , we know that

yx(s, ᾱJ) = yxk
(s− σk−1, αk) ∈ S \ T when s < σ̄J (18)

and∫ τk

0
�(yxk

(s, αk), αk(s)) ds =
∫ σk

σk−1

�(yx(s, ᾱJ), ᾱJ(s)) ds ≥ 0 for all k. (19)
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Reapplying (17), we therefore get

w(x) ≥
∫ τ1

0
�(yx(s, ᾱJ), ᾱJ(s)) ds + w(x2)− ε/4

≥
∫ σ2

0
�(yx(s, ᾱJ), ᾱJ(s)) ds + w(x3)− ε

(
1
4

+
1
8

)
≥ . . .

≥ I(x, σk, ᾱJ)− ε

2

(
1− 1

2k

)
∀k ∈ N. (20)

By (16) and the boundedness of S, we can find x̄J ∈ S̄ and a subsequence (which
we will not relabel) for which xn → x̄J . (We later show that x̄J ∈ ∂[BJ(0)] ∪ T .)
We claim that

τ̄J := inf{τx̄J
(α) : α ∈ A} ≤ lim sup

k
τk. (21)

To see why (21) holds, first let δ ∈ (0,∞) be given. Assume first that τ̄J < ∞.
Suppose that for k as large as desired we had τk < τ̄J−δ. Passing to a subsequence,
we can assume that τk → z ∈ [0, τ̄J−δ]. There would then exist a sequence τ̃k → z
and a control u ∈ A such that

dist(yx̄J
(z, u), ∂(S \ T ))← dist(yxk

(τ̃k, uk), ∂(S \ T )) ≤ 1/k → 0,

where we used the definition of the τk’s and u is a weak-� limit of the uk’s on
[0, τ̄J − δ] (cf. Lemma 4.3). Since z < τ̄J , this contradicts the definition of τ̄J . If
on the other hand we had τ̄J = ∞, then we arrive at the same contradiction by
replacing τ̄J−δ with an arbitrary finite positive number in the previous argument.
This establishes the claim (21).

Using (21) and passing to a further subsequence without relabeling, we can
fix a constant l ∈ [0, +∞] so that

l ≥ τ̄J and τk ↑ l.

Moreover, the estimate (7) for Lipschitz dynamics easily gives τ̄J = 0 iff x̄J ∈
∂(S \ T ) (cf. [19] for details).

We now use a variant of an argument from [17] to show that x̄J ∈ ∂(S \ T ).
This argument, which is a consequence of the assumption (H5), is as follows.
Suppose that x̄J 	∈ ∂(S \ T ), so l ≥ τ̄J > 0. Let M ∈ (0, l), and let α̃ ∈ A be a
weak-� limit of a subsequence of the αk’s in A on [0, M ], which we assume to be
the sequence itself for brevity (cf. Lemma 4.3). We conclude from (20) that

0←
∫ σk∧{σk−1+M}

σk−1

�(yx(s, ᾱJ), ᾱJ(s)) ds

=
∫ τk∧M

0
�(yxk

(s, αk), αk(s)) ds →
∫ M

0
�(yx̄J

(s, α̃), α̃(s)) ds. (22)
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The left arrow is by the divergence test applied to the integrals in (20), since w is
bounded below and � is nonnegative. The right arrow is justified by the argument
of [17, 19].

If we had
∫ τ̄J

0 �r(yx̄J
(s, α̃), α̃(s)) ds > 0, then

∫ G

0 �r(yx̄J
(s, α̃), α̃(s)) ds > 0

for some G ∈ (0, τ̄J). Since l ≥ τ̄J , we would reach a contradiction by putting
M = G in (22). It follows that

∫ τ̄J

0 �r(yx̄J
(s, α̃), α̃(s)) ds = 0. Since we were

assuming that x̄J 	∈ ∂(S\T ), we have τ̄J > 0 and x̄J 	∈ T , so this contradicts (H5).
Therefore, it must have been the case that x̄J ∈ ∂(S \ T ), as needed. Since

∂(S \ T ) ⊆ ∂(Sκ) ∪ T ∪ ∂(BJ(0)), (23)

we have the following cases to consider:

Case 1 If x̄J ∈ ∂(Sκ), then the continuity of w gives w(x̄J) = κ. Using (20), the
nonnegativity of �, and the fact that ε < κ− w(x), we conclude that

w(x) ≥ w(xk)− ε → w(x̄J)− ε > κ− (κ− w(x)) = w(x),

which is a contradiction. Therefore, x̄J 	∈ ∂(Sκ).

Case 2 If x̄J ∈ T , then it follows from the controllability hypothesis STCT , the
continuity of w, (SCw), and the estimate (7) that there exist p ∈ N, t̃ > 0, and
β̃ ∈ A which are such that

w(xp) > −ε/4, t̃ := txp
(β̃) <∞, and

∫ t̃

0
�(yxp

(s, β̃), β̃(s)) ds < ε/4. (24)

Combining (20) and (24) now gives

w(x) ≥
∫ t�

0
�(yx(s, ¯̄α), ¯̄α(s)) ds− ε ≥ v(x)− ε,

where ¯̄α is the concatenation of ᾱJ�[0, σp−1] followed by β̃, and t� := tx(¯̄α) <∞.
This establishes that w(x) ≥ v(x), by the arbitrariness of ε.

Case 3 Since Case 1 cannot occur, and since Case 2 gives the desired conclusion
w(x) ≥ v(x), it follows from (23) that we can assume that x̄J ∈ ∂ [BJ(0)] in what
follows.

We may assume σ̄J <∞. (Otherwise, in what follows, replace x̄J with one
of the xk’s for which ‖xk‖ ≥ J − 2−J and replace σ̄J with the corresponding
σk−1. This is possible since xk → x̄J ∈ ∂[BJ(0)].) Notice that w(x̄J) < κ and
x̄J = yx(σ̄J , ᾱJ). Now repeat this procedure but with the initial value x replaced
by x̄J , S replaced by Sκ ∩ BJ+1(0), and ε replaced by any positive number ε1 <
ε/2∧ [κ−w(x̄J)] to get a trajectory for an input ᾱJ+1 starting at x̄J which wlog
reaches ∂(BJ+1(0)) at time σ̄J+1 < ∞. If we now concatenate this result with
yx(·, ᾱJ)�[0, σ̄J ], then we get a trajectory which coincides with yx(·, ᾱJ) on [0, σ̄J ]
and reaches ∂[BJ+1(0)] in finite time σ̄J + σ̄J+1.
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This process can be repeated, with ε replaced by any positive number
εq < ε/2q ∧ [κ − w(x̄J+q−1)] and the starting point x replaced by x̄J+q−1 in
the qth iteration of this process. We can assume σ̄J+q <∞ and that all the points
x̄J+q = yx̄J+q−1(σ̄J+q, ᾱJ+q) obtained lie in ∂ [BJ+q(0)] for all q, by the preceding
argument. Set

¯̄σq = σ̄J + σ̄J+1 + · · ·+ σ̄q and s̄ = lim sup
q

¯̄σq

Fix b̄ ∈ A. We can then set

α̂(s) :=




ᾱJ(s) if 0 ≤ s < ¯̄σJ ,
ᾱJ+1(s− ¯̄σJ) if ¯̄σJ ≤ s < ¯̄σJ+1,
...
ᾱJ+q(s− ¯̄σJ+q−1) if ¯̄σJ+q−1 ≤ s < ¯̄σJ+q,
...
b̄ if s̄ ≤ s

to define an input α̂ ∈ A. A passage to the limit as k → ∞ in (20) and a
summation then gives

w(x) ≥
∫ ¯̄σq

0
�(yx(s, α̂), α̂(s)) ds + w(x̄q)− 2ε for N � q ≥ J . (25)

If s̄ is finite, then we get

∂ [BJ+q+1(0)] � yx̄J+q
(σ̄J+q+1, ᾱJ+q+1) = yx(¯̄σJ+q+1, α̂)→ yx(s̄, α̂) as q →∞

which is impossible. Using the fact that w is bounded-from-below, a passage to
the limit as q →∞ in (25) therefore gives

∫ ∞

0
�(yx(s, α̂), α̂(s)) ds ≤ w(x) + constant < ∞ (26)

Since
yx(¯̄σJ+q+1, α̂) = yx̄J+q

(σ̄J+q+1, ᾱJ+q+1) ∈ ∂[BJ+q+1(0)]

for q = 1, 2, . . ., we also have

lim sup
s→∞

‖yx(s, α̂)‖ =∞. (27)

But (26)–(27) stand in contradiction with (H6). Consequently, it must be the case
that x̄J+q ∈ T for large enough q. By the argument above, this gives the desired
inequality w(x) ≥ v(x) and completes the proof.
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6 Three Applications

This section shows how Theorem 1 applies to exit time HJBE’s which are not
tractable by means of the well-known methods, including cases where the methods
of [17, 18, 19, 20, 22] cannot be applied. We also show how Theorem 1 extends
results from [19, 29] on degenerate eikonal and shape-from-shading equations from
optics and image processing.

6.1 Vanishing Lagrangians

Theorem 1 can be used to give uniqueness characterizations for HJBE’s which are
not tractable using [17, 18, 19, 20, 22] or [3, 13]. For example, fix k ≥ 0, take
N = 2, and use the exit time data

T = {(k, k)}, A = [−1, +1],
f(x, y, a) = (y − kΦ(x, y), a), �(x, y, a) = x2 + k(1− |a|)2, (28)

where Φ : R2 → [0, 1] is any C1 function which is 1 on Bk/4((k, k)) and 0 on
R2 − Bk/2((k, k)). The physical interpretation of this data is that Φ guaran-
tees STCT (cf. below), and the structure of � penalizes inputs which are not
bang-bang. This is a generalization of the Fuller Problem exit time problem data
(cf. [15, 17, 19, 22, 37]), which is the case where k = 0 in (28). Recall (cf. [24])
that the Fuller Problem admits a cost-minimizing control βz for each initial state
z ∈ R2, which is defined as follows. Set

ζ := {(x1, x2) : |x1| = Cx2
2, x1x2 ≤ 0} ⊂ R2,

set ζ± = {(x1, x2) ∈ ζ : ±x1 > 0}, and let A− and A+ denote the regions lying
above and below ζ respectively, where C > 0 is the constant root specified in [24].
Define the feedback k : R2 → [−1, +1] by k(q) = −1 if q ∈ A− ∪ ζ−, k(q) = 1
if q ∈ A+ ∪ ζ+, and k(0, 0) = 0, and let γz be the closed-loop trajectory for the
feedback k starting at z. We then take βz(t) = +1 if γz(t) ∈ A+, βz(t) = −1 if
γz(t) ∈ A−, and βz(t) = 0 if γz(t) = (0, 0). Let vk denote the value function (8)
for the exit time problem with data (28).

As shown in [22] (see also [29]), the value function v = vo for the Fuller
Problem is the unique bounded-from-below viscosity solution of the corresponding
HJBE on R2 \ {0} in the class of all continuous functions w : R2 → R which are
null at (0, 0). This result uses the fact that the Fuller Problem satisfies (11). On
the other hand, for k > 0, the exit time data (28) violate both (10) and (11). For
example, (10) is violated since �(0, p, 1) ≡ 0, even though (0, 0) 	∈ T . Therefore,
the data (28) is not tractable using [3, 7, 27].

To see why (11) fails for k > 0, let yk
q (·, α) denote the trajectory for the

data (28), the control α, and the initial position q. For n ∈ N and βz as defined
above, let p(n) := (1/(2n2), 1/n) = yo

(0,0)(1/n, α ≡ 1) and tn := inf{t ≥ 0 :
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yo
p(n)(t, βp(n)) = (0, 0)}. Using [37], we have M := sup{tn : n ∈ N} < ∞. Let β

denote the concatenation of βp(1)�[0, t1] followed by α ≡ 1�[0, 1/2] followed by
βp(2)�[0, t2] followed by α ≡ 1�[0, 1/3] followed by βp(3)�[0, t3] followed by α ≡
1�[0, 1/4] and so on. Since the norm of the first coordinate of yo

p(n)(·, βp(n)) is
always below 1/n2 (cf. [24]), vo(p(n)) ≤M/n4 for all n. For n ≥ 2, set

t̃n =
n−1∑
j=1

[
tj + (j + 1)−1] and γn(s) = β(s + t̃n),

so p(n) = yo
p(1)(t̃n, β). Since (28) agrees with the Fuller Problem data for (x, y) in

some neighborhood of 0 and |a| = 1, each k > 0 admits an n(k) ∈ N such that
yo

p(n(k))(s, γn(k)) = yk

p(n(k))(s, γn(k)) for all s ≥ 0, so

∫ ∞

0
�(yk

p(n(k))(s, γn(k)), γn(k)(s)) ds =
∞∑

n=n(k)

[
vo(p(n)) +

∫ 1/(n+1)

0
[s2/2]2 ds

]

≤
∞∑

n=n(k)

[M/n4 + 1/(20 n5)] <∞,

even though yk
p(n(k))(s, γn(k))→ (0, 0) 	∈ T as s→ +∞.

One checks that (H1)–(H6) hold for (28) for all k ≥ 0. For example, (H5)
holds since the dynamics in (28) agrees with the Fuller dynamics in a neighborhood
of the y-axis and the Lagrangian � assigns a positive cost to staying at (0, 0) when
k > 0 and the Fuller Problem satisfies (H5). The fact that STCT holds for (28)
follows since f(x, y, a) = (y − k, a) near (k, k) and the Fuller Problem satisfies
STC{(0, 0)} (cf. [19]), along with a change of coordinates. Finally, condition
(H6) holds by Lemma 4.4 with g(x) := x2. This application of Lemma 4.4 is
based on the fact that Φ′ has compact support, which guarantees that the second
derivative of the first component of yk

x(s, β) is globally bounded. We conclude as
follows:

Corollary 6.1 Let k ≥ 0 be constant, and choose the exit time problem data (28).
If w : R2 → R is a continuous function which is a bounded-from-below viscosity
solution of the corresponding HJBE

[−y + kΦ(x, y)] (Dw(x, y))1 + |(Dw(x, y))2| − x2 = 0

on R2 \ T that is null at T , then w ≡ vk.

Taking k = 0 in Corollary 6.1 gives the uniqueness characterization for the Fuller
Problem HJBE asserted in [22]. The novelty of Corollary 6.1 is that it applies to
problems violating both the usual positivity condition (10) and the asymptotics
condition (11) from [22], and that it establishes uniqueness of solutions of the
HJBE in a class of functions which includes functions which are not proper.
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Remark 6.2 Using the fact that x �→ x2 is convex, one shows that vo is convex
on R2 and therefore continuous. Moreover, using Soravia’s Backward Dynamic
Programming Principle (cf. [3, 27]), one can show that (x, y) �→ w(x, y) :=
−vo(−x, y) is also a viscosity solution of the Fuller Problem HJBE on R2 \ {0}
vanishing at the origin. The argument is based on the facts that vo is a bilateral
viscosity solution of the HJBE and that each p ∈ R2 is an optimal point (cf. [3] for
the definitions) and the fact that (p1, p2) ∈ D+w(x, y)⇒ (p1,−p2) ∈ D−vo(−x, y)
and that (p1, p2) ∈ D−w(x, y) ⇒ (p1,−p2) ∈ D+vo(−x, y). It follows that vo is
the unique continuous bounded-from-below viscosity solution of the corresponding
HJBE on R2\{0} that vanishes at the origin and that the boundedness from below
hypothesis of Corollary 6.1 cannot be removed.

Remark 6.3 Corollary 6.1 can be generalized. For example, the corollary remains
true if the Lagrangian � in (28) is replaced by �(x, y, a) = g(x) + k(1 − |a|)2 for
any g of class MK, e.g., g(x) = |x|q for any q > 0. The proof goes through with-
out changes if the data are modified in this way. Also, the target T = {(k, k)}
can be replaced by {(k, m)} for any k 	= 0 and any m ∈ R if Φ is chosen to be
1 near (k, m) and zero in some open set containing the y-axis. Moreover, using
the methods of §7 below, the above corollary can be extended to cover local and
discontinuous viscosity solutions.

6.2 Degenerate Eikonal Equations

This subsection shows how Theorem 1 applies to the HJBE’s for a class of exit time
problems from geometric optics. The problems have the dynamics f(x, y, a, b) =
(a, b) ∈ B1(0) ⊆ R2 and the Lagrangians

�(x, y, a, b) = [1 +
√
‖(x, y)‖]−p, (29)

where p ≥ 0 is a constant which will be further specify below. (The argument
we are about to give also applies if we instead take the Lagrangian (1 +

√
|x|)p

or (1 +
√
|y|)p, or if the state space and compact control set are in RM for M

arbitrary.)
We choose any nonempty closed target T ⊆ R2, and we let ve,p denote the

value function for the exit time problem we have defined for each p ≥ 0. The
corresponding HJBE is

‖Dv(x, y)‖ =
1

[1 +
√
‖(x, y)‖]p

, (30)

which is the eikonal equation of geometric optics for the propogation of light in a
medium with speed

c(x, y) = [1 +
√
‖(x, y)‖]p.
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Viscosity solutions of eikonal equations have been studied extensively (cf.[3], which
covers cases where the speed of the medium is bounded and also uniqueness ques-
tions for eikonal equation solutions on bounded sets, and [30]). However, (30) is
not covered by these results since c is unbounded and T may be unbounded. It
is easy to check that for 0 ≤ p ≤ 2, the exit time problems for these data satisfy
(H1)–(H6). Indeed, if q ∈ R2 and if φ is any trajectory for f starting at q, then
we can find a K > 0 so that, for each L > K, we have

∫ L

0

ds

[1 +
√
‖φ(s)‖]p

≥
∫ L

0

ds

[1 +
√
‖q‖+ s]p

≥ 1
2

∫ L

K

ds

sp/2 → ∞

as L→∞, so (H6) is satisfied vacuously. We conclude as follows:

Corollary 6.4 Let p ∈ [0, 2] and T ⊆ R2 be closed and nonempty. If w : R2 → R

is a continuous function which is a bounded-from-below viscosity solution of (30)
on R2 \ T which is null on T , then w ≡ ve,p.

Remark 6.5 It was not necessary to assume that the target T is bounded.
If p > 2 in (29), then Theorem 1 may not apply, since (H6) could fail. For
example, if p = 4, and T = {(x, 0) ∈ R2 : x ≤ −1} and β ≡ (1, 0), then
(29) gives

∫ ∞
0 �(y(0,0)(s, β), β(s)) ds < ∞, even though the trajectory does not

remain bounded. Moreover, the standard uniqueness characterizations for exit
time HJBE’s (e.g., Corollary IV.4.3 of [3]) would not apply, since (10) is not
satisfied. However, using [20], one can show that the statement of Corollary 6.4
remains true even without the restriction p ∈ [0, 2]. This is done by rewriting the
HJBE (30) as

[1 +
√
‖(x, y)‖]p‖Dv(x, y)‖ − 1 = 0 (31)

and then viewing (31) as the HJBE for the exit time problem with the non-
Lipschitz dynamics

f̃(x, y, a, b) = [1 +
√
‖(x, y)‖]p(a, b)

(with (a, b) ∈ B1(0) as before) and the Lagrangian �̃ ≡ 1. The dynamics f̃ is then
approximated by locally Lipschitz dynamics, and then Theorem IV.4.4 of [3] is
applied. For details, see §6.1 of [20].

6.3 Shape-From-Shading Equations

Our results also apply to equations of the form

I(x)Ψ(Du(x))− b(x) ·Du(x)− h2(x) = 0

for I nonnegative and Ψ : RN → R any convex function with Ψ(0) = 0. This
equation is studied in [29]. Taking the Legendre transform Ψ� of Ψ, which is
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nonnegative, we can rewrite this equation as

max
a∈domain(Ψ�)

{
−(b(x)− I(x)a) ·Du(x)−

[
h2(x) + I(x)Ψ�(a)

]}
= 0.

A particular case of this equation (cf. [29]) is

I(x)
[
1 + ‖Du(x)‖2

]1/2 − 1 = 0, x ∈ Ω ⊆ R2 (32)

for open sets Ω, which in fact can be written as

max
‖a‖≤1

{I(x)a ·Du(x)− [1− I(x)
(
1− ‖a‖2

)1/2
]} = 0. (33)

The equation (33) arises in shape-from-shading models in image processing, where
I(x) ∈ [0, 1) is the intensity of light reflected by an object (cf. [30]). The objective
in image processing is to reconstruct the unknown function u, representing the
height of the surface on some subset Ω of the plane, from the brightness of a single
two-dimensional image of the surface. For the case of a Lambertian surface which
is not self-shadowing and which is illuminated by a single distant vertical light
source, the height u is a viscosity solution of (33).

Now pick any closed nonempty target T ⊆ R2 \ {0} and Ω := R2 \ T , and
choose the intensity function

I(x) :=
‖x‖

1 + ‖x‖ . (34)

Then (33) is an HJBE for an exit time problem with the dynamics

f(x, u) := −I(x)u, (35)

the control set A = B1(0) ⊆ R2, and the Lagrangian

�(x, u) = 1− ‖x‖
1 + ‖x‖

(
1− ‖u‖2

)1/2
. (36)

As explained in Remark 3.2, for general T ⊆ R2 \ {0}, � violates the positiv-
ity condition (10) (since �(x, 0) → 0 as ‖x‖ → ∞), so the well-known results
(e.g., those of [3]) cannot be used to get uniqueness characterizations for solutions
of (32). On the other hand, using the fact that

‖yq(s, β)‖ ≤ ‖q‖+ s

for all β ∈ A, s ≥ 0, and q ∈ R2, one can easily check that (H1)–(H6) hold.
The argument is similar to the validation of (H6) in §6.2. Therefore, we conclude
from Theorem 1 that if w : R2 → R is a continuous function which is a viscosity
solution of (33) on R2 \ T that satisfies (SCw), then w coincides with the shape-
from-shading value function. Local uniqueness characterizations and results for
discontinuous viscosity solutions for the shape-from-shading equation can also be
given using the results in §7 below.
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Remark 6.6 As in the case of eikonal equations, it was not necessary to assume
that the target T was bounded. It is worth remarking that if we replace the light
intensity I(x) with

Ĩ(x) :=
3e2‖x‖

1 + 3e2‖x‖ ∈ [3/4, 1)

in the previous example and keep the example the same otherwise, then Theorem 1
would no longer apply, since condition (H6) may not be satisfied. However, for
such cases, we can still apply [19] to get uniqueness of proper solutions of the
corresponding HJBE. For example, take T = {(0, r) : r ≤ −1} and the control

β(t) ≡ (0,−1/(t + 1)),

and let t �→ x(t) = (x1(t), x2(t)) denote the trajectory of f̃(p, u) := −Ĩ(p)u for
the initial position p(0) = (0, 1) and the control u = β(t). For all t > 0, we then
have x1(t) = 0,

x2(t) = 1 +
∫ t

0
Ĩ(x(s))

1
s + 1

ds ≥ 1 +
3
4

∫ t

0

1
s + 1

ds = 1 +
3
4

ln(t + 1),

so x(t) is not bounded. However,

e2‖x(t)‖‖β(t)‖2 =
1

(t + 1)2
e

[
2+2

∫ t

0
Ĩ(x(s)) 1

s+1 ds
]

≤ 1
(t + 1)2

e2e2 ln(t+1)

≤ e2. (37)

Therefore, if �̃(p, u) = 1 − Ĩ(p)[1 − ‖u‖2]1/2 denotes the corresponding
Lagrangian, then since we have

�̃(p, u) ≤ 1− Ĩ(p)[1− ‖u‖2] ∀p ∈ R2, u ∈ B1(0),

(37) gives

∫ ∞

0
�̃(x(s), β(s)) ds ≤

∫ ∞

0

1 + 3e2‖x(s)‖‖β(s)‖2
1 + 3e2‖x(s)‖ ds

≤
[
1 + 3e2] ∫ ∞

0

dt

1 + 3e2+3/2 ln(t+1)

≤
([

1 + 3e2] /
[
3e2]) ∫ ∞

0

dt

(t + 1)3/2 < ∞,

even though t �→ x(t) is not bounded, which shows (H6) is not satisfied. Moreover,
the standard uniqueness characterizations for exit time HJBE’s (cf. [3, 7]) would
again not apply, since the Lagrangian �̃ is not uniformly bounded below by positive
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constants. However, since (H5) holds, one can use [17] to show that for any
nonempty closed target T ⊆ R2 \ {0}, any proper continuous viscosity solution of
the corresponding HJBE

sup
‖a‖≤1

{Ĩ(x)a ·Du(x)− [1− Ĩ(x)
(
1− ‖a‖2

)1/2
]} = 0

on R2 \ T which is null on T must in fact be identically equal to the shape-from-
shading exit time value function vsfs for the target T , the dynamics f̃ , and the
Lagrangian �̃.

Remark 6.7 Notice that it was not necessary to assume that the domain set Ω
for (32) was bounded. It is worth pointing out that one cannot in general expect
uniqueness of solutions for the shape-from-shading HJBE for cases where I is
allowed to take the value 1, since the surface u and −u could both be viscosity
solutions of (32). For example, take the light intensity I(x) = (1 + 4‖x‖2)−1/2,
T = R2 \ B1(0), and the surface u(x) = 1 − ‖x‖2 on B1(0) and zero elsewhere.
Clearly, u and −u are both solutions of (32). However, (H5)–(H6) are not satisfied,
since the trajectory φ(t) ≡ 0 gives zero integrated costs on [0,∞) without ever
reaching the target, so this case is not covered by Theorem 1. For the analysis of
cases where #{x : I(x) = 1} = 1, see [16], and for bounded viscosity solutions of
(33), see [26].

7 Discontinuous and Local HJBE Solutions

This section gives variants of Theorem 1 for discontinuous and local HJBE
solutions. We study discontinuous solutions using the envelopes approach from [3].

7.1 A Remark on Discontinuous Viscosity Solutions

Under (H1)–(H6), the value function vg could be discontinuous (cf. [3],
pp. 248–249). This suggests the question of how one can characterize v as the
unique discontinuous solution of the HJBE on RN \ T that satisfies (SCv). By a
discontinuous solution, we mean the following. For each locally bounded function
w : S → R on a set S ⊆ RN , we define the following semicontinuous envelopes:

w�(x) := lim inf
S�y→x

w(y) and w�(x) := lim sup
S�y→x

w(y).

We call w� the lower envelope of w, and we call w� the upper envelope of
w. For G, S, and F satisfying the requirements of Definition 2.2, we then say
that a locally bounded function w : S → R is a discontinuous subsolution
(resp., supersolution) of F (x, Dw(x)) = 0 on G provided F (xo, Dγ(xo)) ≤ 0
(resp., ≥ 0) for each γ ∈ C1(G) at each local maximizer (resp., minimizer) of w�−γ



116 Michael Malisoff NoDEA

(resp., w�−γ) on G.1 A (discontinuous viscosity) solution of F (x, Dw(x)) = 0
on G is then a function which is simultaneously a discontinuous subsolution and
a discontinuous supersolution of F (x, Dw(x)) = 0 on G. Lemma 4.1 remains
true if u ∈ C(Ē) is replaced by any bounded discontinuous subsolution of the
HJBE on E and u in (14) is replaced by u�. Also, Lemma 4.2 remains true if
w ∈ C(B̄) is replaced by any bounded discontinuous supersolution of the HJBE
on B and w in (15) is replaced by w�. Using these facts, one can prove the
following generalization of Theorem 1: If (H1)–(H6) hold, if w : RN → R is a
discontinuous viscosity solution of the HJBE on RN \ T that satisfies (SCw), and
if w� is continuous on RN , then w ≡ v on RN .2 The proof is almost identical to
the proof of Theorem 1 but with w replaced by w∗ in the proof of the inequality
w ≥ v. For cases where v is continuous, this establishes that all solutions w of the
HJBE (9) on RN \ T that satisfy (SCw) and continuity of w∗ agree with v, and
therefore are continuous.

7.2 Local Solutions of the HJBE

This subsection shows how to extend Theorem 1 to get uniqueness of solutions of
the HJBE on sets of the form Ω \ T for open sets Ω. We set

R =
{

x ∈ RN : inf{tx(β) : β ∈ A} <∞
}

,

so R is the set of points that can be brought to T in finite time using the
dynamics f . Using (H2)–(H3), one shows thatR is open (cf. [3]). In many classical
cases where � is bounded below by a positive constant, one has

v is continuous on R, and lim
x→xo

v(x) = +∞ ∀xo ∈ ∂R. (38)

On the other hand, one easily finds examples where � is not bounded below by
a positive constant and the limit condition in (38) fails. Here is an elementary
example where this occurs:

1In this context, ‘discontinuous’ means “not necessarily continuous”.
2The continuity of w� is used to ensure that the sets Sκ in the proof of Theorem 1 are open.

The condition that w� is continuous of course holds automatically if w is continuous. However,
(SCw) and continuity of w� can even be satisfied by functions which are nowhere continuous. For
example, if we take the indicator function w ≡ 11Q : R → {0, 1}, then w� ≡ 0. This generalized
version of Theorem 1 remains true if the pointwise condition that w ≡ 0 on T is replaced by the
less restrictive requirement that there be a locally bounded function g : RN → R for which

∀x ∈ T , w�(x) ≥ g�(x) and w�(x) ≤ g�(x)

except that the conclusion that w ≡ v is replaced by the following inequalities on RN

(cf. Remark 3.1): w∗ ≥ vg∗ and w� ≤ vg� . In case g ∈ C(T ), this implies w ≡ vg on RN .
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Example 7.1 Take N = 1, T = [1, +∞), A = {+1}, f(x, a) = |x|a, and
�(x, a) = |x|. In this case,

v(x̄) =
∫ ln(1/x̄)

0
x̄et dt = 1− x̄→ 1 as x̄ ↓ 0,

even though 0 ∈ ∂R.

This motivates the question of how one can characterize v as a unique vis-
cosity solution of the HJBE on R \ T for cases where R 	= RN and the extra
condition (38) holds. To address this question, we assume the following relaxed
version

(H′
5) If x ∈ R\T and β ∈ A, then

∫ t

0 �r(yx(s, β), β(s)) ds > 0 for all t ∈ (0,∞).

of (H5). We also fix an open set Ω ⊆ R containing T , and we consider viscosity
solutions of the HJBE (9) on Ω \ T that satisfy the localization

(OSCw,Ω) w is bounded-from-below on Ω, w ≡ 0 on T , and lim
x→xo

w(x) =

+∞ ∀xo ∈ ∂Ω.

Noting that v satisfies (OSCv,R) if (38) holds, we then have the following local
version of Theorem 1:

Theorem 2 Let (H1)–(H4), (H ′
5), and (H6) hold. Let Ω ⊂ R be an open set

containing T . Let w : Ω→ R be a continuous function which is viscosity solution
of the HJBE (9) on Ω\T that satisfies (OSCw,Ω). Then, w ≡ v on Ω. In particular,
if v satisfies (38), then v is the unique viscosity solution w of the HJBE on R\T
in the class of all continuous functions w : R → R that satisfy (OSCw,R).

Remark 7.2 The proof of the inequality w ≤ v for Theorem 2 is exactly the
proof of that inequality in [19]. The proof is slightly more complicated than the
proof that w ≤ v for Theorem 1, since one must consider trajectories that reach
T in finite time but which exit Ω before the first time they ever reach T . The
proof of the reverse inequality closely follows the proof of Theorem 1 except that
instead of setting S = Sκ ∩ BJ(0), we set S = Sκ ∩ BJ(0) ∩ Ω. We rule out
cases where x̄J ∈ ∂Ω using the limit condition in (OSCw,Ω). Theorem 2 can also
be generalized to the case of discontinuous viscosity solutions using the method
of §7.1.

8 Problems with Unbounded Control Sets

We close by giving two variants of Theorem 1 which can be applied for cases where
the control set A ⊆ RM is closed but possibly unbounded. In the first variant,
we impose regularity conditions on the data which penalize the use of control set
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values of large norm. In the second variant, we replace the possibly unbounded
control set A with a suitable compact set of vector field valued controls. Recall
the definition (5) of A which applies to possibly noncompact control sets.

8.1 Penalization Method

For simplicity, let us assume that all the sets

D(x) := {(f(x, a), �(x, a)) : a ∈ A}

are convex. As explained in §2, the set of inputs α ∈ A can then be taken to
be the measurable functions valued in A (by the Filippov Selection Theorem).
We assume that (H2)–(H6) are satisfied, where 0 ∈ A ⊆ RM for M ∈ N and
A is closed but not necessarily compact. Following [4, 11, 19], we then add the
following conditions on f and �:

(H7) f is bounded on BR(0)×A for each R > 0.

(H8) There is a modulus ω such that |�(x, u) − �(y, u)| ≤ ω(‖x − y‖) for all
x, y ∈ RN and u ∈ A.

(H9) There exist constants �o > 0, Co ≥ 0, β ∈ (0, 1], δ2 ≥ 0, �̄ ≥ 0, and δ1 > 1
such that the following conditions hold for all x, y ∈ RN and a ∈ A:

(a) �(x, a) ≥ �o‖a‖δ1 − Co

(b) |�(x, a)− �(y, a)| ≤ �̄‖x− y‖β(1 + ‖a‖δ1 + ‖x‖δ2 + ‖y‖δ2)

(Recall that a modulus is a nondecreasing continuous function ω : [0,∞) →
[0,∞) for which ω(0) = 0.) As shown in [3], Lemmas 4.1 and 4.2 remain true if
(H2)–(H8) are assumed instead of the assumptions (H1)–(H6). These assumptions
penalize the use of control set values of large norm. We then consider only viscosity
solutions w of the HJBE on RN \ T for which the subdifferential sets D−w(x) are
locally bounded, i.e., such that sup{‖p‖ : p ∈ D−w(x), x ∈ K} < ∞ for each
compact set K ⊆ RN . As shown in Theorem I.7.3 of [9], this is equivalent to
considering only locally Lipschitz solutions of the HJBE on RN \ T . In this case,
the infimizations in the restriction of the HJBE to any BJ(0) can be taken over
a corresponding compact set CJ ⊂ A, i.e., in the notation we introduced in §2,
HA�[BJ(0)×DJ ] = HCJ

�[BJ(0)×DJ ], where DJ is a bounded set large enough to
contain {p ∈ D−w(x) : x ∈ BJ(0)} (cf. [4, 11] for the proof). Then the arguments
in §5 on BJ(0) apply with the compact control set CJ replacing A, and then we
iterate on J to get an input α̂ : [0,∞) → A as before. We then invoke (H6) to
conclude as follows:

Theorem 3 Assume hypotheses (H2)–(H9), with A a closed set containing
0 ∈ RM . Let w : RN → R be a locally Lipschitz function which is a viscosity
solution of (9) on RN \ T that satisfies (SCw). Then w ≡ v.
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8.2 Vector Field Valued Controls Method

Another way to extend Theorem 1 to the case of noncompact control sets is as
follows. As in the previous subsection, we assume the sets D(x) are all convex. We
give C(RN , RN ×R) the topology of compact convergence (cf. [23]). We continue
to assume (H2)–(H8) and that A ⊆ RM is closed and nonempty but possibly
unbounded. We also add the following assumptions:

(NC1) sup{�(0, u) : u ∈ A} < ∞.

(NC2) {(f(·, u), �(·, u)) : u ∈ A} ⊆ C(RN , RN × R) is closed.

These guarantee that the supremum in the definition of the HJBE is always finite.
It follows from the Ascoli-Arzelá Theorem that K := {ku(·) := (f(·, u), �(·, u)) :
u ∈ A} is a compact subset of the metric space C(RN , RN × R) (cf. [19, 23]).
Define the projection mappings πj on K by

πj(ku(·)) =
{
f(·, u), j = 1
�(·, u), j = 2 ∀u ∈ A.

We now apply the method of our proofs to the new exit time problem whose
dynamics F , Lagrangian Λ, and set Ã of admissible controls are

F (x, k) = (π1 ◦ k)(x), Λ(x, k) = (π2 ◦ k)(x) & Ã := {[0,∞) � t �→ kβ(t) : β ∈ A}

with the same target T . Notice that {(F (x, k), Λ(x, k)) : k ∈ K} is convex for
each x ∈ RN . Let ṽ denote the value function of this new problem. Since the
trajectories of F with the controls Ã are exactly the trajectories of f with controls
in A, it follows that ṽ ≡ v. Moreover, the new problem satisfies (H1)–(H6) (with
K replacing A, F replacing f , and Λ replacing �). Our proof of Theorem 1 then
gives the following:

Theorem 4 Let ∅ 	= A ⊆ RM be closed. Assume (H2)-(H8) and (NC1)-(NC2).
Let w : RN → R be a continuous function which is a viscosity solution of (9) on
RN \ T that satisfies (SCw). Then w ≡ v.

We remark that if (H2)–(H8) and (NC1)–(NC2) all hold with A 	= ∅ a closed subset
of RN , and if R = RN , then the value function v is a discontinuous viscosity
solution of the HJBE on RN \ T (cf. [3]). If we also assume v� is continuous,
then a generalization of Theorem 4 characterizes v as the unique discontinuous
viscosity solution w of the HJBE in the class of functions w : RN → R that satisfy
(SCw) and continuity of w�. The generalization of Theorem 4 to discontinuous
solutions follows from the argument of §7.1. Also, the theorem extends to local
HJBE solutions using the arguments of the previous section.
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