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Background on Research Area

Systems and Controls: Provides methods to influence the
behavior of dynamical systems to achieve objectives.

Open Loop Control: Time-dependent forcing functions chosen to
optimize or achieve desired behavior for system’s solutions.

Feedback Control: Automatically adjust the system to respond
to information about the system’s state and surroundings.

Delays and Sampling: Time-lagged state observations and/or
observations at discrete instants instead of continuous ones.
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Control Systems with Input Delays

System of ODEs with delays τ , controls u, and perturbations δ:

Y ′(t) = F
(
t ,Y (t),u(t ,Y (t − τ(t))), δ(t)

)
, Y (t) ∈ Y. (1)

Y ⊆ Rn. δ : [0,∞)→ D is (nonstochastic) uncertainty. D ⊆ Rm.
Choose u to achieve desired behavior for the solutions Y (t).

τ : time lags in computing or communicating control or state...

δ: uncertain model or uncertain control effects,..

Closed loop system:

Y ′(t) = G(t ,Y (t),Y (t − τ(t)), δ(t)), Y (t) ∈ Y, (2)

where G(t ,Y (t),Y (t − τ), δ) = F(t ,Y (t),u(t ,Y (t − τ)), δ).
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Input-to-State Stable (ISS)

ISS (Sontag, ’89) generalizes uniform global asymptotic stability.

Y ′(t) = G(t ,Y (t),Y (t − τ(t))), Y (t) ∈ Y (Σ)

|Y (t)| ≤ γ1
(
et0−tγ2(|Y |[t0−τ̄ ,t0])

)
(UGAS)

γi ’s are 0 at 0, strictly increasing, continuous, and unbounded.
supt≥0 τ(t) ≤ τ̄ . γi ∈ K∞ not depending on Y .

Y ′(t) = G
(
t ,Y (t),Y (t − τ(t)), δ(t)

)
, Y (t) ∈ Y (Σpert)

|Y (t)| ≤ γ1
(
et0−tγ2(|Y |[t0−τ̄ ,t0])

)
+ γ3(|δ|[t0,t]) (ISS)

Without explicit flow maps, prove UGAS and ISS indirectly.
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My Background

Endowed distinguished professor, directs LSU Mathematics
Control and Optimization Group, 130+ publications,..

$1.69 million in research support as PI of 8 grants from AFOSR
and NSF, 16 students advised or co-advised, 2 LSU honors,..

Current or past AE for Automatica, IEEE Transactions on
Automatic Control, SIAM Journal on Control and Optimization,..

Active magnetic bearings, bioreactors, brushless DC motors,
general theory, heart rate controllers, human pointing motions,
marine robots, microelectromechanical relays, neuromuscular
electrical stimulation, underactuated ships, UAVs,..
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Background on Chemostats

Chemostat: Laboratory apparatus for continuous culture of
microorganisms, with many biotechnological applications..

Models: Represent cell or microorganism growth, wastewater
treatment, or natural environments like lakes..

States: Microorganism and substrate concentrations, prone to
incomplete measurements and model uncertainties..

Our goals: Input-to-state stabilization of equilibria with uncertain
uptake functions using only delayed sampled substrate values

O. Bernard, D. Dochain, J. Gouze, J. Monod, H. Smith, ...
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Background on Chemostats

Constant volume. Substrate pumped in and substrate/biomass
mixture pumped out at same rate
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Uncertain Controlled Chemostat with Sampling

{
ṡ(t) = D(s(t − τ(t))[sin − s(t)]− (1 + δ(t))µ(s(t))x(t)

ẋ(t) = [(1 + δ(t))µ(s(t))− D(s(t − τ(t))]x(t)
(C)

τ(t) =

{
τf , t ∈ [0, τf )
τf + t − tj , t ∈ [tj + τf , tj+1 + τf ) and j ≥ 0

0 < ε1 ≤ tj+1 − tj ≤ ε2. δ : [0,∞)→ [d ,∞), with d ∈ (−1,0].

µ(s) = µ1(s)
1+γ(s) , with a unique maximizer sM ∈ (0, sin]

Assumption 1: The function µ is C1 and µ(0) = 0. Also, there is
a constant sM ∈ (0, sin] such that µ′(s) > 0 for all s ∈ [0, sM) and
µ′(s) ≤ 0 for all s ∈ [sM ,∞). Finally, µ(s) > 0 for all s > 0.
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ẋ(t) = [(1 + δ(t))µ(s(t))− D(s(t − τ(t))]x(t)
(C)

τ(t) =

{
τf , t ∈ [0, τf )
τf + t − tj , t ∈ [tj + τf , tj+1 + τf ) and j ≥ 0

0 < ε1 ≤ tj+1 − tj ≤ ε2. δ : [0,∞)→ [d ,∞), with d ∈ (−1,0].

µ(s)
(?)
= µ1(s)

1+γ(s) , with a unique maximizer sM ∈ (0, sin]

Lemma: Under Assumption 1, there are µ1 ∈ C1 ∩ K∞ and a
nondecreasing C1 function γ : R→ [0,∞) such that (?) holds for
all s ≥ 0, µ′1(s) > 0 on [0,∞), and γ′(s) > 0 on [sM ,∞).

6/10



Uncertain Controlled Chemostat with Sampling

{
ṡ(t) = D(s(t − τ(t))[sin − s(t)]− (1 + δ(t))µ(s(t))x(t)
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0.5 1.0 1.5 2.0 2.5
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(1 + δ)µ(s) for Different Constant
δ Choices, sM = 1/

√
2 and sin = 1
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ẋ(t) = [(1 + δ(t))µ(s(t))− D(s(t − τ(t))]x(t)
(C)

τ(t) =

{
τf , t ∈ [0, τf )
τf + t − tj , t ∈ [tj + τf , tj+1 + τf ) and j ≥ 0

0 < ε1 ≤ tj+1 − tj ≤ ε2. δ : [0,∞)→ [d ,∞), with d ∈ (−1,0].

µ(s) = µ1(s)
1+γ(s) , with a unique maximizer sM ∈ (0, sin]

Goal: Under suitable conditions on an upper bound τ̄ for the
delay τ(t), and for constants s∗ ∈ (0, sin), design the control D to
render the dynamics for Y (t) = (s(t), x(t))− (s∗, sin − s∗) ISS.
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One of Our Results for Unperturbed Case

ωs = inf
s∈[0,sin]

µ′1(s) , ωl = sup
s∈[0,sin]

µ′1(s) , ρl = sup
s∈[0,sin]

γ′(s),

ρm =
ρ2

l
2ωs

max
l∈[0,sin]

µ2
1(l+1.1µ1(s∗)sinτ̄)

1+γ(l) , where µ(s) = µ1(s)
1+γ(s)

Assume that µ1(sin)
1+γ(sin) −

µ1(s∗)
1+γ(sin−µ1(s∗)sinτ̄)

(a)
> 0

and τ̄
(b)
< max

{
1

2sin
√

2ρmωl
, 1

2ρl sinµ1(sin)

}
, with s∗ < sin.

Theorem 1: For all componentwise positive initial conditions, all
solutions (s, x)(t) of the chemostat system (C) with δ(t) = 0 and

D(s(t − τ(t))) = µ1(s∗)
1+γ(s(t−τ(t))) (3)

remain in (0,∞)2 and converge to (s∗, sin − s∗) as t → +∞. �
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Extensions and Ideas of Proof

ISS with respect to δ(t) without upper bounds on |δ|∞...

(1+d)µ1(sin)
1+γ(sin) − µ1(s∗)

1+γ(sin−µ1(s∗)sinτ̄) > 0 ...(1 + δ(t))µ(s(t))...

U2(st ) =∫ s(t)−s∗

0

m
sin−s∗−m dm + 2ρmτ̄

∫ t

t−τ̄

∫ t

`
(ṡ(m))2dm d`.

Use z = sin− s− x = (sin− s∗− x) + (s∗− s)→ 0 exponentially.

Mazenc, F., J. Harmand, and M. Malisoff, “Stabilization in a
chemostat with sampled and delayed measurements and
uncertain growth functions,” Automatica, 78:241-249, 2017.
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Conclusions

Sampling and delays are common in feedback control problems.

Bioreactors involve uncertainties, delays, and sampling.

Discretization of continuous time controls can produce errors.

Our control only needs discrete delayed substrate values.

Our general growth functions are not monotone.

We have analogs for many other engineering models.

Thank you for your attention!
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