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What Do We Mean By Control Systems?

Continuous time forced deterministic systems.

These are doubly parameterized families of ODEs of the form

Ẏ = F
(
t ,Y ,u(t ,Y ), δ(t)

)
, Y ∈ Y. (1)

We design the controller u(t ,Y ) based on the control objective.
The functions δ : [0,∞)→ D represent uncertainty.

Specify u(t ,Y ) to get a singly parameterized family

Ẏ = G(t ,Y , δ(t)), Y ∈ Y, (2)

where G(t ,Y ,d) = F(t ,Y ,u(t ,Y ),d).
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What are Some Possible Objectives?

Ẏ = G(t ,Y ), Y ∈ Y. (Σ)

|Y (t)| ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
(UGAS)

Our γi ’s are 0 at 0, strictly increasing, and unbounded. γi ∈ K∞.

Ẏ = G
(
t ,Y , δ(t)

)
, Y ∈ Y. (Σpert)

|Y (t)| ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
+ γ3(|δ|[t0,t]) (ISS)

γ0(|Y (t)|) ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
+
∫ t

t0
γ3(|δ(r)|)dr (iISS)

Find γi ’s by building certain strict LFs for Ẏ = G(t ,Y ,0).
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Ẏ = G
(
t ,Y , δ(t)

)
, Y ∈ Y. (Σpert)

|Y (t)| ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
+ γ3(|δ|[t0,t]) (ISS)

γ0(|Y (t)|) ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
+
∫ t

t0
γ3(|δ(r)|)dr (iISS)

Find γi ’s by building certain strict LFs for Ẏ = G(t ,Y ,0).
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What are Some Possible Objectives?
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Ẏ = G
(
t ,Y , δ(t)

)
, Y ∈ Y. (Σpert)

|Y (t)| ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
+ γ3(|δ|[t0,t]) (ISS)

γ0(|Y (t)|) ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
+
∫ t

t0
γ3(|δ(r)|)dr (iISS)

Find γi ’s by building certain strict LFs for Ẏ = G(t ,Y ,0).



What Makes a LF Nonstrict or Strict?

A LF for Ẏ = G(t ,Y ) is a proper positive definite C1 function V
that admits a nonnegative definite function W such that
Vt (t ,Y ) + VY (t ,Y )G(t ,Y ) ≤ −W (Y ) for all t ≥ 0 and Y ∈ Y.

If, in addition, W is positive definite, then we call V strict.

Example 1: ẏ1 = y2, ẏ2 = −y1 − y3
2 . V (Y ) = 0.5|Y |2. V̇ = −y4

2 .

Example 2: Ẏ = − Y
1+Y 2 . V (Y ) = ln(1 + Y 2). V̇ ≤ − Y 2

(1+Y 2)2 .

Warning 1: For each constant δ̄ > 0, we can find a Y0 such that
the solution φ(t ,Y0) for Ẏ = − Y

1+Y 2 + δ̄ is unbounded.
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1+Y 2 . V (Y ) = ln(1 + Y 2). V̇ ≤ − Y 2

(1+Y 2)2 .

Warning 1: For each constant δ̄ > 0, we can find a Y0 such that
the solution φ(t ,Y0) for Ẏ = − Y
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1+Y 2 + δ̄ is unbounded.



What Makes a LF Nonstrict or Strict?
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2 . V (Y ) = 0.5|Y |2. V̇ = −y4

2 .

Example 2: Ẏ = − Y
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How Can We Robustify Controllers?

Assume that we have a controller u such that

Ẏ = G(t ,Y )
def
= f (t ,Y ) + g(t ,Y )u(t ,Y ) (3)

is UGAS to the origin.

Assume that we have a strict Lyapunov function V so that
W (Y ) = inft{−[Vt (t ,Y ) + VY (t ,Y )G(t ,Y )]} is proper.

Then

Ẏ = f (t ,Y ) + g(t ,Y )

[
u(t ,Y )−

LgV (t ,Y )︷ ︸︸ ︷
DxV (t ,Y ) · g(t ,Y ) +δ

]
(4)

is ISS with respect to actuator errors δ in any control set.
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What is Strictification?

This is the transformation of a nonstrict LF V1 into a strict LF V ]

on its domain, and is the subject of my book.

Doing so often strengthens a UGAS result to an ISS or iISS
result to quantify the effects of uncertainties.

The required nondegeneracy of V1 is often expressed in terms
of Jurdjevic-Quinn, LaSalle, or Matrosov conditions.

Active magnetic bearings, adaptive systems, bioreactors,
brushless DC motors, heart rate controllers, marine robots,
microelectromechanical relays, systems with control delays,
underactuated ships, unmanned air vehicles,..
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Adaptive Tracking and Parameter Identification

Consider a suitably regular nonlinear system

ξ̇ = J (t , ξ, Γ,u) (5)

with a smooth reference trajectory ξR and a vector Γ of unknown
constant parameters.

ξ̇R = J (t , ξR, Γ,uR(t)) ∀t ≥ 0.

Problem: Design a dynamic feedback with estimator

u = u(t , ξ, Γ̂),
·
Γ̂ = τ(t , ξ, Γ̂) (6)

that makes the Y = (Γ̃, ξ̃) = (Γ− Γ̂, ξ − ξR) system UGAS.

Flight control, electrical and mechanical engineering, etc.
Persistent excitation. Annaswamy, Narendra, Teel..
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First-Order (Mazenc, de Queiroz, M., ’09)

In 2009, we gave a solution for the special case

ξ̇ = ω(ξ)[Γ + δ] + u . (7)

Our adaptive controllers have the form

u = ξ̇R(t)− ω(ξ)Γ̂ + K (ξR(t)− ξ), ˙̂Γ = −ω(ξ)>(ξR(t)− ξ) .

Classical PE assumption: ∃ constants T , µ > 0 s.t.

µ Idp×p ≤
∫ t

t−T ω(ξR(l))>ω(ξR(l)) dl for all t ∈ R. (8)

Novelty: Our global strict Lyapunov function for the
Y = (Γ− Γ̂, ξ − ξR) dynamics gave ISS with respect to δ.
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Higher-Order (Mazenc, de Queiroz, M., ’11)

We solved the tracking and identification problem for{
ẋ = f (ξ)
żi = gi(ξ) + ki(ξ) · θi + ψiui , i = 1,2, . . . , s .

(9)

(x , z) ∈ Rr+s. Γ = (θ, ψ) = (θ1, ..., θs, ψ1, . . . , ψs) ∈ Rp1+...+ps+s.

The C2 T -periodic reference trajectory ξR = (xR, zR) to be
tracked is assumed to satisfy ẋR(t) = f (ξR(t)) ∀t ≥ 0.

Main PE Assumption: positive definiteness of the matrices

Pi
def
=
∫ T

0 λ>i (t)λi(t) dt , 1 ≤ i ≤ s (10)

where λi(t) = (ki(ξR(t)), żR,i(t)− gi(ξR(t))) for each i .
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ẋ = f (ξ)
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żi = gi(ξ) + ki(ξ) · θi + ψiui , i = 1,2, . . . , s .

(9)

(x , z) ∈ Rr+s. Γ = (θ, ψ) = (θ1, ..., θs, ψ1, . . . , ψs) ∈ Rp1+...+ps+s.

The C2 T -periodic reference trajectory ξR = (xR, zR) to be
tracked is assumed to satisfy ẋR(t) = f (ξR(t)) ∀t ≥ 0.
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Two Other Key Assumptions

I We know vf and a global strict LF V for{
Ẋ = f

(
(X ,Z ) + ξR(t)

)
− f (ξR(t))

Ż = vf (t ,X ,Z )
(11)

such that −V̇ and V have positive definite quadratic lower
bounds near 0, and V and vf are T -periodic.

Key: Reduces the LF construction problem to (11).

I There are known positive constants θM , ψ and ψ such that

ψ < ψi < ψ and |θi | < θM (12)

for each i ∈ {1,2, . . . , s}. Known directions for the ψi ’s.
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Ẋ = f

(
(X ,Z ) + ξR(t)

)
− f (ξR(t))
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Ż = vf (t ,X ,Z )
(11)

such that −V̇ and V have positive definite quadratic lower
bounds near 0, and V and vf are T -periodic.

Key: Reduces the LF construction problem to (11).

I There are known positive constants θM , ψ and ψ such that

ψ < ψi < ψ and |θi | < θM (12)

for each i ∈ {1,2, . . . , s}. Known directions for the ψi ’s.



Dynamic Feedback

The estimator evolves on {
∏s

i=1(−θM , θM)pi} × (ψ,ψ)s.
˙̂
θi,j = (θ̂2

i,j − θ2
M)$i,j , 1 ≤ i ≤ s ,1 ≤ j ≤ pi

˙̂
ψi =

(
ψ̂i − ψ

)(
ψ̂i − ψ

)
Υi , 1 ≤ i ≤ s

(13)

Here θ̂i = (θ̂i,1, . . . , θ̂i,pi ) for i = 1,2, . . . , s,

$i,j = −∂V
∂z̃i

(t , ξ̃)ki,j
(
ξ̃ + ξR(t)

)
and

Υi = −∂V
∂z̃i

(t , ξ̃)ui(t , ξ̃, θ̂, ψ̂) .
(14)

ui(t , ξ̃, θ̂, ψ̂) =
vf ,i (t ,ξ̃)−gi (ξ)−ki (ξ)·θ̂i+żR,i (t)

ψ̂i
(15)

The estimator and feedback can only depend on things we know.
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ψ̂i
(15)

The estimator and feedback can only depend on things we know.



Dynamic Feedback

The estimator evolves on {
∏s

i=1(−θM , θM)pi} × (ψ,ψ)s.
˙̂
θi,j = (θ̂2

i,j − θ2
M)$i,j , 1 ≤ i ≤ s ,1 ≤ j ≤ pi

˙̂
ψi =

(
ψ̂i − ψ

)(
ψ̂i − ψ

)
Υi , 1 ≤ i ≤ s

(13)

Here θ̂i = (θ̂i,1, . . . , θ̂i,pi ) for i = 1,2, . . . , s,

$i,j = −∂V
∂z̃i

(t , ξ̃)ki,j
(
ξ̃ + ξR(t)

)
and

Υi = −∂V
∂z̃i

(t , ξ̃)ui(t , ξ̃, θ̂, ψ̂) .
(14)

ui(t , ξ̃, θ̂, ψ̂) =
vf ,i (t ,ξ̃)−gi (ξ)−ki (ξ)·θ̂i+żR,i (t)
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Augmented Error Dynamics


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(
θ̂2

i,j − θ2
M

)
$i,j , 1 ≤ i ≤ s ,1 ≤ j ≤ pi

˙̃
ψi = −

(
ψ̂i − ψ

)(
ψ̂i − ψ

)
Υi , 1 ≤ i ≤ s .

(16)

Tracking error: ξ̃ = (x̃ , z̃) = ξ − ξR = (x − xR, z − zR)

Parameter estimation errors: θ̃i = θi − θ̂i and ψ̃i = ψi − ψ̂i

Y = Rr+s ×
(∏s

i=1

{∏pi
j=1(θi,j − θM , θi,j + θM)

})
×
(∏s

i=1
(
ψi − ψ,ψi − ψ

))
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Stabilization Analysis

We build a strict LF for the augmented tracking and identification
vector Y = (ξ̃, θ̃, ψ̃) = (ξ − ξR, θ − θ̂, ψ − ψ̂) dynamics on Y.

We start with this nonstrict barrier type LF on Y:

V1(t , ξ̃, θ̃, ψ̃) = V (t , ξ̃) +
s∑

i=1

pi∑
j=1

∫ θ̃i,j

0

m
θ2

M − (m − θi,j)2
dm

+
s∑

i=1

∫ ψ̃i

0

m
(ψi −m − ψ)(ψ − ψi + m)

dm .

On Y, V̇1 ≤ −W (ξ̃) for some positive definite function W .

We transform V1 into the desired strict LF.
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Our Transformation

Theorem: We can construct K ∈ K∞ ∩ C1 such that

V ](t , ξ̃, θ̃, ψ̃)
def
= K

(
V1(t , ξ̃, θ̃, ψ̃)

)
+

s∑
i=1

Ωi(t , ξ̃, θ̃, ψ̃) , (17)

where Ωi(t , ξ̃, θ̃, ψ̃) = −z̃iλi(t)αi(θ̃i , ψ̃i)

+ 1
Tψ
α>i (θ̃i , ψ̃i)Ωi(t)αi(θ̃i , ψ̃i) ,

(18)

αi(θ̃i , ψ̃i) =

[
θ̃iψi − θi ψ̃i

ψ̃i

]
, and

Ωi(t) =
∫ t

t−T

∫ t
m λ
>
i (s)λi(s)ds dm ,

(19)

is a strict LF for the Y = (ξ̃, θ̃, ψ̃) dynamics on Y.
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Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.
ẏ1 = y2

ẏ2 = − B
M y2 − N

M sin(y1) + Kτ [Kbζ1 + 1]ζ2

ζ̇i = Hi(y , ζ)βi + γiui , i = 1,2

(20)

H1(y , ζ) = (−ζ1, y2ζ2). H2(y , ζ) = (−ζ2,−y2ζ1,−y2).

I y1, y2 = load position and velocity. ζi = winding currents.

I B = viscous friction coefficient. M = mechanical inertia.
N = related to the load mass and gravitational constant.
Kτ ,Kb = torque transmission coefficients.

I The unknown vectors β1 ∈ R2 and β2 ∈ R3 and unknown
scalars γ1 and γ2 are the motor electric parameters.



Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit.

Drives single-link, direct-drive robot arm.
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N = related to the load mass and gravitational constant.

Kτ ,Kb = torque transmission coefficients.

I The unknown vectors β1 ∈ R2 and β2 ∈ R3 and unknown
scalars γ1 and γ2 are the motor electric parameters.
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Curve Tracking Dynamics

 ρ̇ = − sin(φ)

φ̇ = κ cos(φ)
1+κρ − u2, (ρ, φ) ∈ (0,+∞)× (−π/2, π/2)

(21)

u2 = κ cos(φ)
1+κρ − h′(ρ) cos(φ) + µ sin(φ) (22)

h(ρ) = α
{
ρ+

ρ2
0
ρ − 2ρ0

}
(23)

V (ρ, φ) = − ln
(

cos(φ)
)

+ h(ρ) (24)

U2(ρ, φ) = −h′(ρ) sin(φ) +
1
µ

∫ V (ρ,φ)

0
Γ0(m)dm (25)
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Robustly Forwardly Invariant Hexagons

We can use U2 to prove ISS of the perturbed closed loop system

ρ̇ = − sin(φ), φ̇ = h′(ρ) cos(φ)− µ sin(φ) + δ (26)

with respect to δ : [0,∞)→ [−δ∗, δ∗] on forward invariant sets.

A = (ρ∗,0), B = (2ρ∗, µρ∗),
C = (ρ∗ + Kρo, µρ∗), D = (ρ∗ + Kρo,0),
E = (Kρo,−µρ∗), F = (ρ∗,−µρ∗),

µ tan(µρ∗) > ||h′||[ρ∗,ρ∗+Kρ0] To ensure
robust forward invariance of H(ρ∗, µ,K ),

we need |δ|∞ ≤ δ∗. We can
Tight Disturbance Bound: Choose any δ∗ ∈ (0,min{∆∗,∆∗∗}).
∆∗ = min{|h′(ρ) cos(φ)| : (ρ, φ)> ∈ AB ∪ ED}
∆∗∗ = min{|h′(ρ) cos(φ)− µ sin(φ)| : (ρ, φ)> ∈ BC ∪ EF}.
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Adaptive Robust Curve Tracking

 ρ̇ = − sin(φ)

φ̇ = κ cos(φ)
1+κρ − K2[v + δ]

(27)

We proved ISS of the tracking and identification dynamics
˙̃q1 = − sin(q̃2)

˙̃q2 = κ cos(q̃2)
1+κ(q̃1+ρ0)

− K2
K̃2+K2

u2 − K2δ

˙̃K2 = −(K̃2 + K2 − cmin)(cmax − K̃2 − K2)∂U2
∂φ

u2
K̃2+K2

(28)

for (q̃1, q̃2, K̃2) = (ρ− ρ0, φ, K̂2 − K2) on each set in a nested
sequence of sets that fill the state space.
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Conclusions

I Nonlinear control systems are ubiquitous in aerospace, bio,
electrical, and mechanical engineering.

I One central problem is to build functions called closed loop
controllers that force desired tracking behaviors.

I We designed controllers for several applications including
models with unknown parameters that we can identify.

I Our strict Lyapunov function approach gave key robustness
properties such as input-to-state stability.

I We aim to find extensions that apply under time delays and
state constraints including obstacle avoidance.
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