Feedback Control under Input Delays

Michael Malisoff

Systems and Controls: Gives methods to influence the behavior of complicated dynamical systems to achieve objectives.

Systems and Controls: Gives methods to influence the behavior of complicated dynamical systems to achieve objectives.

Open Loop Control: Time-dependent forcing functions chosen to optimize or achieve desired behavior for system's solutions.

Systems and Controls: Gives methods to influence the behavior of complicated dynamical systems to achieve objectives.

Open Loop Control: Time-dependent forcing functions chosen to optimize or achieve desired behavior for system's solutions.

Feedback Control: Automatically adjust the system to respond to information about the system's state and surroundings.

Systems and Controls: Gives methods to influence the behavior of complicated dynamical systems to achieve objectives.

Open Loop Control: Time-dependent forcing functions chosen to optimize or achieve desired behavior for system's solutions.

Feedback Control: Automatically adjust the system to respond to information about the system's state and surroundings.

Delays and Sampling: Time-lagged state observations and/or observations at discrete instants instead of continuous ones.

System of ODEs with delays τ , controls u, and perturbations δ :

$$\mathbf{Y}'(t) = \mathcal{F}\big(t, \mathbf{Y}(t), \mathbf{u}(t, \mathbf{Y}(t-\tau(t))), \delta(t)\big), \quad \mathbf{Y}(t) \in \mathcal{Y}.$$
(1)

 $\mathcal{Y} \subseteq \mathbb{R}^n$. $\delta : [0, \infty) \to \mathcal{D}$ is (nonstochastic) uncertainty. $\mathcal{D} \subseteq \mathbb{R}^m$. Choose *u* to achieve desired behavior for the solutions Y(t).

System of ODEs with delays τ , controls u, and perturbations δ :

$$Y'(t) = \mathcal{F}(t, Y(t), \boldsymbol{u}(t, Y(t - \tau(t))), \delta(t)), \quad Y(t) \in \mathcal{Y}.$$
(1)

 $\mathcal{Y} \subseteq \mathbb{R}^n$. $\delta : [0, \infty) \to \mathcal{D}$ is (nonstochastic) uncertainty. $\mathcal{D} \subseteq \mathbb{R}^m$. Choose *u* to achieve desired behavior for the solutions Y(t).

au: time lags in computing or communicating control or state...

System of ODEs with delays τ , controls u, and perturbations δ :

$$\mathbf{Y}'(t) = \mathcal{F}\big(t, \mathbf{Y}(t), \mathbf{u}(t, \mathbf{Y}(t-\tau(t))), \delta(t)\big), \quad \mathbf{Y}(t) \in \mathcal{Y}.$$
(1)

 $\mathcal{Y} \subseteq \mathbb{R}^n$. $\delta : [0, \infty) \to \mathcal{D}$ is (nonstochastic) uncertainty. $\mathcal{D} \subseteq \mathbb{R}^m$. Choose *u* to achieve desired behavior for the solutions Y(t).

au: time lags in computing or communicating control or state...

 δ : uncertain model or uncertain control effects,...

System of ODEs with delays τ , controls u, and perturbations δ :

$$\mathbf{Y}'(t) = \mathcal{F}\big(t, \mathbf{Y}(t), \mathbf{u}(t, \mathbf{Y}(t-\tau(t))), \delta(t)\big), \quad \mathbf{Y}(t) \in \mathcal{Y}.$$
(1)

 $\mathcal{Y} \subseteq \mathbb{R}^n$. $\delta : [0, \infty) \to \mathcal{D}$ is (nonstochastic) uncertainty. $\mathcal{D} \subseteq \mathbb{R}^m$. Choose *u* to achieve desired behavior for the solutions Y(t).

au: time lags in computing or communicating control or state...

 δ : uncertain model or uncertain control effects,...

Closed loop system:

$$Y'(t) = \mathcal{G}(t, Y(t), Y(t - \tau(t)), \delta(t)), \quad Y(t) \in \mathcal{Y},$$
(2)

where $\mathcal{G}(t, Y(t), Y(t-\tau), d) = \mathcal{F}(t, Y(t), \boldsymbol{u}(t, Y(t-\tau)), d).$

ISS (Sontag, '89) generalizes uniform global asymptotic stability.

ISS (Sontag, '89) generalizes uniform global asymptotic stability.

$$\mathbf{Y}'(t) = \mathcal{G}(t, \mathbf{Y}(t), \mathbf{Y}(t - \tau(t))), \ \mathbf{Y}(t) \in \mathcal{Y}$$
 (S)

ISS (Sontag, '89) generalizes uniform global asymptotic stability.

$$\begin{aligned} Y'(t) &= \mathcal{G}(t, Y(t), Y(t - \tau(t))), \quad Y(t) \in \mathcal{Y} \\ &|Y(t)| \leq \gamma_1 \left(e^{t_0 - t} \gamma_2(|Y|_{[t_0 - \overline{\tau}, t_0]}) \right) \end{aligned} \tag{UGAS}$$

 γ_i 's are 0 at 0, strictly increasing, continuous, and unbounded. $\sup_{t>0} \tau(t) \leq \overline{\tau}.$

ISS (Sontag, '89) generalizes uniform global asymptotic stability.

$$\begin{aligned} Y'(t) &= \mathcal{G}(t, Y(t), Y(t - \tau(t))), \quad Y(t) \in \mathcal{Y} \\ &|Y(t)| \leq \gamma_1 \left(e^{t_0 - t} \gamma_2(|Y|_{[t_0 - \overline{\tau}, t_0]}) \right) \end{aligned} \tag{UGAS}$$

 γ_i 's are 0 at 0, strictly increasing, continuous, and unbounded. $\sup_{t\geq 0} \tau(t) \leq \overline{\tau}.$

$$\mathbf{Y}'(t) = \mathcal{G}(t, \mathbf{Y}(t), \mathbf{Y}(t - \tau(t)), \delta(t)), \ \ \mathbf{Y}(t) \in \mathcal{Y}$$
 (Σ_{pert})

ISS (Sontag, '89) generalizes uniform global asymptotic stability.

$$\begin{aligned} \mathbf{Y}'(t) &= \mathcal{G}(t, \mathbf{Y}(t), \mathbf{Y}(t - \tau(t))), \quad \mathbf{Y}(t) \in \mathcal{Y} \\ &|\mathbf{Y}(t)| \leq \gamma_1 \left(\mathbf{e}^{t_0 - t} \gamma_2(|\mathbf{Y}|_{[t_0 - \overline{\tau}, t_0]}) \right) \end{aligned} \tag{UGAS}$$

 γ_i 's are 0 at 0, strictly increasing, continuous, and unbounded. $\sup_{t\geq 0} \tau(t) \leq \overline{\tau}.$

$$\mathbf{Y}'(t) = \mathcal{G}(t, \mathbf{Y}(t), \mathbf{Y}(t - \tau(t)), \delta(t)), \ \mathbf{Y}(t) \in \mathcal{Y}$$
 (Σ_{pert})

$$|Y(t)| \le \gamma_1 \left(e^{t_0 - t} \gamma_2(|Y|_{[t_0 - \bar{\tau}, t_0]}) \right) + \gamma_3(|\delta|_{[t_0, t]})$$
(ISS)

ISS (Sontag, '89) generalizes uniform global asymptotic stability.

$$\begin{aligned} \mathbf{Y}'(t) &= \mathcal{G}(t, \mathbf{Y}(t), \mathbf{Y}(t - \tau(t))), \quad \mathbf{Y}(t) \in \mathcal{Y} \\ &|\mathbf{Y}(t)| \leq \gamma_1 \left(\mathbf{e}^{t_0 - t} \gamma_2(|\mathbf{Y}|_{[t_0 - \overline{\tau}, t_0]}) \right) \end{aligned} \tag{UGAS}$$

 γ_i 's are 0 at 0, strictly increasing, continuous, and unbounded. $\sup_{t>0} \tau(t) \leq \overline{\tau}.$

$$Y'(t) = \mathcal{G}(t, Y(t), Y(t - \tau(t)), \delta(t)), \quad Y(t) \in \mathcal{Y}$$
 (Σ_{pert})

$$|Y(t)| \le \gamma_1 \left(e^{t_0 - t} \gamma_2(|Y|_{[t_0 - \bar{\tau}, t_0]}) \right) + \gamma_3(|\delta|_{[t_0, t]})$$
(ISS)

Without explicit flow maps, prove UGAS and ISS indirectly.

Endowed distinguished professor, directs LSU Mathematics Control and Optimization Group, 120+ publications,...

Endowed distinguished professor, directs LSU Mathematics Control and Optimization Group, 120+ publications,...

\$1.4 million in federal research support as PI from AFOSR and NSF, 16 students advised or co-advised, 2 LSU honors,..

Endowed distinguished professor, directs LSU Mathematics Control and Optimization Group, 120+ publications,...

\$1.4 million in federal research support as PI from AFOSR and NSF, 16 students advised or co-advised, 2 LSU honors,..

Current or past AE for Automatica, IEEE Transactions on Automatic Control, SIAM Journal on Control and Optimization,...

Endowed distinguished professor, directs LSU Mathematics Control and Optimization Group, 120+ publications,...

\$1.4 million in federal research support as PI from AFOSR and NSF, 16 students advised or co-advised, 2 LSU honors,..

Current or past AE for Automatica, IEEE Transactions on Automatic Control, SIAM Journal on Control and Optimization,...

Active magnetic bearings, bioreactors, brushless DC motors, general theory, heart rate controllers, human pointing motions, marine robots, microelectromechanical relays, neuromuscular electrical stimulation, underactuated ships, UAVs,..

Endowed distinguished professor, directs LSU Mathematics Control and Optimization Group, 120+ publications,...

\$1.4 million in federal research support as PI from AFOSR and NSF, 16 students advised or co-advised, 2 LSU honors,..

Current or past AE for Automatica, IEEE Transactions on Automatic Control, SIAM Journal on Control and Optimization,...

Active magnetic bearings, bioreactors, brushless DC motors, general theory, heart rate controllers, human pointing motions, marine robots, microelectromechanical relays, neuromuscular electrical stimulation, underactuated ships, UAVs,..

Chemostat: Laboratory apparatus for continuous culture of microorganisms, with many biotechnological applications..

Chemostat: Laboratory apparatus for continuous culture of microorganisms, with many biotechnological applications.

Models: Represent cell or microorganism growth, wastewater treatment, or natural environments like lakes..

Chemostat: Laboratory apparatus for continuous culture of microorganisms, with many biotechnological applications.

Models: Represent cell or microorganism growth, wastewater treatment, or natural environments like lakes..

States: Microorganism and substrate concentrations, prone to incomplete measurements and model uncertainties..

Chemostat: Laboratory apparatus for continuous culture of microorganisms, with many biotechnological applications.

Models: Represent cell or microorganism growth, wastewater treatment, or natural environments like lakes..

States: Microorganism and substrate concentrations, prone to incomplete measurements and model uncertainties..

Our goals: Input-to-state stabilization of equilibria with uncertain uptake functions using only delayed sampled substrate values

Chemostat: Laboratory apparatus for continuous culture of microorganisms, with many biotechnological applications.

Models: Represent cell or microorganism growth, wastewater treatment, or natural environments like lakes..

States: Microorganism and substrate concentrations, prone to incomplete measurements and model uncertainties..

Our goals: Input-to-state stabilization of equilibria with uncertain uptake functions using only delayed sampled substrate values

O. Bernard, D. Dochain, J. Gouze, J. Monod, H. Smith

Constant volume. Substrate pumped in and substrate/biomass mixture pumped out at same rate

$$\begin{cases} \dot{s}(t) = \mathcal{D}(s(t-\tau(t))[s_{in}-s(t)] - (1+\delta(t))\mu(s(t))x(t) \\ \dot{x}(t) = [(1+\delta(t))\mu(s(t)) - \mathcal{D}(s(t-\tau(t))]x(t) \end{cases}$$
(C)

$$\begin{cases} \dot{s}(t) = \mathcal{D}(s(t-\tau(t))[s_{in}-s(t)] - (1+\delta(t))\mu(s(t))x(t) \\ \dot{x}(t) = [(1+\delta(t))\mu(s(t)) - \mathcal{D}(s(t-\tau(t))]x(t) \end{cases}$$
(C)

$$\mathcal{Y}=(0,\infty)^2$$

$$\begin{cases} \dot{s}(t) = \mathbf{D}(s(t-\tau(t))[s_{\rm in}-s(t)] - (1+\delta(t))\mu(s(t))x(t) \\ \dot{x}(t) = [(1+\delta(t))\mu(s(t)) - \mathbf{D}(s(t-\tau(t))]x(t) \end{cases}$$
(C)

$$\mathcal{Y} = (0,\infty)^2$$
 $\tau(t) = t - t_j$ if $t \in [t_j, t_{j+1})$ and $j \ge 0$

s = substrate concentration, x = species concentration

0

$$\mathcal{Y} = (0,\infty)^2$$
 $\tau(t) = t - t_j$ if $t \in [t_j, t_{j+1})$ and $j \ge 0$
 $< \epsilon \le t_{j+1} - t_j \le \overline{\tau}$. $\delta : [0,\infty) \to [\underline{d},\infty)$, with $\underline{d} \in (-1,0]$.

$$\mathcal{Y} = (0,\infty)^2$$
 $\tau(t) = t - t_j \text{ if } t \in [t_j, t_{j+1}) \text{ and } j \ge 0$
 $0 < \epsilon \le t_{i+1} - t_i \le \overline{\tau}.$ $\delta : [0,\infty) \to [\underline{d},\infty), \text{ with } \underline{d} \in (-1,0].$
 $\mu(s) = \frac{\mu_1(s)}{1 + \gamma(s)}, \text{ with a unique maximizer } s_M \in (0, s_{in}]$

s = substrate concentration, x = species concentration

$$\mathcal{Y} = (0, \infty)^2 \qquad \tau(t) = t - t_j \text{ if } t \in [t_j, t_{j+1}) \text{ and } j \ge 0$$
$$0 < \epsilon \le t_{i+1} - t_i \le \overline{\tau}. \quad \delta : [0, \infty) \to [\underline{d}, \infty), \text{ with } \underline{d} \in (-1, 0].$$

$$\mu(s) = rac{\mu_1(s)}{1+\gamma(s)}$$
, with a unique maximizer $s_M \in (0, s_{in}]$

Goal: Under suitable conditions and constants $s_* \in (0, s_{in})$, find D to render the dynamics for $Y(t) = (s, x)(t) - (s_*, s_{in} - s_*)$ ISS.

$$\varpi_{s} = \inf_{s \in [0, s_{in}]} \mu'_{1}(s) , \ \ \varpi_{l} = \sup_{s \in [0, s_{in}]} \mu'_{1}(s) , \ \ \rho_{l} = \sup_{s \in [0, s_{in}]} \gamma'(s),$$

$$\rho_{m} = \frac{\rho_{l}^{2}}{2\varpi_{s}} \max_{l \in [0, s_{in}]} \frac{\mu_{1}^{2}(l+1.1\mu_{1}(s_{*})s_{in}\overline{\tau})}{1+\gamma(l)}, \text{ where } \mu(s) = \frac{\mu_{1}(s)}{1+\gamma(s)}$$

$$\begin{split} \varpi_{s} &= \inf_{s \in [0, s_{in}]} \mu_{1}'(s) , \ \varpi_{l} = \sup_{s \in [0, s_{in}]} \mu_{1}'(s) , \ \rho_{l} = \sup_{s \in [0, s_{in}]} \gamma'(s), \\ \rho_{m} &= \frac{\rho_{l}^{2}}{2\varpi_{s}} \max_{l \in [0, s_{in}]} \frac{\mu_{1}^{2}(l+1.1\mu_{1}(s_{*})s_{in}\bar{\tau})}{1+\gamma(l)}, \text{ where } \mu(s) = \frac{\mu_{1}(s)}{1+\gamma(s)} \\ \text{Assume that } \frac{\mu_{1}(s_{in})}{1+\gamma(s_{in})} - \frac{\mu_{1}(s_{*})}{1+\gamma(s_{in}-\mu_{1}(s_{*})s_{in}\bar{\tau})} > 0 \\ \text{and } \bar{\tau} < \max\left\{\frac{1}{2\sqrt{2\rho_{m}\varpi_{l}}s_{in}}, \frac{1}{2\rho_{l}s_{in}\mu_{1}(s_{in})}\right\}, \text{ with } s_{*} < s_{in}. \end{split}$$

$$\begin{split} \varpi_{s} &= \inf_{s \in [0, s_{in}]} \mu_{1}'(s) , \ \ \varpi_{l} = \sup_{s \in [0, s_{in}]} \mu_{1}'(s) , \ \ \rho_{l} = \sup_{s \in [0, s_{in}]} \gamma'(s) , \\ \rho_{m} &= \frac{\rho_{l}^{2}}{2\varpi_{s}} \max_{l \in [0, s_{in}]} \frac{\mu_{1}^{2}(l+1.1\mu_{1}(s_{*})s_{in}\bar{\tau})}{1+\gamma(l)} , \ \text{where} \ \ \mu(s) = \frac{\mu_{1}(s)}{1+\gamma(s)} \\ \text{Assume that} \ \ \frac{\mu_{1}(s_{in})}{1+\gamma(s_{in})} - \frac{\mu_{1}(s_{*})}{1+\gamma(s_{in}-\mu_{1}(s_{*})s_{in}\bar{\tau})} > 0 \\ \text{and} \ \ \bar{\tau} < \max\left\{\frac{1}{2\sqrt{2\rho_{m}\varpi_{l}}s_{in}}, \frac{1}{2\rho_{l}s_{in}\mu_{1}(s_{in})}\right\}, \ \text{with} \ s_{*} < s_{in}. \end{split}$$

Theorem: For all componentwise positive initial conditions, all solutions of the chemostat system (C) with $\delta(t) = 0$ and

$$D(s(t-\tau(t))) = \frac{\mu_1(s_*)}{1+\gamma(s(t-\tau(t)))}$$
(3)

remain in $(0,\infty)^2$ and converge to $(s_*,s_{\rm in}-s_*)$.

ISS with respect to $\delta(t)$ without upper bounds on $|\delta|_{\infty}$...

$$\frac{(1+\underline{d})\mu_{1}(s_{\text{in}})}{1+\gamma(s_{\text{in}})} - \frac{\mu_{1}(s_{*})}{1+\gamma(s_{\text{in}}-\mu_{1}(s_{*})s_{\text{in}}\overline{\tau})} > 0 \quad ...(1+\delta(t))\mu(s(t))...$$

ISS with respect to $\delta(t)$ without upper bounds on $|\delta|_{\infty}$...

$$\begin{aligned} \frac{(1+\underline{d})\mu_{1}(s_{\mathrm{in}})}{1+\gamma(s_{\mathrm{in}})} &- \frac{\mu_{1}(s_{*})}{1+\gamma(s_{\mathrm{in}}-\mu_{1}(s_{*})s_{\mathrm{in}}\bar{\tau})} > 0 \quad \dots (1+\delta(t))\mu(s(t))\dots \\ \mathcal{U}_{2}(s_{t}) &= \\ \int_{0}^{s(t)-s_{*}} \frac{m}{s_{\mathrm{in}}-s_{*}-m} \mathrm{d}m + 2\rho_{m}\bar{\tau} \int_{t-\bar{\tau}}^{t} \int_{\ell}^{t} (\dot{s}(m))^{2} \mathrm{d}m \, \mathrm{d}\ell. \end{aligned}$$

Combine with the fact that $z = s_{in} - s - x \rightarrow 0$ exponentially.

ISS with respect to $\delta(t)$ without upper bounds on $|\delta|_{\infty}$...

$$\begin{aligned} \frac{(1+\underline{d})\mu_{1}(s_{\mathrm{in}})}{1+\gamma(s_{\mathrm{in}})} &- \frac{\mu_{1}(s_{*})}{1+\gamma(s_{\mathrm{in}}-\mu_{1}(s_{*})s_{\mathrm{in}}\bar{\tau})} > 0 \quad \dots (1+\delta(t))\mu(s(t))\dots \\ \mathcal{U}_{2}(s_{t}) &= \\ \int_{0}^{s(t)-s_{*}} \frac{m}{s_{\mathrm{in}}-s_{*}-m} \mathrm{d}m + 2\rho_{m}\bar{\tau} \int_{t-\bar{\tau}}^{t} \int_{\ell}^{t} (\dot{s}(m))^{2} \mathrm{d}m \, \mathrm{d}\ell. \end{aligned}$$

Combine with the fact that $z = s_{in} - s - x \rightarrow 0$ exponentially.

Mazenc, F., J. Harmand, and M. Malisoff, "Stabilization in a chemostat with sampled and delayed measurements and uncertain growth functions," *Automatica*, 78:241-249, 2017.

Sampling and delays are common in feedback control problems.

Sampling and delays are common in feedback control problems.

Bioreactors involve uncertainties, delays, and sampling.

Sampling and delays are common in feedback control problems. Bioreactors involve uncertainties, delays, and sampling. Discretization of continuous time controls can produce errors.

Sampling and delays are common in feedback control problems. Bioreactors involve uncertainties, delays, and sampling. Discretization of continuous time controls can produce errors. Our control only needs discrete delayed substrate values.

Sampling and delays are common in feedback control problems.

Bioreactors involve uncertainties, delays, and sampling.

Discretization of continuous time controls can produce errors.

Our control only needs discrete delayed substrate values.

Our general growth functions are not monotone.

Sampling and delays are common in feedback control problems. Bioreactors involve uncertainties, delays, and sampling. Discretization of continuous time controls can produce errors. Our control only needs discrete delayed substrate values. Our general growth functions are not monotone. We have analogs for many other engineering models.

Sampling and delays are common in feedback control problems. Bioreactors involve uncertainties, delays, and sampling. Discretization of continuous time controls can produce errors. Our control only needs discrete delayed substrate values. Our general growth functions are not monotone. We have analogs for many other engineering models.

Thank you for your attention!