Feedback Control under Input Delays

Michael Malisoff
Background on Research Area

Systems and Controls: Gives methods to influence the behavior of complicated dynamical systems to achieve objectives.

Open Loop Control: Time-dependent forcing functions chosen to optimize or achieve desired behavior for system's solutions.

Feedback Control: Automatically adjust the system to respond to information about the system's state and surroundings.

Delays and Sampling: Time-lagged state observations and/or observations at discrete instants instead of continuous ones.
Background on Research Area

Systems and Controls: Gives methods to influence the behavior of complicated dynamical systems to achieve objectives.
Background on Research Area

Systems and Controls: Gives methods to influence the behavior of complicated dynamical systems to achieve objectives.

Open Loop Control: Time-dependent forcing functions chosen to optimize or achieve desired behavior for system’s solutions.
Background on Research Area

Systems and Controls: Gives methods to influence the behavior of complicated dynamical systems to achieve objectives.

Open Loop Control: Time-dependent forcing functions chosen to optimize or achieve desired behavior for system’s solutions.

Feedback Control: Automatically adjust the system to respond to information about the system’s state and surroundings.
Background on Research Area

Systems and Controls: Gives methods to influence the behavior of complicated dynamical systems to achieve objectives.

Open Loop Control: Time-dependent forcing functions chosen to optimize or achieve desired behavior for system’s solutions.

Feedback Control: Automatically adjust the system to respond to information about the system’s state and surroundings.

Delays and Sampling: Time-lagged state observations and/or observations at discrete instants instead of continuous ones.
Control Systems with Input Delays

System of ODEs with delays τ, controls u, and perturbations δ:

\[Y'(t) = F(t, Y(t), u(t, Y(t - \tau(t))), \delta(t)), \quad Y(t) \in \mathcal{Y}. \] (1)

$\mathcal{Y} \subseteq \mathbb{R}^n$. $\delta : [0, \infty) \rightarrow \mathcal{D}$ is (nonstochastic) uncertainty. $\mathcal{D} \subseteq \mathbb{R}^m$. Choose u to achieve desired behavior for the solutions $Y(t)$.
Control Systems with Input Delays

System of ODEs with delays τ, controls u, and perturbations δ:

$$Y'(t) = F(t, Y(t), u(t, Y(t - \tau(t))), \delta(t)), \quad Y(t) \in \mathcal{Y}. \quad (1)$$

$\mathcal{Y} \subseteq \mathbb{R}^n$. $\delta : [0, \infty) \rightarrow \mathcal{D}$ is (nonstochastic) uncertainty. $\mathcal{D} \subseteq \mathbb{R}^m$. Choose u to achieve desired behavior for the solutions $Y(t)$.

τ: time lags in computing or communicating control or state...
Control Systems with Input Delays

System of ODEs with delays τ, controls u, and perturbations δ:

$$Y'(t) = F(t, Y(t), u(t, Y(t - \tau(t))), \delta(t)), \quad Y(t) \in \mathcal{Y}. \quad (1)$$

$\mathcal{Y} \subseteq \mathbb{R}^n$. $\delta : [0, \infty) \rightarrow \mathcal{D}$ is (nonstochastic) uncertainty. $\mathcal{D} \subseteq \mathbb{R}^m$.

Choose u to achieve desired behavior for the solutions $Y(t)$.

τ: time lags in computing or communicating control or state...

δ: uncertain model or uncertain control effects,..
Control Systems with Input Delays

System of ODEs with delays τ, controls u, and perturbations δ:

$$Y'(t) = \mathcal{F}(t, Y(t), u(t, Y(t - \tau(t))), \delta(t)), \quad Y(t) \in \mathcal{Y}. \quad (1)$$

$\mathcal{Y} \subseteq \mathbb{R}^n$. $\delta : [0, \infty) \rightarrow \mathcal{D}$ is (nonstochastic) uncertainty. $\mathcal{D} \subseteq \mathbb{R}^m$.

Choose u to achieve desired behavior for the solutions $Y(t)$.

τ: time lags in computing or communicating control or state...

δ: uncertain model or uncertain control effects,..

Closed loop system:

$$Y'(t) = \mathcal{G}(t, Y(t), Y(t - \tau(t)), \delta(t)), \quad Y(t) \in \mathcal{Y}, \quad (2)$$

where $\mathcal{G}(t, Y(t), Y(t - \tau), \delta) = \mathcal{F}(t, Y(t), u(t, Y(t - \tau)), \delta)$.
Input-to-State Stable (ISS)
Input-to-State Stable (ISS)

ISS (Sontag, '89) generalizes uniform global asymptotic stability.
Input-to-State Stable (ISS)

ISS (Sontag, ’89) generalizes uniform global asymptotic stability.

\[Y'(t) = G(t, Y(t), Y(t - \tau(t))), \quad Y(t) \in \mathcal{Y} \]

(Σ)

Without explicit flow maps, prove UGAS and ISS indirectly.
Input-to-State Stable (ISS)

ISS (Sontag, ’89) generalizes uniform global asymptotic stability.

\[Y'(t) = G(t, Y(t), Y(t - \tau(t))), \quad Y(t) \in \mathcal{Y} \quad \text{(Σ)} \]

\[|Y(t)| \leq \gamma_1 (e^{t_0 - t} \gamma_2 (|Y|_{[t_0 - \bar{\tau}, t_0]})) \quad \text{(UGAS)} \]

\(\gamma_i \)'s are 0 at 0, strictly increasing, continuous, and unbounded.

\[\sup_{t \geq 0} \tau(t) \leq \bar{\tau}. \]
Input-to-State Stable (ISS)

ISS (Sontag, ’89) generalizes uniform global asymptotic stability.

\[Y'(t) = G(t, Y(t), Y(t - \tau(t))), \quad Y(t) \in \mathcal{Y} \] \hspace{1cm} (\Sigma)

\[|Y(t)| \leq \gamma_1 \left(e^{t_0 - t} \gamma_2(|Y|_{t_0 - \bar{\tau}, t_0}) \right) \] \hspace{1cm} (UGAS)

\(\gamma_i \)'s are 0 at 0, strictly increasing, continuous, and unbounded. \(\sup_{t \geq 0} \tau(t) \leq \bar{\tau} \).

\[Y'(t) = G(t, Y(t), Y(t - \tau(t)), \delta(t)), \quad Y(t) \in \mathcal{Y} \] \hspace{1cm} (\Sigma_{\text{pert}})
Input-to-State Stable (ISS)

ISS (Sontag, ’89) generalizes uniform global asymptotic stability.

\[Y'(t) = G(t, Y(t), Y(t - \tau(t))), \quad Y(t) \in \mathcal{Y} \quad (\Sigma) \]

\[|Y(t)| \leq \gamma_1 (e^{t_0-t} \gamma_2(|Y|_{[t_0-\bar{\tau}, t_0]})) \quad (UGAS) \]

\(\gamma_i\)'s are 0 at 0, strictly increasing, continuous, and unbounded.

\[\sup_{t \geq 0} \tau(t) \leq \bar{\tau}. \]

\[Y'(t) = G(t, Y(t), Y(t - \tau(t)), \delta(t)), \quad Y(t) \in \mathcal{Y} \quad (\Sigma_{pert}) \]

\[|Y(t)| \leq \gamma_1 (e^{t_0-t} \gamma_2(|Y|_{[t_0-\bar{\tau}, t_0]})) + \gamma_3(|\delta|_{[t_0,t]}) \quad (ISS) \]
Input-to-State Stable (ISS)

ISS (Sontag, ’89) generalizes uniform global asymptotic stability.

\[Y'(t) = G(t, Y(t), Y(t - \tau(t))), \quad Y(t) \in \mathcal{Y} \quad (\Sigma) \]

\[|Y(t)| \leq \gamma_1 \left(e^{t_0-t} \gamma_2(|Y|_{[t_0-\bar{\tau}, t_0]}) \right) \quad (\text{UGAS}) \]

\(\gamma_i \)'s are 0 at 0, strictly increasing, continuous, and unbounded.

\[\sup_{t \geq 0} \tau(t) \leq \bar{\tau}. \]

\[Y'(t) = G(t, Y(t), Y(t - \tau(t)), \delta(t)), \quad Y(t) \in \mathcal{Y} \quad (\Sigma_{\text{pert}}) \]

\[|Y(t)| \leq \gamma_1 \left(e^{t_0-t} \gamma_2(|Y|_{[t_0-\bar{\tau}, t_0]}) \right) + \gamma_3(|\delta|_{[t_0,t]}) \quad (\text{ISS}) \]

Without explicit flow maps, prove UGAS and ISS indirectly.
My Background
My Background

Endowed distinguished professor, directs LSU Mathematics Control and Optimization Group, 120+ publications,...
My Background

Endowed distinguished professor, directs LSU Mathematics Control and Optimization Group, 120+ publications,

$1.4 million in federal research support as PI from AFOSR and NSF, 16 students advised or co-advised, 2 LSU honors,
My Background

Endowed distinguished professor, directs LSU Mathematics Control and Optimization Group, 120+ publications,..

$1.4 million in federal research support as PI from AFOSR and NSF, 16 students advised or co-advised, 2 LSU honors,..

Current or past AE for *Automatica*, *IEEE Transactions on Automatic Control*, *SIAM Journal on Control and Optimization*,..
My Background

Endowed distinguished professor, directs LSU Mathematics Control and Optimization Group, 120+ publications,..

$1.4 million in federal research support as PI from AFOSR and NSF, 16 students advised or co-advised, 2 LSU honors,..

Current or past AE for *Automatica, IEEE Transactions on Automatic Control, SIAM Journal on Control and Optimization*,..

Active magnetic bearings, bioreactors, brushless DC motors, general theory, heart rate controllers, human pointing motions, marine robots, microelectromechanical relays, neuromuscular electrical stimulation, underactuated ships, UAVs,
My Background

Endowed distinguished professor, directs LSU Mathematics Control and Optimization Group, 120+ publications,..

$1.4 million in federal research support as PI from AFOSR and NSF, 16 students advised or co-advised, 2 LSU honors,..

Current or past AE for *Automatica*, *IEEE Transactions on Automatic Control*, *SIAM Journal on Control and Optimization*,..

Active magnetic bearings, [bioreactors], brushless DC motors, general theory, heart rate controllers, human pointing motions, marine robots, microelectromechanical relays, neuromuscular electrical stimulation, underactuated ships, UAVs,..
Background on Chemostats
Background on Chemostats

Chemostat: Laboratory apparatus for continuous culture of microorganisms, with many biotechnological applications.
Background on Chemostats

Chemostat: Laboratory apparatus for continuous culture of microorganisms, with many biotechnological applications.

Models: Represent cell or microorganism growth, wastewater treatment, or natural environments like lakes.
Background on Chemostats

Chemostat: Laboratory apparatus for continuous culture of microorganisms, with many biotechnological applications.

Models: Represent cell or microorganism growth, wastewater treatment, or natural environments like lakes.

States: Microorganism and substrate concentrations, prone to incomplete measurements and model uncertainties.
Background on Chemostats

Chemostat: Laboratory apparatus for continuous culture of microorganisms, with many biotechnological applications.

Models: Represent cell or microorganism growth, wastewater treatment, or natural environments like lakes.

States: Microorganism and substrate concentrations, prone to incomplete measurements and model uncertainties.

Our goals: Input-to-state stabilization of equilibria with uncertain uptake functions using only delayed sampled substrate values.
Background on Chemostats

Chemostat: Laboratory apparatus for continuous culture of microorganisms, with many biotechnological applications.

Models: Represent cell or microorganism growth, wastewater treatment, or natural environments like lakes.

States: Microorganism and substrate concentrations, prone to incomplete measurements and model uncertainties.

Our goals: Input-to-state stabilization of equilibria with uncertain uptake functions using only delayed sampled substrate values

O. Bernard, D. Dochain, J. Gouze, J. Monod, H. Smith
Background on Chemostats

Constant volume. Substrate pumped in and substrate/biomass mixture pumped out at same rate
Uncertain Controlled Chemostat with Sampling

\[\dot{s}(t) = D(s(t - \tau(t)))[s_{\text{in}} - s(t)] - (1 + \delta(t))\mu(s(t))x(t) \]

\[\dot{x}(t) = [(1 + \delta(t))\mu(s(t)) - D(s(t - \tau(t)))]x(t) \]

\(s = \text{substrate concentration}, \quad x = \text{species concentration} \)

\(Y = (0, \infty)^2 \)

\(\tau(t) = t - t_j \text{ if } t \in [t_j, t_j + 1) \) and \(j \geq 0 \)

\(0 < \epsilon \leq t_{i+1} - t_i \leq \bar{\tau} \).

\(\delta: [0, \infty) \rightarrow [\delta_0, \infty), \text{ with } \delta_0 \in (-1, 0) \).

\(\mu(s) = \mu_1(s) + \gamma(s) \), with a unique maximizer \(s_M \in (0, s_{\text{in}}] \).

Goal: Under suitable conditions and constants \(s^* \in (0, s_{\text{in}}) \), find \(D \) to render the dynamics for \(Y(t) = (s, x)(t) - (s^*, s_{\text{in}} - s^*) \) ISS.
Uncertain Controlled Chemostat with Sampling

\[
\begin{aligned}
\dot{s}(t) &= D(s(t - \tau(t))[s_{\text{in}} - s(t)] - (1 + \delta(t))\mu(s(t))x(t) \\
\dot{x}(t) &= [(1 + \delta(t))\mu(s(t)) - D(s(t - \tau(t))]x(t)
\end{aligned}
\]
(C)

\[s = \text{substrate concentration}, \ x = \text{species concentration}\]
Uncertain Controlled Chemostat with Sampling

\[
\begin{aligned}
\dot{s}(t) &= D(s(t - \tau(t))[s_{\text{in}} - s(t)] - (1 + \delta(t))\mu(s(t))x(t) \\
\dot{x}(t) &= [(1 + \delta(t))\mu(s(t)) - D(s(t - \tau(t))]x(t)
\end{aligned}
\]

\(s = \text{substrate concentration, } x = \text{species concentration}\)

\(\mathcal{Y} = (0, \infty)^2\)
Uncertain Controlled Chemostat with Sampling

\[
\begin{cases}
\dot{s}(t) = D(s(t - \tau(t))[s_{in} - s(t)] - (1 + \delta(t))\mu(s(t))x(t)\\
\dot{x}(t) = [(1 + \delta(t))\mu(s(t)) - D(s(t - \tau(t)))]x(t)
\end{cases}
\]

(C)

\(s = \) substrate concentration, \(x = \) species concentration

\(\mathcal{Y} = (0, \infty)^2 \quad \tau(t) = t - t_j \) if \(t \in [t_j, t_{j+1}) \) and \(j \geq 0 \)
Uncertain Controlled Chemostat with Sampling

\[
\begin{align*}
\dot{s}(t) &= D(s(t - \tau(t))[s_{\text{in}} - s(t)] - (1 + \delta(t))\mu(s(t))x(t) \\
\dot{x}(t) &= [(1 + \delta(t))\mu(s(t)) - D(s(t - \tau(t)))]x(t)
\end{align*}
\]
(C)

\(s = \) substrate concentration, \(x = \) species concentration

\(\mathcal{Y} = (0, \infty)^2\) \(\tau(t) = t - t_j\) if \(t \in [t_j, t_{j+1})\) and \(j \geq 0\)

\(0 < \epsilon \leq t_{i+1} - t_j \leq \bar{\tau}\). \(\delta : [0, \infty) \rightarrow [d, \infty),\) with \(d \in (-1, 0]\).
Uncertain Controlled Chemostat with Sampling

\[
\begin{cases}
\dot{s}(t) = D(s(t - \tau(t))[s_{\text{in}} - s(t)] - (1 + \delta(t))\mu(s(t))x(t) \\
\dot{x}(t) = [(1 + \delta(t))\mu(s(t)) - D(s(t - \tau(t)))]x(t)
\end{cases}
\]

(C)

\(s = \) substrate concentration, \(x = \) species concentration

\(\mathcal{Y} = (0, \infty)^2\) \hspace{1cm} \(\tau(t) = t - t_j\) if \(t \in [t_j, t_{j+1})\) and \(j \geq 0\)

\(0 < \epsilon \leq t_{i+1} - t_i \leq \bar{\tau}\). \hspace{1cm} \(\delta : [0, \infty) \rightarrow [d, \infty),\) with \(d \in (-1, 0]\).

\(\mu(s) = \frac{\mu_1(s)}{1 + \gamma(s)},\) with a unique maximizer \(s_M \in (0, s_{\text{in}}]\)
Uncertain Controlled Chemostat with Sampling

\[
\begin{aligned}
\dot{s}(t) &= D(s(t - \tau(t))[s_{\text{in}} - s(t)] - (1 + \delta(t))\mu(s(t))x(t) \\
\dot{x}(t) &= [(1 + \delta(t))\mu(s(t)) - D(s(t - \tau(t))]x(t)
\end{aligned}
\]

(C)

\(s = \) substrate concentration, \(x = \) species concentration

\(\mathcal{Y} = (0, \infty)^2\) \(\tau(t) = t - t_j\) if \(t \in [t_j, t_{j+1})\) and \(j \geq 0\)

\(0 < \epsilon \leq t_{i+1} - t_j \leq \bar{\tau}.\) \(\delta : [0, \infty) \to [d, \infty), \) with \(d \in (-1, 0].\)

\(\mu(s) = \frac{\mu_1(s)}{1 + \gamma(s)},\) with a unique maximizer \(s_M \in (0, s_{\text{in}}]\)

Goal: Under suitable conditions and constants \(s_* \in (0, s_{\text{in}}),\) find \(D\) to render the dynamics for \(Y(t) = (s, x)(t) - (s_*, s_{\text{in}} - s_*)\) ISS.
One of My Results for Unperturbed Case
One of My Results for Unperturbed Case

\[\varpi_s = \inf_{s \in [0, s_{\text{in}}]} \mu_1'(s), \quad \varpi_l = \sup_{s \in [0, s_{\text{in}}]} \mu_1'(s), \quad \rho_l = \sup_{s \in [0, s_{\text{in}}]} \gamma'(s), \]

\[\rho_m = \frac{\rho_l^2}{2\varpi_s} \max_{l \in [0, s_{\text{in}}]} \frac{\mu_1^2(l + 1.1 \mu_1(s_*) s_{\text{in}})}{1 + \gamma(l)}, \quad \text{where} \quad \mu(s) = \frac{\mu_1(s)}{1 + \gamma(s)} \]
One of My Results for Unperturbed Case

\[\varpi_s = \inf_{s \in [0, s_{in}]} \mu'_1(s), \quad \varpi_l = \sup_{s \in [0, s_{in}]} \mu'_1(s), \quad \rho_l = \sup_{s \in [0, s_{in}]} \gamma'(s), \]

\[\rho_m = \frac{\rho_l^2}{2\varpi_s} \max_{l \in [0, s_{in}]} \frac{\mu_1^2(l + 1.1 \mu_1(s_*) s_{in} \bar{\tau})}{1 + \gamma(l)}, \quad \text{where} \quad \mu(s) = \frac{\mu_1(s)}{1 + \gamma(s)} \]

Assume that

\[\frac{\mu_1(s_{in})}{1 + \gamma(s_{in})} - \frac{\mu_1(s_*)}{1 + \gamma(s_{in} - \mu_1(s_*) s_{in} \bar{\tau})} > 0 \]

and \(\bar{\tau} < \max \left\{ \frac{1}{2\sqrt{2 \rho_m \varpi_s s_{in}}}, \frac{1}{2 \rho_l s_{in} \mu_1(s_{in})} \right\} \), with \(s_* < s_{in} \).
One of My Results for Unperturbed Case

\[\varpi_s = \inf_{s \in [0, s_{in}]} \mu'_1(s), \quad \varpi_l = \sup_{s \in [0, s_{in}]} \mu'_1(s), \quad \rho_l = \sup_{s \in [0, s_{in}]} \gamma'(s), \]

\[\rho_m = \frac{\rho_l^2}{2 \varpi_s} \max_{l \in [0, s_{in}]} \frac{\mu_1^2(l + 1.1 \mu_1(s_*) s_{in} \bar{\tau})}{1 + \gamma(l)}, \text{ where } \mu(s) = \frac{\mu_1(s)}{1 + \gamma(s)} \]

Assume that

\[\frac{\mu_1(s_{in})}{1 + \gamma(s_{in})} \left(1 + \frac{\mu_1(s_*)}{1 + \gamma(s_{in} - \mu_1(s_*) s_{in} \bar{\tau})} \right) > 0 \]

and \(\bar{\tau} < \max \left\{ \frac{1}{2 \sqrt{2 \rho_m \varpi_s s_{in}}}, \frac{1}{2 \rho_l s_{in} \mu_1(s_{in})} \right\} \), with \(s_* < s_{in} \).

Theorem: For all componentwise positive initial conditions, all solutions of the chemostat system (C) with \(\delta(t) = 0 \) and

\[D(s(t - \tau(t))) = \frac{\mu_1(s_*)}{1 + \gamma(s(t - \tau(t)))} \]

remain in \((0, \infty)^2\) and converge to \((s_*, s_{in} - s_*)\). \(\square \)
Extensions and Ideas of Proof
Extensions and Ideas of Proof

ISS with respect to $\delta(t)$ without upper bounds on $|\delta|_\infty$...

\[
\frac{(1+d)\mu_1(s_{in})}{1+\gamma(s_{in})} - \frac{\mu_1(s_*)}{1+\gamma(s_{in}-\mu_1(s_*)s_{in}\bar{\tau})} > 0 \quad ... (1 + \delta(t))\mu(s(t)) ...
\]
Extensions and Ideas of Proof

ISS with respect to $\delta(t)$ without upper bounds on $|\delta|_\infty$...

\[
\frac{(1+d)\mu_1(s_{\text{in}})}{1+\gamma(s_{\text{in}})} - \frac{\mu_1(s_*)}{1+\gamma(s_{\text{in}}-\mu_1(s_*)s_{\text{in}}\bar{\tau})} > 0 \quad (1 + \delta(t))\mu(s(t))...
\]

\[U_2(s_t) =\]
\[
\int_0^{s(t)-s_*} \frac{m}{s_{\text{in}}-s_*-m} \, dm + 2\rho m \bar{\tau} \int_{t-\bar{\tau}}^t \int_{\ell}^t (\dot{s}(m))^2 \, dm \, d\ell.
\]

Combine with the fact that $z = s_{\text{in}} - s - x \to 0$ exponentially.
Extensions and Ideas of Proof

ISS with respect to $\delta(t)$ without upper bounds on $|\delta|_\infty$...

\[
\frac{(1+d)\mu_1(s_{in})}{1+\gamma(s_{in})} - \frac{\mu_1(s_*)}{1+\gamma(s_{in}-\mu_1(s_*)s_{in}\bar{\tau})} > 0 \quad \ldots(1 + \delta(t))\mu(s(t))\ldots
\]

\[
U_2(s_t) = \\
\int_{s(t)-s_*}^{s(t)} \frac{m}{s_{in}-s_*-m} \, dm + 2\rho m\bar{\tau} \int_{t-\bar{\tau}}^{t} \int_{\ell}^{t} (s(m))^2 \, dm \, d\ell.
\]

Combine with the fact that $z = s_{in} - s - x \rightarrow 0$ exponentially.

\(s_{in} = 1, \quad \mu(s) = \frac{0.5s}{1+0.25s+2s^2}, \quad t_j = 0.24j, \quad \delta(t) = 0. \)

\(s(t) \) in Red, \(x(t) \) in Blue, \(D(t) \) in Green.
$s_{in} = 1, \quad \mu(s) = \frac{0.5s}{1 + 0.25s + 2s^2}, \quad t_j = 0.24j, \quad \delta(t) = 0.15(1 + \sin(t))$.

$s(t)$ in Red, $x(t)$ in Blue, $D(t)$ in Green.
$s_{in} = 1, \quad \mu(s) = \frac{0.5s}{1+0.25s+2s^2}, \quad t_j = 0.24j, \quad \delta(t) = 0.15(1 + \sin(t))$.

$s(t)$ in Red, $x(t)$ in Blue, $D(t)$ in Green.
Conclusions
Conclusions

Sampling and delays are common in feedback control problems.
Conclusions

Sampling and delays are common in feedback control problems. Bioreactors involve uncertainties, delays, and sampling.
Conclusions

Sampling and delays are common in feedback control problems.

Bioreactors involve uncertainties, delays, and sampling.

Discretization of continuous time controls can produce errors.
Conclusions

Sampling and delays are common in feedback control problems. Bioreactors involve uncertainties, delays, and sampling. Discretization of continuous time controls can produce errors. Our control only needs discrete delayed substrate values.
Conclusions

Sampling and delays are common in feedback control problems. Bioreactors involve uncertainties, delays, and sampling. Discretization of continuous time controls can produce errors. Our control only needs discrete delayed substrate values. Our general growth functions are not monotone.
Conclusions

Sampling and delays are common in feedback control problems. Bioreactors involve uncertainties, delays, and sampling. Discretization of continuous time controls can produce errors. Our control only needs discrete delayed substrate values. Our general growth functions are not monotone. We have analogs for many other engineering models.
Conclusions

Sampling and delays are common in feedback control problems. Bioreactors involve uncertainties, delays, and sampling. Discretization of continuous time controls can produce errors. Our control only needs discrete delayed substrate values. Our general growth functions are not monotone. We have analogs for many other engineering models.

Thank you for your attention!