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The present disclosure describes systems, methods, and
apparatuses utilizing pointer acceleration system modeling.
In one exemplary method, among others, such a method
obtains, a closed loop pointer acceleration system model, in
which the closed loop pointer acceleration system model is
based on (1) a model describing user pointing motions
integrated with (2) a model of pointer acceleration motions
under operational conditions; obtains values for system
parameters that include pointer acceleration profile param-
eters and operational condition parameters; and determines
a set of pointer trajectories for a given acceleration profile
having the pointer acceleration profile parameters and opera-
tional condition parameters.
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POINTER ACCELERATION SYSTEM
MODELING

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims priority to U.S. provisional appli-
cation entitled, “Control Method for Pointer Acceleration for
Computer Mice or Other Interfaces,” having Ser. No.
62/481,783, filed Apr. 5, 2017, which is entirely incorpo-
rated herein by reference.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under
contract N00014-14-1-0635 awarded by the Office of Naval
Research, contract ECCS-1102348 awarded by the Office of
Naval Research, and contract CMMI-1436284 awarded by
the National Science Foundation. The government has cer-
tain rights in the invention.

TECHNICAL FIELD

The present disclosure is generally related to implemen-
tation of pointer acceleration techniques by pointer input
devices.

BACKGROUND

Pointer acceleration is often used in computer mice and
other interfaces to increase the range and speed of pointing
motions without sacrificing precision during slow move-
ments. However, the effects of pointer acceleration are not
yet well understood.

BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the present disclosure can be better
understood with reference to the following drawings. The
components in the drawings are not necessarily to scale,
emphasis instead being placed upon clearly illustrating the
principles of the present disclosure. Moreover, in the draw-
ings, like reference numerals designate corresponding parts
throughout the several views.

FIG. 1 is a flow chart diagram of an exemplary method for
evaluating a pointer acceleration profile in accordance with
embodiments of the present disclosure.

FIG. 2 is a block diagram of an exemplary computer that
can implement one or more operations specified by the
method of FIG. 1.

FIG. 3 depicts a table summarizing scaling function G
(acceleration pointer profiles) that can be evaluated by
embodiments of the present disclosure.

FIG. 4 is a block diagram representing the integration of
a VITE model (representing human pointing dynamics) with
a pointing acceleration model of a pointer device in accor-
dance with embodiments of the present disclosure.

FIG. 5 is a plot of a robustly forwarding invariant set of
trajectories in accordance with one example of the present
disclosure.

FIG. 6a is a plot of a robustly forwarding invariant set of
trajectories in accordance with an additional example of the
present disclosure.

FIG. 65 is a plot of a perturbation set in accordance with
the example of FIG. 6a.
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FIG. 7a is a simulation plot of trajectories without delays
or perturbations in accordance with one example of the
present disclosure,

FIG. 7b is a simulation plot of trajectories with delays or
perturbations in accordance with one example of the present
disclosure.

DETAILED DESCRIPTION

Aspects of the present disclosure are relevant to designing
pointing interfaces. Methods, systems, and apparatuses of
the present disclosure use a system perspective and feedback
control to analyze the effects of pointer acceleration and
optimize the performance of pointer acceleration of pointer
devices under varying operational and user conditions, in
various embodiments.

Pointing devices such as computer mice, joysticks, and
touchpads are commonplace in today’s computing and com-
munication systems. Most of these devices use pointer
acceleration techniques, which increases the sensitivity of
the pointer as the speed of the pointer increases, to improve
and speed up basic user interactions. Pointer acceleration
helps by adjusting the device’s sensitivity based on the
user’s movement speed, which allows the user to control the
pointer with a wider range of speeds and makes the device
feel more responsive. However, there has previously been a
lack of systematic research in how to design and implement
pointer acceleration so it is best for a particular task,
interface, and user. Consequently, designers and users must
manually tweak pointer acceleration settings in an attempt to
reach desired levels of performance and comfort.

Embodiments of the present disclosure can characterize
which acceleration profiles will provide a desired level of
performance and stability properties under different operat-
ing conditions and/or user attributes. For example, by taking
a systems perspective of an overall pointing system that
includes the pointing device, pointer acceleration, and
human user, as opposed to only considering the pointer
device itself. The results show how acceleration profiles can
affect the robustness of the overall pointing system to delays
and disturbances, which can limit performance in many
applications. Correspondingly, embodiments of the present
disclosure can enable selection of selection of pointer accel-
eration system parameters that can enhance the performance
of pointing devices under realistic operational conditions
and/or user attributes, whereas current pointer acceleration
methods are limited by heuristic designs that lack of con-
sideration of feedback and robustness. For example, even
though pointer acceleration is used widely, there is not yet
a consensus on how much or what type of pointer accelera-
tion should be used for a given task or interface. In practice,
real implementations of pointer acceleration are usually
designed by experimenting with different acceleration pro-
files without using specific design principles. There are also
some disadvantages to pointer acceleration that are not yet
completely understood. For instance, pointer acceleration
may make it more difficult for the user to predict the motion
of the pointer and to reproduce desired motions. This can
decrease pointing accuracy and speed and can worsen the
user’s subjective rating of a device’s feel.

However, by better understanding the effects of pointer
acceleration and human pointing motion, embodiments of
the present disclosure can be an important tool in the design
of improved pointer interfaces having enhanced perfor-
mance characteristics. Such performance enhancements
may include improving the speed and precision of various
pointing devices, which can lead to the development of
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improved interfaces and interactions for applications rang-
ing from everyday computer use, to video games, virtual
reality, remote control of unmanned underwater or space
vehicles, etc.

Some example embodiments are directed to apparatuses
and methods for evaluating pointer acceleration parameters
within a pointer acceleration system model, in which the
closed pointer acceleration model is based on a first model
describing user pointing motions integrated with a second
model of pointer acceleration motions. Accordingly, exem-
plary apparatuses and methods of the present disclosure can
develop performance constraints for the pointer acceleration
system model having the pointer acceleration parameters to
converge to a defined stable state.

In the sections that follow, it is shown how a closed loop
pointing system is affected by delays and perturbations.
Correspondingly, in some embodiments, apparatuses and
methods may define a relationship between maximum delay,
maximum perturbation set, and a set of pointer trajectories
for a given acceleration profile (or scaling function) that
describes a defined stable state for the stated operational
conditions (e.g., delay and perturbation parameters). There-
fore, based on parameters for a given acceleration profile,
maximum delay, and maximum perturbation set, the set of
pointer trajectories (trajectory set S) for a given acceleration
profile can be determined that will not exceed the stated
operational conditions. Accordingly, different pointer accel-
eration profiles and their respective trajectory sets can be
determined and evaluated under the same operational con-
ditions.

Next, the flow chart of FIG. 1 shows an exemplary
method for evaluating a pointer acceleration profile in
accordance with embodiments of the present disclosure. The
method 100 of FIG. 1 comprises a computing device 200
(FIG. 2) (or an acquisition module 220 of the same or a
different computing device) obtaining (110) a closed loop
pointer acceleration system model, in which the closed loop
pointer acceleration system model is based on (1) a model
describing user pointing motions integrated with (2) a model
of pointer acceleration motions under operational condi-
tions. Such operational conditions may be represented as
delay and perturbation functions. Further, the computing
device 200 (or the acquisition module 220) may obtain (120)
values for system parameters that include pointer accelera-
tion profile parameters or values, maximal delay parameters/
values, and maximal perturbation parameters/values from a
computing data store 290 and/or memory 250 and/or user
input 280. The computing device (or a calculation module
230 of the same or a different computing device) may then
determine (130) a set of pointer trajectories (trajectory set S)
for a given acceleration profile (having the specified pointer
acceleration profile parameters) and operational conditions.
Then, the computing device, can repeat (140) the above-
recited steps for a different set of system parameters defining
a different pointer acceleration profile. Further, the comput-
ing device can output or present a side-by-side comparison
of the resulting trajectory sets for the different pointer
acceleration profiles on a display. Also, the computing
device (or a simulation module 240) can plot (150) one or
more trajectories of the different pointer acceleration profiles
on the display.

The acquisition module 220, the calculation module 230,
and/or the simulation module 240 can be implemented in
software (e.g., firmware), hardware, or a combination
thereof. For example, in an exemplary mode, the calculation
module 230, among others, is implemented in software, as
an executable program, and is executed by a special or
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general purpose digital computer. An example of a computer
that can implement the calculation module 230 of the
present disclosure is shown in FIG. 2.

Generally, in terms of hardware architecture, as shown in
FIG. 2, the computer 200 includes a processor 210, memory
250, and one or more input and/or output (I/O) devices 230
(or peripherals) that are communicatively coupled via a local
interface 240. The local interface 260 can be, for example
but not limited to, one or more buses or other wired or
wireless connections, as is known in the art. The local
interface 260 may have additional elements, which are
omitted for simplicity, such as controllers, buffers (caches),
drivers, repeaters, and receivers, to enable communications.
Further, the local interface may include address, control,
and/or data connections to enable appropriate communica-
tions among the aforementioned components.

The processor 210 is a hardware device for executing
software, particularly that stored in memory 250. The pro-
cessor 210 can be any custom made or commercially avail-
able processor, a central processing unit (CPU), an auxiliary
processor among several processors associated with the
computer 200, a semiconductor based microprocessor (in
the form of a microchip or chip set), a macroprocessor, or
generally any device for executing software instructions.

The memory 250 can include any one or combination of
volatile memory elements and nonvolatile memory ele-
ments. Moreover, the memory 250 may incorporate elec-
tronic, magnetic, optical, and/or other types of storage
media. Note that the memory 250 can have a distributed
architecture, where various components are situated remote
from one another, but can be accessed by the processor 210.

The software in memory 250 may include one or more
separate programs, each of which comprises an ordered
listing of executable instructions for implementing logical
functions. In the example of FIG. 2, the software in the
memory 250 includes the calculation module 130 in accor-
dance with an exemplary embodiment, among other mod-
ules 120, 140, and a suitable operating system (O/S) 270.
The operating system 270 essentially controls the execution
of other computer programs, such as the calculation module
130, and provides scheduling, input-output control, file and
data management, memory management, and communica-
tion control and related services.

The I/O devices 280 may include input devices, for
example but not limited to, a keyboard, mouse, scanner,
microphone, etc. Furthermore, the I/O devices 280 may also
include output devices, for example but not limited to, a
printer, display, etc. Finally, the /O devices 280 may further
include devices that communicate both inputs and outputs,
for instance but not limited to, a modulator/demodulator
(modem; for accessing another device, system, or network),
a radio frequency (RF) or other transceiver, a telephonic
interface, a bridge, a router, etc.

When the computer 200 is in operation, the processor 210
is configured to execute software stored within the memory
250, to communicate data to and from the memory 250, and
to generally control operations of the computer 200 pursuant
to the software. The calculation module 130 and the O/S
270, in whole or in part, but typically the latter, are read by
the processor 210, perhaps buffered within the processor
210, and then executed.

In the following description, various specific details are
set forth to describe specific examples presented herein. It
should be apparent to one skilled in the art, however, that
one or more other examples and/or variations of these
examples may be practiced without all the specific details
given below. In other instances, well known features have
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not been described in detail so as not to obscure the
description of the examples herein.

As discussed, embodiments of the present disclosure
utilize a systems perspective to evaluate pointer accelera-
tion. In one embodiment, such a system model captures most
existing implementations of pointer acceleration along with
a model representation of human pointing dynamics with
feedback delays or perturbations. To represent human point-
ing dynamics, a vector integration to endpoint (VITE) model
is used in various embodiments. This approach is novel in
that prior approaches have not represented a closed pointer
system (for pointer device and the user) under realistic
operational conditions. For example, perturbations can arise
from discretization errors and inaccuracies in human per-
ception and control. Embodiments of the present disclosure
may also develop state performance bounds for the closed
loop system, as related to Fitts Law, in order to find bounds
on the allowable perturbations and/or delays that will allow
for performance of a pointer device at a desired level. In the
sections that follow, methodology of the embodiments of the
present disclosure are discussed.

Section 1. Pointer Acceleration Background and
Dynamics

Considerable research has shown that humans generate
similar motions when reaching and pointing with their arms,
laser pointers, mouse pointers, and other devices. The VITE
model for pointing can be written as

{\'}:y(—v+p—u) (65)]

y=g0b;

where the gain g(t) is called the go signal, y>0 is an internal
system parameter, p is the target position of the pointer, u is
the feedback of the perceived position of the pointer, y is the
true position of the pointer that is specified by the user, and
the state v is called the difference vector. The operator [*] ;*
is used to switch the pointer motion off when the pointer
overshoots its target, and is defined by

if<v,d> =0 2)

otherwise

where d is typically defined as the direction from the pointer
to the target at the initial time, so d=p(0)-u(0). The notation
[v],* extends the original VITE model to allow arbitrary
target locations.

One can use the VITE model to describe motion by a
person trying to drive the true position y to the target
position p for the pointer. If there is an overshoot and y
passes over the target pointer position, then the human
quickly stops, but does not take corrective action to move
back closer to the target. The model parameters are adjusted
by the human to fit different types of performance objec-
tives, and these parameters can be viewed as being very
slowly time varying. In Section 4, we show how a relation-
ship between y and the pointer acceleration scaling function
(also referred as a pointer acceleration profile) can ensure
that key state performance bounds are met.

Pointer acceleration aims to make the pointer more sen-
sitive at higher speeds than lower speeds. This enables quick
and long pointer motions, as well as slow and precise pointer
motions. As we will see below, pointer acceleration can
make pointer motion less stable in the presence of feedback
delays, in addition to making it more difficult for a user to
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6

predict pointer motion. Whether or not pointer acceleration
improves a user’s subjective feel for the pointing interface
appears to be a very personal choice. Although many oper-
ating systems have some type of pointer acceleration as their
default settings, many modem video games that require
exact pointer movement do not use any pointer acceleration.

While there are many different pointer acceleration imple-
mentations, most can be described by the following model.
We view pointer acceleration as a transformation of the
user’s pointer position output. If v&€R” is the pointer posi-
tion specified by the user, then the pointer acceleration
output w satisfies

O=G(IvIv (3)

where G:R — R is a suitable scaling function and I*l is the
usual Euclidean norm (see Section 2 for notation used in this
disclosure). A few popular choices for the scaling function
G are summarized in Table I (shown in FIG. 3), including the
Linear and Threshold scaling functions. The form of pointer
acceleration (3) is in fact pointer velocity scaling, although
we use the term pointer acceleration as this language is
commonly used in the literature. We can typically approxi-
mate the profiles in such a way that G is positive definite and
continuously differentiable, which can help us apply Theo-
rem 3 later. A notable exception to the pointer acceleration
model (3) involving actual acceleration is the polynomial
scaling function G o pmomia(IVl, 1VDZk +k, VY, which
adjusts sensitivity using both pointer input acceleratlon and
velocity. While we do not consider scaling functions that are
a function of pointer input acceleration, we believe that it
may be possible to extend our work to them. In practice,
most pointing interfaces do not measure pointer velocity
directly. Instead, the pointer velocity is computed via dis-
cretization for use in the acceleration system. While this is
typically not a major issue, the resulting accelerated pointer
output can be very irregular when the pointer moves very
quickly, or when the scaling is very large. One typically
mitigates this by limiting the maximum pointer speed out-
put, but we do not consider this here; however, see Remark
3 for additive uncertainties on v that can represent discreti-
zation errors.

To connect the VITE model (1) with the pointing accel-
eration model (3), as in FIG. 4, we choose the input u=w and
the output v=y. In later sections, we consider feedback
connections that have delays and perturbations, which may
be present in real systems because of limitations in the
human operator and computer interface. Choosing the over-
all state as x—(w,v)"=(x,,x,)", the closed loop pointing
dynamics become

|

<l
el
[ G(3hy }
|
|

y(=v+p-w)

GllgnDIiDe @Dy }
y=v+p-w)

Gllg(x2li Dg (021} }
yexvp-x) |

For simplicity, we take g to be a constant, which is the
most commonly considered case in the literature, and only
consider one dimensional pointing dynamics, as most point-
ing motions are largely constrained to the line between the
start and goal pointer position, even when there are addi-
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tional degrees of freedom. We assume without loss of
generality that p=0 and x,(0)=w(0)<0, so d=p(0)-u(0)>0,
which can always be achieved by a coordinate transforma-
tion. The closed loop dynamics are then

)

G

h [ =YX +x2)

5

where x=(x,,%,)"=(w,v)? as defined previously, G(*)=gG
(g*), and x,* denotes the positive part, that is p*=p when
p=0, and p=0 when p<0. The desired equilibrium set is

R—{re €220}, ®

but see below for more general pointing models with delays,
perturbations, and state constraints.

Section 2: Definitions and Notations

In this section, all dimensions are arbitrary, unless indicated.
We use the standard classes of comparison function « , and
xc . Let RCe”. A function o defined on some set 0Ce ™ is
positive definite with respect to £ provided that it is zero at
all points in £ Mo and positive at all points in 0\& . We use
C! to mean continuously differentiable, and we understand
the derivative f'(0) of any function f that is defined on [0,%0)
as the right derivative at 0. By piecewise continuity of a
function defined on [0,0), we mean that it is continuous
except at finitely many points on each bounded interval. Let
uCe™ and M« denote the set of all piecewise continuous
locally bounded functions d: [0,00)—#. For all d& M« and
any interval ZC[0,00), let Bz be the supremum of the
restriction of & to Z . Set IxI R=inf{Ix-rl:r€¢} for all x&
e,

Given a constant T=0 (representing an input delay) and a
set sCe”, let C,(5) be set of all continuous functions x,:
[-T.0]— 8, which we write as C,,, when § =¢”. We define
the operators x,(s)=x(t+s) for all s€[-T, 0] and t=0 and all
functions x: [-T,0)—¢”. Given a function F : C, xu —¢£”,
we call the system %(t)=F (x,,9(1)) forward complete pro-
vided for each x,£C,, and each dEMu, the corresponding
solution x(t, X, d) of the system is uniquely defined for all
tE€[0,00). Given a subset s Ce” and a forward complete
system, we say that § is robustly forwardly invariant for the
system with perturbations valued in ¥ provided x(t, X, 0)E
§ for all t=0, x£C,(8), and § € M. We say that § is
robustly forwardly invariant for the system with the maxi-
mal perturbation set # provided these two conditions hold:
(a) $ is robustly forwardly invariant for the system with
perturbations valued in # and (b) for each point dE
R "™closure(u ), there exists an initial function x,£C, ()
such that the trajectory x(,x,,0) of the system for the
constant perturbation 8(t)=8 admits a time >0 such that
x(t,x,0)ER "\ 8 . Maximality of « therefore roughly means
that enlarging » would allow trajectories to leave §. The
special case of robust forward invariance where there are no
perturbations 9 is the standard strong invariance property.

The system is ISS with respect to £ and # on § provided
(a) s contains ¢ and is robustly forwardly invariant for the
system with perturbations valued in « , and (b) there are
functions fE & and acx , such that for all solutions x(e,
X5,0) of the system for all x,£C,,(8) and for all 8 M , we

have  Ix(tx,.0) X (t, x5, 8)|e < lupliar s :—t<r<0}, 1)+
a(ldljo,4) for all t=0. The special case of ISS where the
a(ldljo 4) term is not present in the ISS estimate and F has
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8
no perturbations 8 (i.e., X(t)=F (x,)) is global asymptotic
stability (or GAS)to £ on S.

If & is robustly forwardly invariant for a system with
perturbations valued in # and £C S, then a function V:
C,,—~R” is an ISS Lyapunov function for the system with
respectto € and ¥ on § provided (a) V(x,) is differentiable
as a function of t on [0,o0) for all solutions x(*) of the system
with initial functions x,&C,,(8) and (b) there are class x,
functions a., ., o, and o, such that along all trajectories x(t)
of the system for all initial functions x,C,,(S) and for all
choices of d& Mu , the following hold for all t=0: «l=®le) <V
(X,)= FGupll=®le 1€ €[t—T,1]}) and

d .
=V 0 < —eoV i) + @1 (0.)-

Standard arguments show that the existence of an ISS
Lyapunov function with respect to € and « on § implies
the ISS property with respect to € and ¥ on § when no
delays are present:and the same can be shown under time
delays, by similar: arguments that we omit here.

The special case of an ISS Lyapunov function for systems
X(t)=F (x,) without perturbations is a strict Lyapunov func-
tion with respect to £ on S . This is a slightly more
restrictive definition of strict Lyapunov functions, because
a, is normally allowed to be positive definite with respect to
{0}. without necessarily being of class of « , but there are
techniques for transforming strict Lyapunov functions for
cases where o, is only positive definite into new Lyapunov
functions that satisty our requirements with o€« .: The
existence of a strict Lyapunov function implies GAS to
£ on §. Unless indicated, we assume for simplicity in all
of what follows that the initial functions x=C, (§) are
constant.

Section 3. Strict Lyapunov Function

To analyze the effects of time delays and perturbations on
the closed loop pointing system with acceleration, we will
examine its ISS properties using a strict Lyapunov function
that we construct next. See Proposition 1 for ways to
construct the function # in the following theorem, and see
the sections below where we use the ideas from this section
to prove results under state constraints and delays to get state
performance bounds and robustness results.

Theorem 1
Let y>0 be a constant, and G: [0,00)—[0,0) be locally
Lipschitz and positive valued on (0,0) and satisty lim
inf, _ G(r)>0. Let # :R—R be a C' function satisfying:

p—>00

(1) H(r) =0 for all r <0, and H(r)> 0 for all r >0,
2) f GOydt = (2] y)H(r) for all r > 0,
0

(3) rG(r) = H(r) for all r = 0, and

@) H(0) =0, and 0 < H'(r) < % for all r > 0.
Then the function

N 6
Yt = [T6@ ar S e P - Ho vy
0
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satisfies the estimates

. 7
TG+ L) € Vi) < "

10 J,

2
7’((962)+7+

1 2
— 2 (X1 +x2)

fo P+
for all xR ? and

; ? 1 - ®
Vienl) € = 2 Gxy s 20 = SHO) G083 0

along all trajectories of (4), and so is a strict Lyapunov
function for (4) with respect to € ={x€R % x,20,x,=—x, } on
5 =R 2. Therefore, (4) satisfies GAS with respect to (5) on
s=R2

Proof
We can expand the first term of (6) and apply Condition (2)
as

1 >
Veewlt) = 15 [ G e +
0

%2 .
T |Gt dr s i) - Hon i + ) >
0

2 +y 5+ 9 2 Y 2
0 G(EHErdd+ 5—'7’{ (x2) + 5 (0 +22)" = [H 020y +2x2)]
0 Y 2

where we applied Condition (2) with the choice r=x, and
also need the fact that # =0 on (-,0) and the lower bound
= (X,)(X; +X,)=—| # (X,)(X; +X,)|. By Young’s inequality, we
also have

1
HE) 0 + 0l < )+ F i +x0)

for all x€ER 2 Combining the preceding two inequalities
gives the lower bound in (7). The upper bound in (7) follows
by using the triangle inequality —# (X,)(X;+X,)<V2 # (X,)+
Ya(x,+X,)? to upper bound the term —# (X,)(X,+X,) in the
formula (6).

To prove the decay condition (8), notice that along all
trajectories of (4), we can use the triangle inequality to get

Vi = =y GO (n1 4+ x2) + 7 H (02)(x1 + 320 + (&)

(yu +02) = H )Gl g — ¥y +22)) < 720 + 220" -

- 2 1
Hx2) G ) + ((% +W(x2)](x1 +a)t+ zwz(m}.
Also, by Conditions (3)-(4), we have

¥ 1, 1 s 10
YH (%) < % and 5'7’{ (x2) < 5'7’{(362)9‘2 Gx;)

when x,=0; furthermore, (10) holds when x,<0 as well,
because in this case # (x,)=%#'(x,)=0 by Conditions (1) and
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10
(4). Using (10) to upper bound the terms in curly braces in
(9) gives (8). Letting V/(x) and V*(x) denote the lower and
upper bounding functions for V.., (X) in (7), respectively,
we then choose

afs) =

S VIO >
T (Vi = s}

a(s)=s+sup{V*(x):Ix| £ =s}, and the composition o,=c0
o' to satisfy the requirements in our strict Lyapunov

function definition with t=0, where

s
1+s

a1(s) = ——Inf{y? 0 +x2)° [ 4+ HO)G3)x [ 2:1xl, = 5).

An important motivation for having an explicit construc-
tion for # from Theorem 1 comes from the possibility of
redesigning the output of the pointer acceleration system to
make the closed loop system ISS when there is a perturba-
tion. Given #, it is possible to construct a redesigned pointer
acceleration output w! such that when there are perturba-
tions & in the feedback connection u=w*+3, the dynamics:

[ Gus an

YW@ + 3, +6)

is ISS with respect to € and =R on §=R?Z This is
because we can take w!(x)=x,+y(3QV,,,.(X)/3X,), which can
be expressed in terms of G and # from the strict Lyapunov
function V,,_,, in (6), and use o,Ex ., from our proof of
Theorem 1 and the triangle inequality to get —Iy(3V,,,,(x)/
3X,)P=y(BV,,..(X)/3%,)8=-0.51y(3V,,,,.(X)/3%,)I1>+0.5181*

andsoalso V,  =—0,,(V,..(x))+0.518]? along all trajectories
of (11), so V,,,,, an ISS Lyapunov function, which implies
the ISS property. This motivates finding a formula for #,
and under standard conditions on G (which hold for many
examples of interest from Section 1), we can readily find a
function # satistying the requirements from Theorem 1. For

instance, we prove the following:
Proposition 1

Let v>0 be a positive constant, and G:[0,00)—[0,%0) satisfy
the requirements from Theorem 1 and admit a constant ¢, >0
such that G(r)=c,r for all r=0. Set

X = mim ¢ Zc 7
= a4 g 3 [

Then for any constant k,&(0,x], the function

(12

(a5 (13)

MOy

satisfies Conditions (1)(4) from Theorem 1, so (6) with the
choice (13) is a strict Lyapunov function for (4) with respect
to (5) on §=R?2
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Proof
Condition (2) holds because our lower bound on G gives

Cq r4

3 A+

14

" "2 Ga 3 2.1
G(eydr = el dt = =1 = = —H(r)
0 0 3 Y

for all r=0, where the second inequality followed by
separately considering the cases rzl and r<l, and
where the last inequality used the fact that i =vyc_/G.
To check Condition (3), note that

r? > (15)
H(r) < cam < cor” < rG(r)

holds for all r=0. Condition (4) holds because k,=<y/8, so

r

H () =k,
=« (1+r27

<7 <7
rl rl

(1+72)

for all r=0, which proves the proposition.

Although (11) is ISS, it is useful to find conditions under
which the original closed loop system (4) is ISS with respect
to additive uncertainties on the original output w!(x)=x, on
suitable robustly forwardly invariant sets with maximal
perturbation sets. The ISS and invariance properties of the
original system characterizes its robustness under different
choices of scaling functions and other parameters. We begin
this analysis with our next section on robust forward invari-
ance.

Section 4. Robust Forward Invariance

The preceding analysis motivates the problem of finding
maximal allowable perturbation sets for robustly forwardly
invariant sets, because the perturbation bounds one can
obtain from ISS Lyapunov functions may be conservative.

In this section, we first provide an analogous result for the
undelayed pointing dynamics

G

[ } (16)
T vn 2 + 50

with uncertainties 8 under suitable conditions on G. Later,
we use the §’s to represent control uncertainty, or the effects
of input delays. For what follows, we set & (r)=rG(r), and
we use the sets

S, ,b,c:{XER 2ilxylsa,~b=x +x,5c}

a,

an
for suitable constants a>0, b>0, and ¢>0; see FIG. 5.
Proposition 2
Let G:[0,00)—[0,0) be locally Lipschitz and positive valued
on (0,). Lety, a, b, and ¢ be any positive constants such that
c>|6" g 4uer/y and o>max{b, c}. Then S, , . is robustly
forwardly invariant for (16) with the maximal perturbation
set D a,b,c:((l/v)l Gt |[O,a+c_cib)'
Proof
To prove robust forward invariance of S, , ., it suffices to
consider continuous §’s, because if x(t,x,,d) was a trajectory
for (16) that starts in S, , . for a piecewise continuous 8 but
exits S, ., then we could approximate § by a continuous
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T, .. valued perturbation 6, (in the L' norm) such that
x(t,x;.9,) also exited S, , . Set c,=c-16"l;, ., /v, and note
that x,"€[0,a+c] for all xS, . If §:[0,0)—=7T ,, _ is con-
tinuous and t=0 were such that a corresponding trajectory
x(*) of (16) for § starts in S, , . and x(t) is on the top leg of
S, 5., then X, (D+x,(t)=c, so

O+ k0= (18)

1 + + =
—y(c +60) -~ Gl ) (z)) <=yle =1G Njopsa1 /¥) + ycp = 0.

This prevents x(t) from exiting S, , .. through the top leg of
S5 €Xcept possibly at times t when x,(t)==a, by conti-
nuity of X,(€)+%,(€), which implies that x,(€)+x,(€) is
decreasing in an interval of £ values of the form [t, t+£ .] for
some £€.,>0. (The strictness of the inequality in (18) is
needed to ensure that x, (€ )+x,(€ ) is decreasing in such an
interval of € values.) Similarly, if x(t) is on the bottom leg
of S, ;. ., then X, ()+x,(t)=—b, so we instead get X, (D+X,(t)=
G(x, (OX, ()=y(=b+8(1))=y(b-56t))>0, which prevents x(t)
from leaving S, , . through the bottom leg of S, , _, except
possibly if x,(t)=+a. As a>b, we get x,>0 and so also x,>0
on the left leg of S, , . Also, X,=0 on the right leg of S, _,
as a>c ensures that x,"=0 on the right leg of S, .. (Without
the condition a>c, we could have %,>0 on the right leg of
S.5.» which would allow trajectories to exit through the
right leg.) This proves the robust forward invariance prop-
erty.

To prove the maximality of Z , , , first note that for each
constant d>b, the trajectory of (constant perturbation d(t)=d
starting at the initial state (-b, 0) on the bottom leg of S, , .
satisfies %, (0)4%,(0)=G(x,*(0))x,*(0)—y(-b+d)<0, so the
trajectory leaves S, , ., through (=b,0). Also, if d<-c,, is any
constant, and if we choose vE[0,a+c] such that & (v)=
1% I 44cp> then the trajectory for the constant perturbation
d(t)=d starting at the point (c—v,1) on the top leg of S
satisfies

a,b,c

#1(0) + 52(0) = G — y(c + d) 19

= Ae =1 o peq [y +d) > 0,

so x(*) exits S, , . This proves the maximality of T, .

Remark 1
We can replace the bounds —a=x, =a in the definition of S,
by —a=x,=d for any constant d>c; the proof of the robust
forward invariance with this change is as before. The
requirement ¢>|6" |, . 4/y from Proposition 2 holds if y>0
is large enough. While robust forward invariance does not
imply convergence to £, it can be used with our Lyapunov
analysis to prove asymptotic convergence to £ while main-
taining suitable state performance bounds; see below. We
can choose (a, b, ¢)E(0, »)* such that the robustly forwardly
invariant set S, , _ is arbitrary large. Also, even though each
set S, , . is a proper subset of R>, we can build a nested
sequence $,CS,C . . . of such sets whose union U,S=R .
This allows us to make statements about global system
behavior.

Two pertinent features of Proposition 2: are (a) the
compactness of the robustly forwardly invariant sets S, ,,_;
and (b) the fact that the maximum perturbation sets T, .
are intervals. If we relax the conditions that the robustly
forwardly invariant sets and maximum perturbation sets
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must be bounded, then for each constant >1, we can prove
robust forward invariance results for the more general
system

~ [ G +610) } 20

R T TAON

with perturbations 9, in both equations, by replacing S, , . by

—a, and}

for any constant a>max{b,c}; see FIG 6a-b. To see how, let
£, denote the upper left kg of S, *, having the slope p.
Then & ,C(-0,0)x(0,%), because xl_—a+(b+c)/(l+p)<0 for
all x, such that x&¢ . Let

@D

“ xeR: —bsx+x,<c,x 2
Sabe =

X< pxp+(p+Da->b

Ty = max{—f}u(xz) - %(xl +x)x e (‘,},
c+b

d
1 +ﬂi}’ an

g(ﬁ", —dl)} <dp < % +b}.

A =c- £rnax{aﬁ(s):s [
Y

p [0,a+c—

Dipe = {d [S Rz:max{% - cf,,

We then prove Proposition 3.
Proposition 3
If w>1 is a constant and y, G, a, b, and c satisfy the
assumptions from Proposition 2, then S, , * is a robustly
forwardly invariant set for (20) with the maximum pertur-
bation set T
Proof
We indicate the changes needed in the proot of Proposition
2. We replace S, ., T, andc, by S,, ¥, T and

abc .

abc ’

CE; , respectively. For eachde T, ", we have —05 <d,—d,/
y<b. Hence, our treatment of the slope llegsofS, , .in the
proof of Proposition 2 (with d replaced by 6,-9,/y), com-
bined with the fact that x,<a+c—(c+b)/(1+w) for allxeS, , M,
imply that no trajectory of (20) starting in S,, * for any
T .5 -valued continuous perturbation can exit through
either of the slope -1 legs of S, , ", except possibly though
an endpoint of € H. On the other hand, for any trajectory x(*)
of (20) for any T ,, "-valued continuous perturbation d()
and any time t=0 such that x(E¢ , our definitionof T, , *
gives S 1)k, (1) 06y (4(0+8,(0) -1 & (x,(0)-
1d, ()=p(o, ~((V/Wd,(H)+3,(1)))<0. Because x,-ux; is the x,
axis intercept of' the line through any point x having slope p,
this implies that x(*) cannot exit S, , " through ¢ .. Finally,
the maximality of T ,, * follows from the maximality part
of the proof of Proposition 2 (with 16" 1, ., ; and 3 replaced
by 6%, a+c_(c+b)/(l+u)]and d,-9,/y, respectively), combined
with the fact that the maximum in the definition of o, occurs
at some point XE¢€ . Hence, for any d=(d,d,)ER * such that
Wy (=d, +0p)>a and the trajectory x(*) of (20) starting at
the maximizing pair X for the constant perturbation 3(t)=d,
we get X,(0)-px, (0)=u((p,,~((v/w)d,+d, ))>0, so the trajec-
tory through a S, through x€¢ .
Remark 2

The maximum perturbation sets = ,, " are complicated
because they are not product sets. However, if the assump-
tions of Proposition 3 hold, then we can choose p large

a,b,c,
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enough such that 6,,<0, because x,>0 for all x€¢,. Then for
all constants r,=(0,1), the set B, " the open product set
neighborhood

T a,b,cb’“:(—(l—VO)YMOa(l—Vo)YM o)x(—roM ofoMo) (22)

of 0, where M Ozmin{b,"‘g ,—0,/v}>0. In fact, for each d=(d,,

d,) in the set (22), we get (dl/y)—cg <(l—rO)M0—C§ >d, M-
]

p <d,, (WY)(0,~d)<WY)(0,+(1-1,)yM o )<(WY)(O,+7Mo)-

roMo<d,, and (d, /y)+b>—(l—r0)M0+berM0>d2, which
shows that d&z , , "
Remark 3

We can use the sets (22) to cover more general pointer
acceleration models that could have additive uncertainties
on the pointer position measurements, that is, v=y+A, where
we assume that A is a C' perturbation. To see how, note that
by a slight variant of the argument that led to the intercon-
nected dynamics (4), we can show that replacing y by y+A
produces the new x; dynamics X,;=G(lgx,*+d,l), where
8,=A. If x(*) is valued in S, * and the continuous pertur-
bation 0 is valued in (22) for some choice of the constant
1,£(0,1), and if G is C, then we can use the Mean Value
Theorem to rewrite our new X, subsystem as

= G )ng + Glga})dr + (Gllgxs +61)) — Glgxi))igas +61) (23

= Gf)ng +d.oi,

where |d.| is bounded by A=|%smsmmm (gatc)+(1-ry)
M)+ Glig giare), and where we used the fact that x,=a+c if
x&8, , M This produces a perturbed system that is covered
by Proposition 3 (with 9, in the proposition replaced by the
scaled perturbation d.d,). Therefore, for each constant r,&
(0, 1), each set S, , * is robustly forwardly invariant for the
perturbed dynamics

[ Gllgxs +61(0Digxg + 1) @4

—y(x1 +x2 +62(2)

when we restrict the perturbations d to be piecewise con-
tinuous locally bounded functions that are valued in

(1= rolyMo
max{1, A)

@5

T:bxu

abc —

( (L—ro)yMo

X (—rg My, roM,
T ] (=ro Mo, roMo)

which is a scaled version of the product set (22) from
Remark 2.

Section 5. Robustness to Delays and Perturbations

We have so far shown how the closed loop pointing system
is effected by perturbations when there are no delays. We
next prove stability properties on robustly forward invariant
sets under delays but without perturbations; see Theorem 3
for robustness under both delays and perturbations, under a
slightly more restrictive delay bound. In what follows, the
delay only occurs in x,, which corresponds to delays
between the output of the pointer acceleration system and
the user’s perception of the pointer location. See Section 7
for an example showing how the delay bound in the fol-
lowing theorem cannot be removed. Our strategy for han-
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dling delay is to add together: (i) a Lyapunov type function
for the corresponding non-delayed system; and (ii) a double
integral term whose bounds involve the delay. This so-called
Lyapunov-Krasovskii method.

Theorem 2

(A) For all positive constants b, ¢, and a>max{b, c},
nondecreasing locally Lipschitz functions G: [0,00)—[0,0)
that are positive on (0,%), and constants

y>Gla+oa+c)c (26)

and

1

0 @n
’ (a+e)Gla+c)

min{b, c— %G(u +c)a+ c)}],

we have the following: for all initial functions valued in
S all solutions of

a,b,o

e E0)210) (28)

=yt =1 + (1)

x(1) =

asymptotically converge to &. (B) For each bounded non-
decreasing locally Lipschitz function G:[0,00)—[0,0) that is
positive on (0,0), each constant y>0, and each constant
TE[0,1/IGl (9 o0y), We have all solutions of (28) asymptoti-
cally converge to €.

Proof

We first prove part (A). We first show that each trajectory
x(*) of (28) for any initial valuein S, , _remainsinS_ , for
all t=0. We argue by contradiction. Let T>0 be a constant
satisfying (27), and pick constants a>a, b>b, and c>c such
that

. G@+e)a+?d) 29

a> max{E, E}, ¥ B

and

min{b, cp}

Ga+oa+o)

where c,=c~16" | ,, /v as before. We can always find such
values a, b, and ¢ because of the strictness of the inequalities
in our assumptions and the continuity of G. If x(€) did not
remain in S,, ., then set t,=sup{s=0:x(€)ES,, . for all
€€[0,5]}, and let t,>t, be such that x(€)ES;5; for all
£€[0,t,]. Such a t, exists because S,, Cinterior(S;zz).
Then the restriction of x(*) to [0,t,] is a solution for the
perturbed dynamics (16) starting in S for 8(&)=
x,(€ —1)-x%,(€), which satisfies

a,b,c,

o (30)
|5((’)|<jj G(x3 ()xy (ndr

< 7G(a+8)(@+ &) < mingb, c,}.
Because (¢ ) remains in P, . on [0,t,], it follows from

Proposition 2 that x(°) stays in S, , . on [0,t,], contradicting
the definition of t;.

16

Because t<1/G(a+c), there is a constants £&(0,1) such
that

BD

5 l-¢
T< - .~ ~°
o Gla+c)
Gla+ c) - +ye

because the right side of (31) converges to 1/G(a+c) as £ —0
from the right. Fix such a constant £>0. We now use the
function

10

(B2

Vo (x) = fxz GEhHerde + Z{xf +axk + 2ex,x0).
15 A 2

Note that V,, is not a Lvanunov function with respect to £ on
R 2, because it is not identically zero on ¢ . For instance,

20
vl -1y = 21 -

Nevertheless, we use V,, and Barbalat’s Lemma to prove our
stabilization result under our delay bound (27), as follows.
Along all trajectories of (28) starting in S, , ., we have

d L y (33)
ZValalo) = -[F 30 + 2 an 0 + 2em )] 0= 0+ 020 +

30 v .
5 @010 + 20 (NG (5 (1)

= HF @) + ey + %)

(xlm - f " ogende + Xz(l)] +
35 -7

Y + 2O (5 0) + vl - DG )0 (1)
=~ W) +A,),
40 where & (r)=G(r)r as before, and
We=y(1- €)G 00 47 € (i 400)%,
A @ )G O 0+ €y ) T,

45 and

Z A, Gy (€, (€)dE.

Because x,=<a+c for all X&S,, . and G is nondecreasing,

5 We get G(x,")=(G(a+c)G(x,")"> for all XES,, .. Hence,
because x(€)ES,, ,  for all £=0, the Jensen inequality gives
T 251, Ty (6)(2 ()7 a€ Tlase) G4
so two applications of Young’s inequality give
55
1 o . Gla+c) (35)
Alxn) < 5370 = GO0 OF + Zr— T2+
1 2
SPem O+ x0f + -1
60 |
< W) +B f Gl (OG0
where
65 . Tyf}(a + c)(@(a +c) ] (36)
B=—"7—|—"-—+ve]
2 l-&
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Using (35) to upper bound A (x,) in (33), we get

d 1 (T 37
= V) S—EW(X(I)HBL Gl () (D) df.

Also, (31) gives

5/
B < E(l—s).

Fix any onstant £>0 such that

B<L< l(l—e). 38
2T

Notice that for all t=0, we have

d IG + + de =
Effr;fx (3 O () dlds =

TGO (D) (D) - f G (05 () de.

Hence, (37) and our bounds on £ give a constant ¢,>0 such
that the time derivative of

V70 £, .G, (8 (82 s

(39
along all trajectories of (28) starting in S, . satisfies
d . 1 e (40)
AN —z W) + LGl )z @) +
B -0 Gugunugyiar
< —coW(x(1).
The forward invariance of the compact set S, , . ensures

boundedness of x(t), and so also absolute continuity of
W(x(t). Because W is positive definite with respect to £, and
because (40) implies that [;"W(x(€))d€<co, Barbalat’s
Lemma gives lim,_, ., W(x(1))=0, and therefore also conver-
gence of x(t) to €. This proves part (A). To prove part (B),
we replace G(a+c) in the preceding argument by Gl .y, and
omit the portion of the argument about bounding d(t),
because no robust forward invariance is needed when prov-
ing a result on R 2 when G is bounded. This proves the
theorem.

Theorem 2 provides a simple bound on the allowable
constant delay T that ensures attractivity properties of the
input delayed model (28). It can be applied when one knows
a suitable upper bound on T, even if the exact value of T is
uncertain. However, because Theorem 2 is based on Bar-
balat’s Lemma instead of a strict Lyapunov function, it does
not lend itself to proving ISS properties for

GO 3@ @n

=yt = ) + 00 +60)

x(1) =

with uncertainty 3(t) and constant delay t. Therefore, we
prove the next result on (41), under a slightly more restric-
tive bound on T than the one in Theorem 2 (but see Remark
4 for a further generalization with perturbations in both
equations). We use a different # from the one in Proposition
1. Our new choice of # will not satisfy the requirements
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(1)-(4) from Theorem 1 for all r=0, but it will satisfy the
requirements (1)-(4) for all r=a+c and so is a valid choice
when we restrict X to any of our robustly forwardly invariant
sets S, 5 -

Theorem 3
Let G: [0,0)—>[0,%) be C*, positive definite with respect to
{0}, and nondecreasing. Let b>0, ¢>0, and a>max{b,c} be
constants. Set

H(r)=r"G(r), (42)

and let the constant y>0 be such that ¢>1&* |, . /v and

PSP (0,0r qmax {4 H (1), 2121 [y G(€) € al ). 43)

Set ¢,=c-G(a+c)(a+c)/y. Then for all constants T such that

. {1 mingb, cp} } (44)
O<7<mim—, —————
2 (a+o)Ga+c)

the system (41) is ISS with respect to ¢ and u =(-3,5) on
§=8,, ., where 3=min(b, c,)-1G(a+c)(a+c).

Proof
Because (44) implies that the bound t<min{b, c,}/((a+c)
G(a+c)) from Theorem 2 holds, we can use our bound on 13|
to argue as in the first part of the proof of Theorem 2 (with
d from the earlier proof replaced by the combined distur-
bance & (€)=x,(€-1)-x,(€)+5(¢)) to prove that Sipe 18
robustly forwardly invariant for (41) with perturbations
valued in ¥ =(-3,8), when (44) holds.

In particular, S, _ is strongly invariant for (41) when t=0
and 0=0. Therefore, because x,"=a+c for all x&S, , ., and
because (43) implies that (42) satisfies Conditions (1)-(4)
from Theorem 1 when we restrict to values r=a+c, the decay
estimate (8) from Theorem 1 holds along all trajectories of
(41) starting in S, . when ©=0 and 6=0. Hence, along all
trajectories of (41) starting in S, ,, . for all T=0 satisfying (44)
and 06=0, our choice (42) of # gives

d 2 1 - 45)
Vo) € = T Gy 0 - SHG GO +
YI=H Go2)(x1 +22) +y(x1 +x2)]

f Gy Nxg(Ddf
¥ 1 -
- gla+ )P - FH0)GE)5 +

57/2 " A + +
Tt vl [ G

where we used (8), (42), and (43). Using Jensen’s inequality,
we get

5y? P . (46)
Tt + 0] [ Goss oyt =

1 "t
2700 +00) + 207 f TW G e de,

by our choice (42) of #, because the triangle inequality
gives

S/4pq<S/A((Vo)(%45)p?+(15)(25/8)97)

for all p=0 and q=0.
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By our delay bound (44), we can find a constant J>0 such
that

@7

Vvi-2J7

<
T 2’}/

so 1-41*y*~2Jt>0. Also, our choice (42) of # implies that
as ook ., from the proof of Theorem 1 satisfies

2 1 (48)
00 (Voo () < Tty 422 4 S9(x)

for all xS, ,, .. Hence, we can use (46) to upper bound the
quantity in curly braces in (45) and the relation

Al
Zt f Wz(xz(f))df TH (3} (D) - f HA(x3 () dl @

to conclude that along all trajectories of (41) for =0 starting

in 8, , . for any constant T>0 satisfying (44), the function
Vo 5P (0 2, (£ )0 s
satisfies
d 2 (50)
P Vi) < - 72/—0(261(1) +x(0)* - Jfrif{z(x%((’))d(’ -
1
(5 I JT)(HZ(x;(z))
—mm{— 1—dr2y? — ZJT}on(VMW(x(t))) -
J 2
- f W (X3 (£) deds
< = Molao(View (x(2)) +
@y +0) f f FHE(x} () deds)
< (Vi (2,
where
M =min{l =4y —2gr, —1 }
0 5’ e T T2y 4+ J)
and

ag(r) = Momin{wo(%), %}
is of the class x ., and where we used the fact that for the
class « , function a(€ )=min(a (€ ),€), we have a((a+b)/2)
=a(a)+a(b) for all a=0 and b=0. Using the fact that IVV,, |
is bounded by some constant V*_, = on the compact set
S 5. it Tollows that along all trajectories of (41) starting in
S, and for all constant delays T satisfying (44) and all
perturbations dEM (u ), we have

(5) < —aB (Vi ) + YV oo

new’

d
= Vi bl

Therefore, Vnﬂ,w is an ISS Lyapunov function for (41) with
respect to & and w on $=S_, , which implies the ISS

property.

w
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Remark
We can generalize Theorem 3 to provide ISS results for

GO O3 (D) +61() (52)

—y@1 = 7) + 20 +62(0)

x(1) =

having locally bounded piecewise continuous perturbations
8, in both equations and constant input delays t=0, as
follows. We assume that G, a, b, ¢, v, and T satisfy the
requirements from Theorem 3, and we let u>1 be any
positive constant. Fix any constant d,>0 such that T<min(b,
¢,)/(¢" (a+c)+d,), which always exists, by (44). Then (52) is
ISS with respect to € and » on S where

abc ’

_ d
deR%:|d| <dy, max{7l -, 5(@ —dy}+

u' =

f

T(Gﬁ(a+c)+31)<d2< ﬂ+b—r( (a+c)+dy)
Y

and S, ", 05, and o, are as defined in Section 4. This
follows from Proposition 3, the use of the augmented

perturbation 85 (€)=x,(€ ~1)-x,(£)+d,(¢), and the fact that
the gradient VV,,...(x) is bounded on the unbounded set

S where the terms T(6* (a+c)+d,) were used to bound

abc °

the terms x,(€-1)-x,(¢) from 85. This lets us cover the
dynamics (24) with perturbed pointer position measure-
ments. Because of page limitations, we leave the details to
the reader.

With this final result, we have shown how the closed loop
pointing system is affected by delays and perturbations.
These results provide a relationship between the maximum
delay, maximal perturbation set, and size of invariant sets,
and this relationship depends on the scaling function G and
other system parameters. In the future, this relationship can
be used to compare the properties of different scaling
functions and better design pointing interfaces using accel-
eration.

Section 6. Simulations

We use computational simulations to illustrate the results of
this paper, including the invariance and stability properties
of the closed loop pointing system with perturbations. FIG.
7a-b shows several trajectories of (41) with and without
delays and perturbations, with initial conditions selected in
S, 4. For this simulation, we chose the linear scaling
function G(s)=1+0.1 s, g=1, and the parameter values a=1.5,
b=c=1, and y=7, which satisfy our requirements

P
G lo.ate
1:c>||[%20.4and

T=y> sup max 4(H’(r) 2H2(r) / f G((’)(’d(’

re(0,a+c)
from Theorem 3. Using the notation from Theorem 3, we get

c,~c-G(a+c)(a+c)/yy~0.6, so our delay condition (44)
becomes

1 minfb, c,) (53

0<T<m1n{ 7}~0.1
2y (a+o)Gla+c)
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and the delay bound from Theorem 3 is S=min{b,,}-
TG(a+c)(a+c)=0.3. For our simulation, we chose T=0.1 and
3(1)=0.3 sin(10xt). Without perturbations, the trajectories
with initial states in S, , . converge asymptotically to the
equilibrium set £. When we add perturbations, the trajec-
tories do not always converge to £, but do remain within
S,.5.c These figures show that, at least for these choices of
parameters, S, , _ is invariant and ¢ is attractive.

It is tempting to surmise that our delay conditions such as
(27) can be eliminated, so that our robust forwardly invariant
conclusions would remain true without the delay bounds.
However, we cannot drop our delay conditions, even if there
are no perturbations. For instance, if we take G(s)=1+0.1s,
g=1, and the values a=1.5, and b=c=1 as in our simulation,
then the corresponding set S, , . has the upper left vertex
(-1.5,2.5). However, the solution of (28) for the initial state
(-1.5, 2.5)€S, ;. and the delay t=0.5 passes through
(0,1.52)¢S,, ... s0 S,,. would no longer be forwardly
invariant for (28), if we were to allow a larger delay such as
1=0.5. Hence, our delay bound (27) from Theorem 2 cannot
be removed.

Certain embodiments of the present disclosure can be
implemented in hardware, software, firmware, or a combi-
nation thereof. For example, a module in software is a part
of a software program, whereas a module in hardware is a
self-contained component. Various embodiments of the
present disclosure are implemented in software or firmware
that is stored in a memory and that is executed by a suitable
instruction execution system. If implemented in hardware,
various embodiments can be implemented with any or a
combination of the following technologies, which are all
well known in the art: a discrete logic circuit(s) having logic
gates for implementing logic functions upon data signals, an
application specific integrated circuit (ASIC) having appro-
priate combinational logic gates, a programmable gate
array(s) (PGA), a field programmable gate array (FPGA),
etc.

In one embodiment, the flowchart of FIG. 1 and other
disclosed processes comprise an ordered listing of execut-
able instructions for implementing logical functions, and can
be embodied in any computer-readable medium for use by
or in connection with an instruction execution system,
apparatus, or device, such as a computer-based system,
processor-containing system, or other system that can fetch
the instructions from the instruction execution system, appa-
ratus, or device and execute the instructions. In the context
of'this document, a “computer-readable medium” can be any
means that can contain, store, communicate, or transport the
program for use by or in connection with the instruction
execution system, apparatus, or device. The computer read-
able medium can be, for example but not limited to, an
electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system, apparatus, device, or propagation
medium. More specific examples (a nonexhaustive list) of
the computer-readable medium would include the follow-
ing: an electrical connection (electronic) having one or more
wires, a portable computer diskette (magnetic), a random
access memory (RAM) (electronic), a read-only memory
(ROM) (electronic), an erasable programmable read-only
memory (EPROM or Flash memory) (electronic), an optical
fiber (optical), and a portable compact disc read-only
memory (CDROM) (optical).

It should be emphasized that the above-described embodi-
ments of the present disclosure are merely possible
examples of implementations, merely set forth for a clear
understanding of the principles of the disclosure. Many
variations and modifications may be made to the above-

10

15

20

25

30

35

40

45

50

55

60

65

22

described embodiment(s) without departing substantially
from the spirit and principles of the disclosure. All such
modifications and variations are intended to be included
herein within the scope of this disclosure and protected by
the following claims.

We claim:
1. A method comprising:
obtaining, by a computing device, a closed loop pointer
acceleration system model, in which the closed loop
pointer acceleration system model is based on (1) a
model describing user pointing motions integrated with
(2) a model of pointer acceleration motions under
operational conditions;
obtaining, by the computing device, values for system
parameters that include pointer acceleration profile
parameters and operational condition parameters;

determining, by the computing device, a set of pointer
trajectories for a given acceleration profile having the
pointer acceleration profile parameters and operational
condition parameters;

repeating the obtaining and determining operations for a

new set of system and operational condition param-
eters; and

outputting a side-by-side comparison of determined sets

of pointer trajectories for different pointer acceleration
profiles on a display.

2. The method of claim 1, further comprising plotting a
trajectory of the pointer acceleration profile based on the
determined set of pointer trajectories.

3. The method of claim 1, further comprising plotting one
or more trajectories of different pointer acceleration profiles
based on the determined sets of pointer trajectories.

4. The method of claim 1, wherein the operational con-
ditions are represented as at least a delay function and a
perturbation function.

5. The method of claim 4, wherein the delay function is
a constant.

6. The method of claim 1, wherein the pointer acceleration
profile parameters include a gain parameter.

7. An apparatus comprising:

a processor and memory,

the processor configured to obtain a closed loop pointer

acceleration system model, in which the closed loop
pointer acceleration system model is based on (1) a
model describing user pointing motions integrated with
(2) a model of pointer acceleration motions under
operational conditions; obtain values for system param-
eters that include pointer acceleration profile param-
eters and operational condition parameters; and deter-
mine & output a set of pointer trajectories for a given
acceleration profile having the pointer acceleration
profile parameters and operational condition param-
eters,

wherein the processor is further configured to repeat the

obtaining and determining operations for a new set of
system and operational condition parameters,

wherein the processor is further configured to output a

side-by-side comparison of determined sets of pointer
trajectories for different pointer acceleration profiles on
a display.

8. The apparatus of claim 7, wherein the processor is
further configured to plot a trajectory of the pointer accel-
eration profile based on the determined set of pointer tra-
jectories.
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9. The apparatus of claim 7, wherein the processor is
further configured to plot one or more trajectories of differ-
ent pointer acceleration profiles based on the determined sets
of pointer trajectories.

10. The apparatus of claim 7, wherein the operational
conditions are represented as at least a delay function and a
perturbation function.

11. The apparatus of claim 7, wherein the pointer accel-
eration profile parameters include a gain parameter.

12. A non-transitory computer readable medium storing a
plurality of computer instructions that, when executed by at
least one computing device, cause the at least one computing
device to at least:

obtain a closed loop pointer acceleration system model, in
which the closed loop pointer acceleration system
model is based on (1) a model describing user pointing
motions integrated with (2) a model of pointer accel-
eration motions under operational conditions;

obtain values for system parameters that include pointer
acceleration profile parameters and operational condi-
tion parameters; and
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determine and output a set of pointer trajectories for a
given acceleration profile having the pointer accelera-
tion profile parameters and operational condition
parameters;

repeat the obtaining and determining operations for a new
set of system and operational condition parameters, and

output a side-by-side comparison of determined sets of
pointer trajectories for different pointer acceleration
profiles on a display.

13. The non-transitory computer readable medium of
claim 12, wherein the plurality of instructions further cause
the at least one computing device to plot a trajectory of the
pointer acceleration profile based on the determined set of
pointer trajectories.

14. The non-transitory computer readable medium of
claim 12, wherein the operational conditions are represented
as at least a delay function and a perturbation function.

15. The non-transitory computer readable medium of
claim 14, wherein the plurality of instructions further cause
the at least one computing device to plot one or more
trajectories of different pointer acceleration profiles based on
the determined sets of pointer trajectories.

#* #* #* #* #*



