
Adaptive Tracking and Parameter Identification
for Nonlinear Control Systems

Michael Malisoff, Louisiana State University
Sponsored by AFOSR, NSF/DMS, and NSF/ECCS

Department of Mathematical Sciences Talk
UT Dallas – February 2012

What Do We Mean By Control Systems?

Continuous time forced deterministic systems.

These are doubly parameterized families of ODEs of the form

Ẏ = F
(
t ,Y ,u(t ,Y), δ(t)

)
, Y ∈ Y. (1)

We design the controller u(t ,Y) based on the control objective.
The functions δ : [0,∞)→ D represent uncertainty.

Specify u(t ,Y) to get a singly parameterized family

Ẏ = G(t ,Y , δ(t)), Y ∈ Y, (2)

where G(t ,Y ,d) = F(t ,Y ,u(t ,Y),d).

What Do We Mean By Control Systems?

Continuous time forced deterministic systems.

These are doubly parameterized families of ODEs of the form

Ẏ = F
(
t ,Y ,u(t ,Y), δ(t)

)
, Y ∈ Y. (1)

We design the controller u(t ,Y) based on the control objective.
The functions δ : [0,∞)→ D represent uncertainty.

Specify u(t ,Y) to get a singly parameterized family

Ẏ = G(t ,Y , δ(t)), Y ∈ Y, (2)

where G(t ,Y ,d) = F(t ,Y ,u(t ,Y),d).

What Do We Mean By Control Systems?

Continuous time forced deterministic systems.

These are doubly parameterized families of ODEs of the form

Ẏ = F
(
t ,Y ,u(t ,Y), δ(t)

)
, Y ∈ Y. (1)

We design the controller u(t ,Y) based on the control objective.

The functions δ : [0,∞)→ D represent uncertainty.

Specify u(t ,Y) to get a singly parameterized family

Ẏ = G(t ,Y , δ(t)), Y ∈ Y, (2)

where G(t ,Y ,d) = F(t ,Y ,u(t ,Y),d).

What Do We Mean By Control Systems?

Continuous time forced deterministic systems.

These are doubly parameterized families of ODEs of the form

Ẏ = F
(
t ,Y ,u(t ,Y), δ(t)

)
, Y ∈ Y. (1)

We design the controller u(t ,Y) based on the control objective.
The functions δ : [0,∞)→ D represent uncertainty.

Specify u(t ,Y) to get a singly parameterized family

Ẏ = G(t ,Y , δ(t)), Y ∈ Y, (2)

where G(t ,Y ,d) = F(t ,Y ,u(t ,Y),d).

What Do We Mean By Control Systems?

Continuous time forced deterministic systems.

These are doubly parameterized families of ODEs of the form

Ẏ = F
(
t ,Y ,u(t ,Y), δ(t)

)
, Y ∈ Y. (1)

We design the controller u(t ,Y) based on the control objective.
The functions δ : [0,∞)→ D represent uncertainty.

Specify u(t ,Y) to get a singly parameterized family

Ẏ = G(t ,Y , δ(t)), Y ∈ Y, (2)

where G(t ,Y ,d) = F(t ,Y ,u(t ,Y),d).

What are Some Possible Objectives?

Ẏ = G(t ,Y), Y ∈ Y. (Σ)

|Y (t)| ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
(UGAS)

Our γi ’s are 0 at 0, strictly increasing, and unbounded. γi ∈ K∞.

Ẏ = G
(
t ,Y , δ(t)

)
, Y ∈ Y. (Σpert)

|Y (t)| ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
+ γ3(|δ|[t0,t]) (ISS)

γ0(|Y (t)|) ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
+
∫ t

t0
γ3(|δ(r)|)dr (iISS)

Find γi ’s by building certain strict LFs for Ẏ = G(t ,Y ,0).

What are Some Possible Objectives?

Ẏ = G(t ,Y), Y ∈ Y. (Σ)

|Y (t)| ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
(UGAS)

Our γi ’s are 0 at 0, strictly increasing, and unbounded. γi ∈ K∞.

Ẏ = G
(
t ,Y , δ(t)

)
, Y ∈ Y. (Σpert)

|Y (t)| ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
+ γ3(|δ|[t0,t]) (ISS)

γ0(|Y (t)|) ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
+
∫ t

t0
γ3(|δ(r)|)dr (iISS)

Find γi ’s by building certain strict LFs for Ẏ = G(t ,Y ,0).

What are Some Possible Objectives?

Ẏ = G(t ,Y), Y ∈ Y. (Σ)

|Y (t)| ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
(UGAS)

Our γi ’s are 0 at 0, strictly increasing, and unbounded. γi ∈ K∞.

Ẏ = G
(
t ,Y , δ(t)

)
, Y ∈ Y. (Σpert)

|Y (t)| ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
+ γ3(|δ|[t0,t]) (ISS)

γ0(|Y (t)|) ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
+
∫ t

t0
γ3(|δ(r)|)dr (iISS)

Find γi ’s by building certain strict LFs for Ẏ = G(t ,Y ,0).

What are Some Possible Objectives?

Ẏ = G(t ,Y), Y ∈ Y. (Σ)

|Y (t)| ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
(UGAS)

Our γi ’s are 0 at 0, strictly increasing, and unbounded.

γi ∈ K∞.

Ẏ = G
(
t ,Y , δ(t)

)
, Y ∈ Y. (Σpert)

|Y (t)| ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
+ γ3(|δ|[t0,t]) (ISS)

γ0(|Y (t)|) ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
+
∫ t

t0
γ3(|δ(r)|)dr (iISS)

Find γi ’s by building certain strict LFs for Ẏ = G(t ,Y ,0).

What are Some Possible Objectives?

Ẏ = G(t ,Y), Y ∈ Y. (Σ)

|Y (t)| ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
(UGAS)

Our γi ’s are 0 at 0, strictly increasing, and unbounded. γi ∈ K∞.

Ẏ = G
(
t ,Y , δ(t)

)
, Y ∈ Y. (Σpert)

|Y (t)| ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
+ γ3(|δ|[t0,t]) (ISS)

γ0(|Y (t)|) ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
+
∫ t

t0
γ3(|δ(r)|)dr (iISS)

Find γi ’s by building certain strict LFs for Ẏ = G(t ,Y ,0).

What are Some Possible Objectives?

Ẏ = G(t ,Y), Y ∈ Y. (Σ)

|Y (t)| ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
(UGAS)

Our γi ’s are 0 at 0, strictly increasing, and unbounded. γi ∈ K∞.

Ẏ = G
(
t ,Y , δ(t)

)
, Y ∈ Y. (Σpert)

|Y (t)| ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
+ γ3(|δ|[t0,t]) (ISS)

γ0(|Y (t)|) ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
+
∫ t

t0
γ3(|δ(r)|)dr (iISS)

Find γi ’s by building certain strict LFs for Ẏ = G(t ,Y ,0).

What are Some Possible Objectives?

Ẏ = G(t ,Y), Y ∈ Y. (Σ)

|Y (t)| ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
(UGAS)

Our γi ’s are 0 at 0, strictly increasing, and unbounded. γi ∈ K∞.

Ẏ = G
(
t ,Y , δ(t)

)
, Y ∈ Y. (Σpert)

|Y (t)| ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
+ γ3(|δ|[t0,t]) (ISS)

γ0(|Y (t)|) ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
+
∫ t

t0
γ3(|δ(r)|)dr (iISS)

Find γi ’s by building certain strict LFs for Ẏ = G(t ,Y ,0).

What are Some Possible Objectives?

Ẏ = G(t ,Y), Y ∈ Y. (Σ)

|Y (t)| ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
(UGAS)

Our γi ’s are 0 at 0, strictly increasing, and unbounded. γi ∈ K∞.

Ẏ = G
(
t ,Y , δ(t)

)
, Y ∈ Y. (Σpert)

|Y (t)| ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
+ γ3(|δ|[t0,t]) (ISS)

γ0(|Y (t)|) ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
+
∫ t

t0
γ3(|δ(r)|)dr (iISS)

Find γi ’s by building certain strict LFs for Ẏ = G(t ,Y ,0).

What are Some Possible Objectives?

Ẏ = G(t ,Y), Y ∈ Y. (Σ)

|Y (t)| ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
(UGAS)

Our γi ’s are 0 at 0, strictly increasing, and unbounded. γi ∈ K∞.

Ẏ = G
(
t ,Y , δ(t)

)
, Y ∈ Y. (Σpert)

|Y (t)| ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
+ γ3(|δ|[t0,t]) (ISS)

γ0(|Y (t)|) ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
+
∫ t

t0
γ3(|δ(r)|)dr (iISS)

Find γi ’s by building certain strict LFs for Ẏ = G(t ,Y ,0).

What Makes a LF Nonstrict or Strict?

A LF for Ẏ = G(t ,Y) is a proper positive definite C1 function V
that admits a nonnegative definite function W such that
Vt (t ,Y) + VY (t ,Y)G(t ,Y) ≤ −W (Y) for all t ≥ 0 and Y ∈ Y.

If, in addition, W is positive definite, then we call V strict.

Example 1: ẏ1 = y2, ẏ2 = −y1 − y3
2 . V (Y) = 0.5|Y |2. V̇ = −y4

2 .

Example 2: Ẏ = − Y
1+Y 2 . V (Y) = ln(1 + Y 2). V̇ ≤ − Y 2

(1+Y 2)2 .

Warning 1: For each constant δ̄ > 0, we can find a Y0 such that
the solution φ(t ,Y0) for Ẏ = − Y

1+Y 2 + δ̄ is unbounded.

What Makes a LF Nonstrict or Strict?

A LF for Ẏ = G(t ,Y) is a proper positive definite C1 function V
that admits a nonnegative definite function W such that
Vt (t ,Y) + VY (t ,Y)G(t ,Y) ≤ −W (Y) for all t ≥ 0 and Y ∈ Y.

If, in addition, W is positive definite, then we call V strict.

Example 1: ẏ1 = y2, ẏ2 = −y1 − y3
2 . V (Y) = 0.5|Y |2. V̇ = −y4

2 .

Example 2: Ẏ = − Y
1+Y 2 . V (Y) = ln(1 + Y 2). V̇ ≤ − Y 2

(1+Y 2)2 .

Warning 1: For each constant δ̄ > 0, we can find a Y0 such that
the solution φ(t ,Y0) for Ẏ = − Y

1+Y 2 + δ̄ is unbounded.

What Makes a LF Nonstrict or Strict?

A LF for Ẏ = G(t ,Y) is a proper positive definite C1 function V
that admits a nonnegative definite function W such that
Vt (t ,Y) + VY (t ,Y)G(t ,Y) ≤ −W (Y) for all t ≥ 0 and Y ∈ Y.

If, in addition, W is positive definite, then we call V strict.

Example 1: ẏ1 = y2, ẏ2 = −y1 − y3
2 . V (Y) = 0.5|Y |2. V̇ = −y4

2 .

Example 2: Ẏ = − Y
1+Y 2 . V (Y) = ln(1 + Y 2). V̇ ≤ − Y 2

(1+Y 2)2 .

Warning 1: For each constant δ̄ > 0, we can find a Y0 such that
the solution φ(t ,Y0) for Ẏ = − Y

1+Y 2 + δ̄ is unbounded.

What Makes a LF Nonstrict or Strict?

A LF for Ẏ = G(t ,Y) is a proper positive definite C1 function V
that admits a nonnegative definite function W such that
Vt (t ,Y) + VY (t ,Y)G(t ,Y) ≤ −W (Y) for all t ≥ 0 and Y ∈ Y.

If, in addition, W is positive definite, then we call V strict.

Example 1:

ẏ1 = y2, ẏ2 = −y1 − y3
2 . V (Y) = 0.5|Y |2. V̇ = −y4

2 .

Example 2: Ẏ = − Y
1+Y 2 . V (Y) = ln(1 + Y 2). V̇ ≤ − Y 2

(1+Y 2)2 .

Warning 1: For each constant δ̄ > 0, we can find a Y0 such that
the solution φ(t ,Y0) for Ẏ = − Y

1+Y 2 + δ̄ is unbounded.

What Makes a LF Nonstrict or Strict?

A LF for Ẏ = G(t ,Y) is a proper positive definite C1 function V
that admits a nonnegative definite function W such that
Vt (t ,Y) + VY (t ,Y)G(t ,Y) ≤ −W (Y) for all t ≥ 0 and Y ∈ Y.

If, in addition, W is positive definite, then we call V strict.

Example 1: ẏ1 = y2, ẏ2 = −y1 − y3
2 .

V (Y) = 0.5|Y |2. V̇ = −y4
2 .

Example 2: Ẏ = − Y
1+Y 2 . V (Y) = ln(1 + Y 2). V̇ ≤ − Y 2

(1+Y 2)2 .

Warning 1: For each constant δ̄ > 0, we can find a Y0 such that
the solution φ(t ,Y0) for Ẏ = − Y

1+Y 2 + δ̄ is unbounded.

What Makes a LF Nonstrict or Strict?

A LF for Ẏ = G(t ,Y) is a proper positive definite C1 function V
that admits a nonnegative definite function W such that
Vt (t ,Y) + VY (t ,Y)G(t ,Y) ≤ −W (Y) for all t ≥ 0 and Y ∈ Y.

If, in addition, W is positive definite, then we call V strict.

Example 1: ẏ1 = y2, ẏ2 = −y1 − y3
2 . V (Y) = 0.5|Y |2.

V̇ = −y4
2 .

Example 2: Ẏ = − Y
1+Y 2 . V (Y) = ln(1 + Y 2). V̇ ≤ − Y 2

(1+Y 2)2 .

Warning 1: For each constant δ̄ > 0, we can find a Y0 such that
the solution φ(t ,Y0) for Ẏ = − Y

1+Y 2 + δ̄ is unbounded.

What Makes a LF Nonstrict or Strict?

A LF for Ẏ = G(t ,Y) is a proper positive definite C1 function V
that admits a nonnegative definite function W such that
Vt (t ,Y) + VY (t ,Y)G(t ,Y) ≤ −W (Y) for all t ≥ 0 and Y ∈ Y.

If, in addition, W is positive definite, then we call V strict.

Example 1: ẏ1 = y2, ẏ2 = −y1 − y3
2 . V (Y) = 0.5|Y |2. V̇ = −y4

2 .

Example 2: Ẏ = − Y
1+Y 2 . V (Y) = ln(1 + Y 2). V̇ ≤ − Y 2

(1+Y 2)2 .

Warning 1: For each constant δ̄ > 0, we can find a Y0 such that
the solution φ(t ,Y0) for Ẏ = − Y

1+Y 2 + δ̄ is unbounded.

What Makes a LF Nonstrict or Strict?

A LF for Ẏ = G(t ,Y) is a proper positive definite C1 function V
that admits a nonnegative definite function W such that
Vt (t ,Y) + VY (t ,Y)G(t ,Y) ≤ −W (Y) for all t ≥ 0 and Y ∈ Y.

If, in addition, W is positive definite, then we call V strict.

Example 1: ẏ1 = y2, ẏ2 = −y1 − y3
2 . V (Y) = 0.5|Y |2. V̇ = −y4

2 .

Example 2:

Ẏ = − Y
1+Y 2 . V (Y) = ln(1 + Y 2). V̇ ≤ − Y 2

(1+Y 2)2 .

Warning 1: For each constant δ̄ > 0, we can find a Y0 such that
the solution φ(t ,Y0) for Ẏ = − Y

1+Y 2 + δ̄ is unbounded.

What Makes a LF Nonstrict or Strict?

A LF for Ẏ = G(t ,Y) is a proper positive definite C1 function V
that admits a nonnegative definite function W such that
Vt (t ,Y) + VY (t ,Y)G(t ,Y) ≤ −W (Y) for all t ≥ 0 and Y ∈ Y.

If, in addition, W is positive definite, then we call V strict.

Example 1: ẏ1 = y2, ẏ2 = −y1 − y3
2 . V (Y) = 0.5|Y |2. V̇ = −y4

2 .

Example 2: Ẏ = − Y
1+Y 2 .

V (Y) = ln(1 + Y 2). V̇ ≤ − Y 2

(1+Y 2)2 .

Warning 1: For each constant δ̄ > 0, we can find a Y0 such that
the solution φ(t ,Y0) for Ẏ = − Y

1+Y 2 + δ̄ is unbounded.

What Makes a LF Nonstrict or Strict?

A LF for Ẏ = G(t ,Y) is a proper positive definite C1 function V
that admits a nonnegative definite function W such that
Vt (t ,Y) + VY (t ,Y)G(t ,Y) ≤ −W (Y) for all t ≥ 0 and Y ∈ Y.

If, in addition, W is positive definite, then we call V strict.

Example 1: ẏ1 = y2, ẏ2 = −y1 − y3
2 . V (Y) = 0.5|Y |2. V̇ = −y4

2 .

Example 2: Ẏ = − Y
1+Y 2 . V (Y) = ln(1 + Y 2).

V̇ ≤ − Y 2

(1+Y 2)2 .

Warning 1: For each constant δ̄ > 0, we can find a Y0 such that
the solution φ(t ,Y0) for Ẏ = − Y

1+Y 2 + δ̄ is unbounded.

What Makes a LF Nonstrict or Strict?

A LF for Ẏ = G(t ,Y) is a proper positive definite C1 function V
that admits a nonnegative definite function W such that
Vt (t ,Y) + VY (t ,Y)G(t ,Y) ≤ −W (Y) for all t ≥ 0 and Y ∈ Y.

If, in addition, W is positive definite, then we call V strict.

Example 1: ẏ1 = y2, ẏ2 = −y1 − y3
2 . V (Y) = 0.5|Y |2. V̇ = −y4

2 .

Example 2: Ẏ = − Y
1+Y 2 . V (Y) = ln(1 + Y 2). V̇ ≤ − Y 2

(1+Y 2)2 .

Warning 1: For each constant δ̄ > 0, we can find a Y0 such that
the solution φ(t ,Y0) for Ẏ = − Y

1+Y 2 + δ̄ is unbounded.

What Makes a LF Nonstrict or Strict?

A LF for Ẏ = G(t ,Y) is a proper positive definite C1 function V
that admits a nonnegative definite function W such that
Vt (t ,Y) + VY (t ,Y)G(t ,Y) ≤ −W (Y) for all t ≥ 0 and Y ∈ Y.

If, in addition, W is positive definite, then we call V strict.

Example 1: ẏ1 = y2, ẏ2 = −y1 − y3
2 . V (Y) = 0.5|Y |2. V̇ = −y4

2 .

Example 2: Ẏ = − Y
1+Y 2 . V (Y) = ln(1 + Y 2). V̇ ≤ − Y 2

(1+Y 2)2 .

Warning 1:

For each constant δ̄ > 0, we can find a Y0 such that
the solution φ(t ,Y0) for Ẏ = − Y

1+Y 2 + δ̄ is unbounded.

What Makes a LF Nonstrict or Strict?

A LF for Ẏ = G(t ,Y) is a proper positive definite C1 function V
that admits a nonnegative definite function W such that
Vt (t ,Y) + VY (t ,Y)G(t ,Y) ≤ −W (Y) for all t ≥ 0 and Y ∈ Y.

If, in addition, W is positive definite, then we call V strict.

Example 1: ẏ1 = y2, ẏ2 = −y1 − y3
2 . V (Y) = 0.5|Y |2. V̇ = −y4

2 .

Example 2: Ẏ = − Y
1+Y 2 . V (Y) = ln(1 + Y 2). V̇ ≤ − Y 2

(1+Y 2)2 .

Warning 1: For each constant δ̄ > 0, we can find a Y0 such that
the solution φ(t ,Y0) for Ẏ = − Y

1+Y 2 + δ̄ is unbounded.

How Can We Robustify Controllers?

Assume that we have a controller u such that

Ẏ = G(t ,Y)
def
= f (t ,Y) + g(t ,Y)u(t ,Y) (3)

is UGAS to the origin.

Assume that we have a strict Lyapunov function V so that
W (Y) = inft{−[Vt (t ,Y) + VY (t ,Y)G(t ,Y)]} is proper.

Then

Ẏ = f (t ,Y) + g(t ,Y)

[
u(t ,Y)−

LgV (t ,Y)︷ ︸︸ ︷
DxV (t ,Y) · g(t ,Y) +δ

]
(4)

is ISS with respect to actuator errors δ in any control set.

How Can We Robustify Controllers?

Assume that we have a controller u such that

Ẏ = G(t ,Y)
def
= f (t ,Y) + g(t ,Y)u(t ,Y) (3)

is UGAS to the origin.

Assume that we have a strict Lyapunov function V so that
W (Y) = inft{−[Vt (t ,Y) + VY (t ,Y)G(t ,Y)]} is proper.

Then

Ẏ = f (t ,Y) + g(t ,Y)

[
u(t ,Y)−

LgV (t ,Y)︷ ︸︸ ︷
DxV (t ,Y) · g(t ,Y) +δ

]
(4)

is ISS with respect to actuator errors δ in any control set.

How Can We Robustify Controllers?

Assume that we have a controller u such that

Ẏ = G(t ,Y)
def
= f (t ,Y) + g(t ,Y)u(t ,Y) (3)

is UGAS to the origin.

Assume that we have a strict Lyapunov function V so that
W (Y) = inft{−[Vt (t ,Y) + VY (t ,Y)G(t ,Y)]} is proper.

Then

Ẏ = f (t ,Y) + g(t ,Y)

[
u(t ,Y)−

LgV (t ,Y)︷ ︸︸ ︷
DxV (t ,Y) · g(t ,Y) +δ

]
(4)

is ISS with respect to actuator errors δ in any control set.

How Can We Robustify Controllers?

Assume that we have a controller u such that

Ẏ = G(t ,Y)
def
= f (t ,Y) + g(t ,Y)u(t ,Y) (3)

is UGAS to the origin.

Assume that we have a strict Lyapunov function V so that
W (Y) = inft{−[Vt (t ,Y) + VY (t ,Y)G(t ,Y)]} is proper.

Then

Ẏ = f (t ,Y) + g(t ,Y)

[
u(t ,Y)−

LgV (t ,Y)︷ ︸︸ ︷
DxV (t ,Y) · g(t ,Y) +δ

]
(4)

is ISS with respect to actuator errors δ in any control set.

What is Strictification?

This is the transformation of a nonstrict LF V1 into a strict LF V]

on its domain, and is the subject of my book.

Doing so often strengthens a UGAS result to an ISS or iISS
result to quantify the effects of uncertainties.

The required nondegeneracy of V1 is often expressed in terms
of Jurdjevic-Quinn, LaSalle, or Matrosov conditions.

Active magnetic bearings, adaptive systems, bioreactors,
brushless DC motors, heart rate controllers, marine robots,
microelectromechanical relays, systems with control delays,
underactuated ships, unmanned air vehicles,..

What is Strictification?

This is the transformation of a nonstrict LF V1 into a strict LF V]

on its domain, and is the subject of my book.

Doing so often strengthens a UGAS result to an ISS or iISS
result to quantify the effects of uncertainties.

The required nondegeneracy of V1 is often expressed in terms
of Jurdjevic-Quinn, LaSalle, or Matrosov conditions.

Active magnetic bearings, adaptive systems, bioreactors,
brushless DC motors, heart rate controllers, marine robots,
microelectromechanical relays, systems with control delays,
underactuated ships, unmanned air vehicles,..

What is Strictification?

This is the transformation of a nonstrict LF V1 into a strict LF V]

on its domain, and is the subject of my book.

Doing so often strengthens a UGAS result to an ISS or iISS
result to quantify the effects of uncertainties.

The required nondegeneracy of V1 is often expressed in terms
of Jurdjevic-Quinn, LaSalle, or Matrosov conditions.

Active magnetic bearings, adaptive systems, bioreactors,
brushless DC motors, heart rate controllers, marine robots,
microelectromechanical relays, systems with control delays,
underactuated ships, unmanned air vehicles,..

What is Strictification?

This is the transformation of a nonstrict LF V1 into a strict LF V]

on its domain, and is the subject of my book.

Doing so often strengthens a UGAS result to an ISS or iISS
result to quantify the effects of uncertainties.

The required nondegeneracy of V1 is often expressed in terms
of Jurdjevic-Quinn, LaSalle, or Matrosov conditions.

Active magnetic bearings, adaptive systems, bioreactors,
brushless DC motors, heart rate controllers, marine robots,
microelectromechanical relays, systems with control delays,
underactuated ships, unmanned air vehicles,..

What is Strictification?

This is the transformation of a nonstrict LF V1 into a strict LF V]

on its domain, and is the subject of my book.

Doing so often strengthens a UGAS result to an ISS or iISS
result to quantify the effects of uncertainties.

The required nondegeneracy of V1 is often expressed in terms
of Jurdjevic-Quinn, LaSalle, or Matrosov conditions.

Active magnetic bearings, adaptive systems, bioreactors,
brushless DC motors, heart rate controllers, marine robots,
microelectromechanical relays, systems with control delays,
underactuated ships, unmanned air vehicles,..

What is Strictification?

This is the transformation of a nonstrict LF V1 into a strict LF V]

on its domain, and is the subject of my book.

Doing so often strengthens a UGAS result to an ISS or iISS
result to quantify the effects of uncertainties.

The required nondegeneracy of V1 is often expressed in terms
of Jurdjevic-Quinn, LaSalle, or Matrosov conditions.

Active magnetic bearings, adaptive systems, bioreactors,
brushless DC motors, heart rate controllers, marine robots,
microelectromechanical relays, systems with control delays,
underactuated ships, unmanned air vehicles,..

What is Strictification?

This is the transformation of a nonstrict LF V1 into a strict LF V]

on its domain, and is the subject of my book.

Doing so often strengthens a UGAS result to an ISS or iISS
result to quantify the effects of uncertainties.

The required nondegeneracy of V1 is often expressed in terms
of Jurdjevic-Quinn, LaSalle, or Matrosov conditions.

Active magnetic bearings, adaptive systems, bioreactors,
brushless DC motors, heart rate controllers, marine robots,
microelectromechanical relays, systems with control delays,
underactuated ships, unmanned air vehicles,..

What is Strictification?

This is the transformation of a nonstrict LF V1 into a strict LF V]

on its domain, and is the subject of my book.

Doing so often strengthens a UGAS result to an ISS or iISS
result to quantify the effects of uncertainties.

The required nondegeneracy of V1 is often expressed in terms
of Jurdjevic-Quinn, LaSalle, or Matrosov conditions.

Active magnetic bearings, adaptive systems, bioreactors,
brushless DC motors, heart rate controllers, marine robots,
microelectromechanical relays, systems with control delays,
underactuated ships, unmanned air vehicles,..

What is Strictification?

This is the transformation of a nonstrict LF V1 into a strict LF V]

on its domain, and is the subject of my book.

Doing so often strengthens a UGAS result to an ISS or iISS
result to quantify the effects of uncertainties.

The required nondegeneracy of V1 is often expressed in terms
of Jurdjevic-Quinn, LaSalle, or Matrosov conditions.

Active magnetic bearings, adaptive systems, bioreactors,
brushless DC motors, heart rate controllers, marine robots,
microelectromechanical relays, systems with control delays,
underactuated ships, unmanned air vehicles,..

Adaptive Tracking and Parameter Identification

Consider a suitably regular nonlinear system

ξ̇ = J (t , ξ, Γ,u) (5)

with a smooth reference trajectory ξR and a vector Γ of unknown
constant parameters.

ξ̇R = J (t , ξR, Γ,uR(t)) ∀t ≥ 0.

Problem: Design a dynamic feedback with estimator

u = u(t , ξ, Γ̂),
·
Γ̂ = τ(t , ξ, Γ̂) (6)

that makes the Y = (Γ̃, ξ̃) = (Γ− Γ̂, ξ − ξR) system UGAS.

Flight control, electrical and mechanical engineering, etc.
Persistent excitation. Annaswamy, Narendra, Teel..

Adaptive Tracking and Parameter Identification

Consider a suitably regular nonlinear system

ξ̇ = J (t , ξ, Γ,u) (5)

with a smooth reference trajectory ξR and a vector Γ of unknown
constant parameters. ξ̇R = J (t , ξR, Γ,uR(t)) ∀t ≥ 0.

Problem: Design a dynamic feedback with estimator

u = u(t , ξ, Γ̂),
·
Γ̂ = τ(t , ξ, Γ̂) (6)

that makes the Y = (Γ̃, ξ̃) = (Γ− Γ̂, ξ − ξR) system UGAS.

Flight control, electrical and mechanical engineering, etc.
Persistent excitation. Annaswamy, Narendra, Teel..

Adaptive Tracking and Parameter Identification

Consider a suitably regular nonlinear system

ξ̇ = J (t , ξ, Γ,u) (5)

with a smooth reference trajectory ξR and a vector Γ of unknown
constant parameters. ξ̇R = J (t , ξR, Γ,uR(t)) ∀t ≥ 0.

Problem:

Design a dynamic feedback with estimator

u = u(t , ξ, Γ̂),
·
Γ̂ = τ(t , ξ, Γ̂) (6)

that makes the Y = (Γ̃, ξ̃) = (Γ− Γ̂, ξ − ξR) system UGAS.

Flight control, electrical and mechanical engineering, etc.
Persistent excitation. Annaswamy, Narendra, Teel..

Adaptive Tracking and Parameter Identification

Consider a suitably regular nonlinear system

ξ̇ = J (t , ξ, Γ,u) (5)

with a smooth reference trajectory ξR and a vector Γ of unknown
constant parameters. ξ̇R = J (t , ξR, Γ,uR(t)) ∀t ≥ 0.

Problem: Design a dynamic feedback with estimator

u = u(t , ξ, Γ̂),
·
Γ̂ = τ(t , ξ, Γ̂) (6)

that makes the Y = (Γ̃, ξ̃) = (Γ− Γ̂, ξ − ξR) system UGAS.

Flight control, electrical and mechanical engineering, etc.
Persistent excitation. Annaswamy, Narendra, Teel..

Adaptive Tracking and Parameter Identification

Consider a suitably regular nonlinear system

ξ̇ = J (t , ξ, Γ,u) (5)

with a smooth reference trajectory ξR and a vector Γ of unknown
constant parameters. ξ̇R = J (t , ξR, Γ,uR(t)) ∀t ≥ 0.

Problem: Design a dynamic feedback with estimator

u = u(t , ξ, Γ̂),
·
Γ̂ = τ(t , ξ, Γ̂) (6)

that makes the Y = (Γ̃, ξ̃) = (Γ− Γ̂, ξ − ξR) system UGAS.

Flight control, electrical and mechanical engineering, etc.

Persistent excitation. Annaswamy, Narendra, Teel..

Adaptive Tracking and Parameter Identification

Consider a suitably regular nonlinear system

ξ̇ = J (t , ξ, Γ,u) (5)

with a smooth reference trajectory ξR and a vector Γ of unknown
constant parameters. ξ̇R = J (t , ξR, Γ,uR(t)) ∀t ≥ 0.

Problem: Design a dynamic feedback with estimator

u = u(t , ξ, Γ̂),
·
Γ̂ = τ(t , ξ, Γ̂) (6)

that makes the Y = (Γ̃, ξ̃) = (Γ− Γ̂, ξ − ξR) system UGAS.

Flight control, electrical and mechanical engineering, etc.
Persistent excitation.

Annaswamy, Narendra, Teel..

Adaptive Tracking and Parameter Identification

Consider a suitably regular nonlinear system

ξ̇ = J (t , ξ, Γ,u) (5)

with a smooth reference trajectory ξR and a vector Γ of unknown
constant parameters. ξ̇R = J (t , ξR, Γ,uR(t)) ∀t ≥ 0.

Problem: Design a dynamic feedback with estimator

u = u(t , ξ, Γ̂),
·
Γ̂ = τ(t , ξ, Γ̂) (6)

that makes the Y = (Γ̃, ξ̃) = (Γ− Γ̂, ξ − ξR) system UGAS.

Flight control, electrical and mechanical engineering, etc.
Persistent excitation. Annaswamy, Narendra, Teel..

First-Order (Mazenc, de Queiroz, M., ’09)

In 2009, we gave a solution for the special case

ξ̇ = ω(ξ)[Γ + δ] + u . (7)

Our adaptive controllers have the form

u = ξ̇R(t)− ω(ξ)Γ̂ + K (ξR(t)− ξ), ˙̂Γ = −ω(ξ)>(ξR(t)− ξ) .

Classical PE assumption: ∃ constants T , µ > 0 s.t.

µ Idp×p ≤
∫ t

t−T ω(ξR(l))>ω(ξR(l)) dl for all t ∈ R. (8)

Novelty: Our global strict Lyapunov function for the
Y = (Γ− Γ̂, ξ − ξR) dynamics gave ISS with respect to δ.

First-Order (Mazenc, de Queiroz, M., ’09)

In 2009, we gave a solution for the special case

ξ̇ = ω(ξ)[Γ + δ] + u . (7)

Our adaptive controllers have the form

u = ξ̇R(t)− ω(ξ)Γ̂ + K (ξR(t)− ξ), ˙̂Γ = −ω(ξ)>(ξR(t)− ξ) .

Classical PE assumption: ∃ constants T , µ > 0 s.t.

µ Idp×p ≤
∫ t

t−T ω(ξR(l))>ω(ξR(l)) dl for all t ∈ R. (8)

Novelty: Our global strict Lyapunov function for the
Y = (Γ− Γ̂, ξ − ξR) dynamics gave ISS with respect to δ.

First-Order (Mazenc, de Queiroz, M., ’09)

In 2009, we gave a solution for the special case

ξ̇ = ω(ξ)[Γ + δ] + u . (7)

Our adaptive controllers have the form

u = ξ̇R(t)− ω(ξ)Γ̂ + K (ξR(t)− ξ), ˙̂Γ = −ω(ξ)>(ξR(t)− ξ) .

Classical PE assumption: ∃ constants T , µ > 0 s.t.

µ Idp×p ≤
∫ t

t−T ω(ξR(l))>ω(ξR(l)) dl for all t ∈ R. (8)

Novelty: Our global strict Lyapunov function for the
Y = (Γ− Γ̂, ξ − ξR) dynamics gave ISS with respect to δ.

First-Order (Mazenc, de Queiroz, M., ’09)

In 2009, we gave a solution for the special case

ξ̇ = ω(ξ)[Γ + δ] + u . (7)

Our adaptive controllers have the form

u = ξ̇R(t)− ω(ξ)Γ̂ + K (ξR(t)− ξ), ˙̂Γ = −ω(ξ)>(ξR(t)− ξ) .

Classical PE assumption: ∃ constants T , µ > 0 s.t.

µ Idp×p ≤
∫ t

t−T ω(ξR(l))>ω(ξR(l)) dl for all t ∈ R. (8)

Novelty: Our global strict Lyapunov function for the
Y = (Γ− Γ̂, ξ − ξR) dynamics gave ISS with respect to δ.

First-Order (Mazenc, de Queiroz, M., ’09)

In 2009, we gave a solution for the special case

ξ̇ = ω(ξ)[Γ + δ] + u . (7)

Our adaptive controllers have the form

u = ξ̇R(t)− ω(ξ)Γ̂ + K (ξR(t)− ξ), ˙̂Γ = −ω(ξ)>(ξR(t)− ξ) .

Classical PE assumption: ∃ constants T , µ > 0 s.t.

µ Idp×p ≤
∫ t

t−T ω(ξR(l))>ω(ξR(l)) dl for all t ∈ R. (8)

Novelty:

Our global strict Lyapunov function for the
Y = (Γ− Γ̂, ξ − ξR) dynamics gave ISS with respect to δ.

First-Order (Mazenc, de Queiroz, M., ’09)

In 2009, we gave a solution for the special case

ξ̇ = ω(ξ)[Γ + δ] + u . (7)

Our adaptive controllers have the form

u = ξ̇R(t)− ω(ξ)Γ̂ + K (ξR(t)− ξ), ˙̂Γ = −ω(ξ)>(ξR(t)− ξ) .

Classical PE assumption: ∃ constants T , µ > 0 s.t.

µ Idp×p ≤
∫ t

t−T ω(ξR(l))>ω(ξR(l)) dl for all t ∈ R. (8)

Novelty: Our global strict Lyapunov function for the
Y = (Γ− Γ̂, ξ − ξR) dynamics gave ISS with respect to δ.

Higher-Order (Mazenc, de Queiroz, M., ’11)

We solved the tracking and identification problem for{
ẋ = f (ξ)
żi = gi(ξ) + ki(ξ) · θi + ψiui , i = 1,2, . . . , s .

(9)

(x , z) ∈ Rr+s. Γ = (θ, ψ) = (θ1, ..., θs, ψ1, . . . , ψs) ∈ Rp1+...+ps+s.

The C2 T -periodic reference trajectory ξR = (xR, zR) to be
tracked is assumed to satisfy ẋR(t) = f (ξR(t)) ∀t ≥ 0.

Main PE Assumption: positive definiteness of the matrices

Pi
def
=
∫ T

0 λ>i (t)λi(t) dt , 1 ≤ i ≤ s (10)

where λi(t) = (ki(ξR(t)), żR,i(t)− gi(ξR(t))) for each i .

Higher-Order (Mazenc, de Queiroz, M., ’11)

We solved the tracking and identification problem for{
ẋ = f (ξ)
żi = gi(ξ) + ki(ξ) · θi + ψiui , i = 1,2, . . . , s .

(9)

(x , z) ∈ Rr+s. Γ = (θ, ψ) = (θ1, ..., θs, ψ1, . . . , ψs) ∈ Rp1+...+ps+s.

The C2 T -periodic reference trajectory ξR = (xR, zR) to be
tracked is assumed to satisfy ẋR(t) = f (ξR(t)) ∀t ≥ 0.

Main PE Assumption: positive definiteness of the matrices

Pi
def
=
∫ T

0 λ>i (t)λi(t) dt , 1 ≤ i ≤ s (10)

where λi(t) = (ki(ξR(t)), żR,i(t)− gi(ξR(t))) for each i .

Higher-Order (Mazenc, de Queiroz, M., ’11)

We solved the tracking and identification problem for{
ẋ = f (ξ)
żi = gi(ξ) + ki(ξ) · θi + ψiui , i = 1,2, . . . , s .

(9)

(x , z) ∈ Rr+s.

Γ = (θ, ψ) = (θ1, ..., θs, ψ1, . . . , ψs) ∈ Rp1+...+ps+s.

The C2 T -periodic reference trajectory ξR = (xR, zR) to be
tracked is assumed to satisfy ẋR(t) = f (ξR(t)) ∀t ≥ 0.

Main PE Assumption: positive definiteness of the matrices

Pi
def
=
∫ T

0 λ>i (t)λi(t) dt , 1 ≤ i ≤ s (10)

where λi(t) = (ki(ξR(t)), żR,i(t)− gi(ξR(t))) for each i .

Higher-Order (Mazenc, de Queiroz, M., ’11)

We solved the tracking and identification problem for{
ẋ = f (ξ)
żi = gi(ξ) + ki(ξ) · θi + ψiui , i = 1,2, . . . , s .

(9)

(x , z) ∈ Rr+s. Γ = (θ, ψ) = (θ1, ..., θs, ψ1, . . . , ψs) ∈ Rp1+...+ps+s.

The C2 T -periodic reference trajectory ξR = (xR, zR) to be
tracked is assumed to satisfy ẋR(t) = f (ξR(t)) ∀t ≥ 0.

Main PE Assumption: positive definiteness of the matrices

Pi
def
=
∫ T

0 λ>i (t)λi(t) dt , 1 ≤ i ≤ s (10)

where λi(t) = (ki(ξR(t)), żR,i(t)− gi(ξR(t))) for each i .

Higher-Order (Mazenc, de Queiroz, M., ’11)

We solved the tracking and identification problem for{
ẋ = f (ξ)
żi = gi(ξ) + ki(ξ) · θi + ψiui , i = 1,2, . . . , s .

(9)

(x , z) ∈ Rr+s. Γ = (θ, ψ) = (θ1, ..., θs, ψ1, . . . , ψs) ∈ Rp1+...+ps+s.

The C2 T -periodic reference trajectory ξR = (xR, zR) to be
tracked is assumed to satisfy ẋR(t) = f (ξR(t)) ∀t ≥ 0.

Main PE Assumption: positive definiteness of the matrices

Pi
def
=
∫ T

0 λ>i (t)λi(t) dt , 1 ≤ i ≤ s (10)

where λi(t) = (ki(ξR(t)), żR,i(t)− gi(ξR(t))) for each i .

Higher-Order (Mazenc, de Queiroz, M., ’11)

We solved the tracking and identification problem for{
ẋ = f (ξ)
żi = gi(ξ) + ki(ξ) · θi + ψiui , i = 1,2, . . . , s .

(9)

(x , z) ∈ Rr+s. Γ = (θ, ψ) = (θ1, ..., θs, ψ1, . . . , ψs) ∈ Rp1+...+ps+s.

The C2 T -periodic reference trajectory ξR = (xR, zR) to be
tracked is assumed to satisfy ẋR(t) = f (ξR(t)) ∀t ≥ 0.

Main PE Assumption:

positive definiteness of the matrices

Pi
def
=
∫ T

0 λ>i (t)λi(t) dt , 1 ≤ i ≤ s (10)

where λi(t) = (ki(ξR(t)), żR,i(t)− gi(ξR(t))) for each i .

Higher-Order (Mazenc, de Queiroz, M., ’11)

We solved the tracking and identification problem for{
ẋ = f (ξ)
żi = gi(ξ) + ki(ξ) · θi + ψiui , i = 1,2, . . . , s .

(9)

(x , z) ∈ Rr+s. Γ = (θ, ψ) = (θ1, ..., θs, ψ1, . . . , ψs) ∈ Rp1+...+ps+s.

The C2 T -periodic reference trajectory ξR = (xR, zR) to be
tracked is assumed to satisfy ẋR(t) = f (ξR(t)) ∀t ≥ 0.

Main PE Assumption: positive definiteness of the matrices

Pi
def
=
∫ T

0 λ>i (t)λi(t) dt , 1 ≤ i ≤ s (10)

where λi(t) = (ki(ξR(t)), żR,i(t)− gi(ξR(t))) for each i .

Two Other Key Assumptions

I We know vf and a global strict LF V for{
Ẋ = f

(
(X ,Z) + ξR(t)

)
− f (ξR(t))

Ż = vf (t ,X ,Z)
(11)

such that −V̇ and V have positive definite quadratic lower
bounds near 0, and V and vf are T -periodic.

Key: Reduces the LF construction problem to (11).

I There are known positive constants θM , ψ and ψ such that

ψ < ψi < ψ and |θi | < θM (12)

for each i ∈ {1,2, . . . , s}. Known directions for the ψi ’s.

Two Other Key Assumptions

I We know vf and a global strict LF V for{
Ẋ = f

(
(X ,Z) + ξR(t)

)
− f (ξR(t))

Ż = vf (t ,X ,Z)
(11)

such that −V̇ and V have positive definite quadratic lower
bounds near 0,

and V and vf are T -periodic.

Key: Reduces the LF construction problem to (11).

I There are known positive constants θM , ψ and ψ such that

ψ < ψi < ψ and |θi | < θM (12)

for each i ∈ {1,2, . . . , s}. Known directions for the ψi ’s.

Two Other Key Assumptions

I We know vf and a global strict LF V for{
Ẋ = f

(
(X ,Z) + ξR(t)

)
− f (ξR(t))

Ż = vf (t ,X ,Z)
(11)

such that −V̇ and V have positive definite quadratic lower
bounds near 0, and V and vf are T -periodic.

Key: Reduces the LF construction problem to (11).

I There are known positive constants θM , ψ and ψ such that

ψ < ψi < ψ and |θi | < θM (12)

for each i ∈ {1,2, . . . , s}. Known directions for the ψi ’s.

Two Other Key Assumptions

I We know vf and a global strict LF V for{
Ẋ = f

(
(X ,Z) + ξR(t)

)
− f (ξR(t))

Ż = vf (t ,X ,Z)
(11)

such that −V̇ and V have positive definite quadratic lower
bounds near 0, and V and vf are T -periodic.

Key:

Reduces the LF construction problem to (11).

I There are known positive constants θM , ψ and ψ such that

ψ < ψi < ψ and |θi | < θM (12)

for each i ∈ {1,2, . . . , s}. Known directions for the ψi ’s.

Two Other Key Assumptions

I We know vf and a global strict LF V for{
Ẋ = f

(
(X ,Z) + ξR(t)

)
− f (ξR(t))

Ż = vf (t ,X ,Z)
(11)

such that −V̇ and V have positive definite quadratic lower
bounds near 0, and V and vf are T -periodic.

Key: Reduces the LF construction problem to (11).

I There are known positive constants θM , ψ and ψ such that

ψ < ψi < ψ and |θi | < θM (12)

for each i ∈ {1,2, . . . , s}. Known directions for the ψi ’s.

Two Other Key Assumptions

I We know vf and a global strict LF V for{
Ẋ = f

(
(X ,Z) + ξR(t)

)
− f (ξR(t))

Ż = vf (t ,X ,Z)
(11)

such that −V̇ and V have positive definite quadratic lower
bounds near 0, and V and vf are T -periodic.

Key: Reduces the LF construction problem to (11).

I There are known positive constants θM , ψ and ψ such that

ψ < ψi < ψ and |θi | < θM (12)

for each i ∈ {1,2, . . . , s}.

Known directions for the ψi ’s.

Two Other Key Assumptions

I We know vf and a global strict LF V for{
Ẋ = f

(
(X ,Z) + ξR(t)

)
− f (ξR(t))

Ż = vf (t ,X ,Z)
(11)

such that −V̇ and V have positive definite quadratic lower
bounds near 0, and V and vf are T -periodic.

Key: Reduces the LF construction problem to (11).

I There are known positive constants θM , ψ and ψ such that

ψ < ψi < ψ and |θi | < θM (12)

for each i ∈ {1,2, . . . , s}. Known directions for the ψi ’s.

Dynamic Feedback

The estimator evolves on {
∏s

i=1(−θM , θM)pi} × (ψ,ψ)s.
˙̂
θi,j = (θ̂2

i,j − θ2
M)$i,j , 1 ≤ i ≤ s ,1 ≤ j ≤ pi

˙̂
ψi =

(
ψ̂i − ψ

)(
ψ̂i − ψ

)
Υi , 1 ≤ i ≤ s

(13)

Here θ̂i = (θ̂i,1, . . . , θ̂i,pi) for i = 1,2, . . . , s,

$i,j = −∂V
∂z̃i

(t , ξ̃)ki,j
(
ξ̃ + ξR(t)

)
and

Υi = −∂V
∂z̃i

(t , ξ̃)ui(t , ξ̃, θ̂, ψ̂) .
(14)

ui(t , ξ̃, θ̂, ψ̂) =
vf ,i (t ,ξ̃)−gi (ξ)−ki (ξ)·θ̂i+żR,i (t)

ψ̂i
(15)

The estimator and feedback can only depend on things we know.

Dynamic Feedback

The estimator evolves on {
∏s

i=1(−θM , θM)pi} × (ψ,ψ)s.


˙̂
θi,j = (θ̂2

i,j − θ2
M)$i,j , 1 ≤ i ≤ s ,1 ≤ j ≤ pi

˙̂
ψi =

(
ψ̂i − ψ

)(
ψ̂i − ψ

)
Υi , 1 ≤ i ≤ s

(13)

Here θ̂i = (θ̂i,1, . . . , θ̂i,pi) for i = 1,2, . . . , s,

$i,j = −∂V
∂z̃i

(t , ξ̃)ki,j
(
ξ̃ + ξR(t)

)
and

Υi = −∂V
∂z̃i

(t , ξ̃)ui(t , ξ̃, θ̂, ψ̂) .
(14)

ui(t , ξ̃, θ̂, ψ̂) =
vf ,i (t ,ξ̃)−gi (ξ)−ki (ξ)·θ̂i+żR,i (t)

ψ̂i
(15)

The estimator and feedback can only depend on things we know.

Dynamic Feedback

The estimator evolves on {
∏s

i=1(−θM , θM)pi} × (ψ,ψ)s.
˙̂
θi,j = (θ̂2

i,j − θ2
M)$i,j , 1 ≤ i ≤ s ,1 ≤ j ≤ pi

˙̂
ψi =

(
ψ̂i − ψ

)(
ψ̂i − ψ

)
Υi , 1 ≤ i ≤ s

(13)

Here θ̂i = (θ̂i,1, . . . , θ̂i,pi) for i = 1,2, . . . , s,

$i,j = −∂V
∂z̃i

(t , ξ̃)ki,j
(
ξ̃ + ξR(t)

)
and

Υi = −∂V
∂z̃i

(t , ξ̃)ui(t , ξ̃, θ̂, ψ̂) .
(14)

ui(t , ξ̃, θ̂, ψ̂) =
vf ,i (t ,ξ̃)−gi (ξ)−ki (ξ)·θ̂i+żR,i (t)

ψ̂i
(15)

The estimator and feedback can only depend on things we know.

Dynamic Feedback

The estimator evolves on {
∏s

i=1(−θM , θM)pi} × (ψ,ψ)s.
˙̂
θi,j = (θ̂2

i,j − θ2
M)$i,j , 1 ≤ i ≤ s ,1 ≤ j ≤ pi

˙̂
ψi =

(
ψ̂i − ψ

)(
ψ̂i − ψ

)
Υi , 1 ≤ i ≤ s

(13)

Here θ̂i = (θ̂i,1, . . . , θ̂i,pi) for i = 1,2, . . . , s

,

$i,j = −∂V
∂z̃i

(t , ξ̃)ki,j
(
ξ̃ + ξR(t)

)
and

Υi = −∂V
∂z̃i

(t , ξ̃)ui(t , ξ̃, θ̂, ψ̂) .
(14)

ui(t , ξ̃, θ̂, ψ̂) =
vf ,i (t ,ξ̃)−gi (ξ)−ki (ξ)·θ̂i+żR,i (t)

ψ̂i
(15)

The estimator and feedback can only depend on things we know.

Dynamic Feedback

The estimator evolves on {
∏s

i=1(−θM , θM)pi} × (ψ,ψ)s.
˙̂
θi,j = (θ̂2

i,j − θ2
M)$i,j , 1 ≤ i ≤ s ,1 ≤ j ≤ pi

˙̂
ψi =

(
ψ̂i − ψ

)(
ψ̂i − ψ

)
Υi , 1 ≤ i ≤ s

(13)

Here θ̂i = (θ̂i,1, . . . , θ̂i,pi) for i = 1,2, . . . , s,

$i,j = −∂V
∂z̃i

(t , ξ̃)ki,j
(
ξ̃ + ξR(t)

)

and

Υi = −∂V
∂z̃i

(t , ξ̃)ui(t , ξ̃, θ̂, ψ̂) .
(14)

ui(t , ξ̃, θ̂, ψ̂) =
vf ,i (t ,ξ̃)−gi (ξ)−ki (ξ)·θ̂i+żR,i (t)

ψ̂i
(15)

The estimator and feedback can only depend on things we know.

Dynamic Feedback

The estimator evolves on {
∏s

i=1(−θM , θM)pi} × (ψ,ψ)s.
˙̂
θi,j = (θ̂2

i,j − θ2
M)$i,j , 1 ≤ i ≤ s ,1 ≤ j ≤ pi

˙̂
ψi =

(
ψ̂i − ψ

)(
ψ̂i − ψ

)
Υi , 1 ≤ i ≤ s

(13)

Here θ̂i = (θ̂i,1, . . . , θ̂i,pi) for i = 1,2, . . . , s,

$i,j = −∂V
∂z̃i

(t , ξ̃)ki,j
(
ξ̃ + ξR(t)

)
and

Υi = −∂V
∂z̃i

(t , ξ̃)ui(t , ξ̃, θ̂, ψ̂) .
(14)

ui(t , ξ̃, θ̂, ψ̂) =
vf ,i (t ,ξ̃)−gi (ξ)−ki (ξ)·θ̂i+żR,i (t)

ψ̂i
(15)

The estimator and feedback can only depend on things we know.

Dynamic Feedback

The estimator evolves on {
∏s

i=1(−θM , θM)pi} × (ψ,ψ)s.
˙̂
θi,j = (θ̂2

i,j − θ2
M)$i,j , 1 ≤ i ≤ s ,1 ≤ j ≤ pi

˙̂
ψi =

(
ψ̂i − ψ

)(
ψ̂i − ψ

)
Υi , 1 ≤ i ≤ s

(13)

Here θ̂i = (θ̂i,1, . . . , θ̂i,pi) for i = 1,2, . . . , s,

$i,j = −∂V
∂z̃i

(t , ξ̃)ki,j
(
ξ̃ + ξR(t)

)
and

Υi = −∂V
∂z̃i

(t , ξ̃)ui(t , ξ̃, θ̂, ψ̂) .
(14)

ui(t , ξ̃, θ̂, ψ̂) =
vf ,i (t ,ξ̃)−gi (ξ)−ki (ξ)·θ̂i+żR,i (t)

ψ̂i
(15)

The estimator and feedback can only depend on things we know.

Dynamic Feedback

The estimator evolves on {
∏s

i=1(−θM , θM)pi} × (ψ,ψ)s.
˙̂
θi,j = (θ̂2

i,j − θ2
M)$i,j , 1 ≤ i ≤ s ,1 ≤ j ≤ pi

˙̂
ψi =

(
ψ̂i − ψ

)(
ψ̂i − ψ

)
Υi , 1 ≤ i ≤ s

(13)

Here θ̂i = (θ̂i,1, . . . , θ̂i,pi) for i = 1,2, . . . , s,

$i,j = −∂V
∂z̃i

(t , ξ̃)ki,j
(
ξ̃ + ξR(t)

)
and

Υi = −∂V
∂z̃i

(t , ξ̃)ui(t , ξ̃, θ̂, ψ̂) .
(14)

ui(t , ξ̃, θ̂, ψ̂) =
vf ,i (t ,ξ̃)−gi (ξ)−ki (ξ)·θ̂i+żR,i (t)

ψ̂i
(15)

The estimator and feedback can only depend on things we know.

Augmented Error Dynamics



˙̃x = f (ξ̃ + ξR(t))− f (ξR(t))

˙̃zi = vf ,i(t , ξ̃) + ki(ξ̃ + ξR(t)) · θ̃i

+ψ̃iui(t , ξ̃, θ̂, ψ̂), 1 ≤ i ≤ s
˙̃
θi,j = −

(
θ̂2

i,j − θ2
M

)
$i,j , 1 ≤ i ≤ s ,1 ≤ j ≤ pi

˙̃
ψi = −

(
ψ̂i − ψ

)(
ψ̂i − ψ

)
Υi , 1 ≤ i ≤ s .

(16)

Tracking error: ξ̃ = (x̃ , z̃) = ξ − ξR = (x − xR, z − zR)

Parameter estimation errors: θ̃i = θi − θ̂i and ψ̃i = ψi − ψ̂i

Y = Rr+s ×
(∏s

i=1

{∏pi
j=1(θi,j − θM , θi,j + θM)

})
×
(∏s

i=1
(
ψi − ψ,ψi − ψ

))
.

Augmented Error Dynamics

˙̃x = f (ξ̃ + ξR(t))− f (ξR(t))

˙̃zi = vf ,i(t , ξ̃) + ki(ξ̃ + ξR(t)) · θ̃i

+ψ̃iui(t , ξ̃, θ̂, ψ̂), 1 ≤ i ≤ s
˙̃
θi,j = −

(
θ̂2

i,j − θ2
M

)
$i,j , 1 ≤ i ≤ s ,1 ≤ j ≤ pi

˙̃
ψi = −

(
ψ̂i − ψ

)(
ψ̂i − ψ

)
Υi , 1 ≤ i ≤ s .

(16)

Tracking error: ξ̃ = (x̃ , z̃) = ξ − ξR = (x − xR, z − zR)

Parameter estimation errors: θ̃i = θi − θ̂i and ψ̃i = ψi − ψ̂i

Y = Rr+s ×
(∏s

i=1

{∏pi
j=1(θi,j − θM , θi,j + θM)

})
×
(∏s

i=1
(
ψi − ψ,ψi − ψ

))
.

Augmented Error Dynamics

˙̃x = f (ξ̃ + ξR(t))− f (ξR(t))

˙̃zi = vf ,i(t , ξ̃) + ki(ξ̃ + ξR(t)) · θ̃i

+ψ̃iui(t , ξ̃, θ̂, ψ̂), 1 ≤ i ≤ s
˙̃
θi,j = −

(
θ̂2

i,j − θ2
M

)
$i,j , 1 ≤ i ≤ s ,1 ≤ j ≤ pi

˙̃
ψi = −

(
ψ̂i − ψ

)(
ψ̂i − ψ

)
Υi , 1 ≤ i ≤ s .

(16)

Tracking error: ξ̃ = (x̃ , z̃) = ξ − ξR = (x − xR, z − zR)

Parameter estimation errors: θ̃i = θi − θ̂i and ψ̃i = ψi − ψ̂i

Y = Rr+s ×
(∏s

i=1

{∏pi
j=1(θi,j − θM , θi,j + θM)

})
×
(∏s

i=1
(
ψi − ψ,ψi − ψ

))
.

Augmented Error Dynamics

˙̃x = f (ξ̃ + ξR(t))− f (ξR(t))

˙̃zi = vf ,i(t , ξ̃) + ki(ξ̃ + ξR(t)) · θ̃i

+ψ̃iui(t , ξ̃, θ̂, ψ̂), 1 ≤ i ≤ s
˙̃
θi,j = −

(
θ̂2

i,j − θ2
M

)
$i,j , 1 ≤ i ≤ s ,1 ≤ j ≤ pi

˙̃
ψi = −

(
ψ̂i − ψ

)(
ψ̂i − ψ

)
Υi , 1 ≤ i ≤ s .

(16)

Tracking error: ξ̃ = (x̃ , z̃) = ξ − ξR = (x − xR, z − zR)

Parameter estimation errors: θ̃i = θi − θ̂i and ψ̃i = ψi − ψ̂i

Y = Rr+s ×
(∏s

i=1

{∏pi
j=1(θi,j − θM , θi,j + θM)

})
×
(∏s

i=1
(
ψi − ψ,ψi − ψ

))
.

Stabilization Analysis

We build a strict LF for the augmented tracking and identification
vector Y = (ξ̃, θ̃, ψ̃) = (ξ − ξR, θ − θ̂, ψ − ψ̂) dynamics on Y.

We start with this nonstrict barrier type LF on Y:

V1(t , ξ̃, θ̃, ψ̃) = V (t , ξ̃) +
s∑

i=1

pi∑
j=1

∫ θ̃i,j

0

m
θ2

M − (m − θi,j)2
dm

+
s∑

i=1

∫ ψ̃i

0

m
(ψi −m − ψ)(ψ − ψi + m)

dm .

On Y, V̇1 ≤ −W (ξ̃) for some positive definite function W .

We transform V1 into the desired strict LF.

Stabilization Analysis

We build a strict LF for the augmented tracking and identification
vector Y = (ξ̃, θ̃, ψ̃) = (ξ − ξR, θ − θ̂, ψ − ψ̂) dynamics on Y.

We start with this nonstrict barrier type LF on Y:

V1(t , ξ̃, θ̃, ψ̃) = V (t , ξ̃) +
s∑

i=1

pi∑
j=1

∫ θ̃i,j

0

m
θ2

M − (m − θi,j)2
dm

+
s∑

i=1

∫ ψ̃i

0

m
(ψi −m − ψ)(ψ − ψi + m)

dm .

On Y, V̇1 ≤ −W (ξ̃) for some positive definite function W .

We transform V1 into the desired strict LF.

Stabilization Analysis

We build a strict LF for the augmented tracking and identification
vector Y = (ξ̃, θ̃, ψ̃) = (ξ − ξR, θ − θ̂, ψ − ψ̂) dynamics on Y.

We start with this nonstrict barrier type LF on Y:

V1(t , ξ̃, θ̃, ψ̃) = V (t , ξ̃) +
s∑

i=1

pi∑
j=1

∫ θ̃i,j

0

m
θ2

M − (m − θi,j)2
dm

+
s∑

i=1

∫ ψ̃i

0

m
(ψi −m − ψ)(ψ − ψi + m)

dm .

On Y, V̇1 ≤ −W (ξ̃) for some positive definite function W .

We transform V1 into the desired strict LF.

Stabilization Analysis

We build a strict LF for the augmented tracking and identification
vector Y = (ξ̃, θ̃, ψ̃) = (ξ − ξR, θ − θ̂, ψ − ψ̂) dynamics on Y.

We start with this nonstrict barrier type LF on Y:

V1(t , ξ̃, θ̃, ψ̃) = V (t , ξ̃) +
s∑

i=1

pi∑
j=1

∫ θ̃i,j

0

m
θ2

M − (m − θi,j)2
dm

+
s∑

i=1

∫ ψ̃i

0

m
(ψi −m − ψ)(ψ − ψi + m)

dm .

On Y, V̇1 ≤ −W (ξ̃) for some positive definite function W .

We transform V1 into the desired strict LF.

Stabilization Analysis

We build a strict LF for the augmented tracking and identification
vector Y = (ξ̃, θ̃, ψ̃) = (ξ − ξR, θ − θ̂, ψ − ψ̂) dynamics on Y.

We start with this nonstrict barrier type LF on Y:

V1(t , ξ̃, θ̃, ψ̃) = V (t , ξ̃) +
s∑

i=1

pi∑
j=1

∫ θ̃i,j

0

m
θ2

M − (m − θi,j)2
dm

+
s∑

i=1

∫ ψ̃i

0

m
(ψi −m − ψ)(ψ − ψi + m)

dm .

On Y, V̇1 ≤ −W (ξ̃) for some positive definite function W .

We transform V1 into the desired strict LF.

Our Transformation

Theorem: We can construct K ∈ K∞ ∩ C1 such that

V](t , ξ̃, θ̃, ψ̃)
def
= K

(
V1(t , ξ̃, θ̃, ψ̃)

)
+

s∑
i=1

Ωi(t , ξ̃, θ̃, ψ̃) , (17)

where Ωi(t , ξ̃, θ̃, ψ̃) = −z̃iλi(t)αi(θ̃i , ψ̃i)

+ 1
Tψ
α>i (θ̃i , ψ̃i)Ωi(t)αi(θ̃i , ψ̃i) ,

(18)

αi(θ̃i , ψ̃i) =

[
θ̃iψi − θi ψ̃i

ψ̃i

]
, and

Ωi(t) =
∫ t

t−T

∫ t
m λ
>
i (s)λi(s)ds dm ,

(19)

is a strict LF for the Y = (ξ̃, θ̃, ψ̃) dynamics on Y.

Our Transformation

Theorem: We can construct K ∈ K∞ ∩ C1 such that

V](t , ξ̃, θ̃, ψ̃)
def
= K

(
V1(t , ξ̃, θ̃, ψ̃)

)
+

s∑
i=1

Ωi(t , ξ̃, θ̃, ψ̃) , (17)

where Ωi(t , ξ̃, θ̃, ψ̃) = −z̃iλi(t)αi(θ̃i , ψ̃i)

+ 1
Tψ
α>i (θ̃i , ψ̃i)Ωi(t)αi(θ̃i , ψ̃i) ,

(18)

αi(θ̃i , ψ̃i) =

[
θ̃iψi − θi ψ̃i

ψ̃i

]
, and

Ωi(t) =
∫ t

t−T

∫ t
m λ
>
i (s)λi(s)ds dm ,

(19)

is a strict LF for the Y = (ξ̃, θ̃, ψ̃) dynamics on Y.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.
ẏ1 = y2

ẏ2 = − B
M y2 − N

M sin(y1) + Kτ [Kbζ1 + 1]ζ2

ζ̇i = Hi(y , ζ)βi + γiui , i = 1,2

(20)

H1(y , ζ) = (−ζ1, y2ζ2). H2(y , ζ) = (−ζ2,−y2ζ1,−y2).

I y1, y2 = load position and velocity. ζi = winding currents.

I B = viscous friction coefficient. M = mechanical inertia.
N = related to the load mass and gravitational constant.
Kτ ,Kb = torque transmission coefficients.

I The unknown vectors β1 ∈ R2 and β2 ∈ R3 and unknown
scalars γ1 and γ2 are the motor electric parameters.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit.

Drives single-link, direct-drive robot arm.
ẏ1 = y2

ẏ2 = − B
M y2 − N

M sin(y1) + Kτ [Kbζ1 + 1]ζ2

ζ̇i = Hi(y , ζ)βi + γiui , i = 1,2

(20)

H1(y , ζ) = (−ζ1, y2ζ2). H2(y , ζ) = (−ζ2,−y2ζ1,−y2).

I y1, y2 = load position and velocity. ζi = winding currents.

I B = viscous friction coefficient. M = mechanical inertia.
N = related to the load mass and gravitational constant.
Kτ ,Kb = torque transmission coefficients.

I The unknown vectors β1 ∈ R2 and β2 ∈ R3 and unknown
scalars γ1 and γ2 are the motor electric parameters.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.


ẏ1 = y2

ẏ2 = − B
M y2 − N

M sin(y1) + Kτ [Kbζ1 + 1]ζ2

ζ̇i = Hi(y , ζ)βi + γiui , i = 1,2

(20)

H1(y , ζ) = (−ζ1, y2ζ2). H2(y , ζ) = (−ζ2,−y2ζ1,−y2).

I y1, y2 = load position and velocity. ζi = winding currents.

I B = viscous friction coefficient. M = mechanical inertia.
N = related to the load mass and gravitational constant.
Kτ ,Kb = torque transmission coefficients.

I The unknown vectors β1 ∈ R2 and β2 ∈ R3 and unknown
scalars γ1 and γ2 are the motor electric parameters.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.
ẏ1 = y2

ẏ2 = − B
M y2 − N

M sin(y1) + Kτ [Kbζ1 + 1]ζ2

ζ̇i = Hi(y , ζ)βi + γiui , i = 1,2

(20)

H1(y , ζ) = (−ζ1, y2ζ2). H2(y , ζ) = (−ζ2,−y2ζ1,−y2).

I y1, y2 = load position and velocity. ζi = winding currents.

I B = viscous friction coefficient. M = mechanical inertia.
N = related to the load mass and gravitational constant.
Kτ ,Kb = torque transmission coefficients.

I The unknown vectors β1 ∈ R2 and β2 ∈ R3 and unknown
scalars γ1 and γ2 are the motor electric parameters.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.
ẏ1 = y2

ẏ2 = − B
M y2 − N

M sin(y1) + Kτ [Kbζ1 + 1]ζ2

ζ̇i = Hi(y , ζ)βi + γiui , i = 1,2

(20)

H1(y , ζ) = (−ζ1, y2ζ2).

H2(y , ζ) = (−ζ2,−y2ζ1,−y2).

I y1, y2 = load position and velocity. ζi = winding currents.

I B = viscous friction coefficient. M = mechanical inertia.
N = related to the load mass and gravitational constant.
Kτ ,Kb = torque transmission coefficients.

I The unknown vectors β1 ∈ R2 and β2 ∈ R3 and unknown
scalars γ1 and γ2 are the motor electric parameters.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.
ẏ1 = y2

ẏ2 = − B
M y2 − N

M sin(y1) + Kτ [Kbζ1 + 1]ζ2

ζ̇i = Hi(y , ζ)βi + γiui , i = 1,2

(20)

H1(y , ζ) = (−ζ1, y2ζ2). H2(y , ζ) = (−ζ2,−y2ζ1,−y2).

I y1, y2 = load position and velocity. ζi = winding currents.

I B = viscous friction coefficient. M = mechanical inertia.
N = related to the load mass and gravitational constant.
Kτ ,Kb = torque transmission coefficients.

I The unknown vectors β1 ∈ R2 and β2 ∈ R3 and unknown
scalars γ1 and γ2 are the motor electric parameters.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.
ẏ1 = y2

ẏ2 = − B
M y2 − N

M sin(y1) + Kτ [Kbζ1 + 1]ζ2

ζ̇i = Hi(y , ζ)βi + γiui , i = 1,2

(20)

H1(y , ζ) = (−ζ1, y2ζ2). H2(y , ζ) = (−ζ2,−y2ζ1,−y2).

I y1, y2 = load position and velocity.

ζi = winding currents.

I B = viscous friction coefficient. M = mechanical inertia.
N = related to the load mass and gravitational constant.
Kτ ,Kb = torque transmission coefficients.

I The unknown vectors β1 ∈ R2 and β2 ∈ R3 and unknown
scalars γ1 and γ2 are the motor electric parameters.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.
ẏ1 = y2

ẏ2 = − B
M y2 − N

M sin(y1) + Kτ [Kbζ1 + 1]ζ2

ζ̇i = Hi(y , ζ)βi + γiui , i = 1,2

(20)

H1(y , ζ) = (−ζ1, y2ζ2). H2(y , ζ) = (−ζ2,−y2ζ1,−y2).

I y1, y2 = load position and velocity. ζi = winding currents.

I B = viscous friction coefficient. M = mechanical inertia.
N = related to the load mass and gravitational constant.
Kτ ,Kb = torque transmission coefficients.

I The unknown vectors β1 ∈ R2 and β2 ∈ R3 and unknown
scalars γ1 and γ2 are the motor electric parameters.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.
ẏ1 = y2

ẏ2 = − B
M y2 − N

M sin(y1) + Kτ [Kbζ1 + 1]ζ2

ζ̇i = Hi(y , ζ)βi + γiui , i = 1,2

(20)

H1(y , ζ) = (−ζ1, y2ζ2). H2(y , ζ) = (−ζ2,−y2ζ1,−y2).

I y1, y2 = load position and velocity. ζi = winding currents.

I B = viscous friction coefficient.

M = mechanical inertia.
N = related to the load mass and gravitational constant.
Kτ ,Kb = torque transmission coefficients.

I The unknown vectors β1 ∈ R2 and β2 ∈ R3 and unknown
scalars γ1 and γ2 are the motor electric parameters.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.
ẏ1 = y2

ẏ2 = − B
M y2 − N

M sin(y1) + Kτ [Kbζ1 + 1]ζ2

ζ̇i = Hi(y , ζ)βi + γiui , i = 1,2

(20)

H1(y , ζ) = (−ζ1, y2ζ2). H2(y , ζ) = (−ζ2,−y2ζ1,−y2).

I y1, y2 = load position and velocity. ζi = winding currents.

I B = viscous friction coefficient. M = mechanical inertia.

N = related to the load mass and gravitational constant.
Kτ ,Kb = torque transmission coefficients.

I The unknown vectors β1 ∈ R2 and β2 ∈ R3 and unknown
scalars γ1 and γ2 are the motor electric parameters.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.
ẏ1 = y2

ẏ2 = − B
M y2 − N

M sin(y1) + Kτ [Kbζ1 + 1]ζ2

ζ̇i = Hi(y , ζ)βi + γiui , i = 1,2

(20)

H1(y , ζ) = (−ζ1, y2ζ2). H2(y , ζ) = (−ζ2,−y2ζ1,−y2).

I y1, y2 = load position and velocity. ζi = winding currents.

I B = viscous friction coefficient. M = mechanical inertia.
N = related to the load mass and gravitational constant.

Kτ ,Kb = torque transmission coefficients.

I The unknown vectors β1 ∈ R2 and β2 ∈ R3 and unknown
scalars γ1 and γ2 are the motor electric parameters.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.
ẏ1 = y2

ẏ2 = − B
M y2 − N

M sin(y1) + Kτ [Kbζ1 + 1]ζ2

ζ̇i = Hi(y , ζ)βi + γiui , i = 1,2

(20)

H1(y , ζ) = (−ζ1, y2ζ2). H2(y , ζ) = (−ζ2,−y2ζ1,−y2).

I y1, y2 = load position and velocity. ζi = winding currents.

I B = viscous friction coefficient. M = mechanical inertia.
N = related to the load mass and gravitational constant.
Kτ ,Kb = torque transmission coefficients.

I The unknown vectors β1 ∈ R2 and β2 ∈ R3 and unknown
scalars γ1 and γ2 are the motor electric parameters.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.
ẏ1 = y2

ẏ2 = − B
M y2 − N

M sin(y1) + Kτ [Kbζ1 + 1]ζ2

ζ̇i = Hi(y , ζ)βi + γiui , i = 1,2

(20)

H1(y , ζ) = (−ζ1, y2ζ2). H2(y , ζ) = (−ζ2,−y2ζ1,−y2).

I y1, y2 = load position and velocity. ζi = winding currents.

I B = viscous friction coefficient. M = mechanical inertia.
N = related to the load mass and gravitational constant.
Kτ ,Kb = torque transmission coefficients.

I The unknown vectors β1 ∈ R2 and β2 ∈ R3 and unknown
scalars γ1 and γ2 are the motor electric parameters.

Application: Marine Robots (with Georgia Tech)

20 days of field work off Grand Isle. Search for oil spill remnants.

Application: Marine Robots (with Georgia Tech)

20 days of field work off Grand Isle. Search for oil spill remnants.

Application: Marine Robots (with Georgia Tech)

20 days of field work off Grand Isle.

Search for oil spill remnants.

Application: Marine Robots (with Georgia Tech)

20 days of field work off Grand Isle. Search for oil spill remnants.

Curve Tracking Dynamics

 ρ̇ = − sin(φ)

φ̇ = κ cos(φ)
1+κρ − u2, (ρ, φ) ∈ (0,+∞)× (−π/2, π/2)

(21)

u2 = κ cos(φ)
1+κρ − h′(ρ) cos(φ) + µ sin(φ) (22)

h(ρ) = α
{
ρ+

ρ2
0
ρ − 2ρ0

}
(23)

V (ρ, φ) = − ln
(

cos(φ)
)

+ h(ρ) (24)

U2(ρ, φ) = −h′(ρ) sin(φ) +
1
µ

∫ V (ρ,φ)

0
Γ0(m)dm (25)

Curve Tracking Dynamics ρ̇ = − sin(φ)

φ̇ = κ cos(φ)
1+κρ − u2, (ρ, φ) ∈ (0,+∞)× (−π/2, π/2)

(21)

u2 = κ cos(φ)
1+κρ − h′(ρ) cos(φ) + µ sin(φ) (22)

h(ρ) = α
{
ρ+

ρ2
0
ρ − 2ρ0

}
(23)

V (ρ, φ) = − ln
(

cos(φ)
)

+ h(ρ) (24)

U2(ρ, φ) = −h′(ρ) sin(φ) +
1
µ

∫ V (ρ,φ)

0
Γ0(m)dm (25)

Curve Tracking Dynamics ρ̇ = − sin(φ)

φ̇ = κ cos(φ)
1+κρ − u2, (ρ, φ) ∈ (0,+∞)× (−π/2, π/2)

(21)

u2 = κ cos(φ)
1+κρ − h′(ρ) cos(φ) + µ sin(φ) (22)

h(ρ) = α
{
ρ+

ρ2
0
ρ − 2ρ0

}
(23)

V (ρ, φ) = − ln
(

cos(φ)
)

+ h(ρ) (24)

U2(ρ, φ) = −h′(ρ) sin(φ) +
1
µ

∫ V (ρ,φ)

0
Γ0(m)dm (25)

Curve Tracking Dynamics ρ̇ = − sin(φ)

φ̇ = κ cos(φ)
1+κρ − u2, (ρ, φ) ∈ (0,+∞)× (−π/2, π/2)

(21)

u2 = κ cos(φ)
1+κρ − h′(ρ) cos(φ) + µ sin(φ) (22)

h(ρ) = α
{
ρ+

ρ2
0
ρ − 2ρ0

}
(23)

V (ρ, φ) = − ln
(

cos(φ)
)

+ h(ρ) (24)

U2(ρ, φ) = −h′(ρ) sin(φ) +
1
µ

∫ V (ρ,φ)

0
Γ0(m)dm (25)

Curve Tracking Dynamics ρ̇ = − sin(φ)

φ̇ = κ cos(φ)
1+κρ − u2, (ρ, φ) ∈ (0,+∞)× (−π/2, π/2)

(21)

u2 = κ cos(φ)
1+κρ − h′(ρ) cos(φ) + µ sin(φ) (22)

h(ρ) = α
{
ρ+

ρ2
0
ρ − 2ρ0

}
(23)

V (ρ, φ) = − ln
(

cos(φ)
)

+ h(ρ) (24)

U2(ρ, φ) = −h′(ρ) sin(φ) +
1
µ

∫ V (ρ,φ)

0
Γ0(m)dm (25)

Curve Tracking Dynamics ρ̇ = − sin(φ)

φ̇ = κ cos(φ)
1+κρ − u2, (ρ, φ) ∈ (0,+∞)× (−π/2, π/2)

(21)

u2 = κ cos(φ)
1+κρ − h′(ρ) cos(φ) + µ sin(φ) (22)

h(ρ) = α
{
ρ+

ρ2
0
ρ − 2ρ0

}
(23)

V (ρ, φ) = − ln
(

cos(φ)
)

+ h(ρ) (24)

U2(ρ, φ) = −h′(ρ) sin(φ) +
1
µ

∫ V (ρ,φ)

0
Γ0(m)dm (25)

Robustly Forwardly Invariant Hexagons

We can use U2 to prove ISS of the perturbed closed loop system

ρ̇ = − sin(φ), φ̇ = h′(ρ) cos(φ)− µ sin(φ) + δ (26)

with respect to δ : [0,∞)→ [−δ∗, δ∗] on forward invariant sets.

A = (ρ∗,0), B = (2ρ∗, µρ∗),
C = (ρ∗ + Kρo, µρ∗), D = (ρ∗ + Kρo,0),
E = (Kρo,−µρ∗), F = (ρ∗,−µρ∗),

µ tan(µρ∗) > ||h′||[ρ∗,ρ∗+Kρ0] To ensure
robust forward invariance of H(ρ∗, µ,K),

we need |δ|∞ ≤ δ∗. We can
Tight Disturbance Bound: Choose any δ∗ ∈ (0,min{∆∗,∆∗∗}).
∆∗ = min{|h′(ρ) cos(φ)| : (ρ, φ)> ∈ AB ∪ ED}
∆∗∗ = min{|h′(ρ) cos(φ)− µ sin(φ)| : (ρ, φ)> ∈ BC ∪ EF}.

Robustly Forwardly Invariant Hexagons

We can use U2 to prove ISS of the perturbed closed loop system

ρ̇ = − sin(φ), φ̇ = h′(ρ) cos(φ)− µ sin(φ) + δ (26)

with respect to δ : [0,∞)→ [−δ∗, δ∗] on forward invariant sets.

A = (ρ∗,0), B = (2ρ∗, µρ∗),
C = (ρ∗ + Kρo, µρ∗), D = (ρ∗ + Kρo,0),
E = (Kρo,−µρ∗), F = (ρ∗,−µρ∗),

µ tan(µρ∗) > ||h′||[ρ∗,ρ∗+Kρ0] To ensure
robust forward invariance of H(ρ∗, µ,K),

we need |δ|∞ ≤ δ∗. We can
Tight Disturbance Bound: Choose any δ∗ ∈ (0,min{∆∗,∆∗∗}).
∆∗ = min{|h′(ρ) cos(φ)| : (ρ, φ)> ∈ AB ∪ ED}
∆∗∗ = min{|h′(ρ) cos(φ)− µ sin(φ)| : (ρ, φ)> ∈ BC ∪ EF}.

Robustly Forwardly Invariant Hexagons

We can use U2 to prove ISS of the perturbed closed loop system

ρ̇ = − sin(φ), φ̇ = h′(ρ) cos(φ)− µ sin(φ) + δ (26)

with respect to δ : [0,∞)→ [−δ∗, δ∗] on forward invariant sets.

A = (ρ∗,0), B = (2ρ∗, µρ∗),
C = (ρ∗ + Kρo, µρ∗), D = (ρ∗ + Kρo,0),
E = (Kρo,−µρ∗), F = (ρ∗,−µρ∗),

µ tan(µρ∗) > ||h′||[ρ∗,ρ∗+Kρ0] To ensure
robust forward invariance of H(ρ∗, µ,K),

we need |δ|∞ ≤ δ∗. We can

Tight Disturbance Bound: Choose any δ∗ ∈ (0,min{∆∗,∆∗∗}).
∆∗ = min{|h′(ρ) cos(φ)| : (ρ, φ)> ∈ AB ∪ ED}
∆∗∗ = min{|h′(ρ) cos(φ)− µ sin(φ)| : (ρ, φ)> ∈ BC ∪ EF}.

Robustly Forwardly Invariant Hexagons

We can use U2 to prove ISS of the perturbed closed loop system

ρ̇ = − sin(φ), φ̇ = h′(ρ) cos(φ)− µ sin(φ) + δ (26)

with respect to δ : [0,∞)→ [−δ∗, δ∗] on forward invariant sets.

A = (ρ∗,0), B = (2ρ∗, µρ∗),
C = (ρ∗ + Kρo, µρ∗), D = (ρ∗ + Kρo,0),
E = (Kρo,−µρ∗), F = (ρ∗,−µρ∗),

µ tan(µρ∗) > ||h′||[ρ∗,ρ∗+Kρ0] To ensure
robust forward invariance of H(ρ∗, µ,K),

we need |δ|∞ ≤ δ∗. We can
Tight Disturbance Bound:

Choose any δ∗ ∈ (0,min{∆∗,∆∗∗}).
∆∗ = min{|h′(ρ) cos(φ)| : (ρ, φ)> ∈ AB ∪ ED}
∆∗∗ = min{|h′(ρ) cos(φ)− µ sin(φ)| : (ρ, φ)> ∈ BC ∪ EF}.

Robustly Forwardly Invariant Hexagons

We can use U2 to prove ISS of the perturbed closed loop system

ρ̇ = − sin(φ), φ̇ = h′(ρ) cos(φ)− µ sin(φ) + δ (26)

with respect to δ : [0,∞)→ [−δ∗, δ∗] on forward invariant sets.

A = (ρ∗,0), B = (2ρ∗, µρ∗),
C = (ρ∗ + Kρo, µρ∗), D = (ρ∗ + Kρo,0),
E = (Kρo,−µρ∗), F = (ρ∗,−µρ∗),

µ tan(µρ∗) > ||h′||[ρ∗,ρ∗+Kρ0] To ensure
robust forward invariance of H(ρ∗, µ,K),

we need |δ|∞ ≤ δ∗. We can
Tight Disturbance Bound: Choose any δ∗ ∈ (0,min{∆∗,∆∗∗}).

∆∗ = min{|h′(ρ) cos(φ)| : (ρ, φ)> ∈ AB ∪ ED}
∆∗∗ = min{|h′(ρ) cos(φ)− µ sin(φ)| : (ρ, φ)> ∈ BC ∪ EF}.

Robustly Forwardly Invariant Hexagons

We can use U2 to prove ISS of the perturbed closed loop system

ρ̇ = − sin(φ), φ̇ = h′(ρ) cos(φ)− µ sin(φ) + δ (26)

with respect to δ : [0,∞)→ [−δ∗, δ∗] on forward invariant sets.

A = (ρ∗,0), B = (2ρ∗, µρ∗),
C = (ρ∗ + Kρo, µρ∗), D = (ρ∗ + Kρo,0),
E = (Kρo,−µρ∗), F = (ρ∗,−µρ∗),

µ tan(µρ∗) > ||h′||[ρ∗,ρ∗+Kρ0] To ensure
robust forward invariance of H(ρ∗, µ,K),

we need |δ|∞ ≤ δ∗. We can
Tight Disturbance Bound: Choose any δ∗ ∈ (0,min{∆∗,∆∗∗}).
∆∗ = min{|h′(ρ) cos(φ)| : (ρ, φ)> ∈ AB ∪ ED}
∆∗∗ = min{|h′(ρ) cos(φ)− µ sin(φ)| : (ρ, φ)> ∈ BC ∪ EF}.

Adaptive Robust Curve Tracking

 ρ̇ = − sin(φ)

φ̇ = κ cos(φ)
1+κρ − K2[v + δ]

(27)

We proved ISS of the tracking and identification dynamics
˙̃q1 = − sin(q̃2)

˙̃q2 = κ cos(q̃2)
1+κ(q̃1+ρ0)

− K2
K̃2+K2

u2 − K2δ

˙̃K2 = −(K̃2 + K2 − cmin)(cmax − K̃2 − K2)∂U2
∂φ

u2
K̃2+K2

(28)

for (q̃1, q̃2, K̃2) = (ρ− ρ0, φ, K̂2 − K2) on each set in a nested
sequence of sets that fill the state space.

Adaptive Robust Curve Tracking
 ρ̇ = − sin(φ)

φ̇ = κ cos(φ)
1+κρ − K2[v + δ]

(27)

We proved ISS of the tracking and identification dynamics
˙̃q1 = − sin(q̃2)

˙̃q2 = κ cos(q̃2)
1+κ(q̃1+ρ0)

− K2
K̃2+K2

u2 − K2δ

˙̃K2 = −(K̃2 + K2 − cmin)(cmax − K̃2 − K2)∂U2
∂φ

u2
K̃2+K2

(28)

for (q̃1, q̃2, K̃2) = (ρ− ρ0, φ, K̂2 − K2) on each set in a nested
sequence of sets that fill the state space.

Adaptive Robust Curve Tracking
 ρ̇ = − sin(φ)

φ̇ = κ cos(φ)
1+κρ − K2[v + δ]

(27)

We proved ISS of the tracking and identification dynamics
˙̃q1 = − sin(q̃2)

˙̃q2 = κ cos(q̃2)
1+κ(q̃1+ρ0)

− K2
K̃2+K2

u2 − K2δ

˙̃K2 = −(K̃2 + K2 − cmin)(cmax − K̃2 − K2)∂U2
∂φ

u2
K̃2+K2

(28)

for (q̃1, q̃2, K̃2) = (ρ− ρ0, φ, K̂2 − K2) on each set in a nested
sequence of sets that fill the state space.

Conclusions

I Nonlinear control systems are ubiquitous in aerospace, bio,
electrical, and mechanical engineering.

I One central problem is to build functions called closed loop
controllers that force desired tracking behaviors.

I We designed controllers for several applications including
models with unknown parameters that we can identify.

I Our strict Lyapunov function approach gave key robustness
properties such as input-to-state stability.

I We aim to find extensions that apply under time delays and
state constraints including obstacle avoidance.

Conclusions

I Nonlinear control systems are ubiquitous in aerospace, bio,
electrical, and mechanical engineering.

I One central problem is to build functions called closed loop
controllers that force desired tracking behaviors.

I We designed controllers for several applications including
models with unknown parameters that we can identify.

I Our strict Lyapunov function approach gave key robustness
properties such as input-to-state stability.

I We aim to find extensions that apply under time delays and
state constraints including obstacle avoidance.

Conclusions

I Nonlinear control systems are ubiquitous in aerospace, bio,
electrical, and mechanical engineering.

I One central problem is to build functions called closed loop
controllers that force desired tracking behaviors.

I We designed controllers for several applications including
models with unknown parameters that we can identify.

I Our strict Lyapunov function approach gave key robustness
properties such as input-to-state stability.

I We aim to find extensions that apply under time delays and
state constraints including obstacle avoidance.

Conclusions

I Nonlinear control systems are ubiquitous in aerospace, bio,
electrical, and mechanical engineering.

I One central problem is to build functions called closed loop
controllers that force desired tracking behaviors.

I We designed controllers for several applications including
models with unknown parameters that we can identify.

I Our strict Lyapunov function approach gave key robustness
properties such as input-to-state stability.

I We aim to find extensions that apply under time delays and
state constraints including obstacle avoidance.

Conclusions

I Nonlinear control systems are ubiquitous in aerospace, bio,
electrical, and mechanical engineering.

I One central problem is to build functions called closed loop
controllers that force desired tracking behaviors.

I We designed controllers for several applications including
models with unknown parameters that we can identify.

I Our strict Lyapunov function approach gave key robustness
properties such as input-to-state stability.

I We aim to find extensions that apply under time delays and
state constraints including obstacle avoidance.

Conclusions

I Nonlinear control systems are ubiquitous in aerospace, bio,
electrical, and mechanical engineering.

I One central problem is to build functions called closed loop
controllers that force desired tracking behaviors.

I We designed controllers for several applications including
models with unknown parameters that we can identify.

I Our strict Lyapunov function approach gave key robustness
properties such as input-to-state stability.

I We aim to find extensions that apply under time delays and
state constraints including obstacle avoidance.

