Constructions of Strict Lyapunov Functions: Stability, Robustness, Delays, and State Constraints

Matrosov’s Approach

Michael Malisoff
Outline

- Strict and nonstrict Lyapunov functions
- Input-to-state stability and point stabilization
- Strictification to certify good performance
- LaSalle strictification
- Matrosov approaches

Outline

- Strict and nonstrict Lyapunov functions
Outline

- Strict and nonstrict Lyapunov functions
- Input-to-state stability and point stabilization
Outline

- Strict and nonstrict Lyapunov functions
- Input-to-state stability and point stabilization
- Strictification to certify good performance

Outline

- Strict and nonstrict Lyapunov functions
- Input-to-state stability and point stabilization
- Strictification to certify good performance
- LaSalle strictification

Outline

- Strict and nonstrict Lyapunov functions
- Input-to-state stability and point stabilization
- Strictification to certify good performance
- LaSalle strictification
- Matrosov approaches
Outline

- Strict and nonstrict Lyapunov functions
- Input-to-state stability and point stabilization
- Strictification to certify good performance
- LaSalle strictification
- Matrosov approaches

A Lyapunov function for a system \(\dot{x} = F(t, x) \) with state space \(X \) is a positive definite proper function \(V : [0, \infty) \times X \rightarrow [0, \infty) \) such that

\[
\dot{V}(t, x) := V_t(t, x) + V_x(t, x) F(t, x) \leq 0 \quad \text{on} \quad [0, \infty) \times X.
\]

By positive definite, we mean inf \(t V(t, x) \) is zero when \(x = 0 \) and positive for all \(x \in X \setminus \{0\} \).

Proper means that inf \(t V(t, x) \rightarrow \infty \) as \(x \) approaches boundary (\(X \)) or \(|x| \rightarrow \infty \).

For example, \(V(x) = \ln(1 + x^2) \) is a Lyapunov function for

\[
\dot{x} = -x / (1 + x^2)
\]

because \(\dot{V} \leq -x^2 / (1 + x^2)^2 \), which gives global asymptotic stability, i.e., attractivity and local stability.
A Lyapunov function for a system $\dot{x} = \mathcal{F}(t, x)$ with state space \mathcal{X} is a positive definite proper function $V : [0, \infty) \times \mathcal{X} \to [0, \infty)$ such that $\dot{V}(t, x) := V_t(t, x) + V_x(t, x)\mathcal{F}(t, x) \leq 0$ on $[0, \infty) \times \mathcal{X}$. For example, $V(x) = \ln(1 + x^2)$ is a Lyapunov function for $\dot{x} = -x/(1 + x^2)$ because $\dot{V}(t, x) \leq -x^2/(1 + x^2)^2$, which gives global asymptotic stability, i.e., attractivity and local stability.
Basic Vocabulary and Simple Example

A **Lyapunov function** for a system $\dot{x} = \mathcal{F}(t, x)$ with state space \mathcal{X} is a positive definite proper function $V : [0, \infty) \times \mathcal{X} \to [0, \infty)$ such that $\dot{V}(t, x) := V_t(t, x) + V_x(t, x)\mathcal{F}(t, x) \leq 0$ on $[0, \infty) \times \mathcal{X}$. By **positive definite**, we mean $\inf_t V(t, x)$ is zero when $x = 0$ and positive for all $x \in \mathcal{X} \setminus \{0\}$.
A Lyapunov function for a system $\dot{x} = \mathcal{F}(t, x)$ with state space \mathcal{X} is a positive definite proper function $V : [0, \infty) \times \mathcal{X} \to [0, \infty)$ such that $\dot{V}(t, x) := V_t(t, x) + V_x(t, x)\mathcal{F}(t, x) \leq 0$ on $[0, \infty) \times \mathcal{X}$.

By positive definite, we mean $\inf_t V(t, x)$ is zero when $x = 0$ and positive for all $x \in \mathcal{X} \setminus \{0\}$. Proper means that $\inf_t V(t, x) \to \infty$ as x approaches boundary(\mathcal{X}) or $|x| \to \infty$.
Basic Vocabulary and Simple Example

A Lyapunov function for a system \(\dot{x} = \mathcal{F}(t, x) \) with state space \(\mathcal{X} \) is a positive definite proper function \(V : [0, \infty) \times \mathcal{X} \to [0, \infty) \) such that \(\dot{V}(t, x) := V_t(t, x) + V_x(t, x)\mathcal{F}(t, x) \leq 0 \) on \([0, \infty) \times \mathcal{X} \).

By positive definite, we mean \(\inf_t V(t, x) \) is zero when \(x = 0 \) and positive for all \(x \in \mathcal{X} \setminus \{0\} \). Proper means that \(\inf_t V(t, x) \to \infty \) as \(x \) approaches boundary(\(\mathcal{X} \)) or \(|x| \to \infty \).

For example, \(V(x) = \ln(1 + x^2) \) is a Lyapunov function for \(\dot{x} = -x/(1 + x^2) \) because \(\dot{V} \leq -x^2/(1 + x^2)^2 \), which gives global asymptotic stability, i.e., attractivity and local stability.
A Lyapunov function for a system $\dot{x} = \mathcal{F}(t, x)$ with state space \mathcal{X} is a positive definite proper function $V : [0, \infty) \times \mathcal{X} \to [0, \infty)$ such that $\dot{V}(t, x) := V_t(t, x) + V_x(t, x)\mathcal{F}(t, x) \leq 0$ on $[0, \infty) \times \mathcal{X}$.

By positive definite, we mean $\inf_t V(t, x)$ is zero when $x = 0$ and positive for all $x \in \mathcal{X} \setminus \{0\}$. Proper means that $\inf_t V(t, x) \to \infty$ as x approaches boundary(\mathcal{X}) or $|x| \to \infty$.

However, for each constant $\bar{\delta} > 0$, we can find an x_0 such that the trajectory for $\dot{x} = -x/(1 + x^2) + \bar{\delta}$ starting at $x(0) = x_0$ is unbounded, which means we lack input-to-state stability.
Background

Strict Lyapunov function decay:

\[\dot{V}(t, x) \leq -W(x), \]

with \(W(x) \) positive definite.

Nonstrict Lyapunov function decay:

\[\dot{V}(t, x) \leq -W(x), \]

with \(W(x) \) nonnegative definite.

Either way, \(\inf t V(t, x) \) is assumed proper and positive definite.

Converse Lyapunov theory often guarantees the existence of strict Lyapunov functions.

See Bacciotti-Rosier CCE Book.
Background

Strict Lyapunov function decay:

\[\dot{V}(t, x) \leq -W(x), \text{ with } W(x) \text{ positive definite.} \]

Nonstrict Lyapunov function decay:

\[\dot{V}(t, x) \leq -W(x), \text{ with } W(x) \text{ nonnegative definite.} \]

Either way, \(\inf_{t} V(t, x) \) is assumed proper and positive definite. Converse Lyapunov theory often guarantees the existence of strict Lyapunov functions. See Bacciotti-Rosier CCE Book.
Strict Lyapunov function decay:
\[\dot{V}(t, x) \leq -W(x), \] with \(W(x) \) positive definite.

Converse Lyapunov theory often guarantees the existence of strict Lyapunov functions. See Bacciotti-Rosier CCE Book.
Background

Strict Lyapunov function decay:
\[\dot{V}(t, x) \leq -W(x), \text{ with } W(x) \text{ positive definite.} \]

Nonstrict Lyapunov function decay:
Background

Strict Lyapunov function decay:
\[\dot{V}(t, x) \leq -W(x), \text{ with } W(x) \text{ positive definite.} \]

Nonstrict Lyapunov function decay:
\[\dot{V}(t, x) \leq -W(x), \text{ with } W(x) \text{ nonnegative definite.} \]
Background

Strict Lyapunov function decay:
\[\dot{V}(t, x) \leq -W(x), \text{ with } W(x) \text{ positive definite.} \]

Nonstrict Lyapunov function decay:
\[\dot{V}(t, x) \leq -W(x), \text{ with } W(x) \text{ nonnegative definite.} \]

Either way, \(\inf_t V(t, x) \) is assumed **proper** and **positive definite**.
Background

Strict Lyapunov function decay:
\[\dot{V}(t, x) \leq -W(x), \text{ with } W(x) \text{ positive definite}. \]

Nonstrict Lyapunov function decay:
\[\dot{V}(t, x) \leq -W(x), \text{ with } W(x) \text{ nonnegative definite}. \]

Either way, \(\inf_t V(t, x) \) is assumed proper and positive definite.

Converse Lyapunov theory often guarantees the *existence* of strict Lyapunov functions.
Background

Strict Lyapunov function decay:
\[\dot{V}(t, x) \leq -W(x), \text{ with } W(x) \text{ positive definite.} \]

Nonstrict Lyapunov function decay:
\[\dot{V}(t, x) \leq -W(x), \text{ with } W(x) \text{ nonnegative definite.} \]

Either way, \(\inf_t V(t, x) \) is assumed **proper** and **positive definite**.

Converse Lyapunov theory often guarantees the *existence* of strict Lyapunov functions. See Bacciotti-Rosier CCE Book.
Background

Strict Lyapunov function decay:
\[\dot{V}(t, x) \leq -W(x), \text{ with } W(x) \text{ positive definite.} \]

Nonstrict Lyapunov function decay:
\[\dot{V}(t, x) \leq -W(x), \text{ with } W(x) \text{ nonnegative definite.} \]

Either way, \(\inf_t V(t, x) \) is assumed proper and positive definite.

Using LaSalle Invariance, we can often use nonstrict ones to prove GAS, e.g., for \(\dot{x} = f(x) \) where \(\dot{V}(x) := \nabla V(x)f(x) \).
Background

Strict Lyapunov function decay:
\[\dot{V}(t, x) \leq -W(x), \text{ with } W(x) \text{ positive definite.} \]

Nonstrict Lyapunov function decay:
\[\dot{V}(t, x) \leq -W(x), \text{ with } W(x) \text{ nonnegative definite.} \]

Either way, \(\inf_t V(t, x) \) is assumed proper and positive definite.

If \(V \) is a nonstrict Lyapunov function such that the only solution that remains in \(\{ x : \dot{V}(x) = 0 \} \) is \(x = 0 \), then conclude GAS to 0.
Background

Strict Lyapunov function decay:
\[\dot{V}(t, x) \leq -W(x), \text{ with } W(x) \text{ positive definite.} \]

Nonstrict Lyapunov function decay:
\[\dot{V}(t, x) \leq -W(x), \text{ with } W(x) \text{ nonnegative definite.} \]

Either way, \(\inf_t V(t, x) \) is assumed **proper** and **positive definite**.

For example, take \(\dot{x}_1 = x_2, \dot{x}_2 = -x_1 - x_2^3. \)
Background

Strict Lyapunov function decay:
\[\dot{V}(t, x) \leq -W(x), \text{ with } W(x) \text{ positive definite}. \]

Nonstrict Lyapunov function decay:
\[\dot{V}(t, x) \leq -W(x), \text{ with } W(x) \text{ nonnegative definite}. \]

Either way, \(\inf_t V(t, x) \) is assumed proper and positive definite.

For example, take \(\dot{x}_1 = x_2, \dot{x}_2 = -x_1 - x_2^3. \) Use \(V(x) = 0.5|x|^2. \)
Background

Strict Lyapunov function decay:
\[\dot{V}(t, x) \leq -W(x), \text{ with } W(x) \text{ positive definite.} \]

Nonstrict Lyapunov function decay:
\[\dot{V}(t, x) \leq -W(x), \text{ with } W(x) \text{ nonnegative definite.} \]

Either way, \(\inf_t V(t, x) \) is assumed **proper** and **positive definite**.

For example, take \(\dot{x}_1 = x_2, \dot{x}_2 = -x_1 - x_2^3 \). Use \(V(x) = 0.5|x|^2 \). Then \(\dot{V} = -x_2^4 \).
Background

Strict Lyapunov function decay:
\[\dot{V}(t, x) \leq -W(x), \text{ with } W(x) \text{ positive definite.} \]

Nonstrict Lyapunov function decay:
\[\dot{V}(t, x) \leq -W(x), \text{ with } W(x) \text{ nonnegative definite.} \]

Either way, \(\inf_t V(t, x) \) is assumed proper and positive definite.

For example, take \(\dot{x}_1 = x_2, \dot{x}_2 = -x_1 - x_2^3 \). Use \(V(x) = 0.5|x|^2 \). Then \(\dot{V} = -x_2^4 \). The largest invariant set in \(\{x : x_2 = 0\} \) is \(\{0\} \).
Background

Strict Lyapunov function decay:
\[\dot{V}(t, x) \leq -W(x), \] with \(W(x) \) positive definite.

Nonstrict Lyapunov function decay:
\[\dot{V}(t, x) \leq -W(x), \] with \(W(x) \) nonnegative definite.

Either way, \(\inf_t V(t, x) \) is assumed proper and positive definite.

However, explicit strict Lyapunov function constructions are often needed in applications to certify robustness.
Background

Strict Lyapunov function decay:
\[\dot{V}(t, x) \leq -W(x), \text{ with } W(x) \text{ positive definite.} \]

Nonstrict Lyapunov function decay:
\[\dot{V}(t, x) \leq -W(x), \text{ with } W(x) \text{ nonnegative definite.} \]

Either way, \(\inf_t V(t, x) \) is assumed proper and positive definite.

This has led to significant research on explicitly constructing strict Lyapunov functions.
Background

Strict Lyapunov function decay:
\[\dot{V}(t, x) \leq -W(x), \text{ with } W(x) \text{ positive definite.} \]

Nonstrict Lyapunov function decay:
\[\dot{V}(t, x) \leq -W(x), \text{ with } W(x) \text{ nonnegative definite.} \]

Either way, \(\inf_t V(t, x) \) is assumed **proper** and **positive definite**.

We assume standard assumptions on the dynamics which hold under smooth forward completeness and time-periodicity.
Input-to-state stability is a robustness property for systems
\[\dot{x} = F(t, x, d) \] (1).

Invented by E. Sontag; see CDC'88, T -AC'89.

The state space \(X \) is a general open subset of Euclidean space containing 0.

Assume \(F(t, 0, 0) = 0 \) for all \(t \).

E.g., \[\dot{x} = f(t, x) + g(t, x) \] \(d \) if \(f(t, 0) = 0 \) for all \(t \).

That's the control-affine case.

The disturbances \(d: [0, \infty) \rightarrow D \) are measurable essentially bounded functions valued in some subset \(D \) of a Euclidean space.

See our CCE book for standing assumptions on \(F \).
Input-to-state stability is a robustness property for systems

\[\dot{x} = \mathcal{F}(t, x, d) . \]
ISS Motivation-Part 1 of 3

Input-to-state stability is a robustness property for systems

\[\dot{x} = \mathcal{F}(t, x, d) . \] (1)

Invented by E. Sontag; see CDC’88, T-AC’89.
ISS Motivation-Part 1 of 3

Input-to-state stability is a robustness property for systems

\[\dot{x} = \mathcal{F}(t, x, d) . \] \hspace{1cm} (1)

Invented by E. Sontag; see CDC’88, T-AC’89. The state space \(\mathcal{X} \) is a general open subset of Euclidean space containing 0.
ISS Motivation-Part 1 of 3

Input-to-state stability is a robustness property for systems

\[\dot{x} = \mathcal{F}(t, x, d) . \] \hspace{1cm} (1)

Invented by E. Sontag; see CDC’88, T-AC’89. The state space \(\mathcal{X} \) is a general open subset of Euclidean space containing 0.

Assume \(\mathcal{F}(t, 0, 0) = 0 \) for all \(t \).
ISS Motivation-Part 1 of 3

Input-to-state stability is a robustness property for systems

\[\dot{x} = \mathcal{F}(t, x, d) . \] \hspace{1cm} (1)

Invented by E. Sontag; see CDC’88, T-AC’89. The state space \(\mathcal{X} \) is a general open subset of Euclidean space containing 0.

Assume \(\mathcal{F}(t, 0, 0) = 0 \) for all \(t \). E.g., \(\dot{x} = f(t, x) + g(t, x)d \) if \(f(t, 0) = 0 \) for all \(t \).
Input-to-state stability is a robustness property for systems

\[\dot{x} = \mathcal{F}(t, x, d). \]

(1)

Invented by E. Sontag; see CDC’88, T-AC’89. The state space \(\mathcal{X} \) is a general open subset of Euclidean space containing 0.

Assume \(\mathcal{F}(t, 0, 0) = 0 \) for all \(t \). E.g., \(\dot{x} = f(t, x) + g(t, x)d \) if \(f(t, 0) = 0 \) for all \(t \). That’s the control-affine case.
Input-to-state stability is a robustness property for systems

\[\dot{x} = \mathcal{F}(t, x, d) . \quad (1) \]

Invented by E. Sontag; see CDC’88, T-AC’89. The state space \(X \) is a general open subset of Euclidean space containing 0.

Assume \(\mathcal{F}(t, 0, 0) = 0 \) for all \(t \). E.g., \(\dot{x} = f(t, x) + g(t, x)d \) if \(f(t, 0) = 0 \) for all \(t \). That’s the control-affine case.

The disturbances \(d : [0, \infty) \rightarrow D \) are measurable essentially bounded functions valued in some subset \(D \) of a Euclidean space.
ISS Motivation-Part 1 of 3

Input-to-state stability is a robustness property for systems
\[\dot{x} = \mathcal{F}(t, x, d) \, . \] (1)

Invented by E. Sontag; see CDC’88, T-AC’89. The state space \(\mathcal{X} \) is a general open subset of Euclidean space containing 0.

Assume \(\mathcal{F}(t, 0, 0) = 0 \) for all \(t \). E.g., \(\dot{x} = f(t, x) + g(t, x)d \) if \(f(t, 0) = 0 \) for all \(t \). That’s the control-affine case.

The disturbances \(d : [0, \infty) \to D \) are measurable essentially bounded functions valued in some subset \(D \) of a Euclidean space. See our CCE book for standing assumptions on \(\mathcal{F} \).
ISS Motivation-Part 2 of 3

We say that \(\dot{x} = \mathcal{F}(t, x, d) \) is ISS provided there exist functions \(\beta \in \mathcal{KL} \) and \(\gamma \in \mathcal{K}_\infty \) and \(\bar{\alpha} \in \mathcal{K}_\infty \) s.t. for all initial conditions \(x(t_0) = x_0 \in \mathcal{X} \) and all disturbances \(d \), the corresponding trajectories \(t \mapsto \zeta(t; t_0, x_0, d) \) satisfy

\[
|\zeta(t; t_0, x_0, d)| \leq \beta\left(\bar{\alpha}(|x_0|), t - t_0\right) + \gamma(|d|_\infty) \quad \forall t \geq t_0.
\] (2)
ISS Motivation-Part 2 of 3

We say that \(\dot{x} = F(t, x, d) \) is ISS provided there exist functions \(\beta \in \mathcal{KL} \) and \(\gamma \in \mathcal{K}_\infty \) and \(\bar{\alpha} \in \mathcal{K}_\infty \) such that for all initial conditions \(x(t_0) = x_0 \in \mathcal{X} \) and all disturbances \(d \), the corresponding trajectories \(t \mapsto \zeta(t; t_0, x_0, d) \) satisfy

\[
|\zeta(t; t_0, x_0, d)| \leq \beta\left(\bar{\alpha}(|x_0|), t - t_0\right) + \gamma(|d|_\infty) \quad \forall t \geq t_0. \quad (2)
\]

\(\mathcal{K}_\infty \): continuous, strictly increasing, unbounded, 0 at 0.
ISS Motivation-Part 2 of 3

We say that $\dot{x} = F(t, x, d)$ is ISS provided there exist functions $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}_\infty$ and $\bar{\alpha} \in \mathcal{K}_\infty$ s.t. for all initial conditions $x(t_0) = x_0 \in \mathcal{X}$ and all disturbances d, the corresponding trajectories $t \mapsto \zeta(t; t_0, x_0, d)$ satisfy

$$|\zeta(t; t_0, x_0, d)| \leq \beta\left(\bar{\alpha}(|x_0|), t - t_0\right) + \gamma(|d|_\infty) \ \forall t \geq t_0.$$ \hspace{1cm} (2)

\mathcal{K}_∞: continuous, strictly increasing, unbounded, 0 at 0.

\mathcal{KL}: continuous, $\beta(\cdot, t) \in \mathcal{K}_\infty$ for all t, $\lim_{t \to \infty} \beta(s, t) = 0$ for all s.
We say that $\dot{x} = \mathcal{F}(t, x, d)$ is ISS provided there exist functions $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}_\infty$ and $\bar{\alpha} \in \mathcal{K}_\infty$ s.t. for all initial conditions $x(t_0) = x_0 \in \mathcal{X}$ and all disturbances d, the corresponding trajectories $t \mapsto \zeta(t; t_0, x_0, d)$ satisfy

$$|\zeta(t; t_0, x_0, d)| \leq \beta\left(\bar{\alpha}(|x_0|), t - t_0\right) + \gamma(|d|_\infty) \quad \forall t \geq t_0 .$$

(2)

\mathcal{K}_∞: continuous, strictly increasing, unbounded, 0 at 0.

\mathcal{KL}: continuous, $\beta(\cdot, t) \in \mathcal{K}_\infty$ for all t, $\lim_{t \to \infty} \beta(s, t) = 0$ for all s.

ISS Lyapunov function decay:
We say that $\dot{x} = \mathcal{F}(t, x, d)$ is ISS provided there exist functions $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}_{\infty}$ and $\bar{\alpha} \in \mathcal{K}_{\infty}$ s.t. for all initial conditions $x(t_0) = x_0 \in \mathcal{X}$ and all disturbances d, the corresponding trajectories $t \mapsto \zeta(t; t_0, x_0, d)$ satisfy

$$|\zeta(t; t_0, x_0, d)| \leq \beta\left(\bar{\alpha}(|x_0|), t - t_0\right) + \gamma(|d|_{\infty}) \quad \forall t \geq t_0. \quad (2)$$

\mathcal{K}_{∞}: continuous, strictly increasing, unbounded, 0 at 0.

\mathcal{KL}: continuous, $\beta(\cdot, t) \in \mathcal{K}_{\infty}$ for all t, $\lim_{t \to \infty} \beta(s, t) = 0$ for all s.

ISS Lyapunov function decay: $\dot{V} \leq -\alpha_1(V) + \alpha_2(|d|), \alpha_i \in \mathcal{K}_{\infty}$.
ISS Motivation-Part 2 of 3

We say that \(\dot{x} = \mathcal{F}(t, x, d) \) is ISS provided there exist functions \(\beta \in \mathcal{K}\mathcal{L} \) and \(\gamma \in \mathcal{K}_\infty \) and \(\bar{\alpha} \in \mathcal{K}_\infty \) s.t. for all initial conditions \(x(t_0) = x_0 \in \mathcal{X} \) and all disturbances \(d \), the corresponding trajectories \(t \mapsto \zeta(t; t_0, x_0, d) \) satisfy

\[
|\zeta(t; t_0, x_0, d)| \leq \beta\left(\bar{\alpha}(|x_0|), t - t_0\right) + \gamma(|d|_\infty) \quad \forall t \geq t_0.
\]

(2)

\(\mathcal{K}_\infty \): continuous, strictly increasing, unbounded, 0 at 0.

\(\mathcal{K}\mathcal{L} \): continuous, \(\beta(\cdot, t) \in \mathcal{K}_\infty \) for all \(t \), \(\lim_{t \to \infty} \beta(s, t) = 0 \) for all \(s \).

ISS Lyapunov function decay: \(\dot{V} \leq -\alpha_1(V) + \alpha_2(|d|), \) \(\alpha_i \in \mathcal{K}_\infty \).

UGAS: Special case where \(d = 0 \).
Example: Assume that
\[\dot{x} = F_{\text{cl}}(t, x) := f(t, x) + g(t, x)K(t, x) \]
is UGAS to the origin. Assume that we have a strict Lyapunov function \(V \) so that
\[W(x) = \inf_t \{-V(t, x) + V(t, x)F_{\text{cl}}(t, x)\} \]
is proper. Then
\[\dot{x} = f(t, x) + g(t, x)\left[K(t, x) - D_x V(t, x) \cdot g(t, x) + d\right] \]
is ISS with respect to actuator errors \(d \).

Need \(K(t, x) \) and \(D_x V(t, x) \cdot g(t, x) \).
Example:

\[
\dot{x} = F_{\text{cl}}(t, x) := f(t, x) + g(t, x)K(t, x) \tag{3}
\]

is UGAS to the origin. Assume that we have a strict Lyapunov function \(V\) so that

\[
W(x) = \inf_{t} \{-V_t(t, x) + V_x(t, x)F_{\text{cl}}(t, x)\}
\]

is proper. Then

\[
\dot{x} = f(t, x) + g(t, x)\left[K(t, x) - D_xV(t, x) \cdot g(t, x) + d\right] \tag{4}
\]

is ISS with respect to actuator errors \(d\). Need \(K(t, x)\) and \(D_xV(t, x) \cdot g(t, x)\).
ISS Motivation-Part 3 of 3

Example: Assume that

\[\dot{x} = \mathcal{F}_{\text{cl}}(t, x) := f(t, x) + g(t, x)K(t, x) \] \hspace{1cm} (3)

is UGAS to the origin.
ISS Motivation-Part 3 of 3

Example: Assume that

\[\dot{x} = \mathcal{F}_{\text{cl}}(t, x) := f(t, x) + g(t, x)K(t, x) \]

(3)

is UGAS to the origin.

Assume that we have a strict Lyapunov function \(V \) so that

\[W(x) = \inf_t \{-[V_t(t, x) + V_x(t, x)\mathcal{F}_{\text{cl}}(t, x)]\} \]

is proper.
ISS Motivation-Part 3 of 3

Example: Assume that

\[\dot{x} = \mathcal{F}_{\text{cl}}(t, x) := f(t, x) + g(t, x)K(t, x) \] \hspace{1cm} (3)

is UGAS to the origin.

Assume that we have a strict Lyapunov function \(V \) so that

\[W(x) = \inf_t \{-[V_t(t, x) + V_x(t, x)\mathcal{F}_{\text{cl}}(t, x)]\} \] is proper.

Then

\[\dot{x} = f(t, x) + g(t, x) \left[K(t, x) - D_x V(t, x) \cdot g(t, x) + d \right] \] \hspace{1cm} (4)

is ISS with respect to actuator errors \(d \).
Example: Assume that

\[\dot{x} = \mathcal{F}_{cl}(t, x) := f(t, x) + g(t, x)K(t, x) \]

(3)

is UGAS to the origin.

Assume that we have a strict Lyapunov function \(V \) so that

\[W(x) = \inf_t \{ -[V_t(t, x) + V_x(t, x)\mathcal{F}_{cl}(t, x)] \} \]

is proper.

Then

\[\dot{x} = f(t, x) + g(t, x) \left[K(t, x) - D_x V(t, x) \cdot g(t, x) + d \right] \]

(4)

is ISS with respect to actuator errors \(d \).

Need \(K(t, x) \) and \(D_x V(t, x) \cdot g(t, x) \).
Strictification under LaSalle Assumptions

Assume \(\dot{x} = f(x) \) has a nonstrict Lyapunov function \(V \) so that:

\[\exists N^* > 0 \text{ s.t. } \forall q \in \mathbb{R}^n \setminus \{0\}, \exists i \in [1, N^*] \text{ s.t. } L f V(q) \neq 0. \] (NDC)

Then GAS holds.

In fact, if \(L f V(x(t, x_0)) \equiv 0 \) along some trajectory, then \(L^k f V(x(t, x_0)) \equiv 0 \) for all \(t \geq 0 \) and \(k \in \mathbb{N} \), so \(L^k f V(x_0) \equiv 0 \).

Q: Can we transform \(V \) into a strict Lyapunov function?

A: Yes, and we can allow time varying systems and relax NDC.

Let \(V \in C^\infty \) be a nonstrict Lyapunov function for \(\dot{x} = f(t, x) \), \(x \in \mathbb{R}^n \), with \(f \) and \(V \) having period \(T \) in \(t \).

Goal: Strictify it.
Strictification under LaSalle Assumptions

Assume \(\dot{x} = f(x) \) has a nonstrict Lyapunov function \(V \) so that:

\[
\exists N_* > 0 \text{ s.t. } \forall q \in \mathbb{R}^n \setminus \{0\}, \exists i \in [1, N_*] \text{ s.t. } L^i_f V(q) \neq 0. \quad (\text{NDC})
\]
Strictification under LaSalle Assumptions

Assume $\dot{x} = f(x)$ has a nonstrict Lyapunov function V so that:

$\exists N_* > 0 \text{ s.t. } \forall q \in \mathbb{R}^n \setminus \{0\}, \exists i \in [1, N_*] \text{ s.t. } L_f^i V(q) \neq 0. \text{ (NDC)}$

$L_f V = (\nabla V)f$, $L_f^i V = L_f(L_f^{i-1} V)$.
Strictification under LaSalle Assumptions

Assume $\dot{x} = f(x)$ has a nonstrict Lyapunov function V so that:

$$\exists N_* > 0 \text{ s.t. } \forall q \in \mathbb{R}^n \setminus \{0\}, \exists i \in [1, N_*] \text{ s.t. } L_f^i V(q) \neq 0. \text{ (NDC)}$$

$L_f V = (\nabla V)f$, $L_f^i V = L_f(L_f^{i-1} V)$. Then GAS holds.
Strictification under LaSalle Assumptions

Assume \(\dot{x} = f(x) \) has a nonstrict Lyapunov function \(V \) so that:

\[
\exists N_\ast > 0 \text{ s.t. } \forall q \in \mathbb{R}^n \setminus \{0\}, \exists i \in [1, N_\ast] \text{ s.t. } L^i_f V(q) \neq 0. \text{ (NDC)}
\]

\[
L_f V = (\nabla V)f, \quad L^i_f V = L_f(L^{i-1}_f V). \text{ Then GAS holds.}
\]

In fact, if \(L_f V(x(t, x_0)) \equiv 0 \) along some trajectory, then

\[
L^k_f V(x(t, x_0)) \equiv 0 \text{ for all } t \geq 0 \text{ and } k \in \mathbb{N}, \text{ so } L^k_f V(x_0) \equiv 0.
\]
Strictification under LaSalle Assumptions

Assume $\dot{x} = f(x)$ has a nonstrict Lyapunov function V so that:

$$\exists N_* > 0 \text{ s.t. } \forall q \in \mathbb{R}^n \setminus \{0\}, \exists i \in [1, N_*] \text{ s.t. } L_f^i V(q) \neq 0. \quad \text{(NDC)}$$

$L_f V = (\nabla V)f$, $L_f^i V = L_f(L_f^{i-1} V)$. Then GAS holds.

In fact, if $L_f V(x(t, x_0)) \equiv 0$ along some trajectory, then $L_f^k V(x(t, x_0)) \equiv 0$ for all $t \geq 0$ and $k \in \mathbb{N}$, so $L_f^k V(x_0) \equiv 0$.

Q:
Strictification under LaSalle Assumptions

Assume $\dot{x} = f(x)$ has a nonstrict Lyapunov function V so that:

$\exists N_* > 0$ s.t. $\forall q \in \mathbb{R}^n \setminus \{0\}$, $\exists i \in [1, N_*]$ s.t. $L_f^i V(q) \neq 0$. (NDC)

$L_f V = (\nabla V)f$, $L_f^i V = L_f(L_f^{i-1} V)$. Then GAS holds.

In fact, if $L_f V(x(t, x_0)) \equiv 0$ along some trajectory, then $L_f^k V(x(t, x_0)) \equiv 0$ for all $t \geq 0$ and $k \in \mathbb{N}$, so $L_f^k V(x_0) \equiv 0$.

Q: Can we transform V into a strict Lyapunov function?
Strictification under LaSalle Assumptions

Assume $\dot{x} = f(x)$ has a nonstrict Lyapunov function V so that:

$\exists N_* > 0 \text{ s.t. } \forall q \in \mathbb{R}^n \setminus \{0\}, \exists i \in [1, N_*] \text{ s.t. } L_f^i V(q) \neq 0. \text{ (NDC)}$

$L_f V = (\nabla V)f$, $L_f^i V = L_f (L_f^{i-1} V)$. Then GAS holds.

In fact, if $L_f V(x(t, x_0)) \equiv 0$ along some trajectory, then $L_f^k V(x(t, x_0)) \equiv 0$ for all $t \geq 0$ and $k \in \mathbb{N}$, so $L_f^k V(x_0) \equiv 0$.

Q: Can we transform V into a strict Lyapunov function?

A:
Strictification under LaSalle Assumptions

Assume $\dot{x} = f(x)$ has a nonstrict Lyapunov function V so that:

$$\exists N_* > 0 \text{ s.t. } \forall q \in \mathbb{R}^n \setminus \{0\}, \exists i \in [1, N_*] \text{ s.t. } L_f^i V(q) \neq 0.$$ (NDC)

$L_f V = (\nabla V)f$, $L_f^i V = L_f(L_f^{i-1} V)$. Then GAS holds.

In fact, if $L_f V(x(t, x_0)) \equiv 0$ along some trajectory, then $L_f^k V(x(t, x_0)) \equiv 0$ for all $t \geq 0$ and $k \in \mathbb{N}$, so $L_f^k V(x_0) \equiv 0$.

Q: Can we transform V into a strict Lyapunov function?

A: Yes, and we can allow time varying systems and relax NDC.
Strictification under LaSalle Assumptions

Assume $\dot{x} = f(x)$ has a nonstrict Lyapunov function V so that:

$$\exists N_* > 0 \text{ s.t. } \forall q \in \mathbb{R}^n \setminus \{0\}, \exists i \in [1, N_*) \text{ s.t. } L_f^i V(q) \neq 0. \quad \text{(NDC)}$$

$L_f V = (\nabla V) f$, $L_f^i V = L_f(L_f^{i-1} V)$. Then GAS holds.

In fact, if $L_f V(x(t, x_0)) \equiv 0$ along some trajectory, then $L_f^k V(x(t, x_0)) \equiv 0$ for all $t \geq 0$ and $k \in \mathbb{N}$, so $L_f^k V(x_0) \equiv 0$.

Q: Can we transform V into a strict Lyapunov function?

A: Yes, and we can allow time varying systems and relax NDC.

Let $V \in C^\infty$ be a nonstrict Lyapunov function for $\dot{x} = f(t, x)$, $x \in \mathbb{R}^n$, with f and V having period T in t.
Strictification under LaSalle Assumptions

Assume $\dot{x} = f(x)$ has a nonstrict Lyapunov function V so that:

$\exists N_\ast > 0 \text{ s.t. } \forall q \in \mathbb{R}^n \setminus \{0\}, \exists i \in [1, N_\ast] \text{ s.t. } L_f^i V(q) \neq 0. \quad (\text{NDC})$

$L_f V = (\nabla V)f$, $L_f^i V = L_f(L_f^{i-1} V)$. Then GAS holds.

In fact, if $L_f V(x(t, x_0)) \equiv 0$ along some trajectory, then $L_f^k V(x(t, x_0)) \equiv 0$ for all $t \geq 0$ and $k \in \mathbb{N}$, so $L_f^k V(x_0) \equiv 0$.

Q: Can we transform V into a strict Lyapunov function?

A: Yes, and we can allow time varying systems and relax NDC.

Let $V \in C^\infty$ be a nonstrict Lyapunov function for $\dot{x} = f(t, x)$, $x \in \mathbb{R}^n$, with f and V having period T in t. Goal:
Strictification under LaSalle Assumptions

Assume \(\dot{x} = f(x) \) has a nonstrict Lyapunov function \(V \) so that:
\[
\exists N_\star > 0 \text{ s.t. } \forall q \in \mathbb{R}^n \setminus \{0\}, \exists i \in [1, N_\star] \text{ s.t. } L^i_f V(q) \neq 0. \quad \text{(NDC)}
\]
\[
L_f V = (\nabla V)f, \quad L^i_f V = L_f(L_f^{i-1} V).
\]
Then GAS holds.

In fact, if \(L_f V(x(t, x_0)) \equiv 0 \) along some trajectory, then \(L^k_f V(x(t, x_0)) \equiv 0 \) for all \(t \geq 0 \) and \(k \in \mathbb{N} \), so \(L^k_f V(x_0) \equiv 0 \).

Q: Can we transform \(V \) into a strict Lyapunov function?

A: Yes, and we can allow time varying systems and relax NDC.

Let \(V \in C^\infty \) be a nonstrict Lyapunov function for \(\dot{x} = f(t, x) \), \(x \in \mathbb{R}^n \), with \(f \) and \(V \) having period \(T \) in \(t \). Goal: Strictify it.
Strictification under LaSalle Assumptions

\[a_1 = -\dot{V}. \]
Strictification under LaSalle Assumptions

\[a_1 = -\dot{V}. \quad a_{i+1} = -\dot{a}_i. \]
Strictification under LaSalle Assumptions

\[a_1 = -\dot{V}. \quad a_{i+1} = -\dot{a}_i. \quad A_j(t, x) = \sum_{m=1}^{j} a_{m+1}(t, x)a_m(t, x). \]
Strictification under LaSalle Assumptions

\[a_1 = -\dot{V}. \quad a_{i+1} = -\dot{a}_i. \quad A_j(t, x) = \sum_{m=1}^{j} a_{m+1}(t, x)a_m(t, x). \]

Theorem 1 (MM-FM, TAC’10)
Strictification under LaSalle Assumptions

\[a_1 = -\dot{V}. \quad a_{i+1} = -\dot{a}_i. \quad A_j(t, x) = \sum_{m=1}^j a_{m+1}(t, x)a_m(t, x). \]

Theorem 1 (MM-FM, TAC’10) Assume \(\exists \) constants \(\tau \in (0, T] \) and \(\ell \in \mathbb{N} \) and a positive definite continuous function \(\rho \) such that for all \(x \in \mathbb{R}^n \) and all \(t \in [0, \tau] \), we have the NDC condition

\[a_1(t, x) + \sum_{m=2}^\ell a_m^2(t, x) \geq \rho(V(t, x)). \]

(5)
Strictification under LaSalle Assumptions

\[a_1 = -\dot{V}. \quad a_{i+1} = -\dot{a}_i. \quad A_j(t, x) = \sum_{m=1}^{j} a_{m+1}(t, x)a_m(t, x). \]

Theorem 1 (MM-FM, TAC’10) Assume \(\exists \) constants \(\tau \in (0, T] \) and \(\ell \in \mathbb{N} \) and a positive definite continuous function \(\rho \) such that for all \(x \in \mathbb{R}^n \) and all \(t \in [0, \tau] \), we have the NDC condition

\[
a_1(t, x) + \sum_{m=2}^{\ell} a_m^2(t, x) \geq \rho(V(t, x)). \tag{5}
\]

Then we can explicitly determine functions \(\mathcal{F}_j \) and \(\mathcal{G} \) such that

\[
V^\#(t, x) = \sum_{j=1}^{\ell-1} \mathcal{F}_j(V(t, x))A_j(t, x) + \mathcal{G}(t, V(t, x)) \tag{6}
\]

is a strict Lyapunov function, giving UGAS of the dynamics.
Second Construction for \(\dot{x} = f(x) \), \(x \in X \)
Second Construction for \(\dot{x} = f(x), x \in \mathcal{X} \)

This Matrosov approach constructs auxiliary functions.
Second Construction for $\dot{x} = f(x)$, $x \in \mathcal{X}$

This Matrosov approach constructs auxiliary functions.

Assumption A There are functions h_j such that $h_j(0) = 0$ for all j; everywhere positive functions r_1, \ldots, r_m and ρ; a proper positive definite function $V_1 : \mathcal{X} \to [0, \infty)$; and an integer $N > 0$ for which

$$\nabla V_1(x)f(x) \leq -r_1(x)h_1^2(x) - \cdots - r_m(x)h_m^2(x) \quad \forall x \in \mathcal{X} \quad (7)$$

Also, $f \in C^\infty(\mathbb{R}^n)$, and V_1 has a positive definite quadratic lower bound in some neighborhood of $0 \in \mathbb{R}^n$.
Second Construction for $\dot{x} = f(x)$, $x \in \mathcal{X}$

This Matrosov approach constructs auxiliary functions.

Assumption A There are functions h_j such that $h_j(0) = 0$ for all j; everywhere positive functions r_1, \ldots, r_m and ρ; a proper positive definite function $V_1 : \mathcal{X} \rightarrow [0, \infty)$; and an integer $N > 0$ for which

$$\nabla V_1(x)f(x) \leq -r_1(x)h_1^2(x) - \ldots - r_m(x)h_m^2(x) \quad \forall x \in \mathcal{X} \quad (7)$$

and

$$\sum_{k=0}^{N-1} \sum_{j=1}^{m} \left[L_f^k h_j(x) \right]^2 \geq \rho(V_1(x))V_1(x) \quad \forall x \in \mathcal{X}. \quad (8)$$

Also, $f \in C^\infty(\mathbb{R}^n)$, and V_1 has a positive definite quadratic lower bound in some neighborhood of $0 \in \mathbb{R}^n$.

Second Construction for $\dot{x} = f(x)$, $x \in \mathcal{X}$

This Matrosov approach constructs auxiliary functions.

Assumption A There are functions h_j such that $h_j(0) = 0$ for all j; everywhere positive functions r_1, \ldots, r_m and ρ; a proper positive definite function $V_1 : \mathcal{X} \rightarrow [0, \infty)$; and an integer $N > 0$ for which

$$\nabla V_1(x) f(x) \leq -r_1(x) h_1^2(x) - \ldots - r_m(x) h_m^2(x) \quad \forall x \in \mathcal{X}$$

(7) and

$$\sum_{k=0}^{N-1} \sum_{j=1}^{m} \left[L_f^k h_j(x) \right]^2 \geq \rho(V_1(x)) V_1(x) \quad \forall x \in \mathcal{X}.$$

(8)

Also, $f \in C^\infty(\mathbb{R}^n)$, and V_1 has a positive definite quadratic lower bound in some neighborhood of $0 \in \mathbb{R}^n$.
Second Construction for $\dot{x} = f(x), x \in \mathcal{X}$
Second Construction for $\dot{x} = f(x)$, $x \in \mathcal{X}$

Theorem 2 (MM-FM, TAC’10) Assume that $\dot{x} = f(x)$ satisfies Assumption A.
Second Construction for $\dot{x} = f(x), \ x \in \mathcal{X}$

Theorem 2 (MM-FM, TAC’10) Assume that $\dot{x} = f(x)$ satisfies Assumption A. Set

$$V_i(x) = - \sum_{\ell=1}^{m} \left(\frac{L_f^{i-2} h_{\ell}(x)}{L_f^{i-1} h_{\ell}(x)} \right) \left(\frac{L_f^{i-1} h_{\ell}(x)}{L_f^{i} h_{\ell}(x)} \right), \ i = 2, \ldots, N.$$ \hspace{1cm} (9)
Second Construction for $\dot{x} = f(x), \ x \in \mathcal{X}$

Theorem 2 (MM-FM, TAC’10) Assume that $\dot{x} = f(x)$ satisfies Assumption A. Set

$$V_i(x) = -\sum_{\ell=1}^{m} \left(L_f^{i-2} h_\ell(x) \right) \left(L_f^{i-1} h_\ell(x) \right), \ i = 2, \ldots, N.$$ \hspace{1cm} (9)

One can determine explicit functions $k_\ell, \Omega_\ell \in \mathcal{K}_\infty \cap \mathcal{C}^1$ such that

$$S(x) = \sum_{\ell=1}^{N} \Omega_\ell \left(k_\ell(V_1(x)) + V_\ell(x) \right)$$ \hspace{1cm} (10)

is a strict Lyapunov function on \mathcal{X} satisfying $S(x) \geq V_1(x)$ on \mathcal{X}.

Significance:
Second Construction for $\dot{x} = f(x)$, $x \in \mathcal{X}$

Theorem 2 (MM-FM, TAC’10) Assume that $\dot{x} = f(x)$ satisfies Assumption A. Set

$$V_i(x) = -\sum_{\ell=1}^{m} \left(L_f^{i-2} h_\ell(x) \right) \left(L_f^{i-1} h_\ell(x) \right), \quad i = 2, \ldots, N.$$ \hfill (9)

One can determine explicit functions $k_\ell, \Omega_\ell \in \mathcal{K}_\infty \cap C^1$ such that

$$S(x) = \sum_{\ell=1}^{N} \Omega_\ell \left(k_\ell(V_1(x)) + V_\ell(x) \right) \hfill (10)$$

is a strict Lyapunov function on \mathcal{X} satisfying $S(x) \geq V_1(x)$ on \mathcal{X}.

Significance:
Second Construction for $\dot{x} = f(x), \ x \in \mathcal{X}$

Theorem 2 (MM-FM, TAC’10) Assume that $\dot{x} = f(x)$ satisfies Assumption A. Set

$$V_i(x) = -\sum_{\ell=1}^{m} \left(L_f^{i-2} h_\ell(x)\right) \left(L_f^{i-1} h_\ell(x)\right), \quad i = 2, \ldots, N.$$ \quad (9)

One can determine explicit functions $k_\ell, \Omega_\ell \in \mathcal{K}_\infty \cap C^1$ such that

$$S(x) = \sum_{\ell=1}^{N} \Omega_\ell \left(k_\ell(V_1(x)) + V_\ell(x)\right)$$ \quad (10)

is a strict Lyapunov function on \mathcal{X} satisfying $S(x) \geq V_1(x)$ on \mathcal{X}.

Significance: New theorem says which functions V_i to pick.
Second Construction for $\dot{x} = f(x), \ x \in \mathcal{X}$

Theorem 2 (MM-FM, TAC’10) Assume that $\dot{x} = f(x)$ satisfies Assumption A. Set

$$V_i(x) = -\sum_{\ell=1}^{m} \left(L_{f}^{i-2} h_{\ell}(x)\right) \left(L_{f}^{i-1} h_{\ell}(x)\right), \quad i = 2, \ldots, N.$$ \hfill (9)

One can determine explicit functions $k_{\ell}, \Omega_{\ell} \in \mathcal{K}_{\infty} \cap C^1$ such that

$$S(x) = \sum_{\ell=1}^{N} \Omega_{\ell} \left(k_{\ell}(V_1(x)) + V_{\ell}(x)\right)$$ \hfill (10)

is a strict Lyapunov function on \mathcal{X} satisfying $S(x) \geq V_1(x)$ on \mathcal{X}.

Significance: Allows any open state space \mathcal{X} containing $0 \in \mathbb{R}^n$.

Second Construction for $\dot{x} = f(x), \ x \in \mathcal{X}$

Theorem 2 (MM-FM, TAC’10) Assume that $\dot{x} = f(x)$ satisfies Assumption A. Set

$$V_i(x) = - \sum_{\ell=1}^{m} \left(L_i^{i-2} h_\ell(x) \right) \left(L_i^{i-1} h_\ell(x) \right), \ i = 2, \ldots, N. \tag{9}$$

One can determine explicit functions $k_\ell, \Omega_\ell \in \mathcal{K}_\infty \cap \mathcal{C}^1$ such that

$$S(x) = \sum_{\ell=1}^{N} \Omega_\ell \left(k_\ell(V_1(x)) + V_\ell(x) \right) \tag{10}$$

is a strict Lyapunov function on \mathcal{X} satisfying $S(x) \geq V_1(x)$ on \mathcal{X}.

Significance: Readily extends to time periodic t-v systems.
Biological Application: Lotka-Volterra Dynamics

\[\dot{x} = \gamma x \left(1 - \frac{x}{L}\right) - a x \zeta \]
\[\dot{\zeta} = \beta x \zeta - \Delta \zeta \]

\[x = \text{prey}. \]
\[\zeta = \text{predator}. \]
\[a, \beta, \gamma, \Delta, L = \text{positive constants}. \]

Change coordinates and rescale to get the error dynamics

\[\dot{\tilde{x}} = -[\tilde{x} + \alpha \tilde{y}](\tilde{x} + x^*) \]
\[\dot{\tilde{y}} = \alpha \tilde{x}(\tilde{y} + y^*) \]

with state space
\[X = (-\infty, +\infty) \times (-\infty, +\infty) \]
\[\alpha = \frac{\beta L}{\gamma}, \quad \Delta = \frac{\Delta}{\gamma}, \quad x^* = \frac{\alpha}{\alpha + \Delta} \]
\[y^* = \frac{1}{\alpha} - \frac{\alpha + \Delta}{\alpha} \]

Assume \(\alpha > \Delta \).

Want a global strict Lyapunov function for (12).
Biological Application: Lotka-Volterra Dynamics

\[
\begin{align*}
\dot{\chi} &= \gamma \chi \left(1 - \frac{\chi}{L}\right) - a\chi \zeta \\
\dot{\zeta} &= \beta \chi \zeta - \Delta \zeta
\end{align*}
\] (11)
Biological Application: Lotka-Volterra Dynamics

\[
\begin{aligned}
\dot{\chi} &= \gamma \chi (1 - \frac{\chi}{L}) - a \chi \zeta \\
\dot{\zeta} &= \beta \chi \zeta - \Delta \zeta
\end{aligned}
\]

\(\zeta = \text{predator}. \ \chi = \text{prey.}\)
Biological Application: Lotka-Volterra Dynamics

\[
\begin{align*}
\dot{\chi} &= \gamma \chi \left(1 - \frac{\chi}{L}\right) - a \chi \zeta \\
\dot{\zeta} &= \beta \chi \zeta - \Delta \zeta
\end{align*}
\]

(11)

\[\zeta = \text{predator. } \chi = \text{prey. } a, \beta, \gamma, \Delta, L = \text{positive constants.}\]
Biological Application: Lotka-Volterra Dynamics

\[
\begin{align*}
\dot{\chi} &= \gamma \chi (1 - \frac{\chi}{L}) - a \chi \xi \\
\dot{\xi} &= \beta \chi \xi - \Delta \xi
\end{align*}
\] \hspace{1cm} (11)

\(\xi = \text{predator. } \chi = \text{prey. } a, \beta, \gamma, \Delta, L = \text{positive constants.}\)

Change coordinates and rescale to get the error dynamics

\[
\begin{align*}
\dot{x} &= -[\ddot{x} + \alpha \ddot{y}](\ddot{x} + x_*) \\
\dot{y} &= \alpha \ddot{x}(\ddot{y} + y_*)
\end{align*}
\] \hspace{1cm} (12)

with state space \(\mathcal{X} = (-x_*, +\infty) \times (-y_*, +\infty),\)
Biological Application: Lotka-Volterra Dynamics

\[
\begin{align*}
\dot{\chi} &= \gamma \chi \left(1 - \frac{\chi}{L}\right) - a\chi\zeta \\
\dot{\zeta} &= \beta \chi \zeta - \Delta \zeta
\end{align*}
\] (11)

\(\zeta = \text{predator. } \chi = \text{prey. } a, \beta, \gamma, \Delta, L = \text{positive constants.}\)

Change coordinates and rescale to get the error dynamics

\[
\begin{align*}
\dot{\tilde{x}} &= -[\tilde{x} + \alpha \tilde{y}](\tilde{x} + x^*) \\
\dot{\tilde{y}} &= \alpha \tilde{x}(\tilde{y} + y^*),
\end{align*}
\] (12)

with state space \(\mathcal{X} = (-x^*, +\infty) \times (-y^*, +\infty),\)

\[
\alpha = \frac{\beta L}{\gamma}, \quad d = \frac{\Delta}{\gamma}, \quad x^* = \frac{d}{\alpha} \quad \text{and} \quad y^* = \frac{1}{\alpha} - \frac{d}{\alpha^2}.\] (13)
Biological Application: Lotka-Volterra Dynamics

\[
\begin{align*}
\dot{\chi} &= \gamma \chi (1 - \frac{\chi}{L}) - a \chi \zeta \\
\dot{\zeta} &= \beta \chi \zeta - \Delta \zeta
\end{align*}
\]
(11)

\(\zeta = \) predator. \(\chi = \) prey. \(a, \beta, \gamma, \Delta, L = \) positive constants.

Change coordinates and rescale to get the error dynamics

\[
\begin{align*}
\dot{\tilde{x}} &= -[\tilde{x} + \alpha \tilde{y}](\tilde{x} + x^*) \\
\dot{\tilde{y}} &= \alpha \tilde{x}(\tilde{y} + y^*)
\end{align*}
\]
(12)

with state space \(\mathcal{X} = (-x^*, +\infty) \times (-y^*, +\infty)\),

\[
\alpha = \frac{\beta L}{\gamma}, \quad d = \frac{\Delta}{\gamma}, \quad x^* = \frac{d}{\alpha} \text{ and } y^* = \frac{1}{\alpha} - \frac{d}{\alpha^2}.
\]
(13)

Assume \(\alpha > d\).
Biological Application: Lotka-Volterra Dynamics

\[
\begin{align*}
\dot{\chi} &= \gamma \chi \left(1 - \frac{\chi}{L}\right) - a \chi \zeta \\
\dot{\zeta} &= \beta \chi \zeta - \Delta \zeta
\end{align*}
\]

(11)

\(\zeta = \text{predator}. \ \chi = \text{prey}. \ a, \beta, \gamma, \Delta, L = \text{positive constants}.

Change coordinates and rescale to get the error dynamics

\[
\begin{align*}
\dot{\tilde{x}} &= -[\tilde{x} + \alpha \tilde{y}] (\tilde{x} + x_*) \\
\dot{\tilde{y}} &= \alpha \tilde{x} (\tilde{y} + y_*)
\end{align*}
\]

(12)

with state space \(X = (-x_*, +\infty) \times (-y_*, +\infty)\),

\[
\alpha = \frac{\beta L}{\gamma}, \quad d = \frac{\Delta}{\gamma}, \quad x_* = \frac{d}{\alpha} \quad \text{and} \quad y_* = \frac{1}{\alpha} - \frac{d}{\alpha^2}.
\]

(13)

Assume \(\alpha > d\). Want a global strict Lyapunov function for (12).
Use of Theorem 2

There are many Lyapunov constructions for Lotka-Volterra models available based on computing the LaSalle invariant set. By contrast, our result provides a global strict Lyapunov function.

\[V_1(\tilde{x}, \tilde{y}) = \tilde{x} - x^* \ln \left(1 + \frac{\tilde{x}}{x^*} \right) + \tilde{y} - y^* \ln \left(1 + \frac{\tilde{y}}{y^*} \right) \]

(14)

Nonstrict Lyapunov decay condition:

\[\dot{V}_1(\tilde{x}, \tilde{y}) \leq -|\tilde{x}|^2. \]

Auxiliary function from theorem:

\[V_2(\tilde{x}, \tilde{y}) = \tilde{x}(\tilde{x} + \alpha \tilde{y})(\tilde{x} + x^*). \]
Use of Theorem 2

There are many Lyapunov constructions for Lotka-Volterra models available based on computing the LaSalle invariant set.
Use of Theorem 2

There are many Lyapunov constructions for Lotka-Volterra models available based on computing the LaSalle invariant set.

By contrast, our result provides a global strict Lyapunov function.
Use of Theorem 2

There are many Lyapunov constructions for Lotka-Volterra models available based on computing the LaSalle invariant set.

By contrast, our result provides a \textit{global strict Lyapunov function}.

\begin{equation}
V_1(\tilde{x}, \tilde{y}) = \tilde{x} - x_* \ln \left(1 + \frac{\tilde{x}}{x_*}\right) + \tilde{y} - y_* \ln \left(1 + \frac{\tilde{y}}{y_*}\right)
\end{equation} (14)
Use of Theorem 2

There are many Lyapunov constructions for Lotka-Volterra models available based on computing the LaSalle invariant set.

By contrast, our result provides a global strict Lyapunov function.

\[V_1(\tilde{x}, \tilde{y}) = \tilde{x} - x^* \ln \left(1 + \frac{\tilde{x}}{x^*} \right) + \tilde{y} - y^* \ln \left(1 + \frac{\tilde{y}}{y^*} \right) \]
(14)

Nonstrict Lyapunov decay condition:
Use of Theorem 2

There are many Lyapunov constructions for Lotka-Volterra models available based on computing the LaSalle invariant set.

By contrast, our result provides a *global strict Lyapunov function*.

\[V_1(\tilde{x}, \tilde{y}) = \tilde{x} - x_* \ln \left(1 + \frac{\tilde{x}}{x_*} \right) + \tilde{y} - y_* \ln \left(1 + \frac{\tilde{y}}{y_*} \right) \]

(14)

Nonstrict Lyapunov decay condition: \(\dot{V}_1(\tilde{x}, \tilde{y}) \leq -|\tilde{x}|^2 \).
Use of Theorem 2

There are many Lyapunov constructions for Lotka-Volterra models available based on computing the LaSalle invariant set. By contrast, our result provides a *global strict Lyapunov function*.

\[
V_1(\tilde{x}, \tilde{y}) = \tilde{x} - x_\ast \ln \left(1 + \frac{\tilde{x}}{x_\ast} \right) + \tilde{y} - y_\ast \ln \left(1 + \frac{\tilde{y}}{y_\ast} \right) \tag{14}
\]

Nonstrict Lyapunov decay condition: \(\dot{V}_1(\tilde{x}, \tilde{y}) \leq -|\tilde{x}|^2 \).

Auxiliary function from theorem:
Use of Theorem 2

There are many Lyapunov constructions for Lotka-Volterra models available based on computing the LaSalle invariant set. By contrast, our result provides a global strict Lyapunov function.

\[V_1(\tilde{x}, \tilde{y}) = \tilde{x} - x_\star \ln \left(1 + \frac{\tilde{x}}{x_\star}\right) + \tilde{y} - y_\star \ln \left(1 + \frac{\tilde{y}}{y_\star}\right) \] (14)

Nonstrict Lyapunov decay condition: \(\dot{V}_1(\tilde{x}, \tilde{y}) \leq -|\tilde{x}|^2. \)

Auxiliary function from theorem: \(V_2(\tilde{x}, \tilde{y}) = \tilde{x}[\tilde{x} + \alpha\tilde{y}](\tilde{x} + x_\star). \)
Strict Lyapunov Function Construction (MM-FM)
Strict Lyapunov Function Construction (MM-FM)

\[
S(\tilde{x}, \tilde{y}) = V_2(\tilde{x}, \tilde{y}) + \int_0^{V_1(\tilde{x}, \tilde{y})} \phi_1(r) \, dr \\
+ [\rho_1(V_1(\tilde{x}, \tilde{y})) + 1] V_1(\tilde{x}, \tilde{y}),
\]
(15)
Strict Lyapunov Function Construction (MM-FM)

\[
S(\tilde{x}, \tilde{y}) = V_2(\tilde{x}, \tilde{y}) + \int_0^{V_1(\tilde{x}, \tilde{y})} \phi_1(r) \, dr \\
+ [p_1(V_1(\tilde{x}, \tilde{y})) + 1] V_1(\tilde{x}, \tilde{y}),
\]

(15)

where

\[
\phi_1(r) = 2 \left[\left(289 x_* + 144 \alpha y_* \right)^2 + 144 \alpha^2 x_* y_* \right] e^{2 \left(\frac{1}{x_*} + \frac{1}{y_*} \right) r}
\]
Strict Lyapunov Function Construction (MM-FM)

\[S(\tilde{x}, \tilde{y}) = V_2(\tilde{x}, \tilde{y}) + \int_0^{V_1(\tilde{x}, \tilde{y})} \phi_1(r) \, dr \]
\[+ \left[p_1(V_1(\tilde{x}, \tilde{y})) + 1 \right] V_1(\tilde{x}, \tilde{y}), \]
(15)

where

\[\phi_1(r) = 2 \left[(289x_* + 144\alpha y_*)^2 + 144\alpha^2 x_* y_* \right] e^{2\left(\frac{1}{x_*} + \frac{1}{y_*} \right)} r \]

and

\[p_1(r) = 1536(x_* + 1)(\alpha + 1)(1 + x_* + y_*)^4(1 + r)^3. \]
Strict Lyapunov Function Construction (MM-FM)

\[S(\tilde{x}, \tilde{y}) = V_2(\tilde{x}, \tilde{y}) + \int_0^{V_1(\tilde{x}, \tilde{y})} \phi_1(r) \, dr \]
\[+ [p_1(V_1(\tilde{x}, \tilde{y}))+1] V_1(\tilde{x}, \tilde{y}), \]

where

\[\phi_1(r) = 2 \left((289x_* + 144\alpha y_*)^2 + 144\alpha^2 x_* y_* \right) e^{2 \left(\frac{1}{x_*} + \frac{1}{y_*} \right) r} \]

and

\[p_1(r) = 1536(x_* + 1)(\alpha + 1)(1 + x_* + y_*)^4 (1 + r)^3. \]

Along the trajectories of the L-V error dynamics,

\[\dot{S}(t, x) \leq -\frac{1}{4} \left[\tilde{x}^2 + \left\{ (\tilde{x} + \alpha \tilde{y})(\tilde{x} + x_*) \right\}^2 \right]. \]
Conclusions
Conclusions

- The point stabilization and strict Lyapunov function construction problems are closely related.
Conclusions

- The point stabilization and strict Lyapunov function construction problems are closely related.

- While UGAS can sometimes be proven using nonstrict Lyapunov functions, **strict Lyapunov functions** can give ISS.
Conclusions

- The point stabilization and strict Lyapunov function construction problems are closely related.
- While UGAS can sometimes be proven using nonstrict Lyapunov functions, strict Lyapunov functions can give ISS.
- The LaSalle and Matrosov approaches transform nonstrict Lyapunov functions into strict ones.

Thank you for your attention and interest!
Conclusions

- The point stabilization and strict Lyapunov function construction problems are closely related.

- While UGAS can sometimes be proven using nonstrict Lyapunov functions, strict Lyapunov functions can give ISS.

- The LaSalle and Matrosov approaches transform nonstrict Lyapunov functions into strict ones.

- Lyapunov-Krasovskii functions and robust forward invariance give extensions for delays and state constraints.
Conclusions

- The point stabilization and strict Lyapunov function construction problems are closely related.

- While UGAS can sometimes be proven using nonstrict Lyapunov functions, strict Lyapunov functions can give ISS.

- The LaSalle and Matrosov approaches transform nonstrict Lyapunov functions into strict ones.

- Lyapunov-Krasovskii functions and robust forward invariance give extensions for delays and state constraints.

Thank you for your attention and interest!