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positive for all x € X \ {0}. Proper means that inf; V(f, x) — oo
as x approaches boundary(X’) or |x| — occ.

For example, V(x) = In(1 + x?) is a Lyapunov function for
x = —x/(1+ x?) because V < —x2/(1 + x?)?, which gives
global asymptotic stability, i.e., attractivity and local stability.



Basic Vocabulary and Simple Example

A Lyapunov function for a system x = F(t, x) with state space X
is a positive definite proper function V' : [0,00) x & — [0, 00)
such that V(¢ x) := Vi(t, x) + Vi(t, x)F(t,x) <0on[0,00) x X.

By positive definite, we mean inf; V(t, x) is zero when x = 0 and
positive for all x € X\ {0}. Proper means that inf; V(f, x) — oo
as x approaches boundary(X’) or |x| — oo.

However, for each constant ¢ > 0, we can find an xg such that
the trajectory for x = —x/(1 + x2) + § starting at x(0) = xp is
unbounded, which means we lack input-to-state stability.
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V(t, x) < —W(x), with W(x) positive definite.

Nonstrict Lyapunov function decay:

V(t, x) < —W(x), with W(x) nonnegative definite.
Either way, inf; V(t, x) is assumed proper and positive definite.

Using LaSalle Invariance, we can oftt_an use nonstrict ones to
prove GAS, e.g., for x = f(x) where V(x) := VV(x)f(x).
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Strict Lyapunov function decay:

V(t, x) < —W(x), with W(x) positive definite.

Nonstrict Lyapunov function decay:

V(t, x) < —W(x), with W(x) nonnegative definite.
Either way, inf; V(t, x) is assumed proper and positive definite.

If V'is a nonstrict Lyapunov function such that the only solution
that remains in {x : V(x) =0} is x = 0, then conclude GAS to 0.
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Background

Strict Lyapunov function decay:

V(t, x) < —W(x), with W(x) positive definite.

Nonstrict Lyapunov function decay:

V(t,x) < —W(x), with W(x) nonnegative definite.
Either way, inf; V(t, x) is assumed proper and positive definite.

For example, take X; = Xp, %> = —x; — x5. Use V(x) = 0.5/x|°.
Then V = —x$. The largest invariant set in {x : x, = 0} is {0}.
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Strict Lyapunov function decay:

V(t, x) < —W(x), with W(x) positive definite.

Nonstrict Lyapunov function decay:

V(t, x) < —W(x), with W(x) nonnegative definite.
Either way, inf; V(t, x) is assumed proper and positive definite.

However, explicit strict Lyapunov function constructions are
often needed in applications to certify robustness.



Background

Strict Lyapunov function decay:

V(t, x) < —W(x), with W(x) positive definite.

Nonstrict Lyapunov function decay:

V(t, x) < —W(x), with W(x) nonnegative definite.
Either way, inf; V(t, x) is assumed proper and positive definite.

This has led to significant research on explicitly constructing
strict Lyapunov functions.



Background

Strict Lyapunov function decay:

V(t, x) < —W(x), with W(x) positive definite.

Nonstrict Lyapunov function decay:

V(t, x) < —W(x), with W(x) nonnegative definite.
Either way, inf; V(t, x) is assumed proper and positive definite.

We assume standard assumptions on the dynamics which hold
under smooth forward completeness and time-periodicity.
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Input-to-state stability is a robustness property for systems
x=F(tx,d). (1)

Invented by E. Sontag; see CDC’88, T-AC’89. The state space
X is a general open subset of Euclidean space containing 0.

Assume F(t,0,0) =0 for all t. E.g., x = f(t,x) + g(t, x)d if
f(t,0) = 0 for all t. That’s the control-affine case.

The disturbances d : [0,00) — D are measurable essentially
bounded functions valued in some subset D of a Euclidean
space. See our CCE book for standing assumptions on F.
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We say that x = F(t, x, d) is ISS provided there exist functions
BeKLandy € Ky and & € K, s.t. for all initial conditions
x(ty) = xo € X and all disturbances d, the corresponding
trajectories t — ((t; ty, Xo, d) satisfy

6(t o0, ) < 5l ~ o) +2(0dln) V2t (2
K~: continuous, strictly increasing, unbounded, 0 at 0.
KL: continuous, 5(+, t) € K forall t, lim;— 5(s,t) = 0 for all s.
ISS Lyapunov function decay: V < —aq(V) + ax(|d|), a; € Kuo.
UGAS: Special case where d = 0.
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Example: Assume that
X = Fa(t, x) = f(t,x) + g(t, X)K(t, x) 3)
is UGAS to the origin.

Assume that we have a strict Lyapunov function V so that
W(x) = infs{—[V:(t, x) + Vx(t, x)Fa(t, x)]} is proper.

Then
x = f(t,x) + g(t, x) |[K(t, x) = D V(t,x) - 9(t,x) + d|  (4)
is ISS with respect to actuator errors d.

Need K(t, x) and Dy V(t,x) - g(t, x).
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Assume x = f(x) has a nonstrict Lyapunov function V so that:
3N, > 0s.t. Vg € R"\ {0}, 3i € [1, N,] s.t. L}V(g) # 0. (NDC)
LV =(VV)f, LIV = L,«(L’;‘1 V). Then GAS holds.

In fact, if LfV(x(t, xo)) = 0 along some trajectory, then
LkV(x(t,x))) =0forall t > 0and k € N, so LKV(xp) = 0.

Q: Can we transform V into a strict Lyapunov function?
A: Yes, and we can allow time varying systems and relax NDC.

Let V € C* be a nonstrict Lyapunov function for x = f(t, x),
x € R", with f and V having period T in t. Goal: Strictify it.
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ar=-V. ap1=-2a. A(t,X)=0_am(t X)an(t, x).

Theorem 1 (MM-FM, TAC’10) Assume 3 constants T € (0, T|
and ¢ € N and a positive definite continuous function p such that
for all x e R™ and all t € [0, 7], we have the NDC condition

¢
ar(t,x)+ Y a(t.x) > p(V(t,x)) . (5)
m=2

Then we can explicitly determine functions F; and G such that

Zf, (1, X)+G(t, V(t, X)) (6)

is a strict Lyapunov funct/on, giving UGAS of the dynamics.
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Second Construction for x = f(x), x € X

This Matrosov approach constructs auxiliary functions.

Assumption A There are functions h; such that h;(0) = 0 for all j;

everywhere positive functions ry, . .., rm and p; a proper positive
definite function Vi : X — [0, c0), and an integer N > 0 for which
VVi(x)f(X) < —r(x)H(x) — ... — rm(x)R2,(x) Vx € X (7)
N-1 m 5
and 3N [L?h,(x)} > p(Vi())Vi(x) Yx € X, (8)
k=0 j=1

Also, f € C>*(R"), and V; has a positive definite quadratic lower
bound in some neighborhood of 0 € R".
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Second Construction for x = f(x), x € X

Theorem 2 (MM-FM, TAC’'10) Assume that x = f(x) satisfies
Assumption A. Set

V,-(x):—zm:(Lf‘zhg(x)> <L;’1hg(x)) L i=2,...,N. (9)

One can determine explicit functions k;, Q, € Ko, N C' such that
N

S(x) = ZQ@ (kg(w(x)) + vg(x)> (10)
=1

is a strict Lyapunov function on X satisfying S(x) > Vi(x) on X.

Significance: Readily extends to time periodic t-v systems.
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Biological Application: Lotka-Volterra Dynamics

X = w(1-%) —-ax 1)
¢ = Bx¢—AC
¢ =predator. x =prey. a, 5,7, A, L =positive constants.

Change coordinates and rescale to get the error dynamics

{ x = _P?f aj] (% + x.) (12)
y = ok(y+y.),
with state space X = (—X, +00) x (= Vs, +00),

a=2 d=2, x=2 ad y.=1-5 (13)

Assume « > d. Want a global strict Lyapunov function for (12).
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Use of Theorem 2

There are many Lyapunov constructions for Lotka-Volterra
models available based on computing the LaSalle invariant set.

By contrast, our result provides a global strict Lyapunov function.

*

Nonstrict Lyapunov decay condition: V; (X, ) < —|X/2.

Auxiliary function from theorem: Vu (X, y) = X[X + ay](X + x.).
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Strict Lyapunov Function Construction (MM-FM)

S, 7) = Va(%,7)+ JJ 5 gy (r)dr

! (15)
oy (W (E7) + 1] V(%)

where

01(r) = 2[(289x+ 1440y, *+1440%x.y. | 25
and

pi(r) = 1536(x. + 1)(a+ 1)(1 + x. + y.)* (1 + ).

Along the trajectories of the L-V error dynamics,

S(t,x) < _% [ 4+ {(% + o) (% + x))7]. (16)
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Conclusions

» The point stabilization and strict Lyapunov function
construction problems are closely related.

» While UGAS can sometimes be proven using nonstrict
Lyapunov functions, strict Lyapunov functions can give ISS.

» The LaSalle and Matrosov approaches transform nonstrict
Lyapunov functions into strict ones.

» Lyapunov-Krasovskii functions and robust forward
invariance give extensions for delays and state constraints.

Thank you for your attention and interest!



