Adaptive Tracking and Parameter Identification for Nonlinear Control Systems

Michael Malisoff, Louisiana State University Sponsored by AFOSR, NSF/DMS, and NSF/ECCS

Department of Mathematical Sciences Talk
UT Dallas - February 2012

What Do We Mean By Control Systems?

What Do We Mean By Control Systems?

Continuous time forced deterministic systems.

What Do We Mean By Control Systems?

Continuous time forced deterministic systems.

These are doubly parameterized families of ODEs of the form

$$
\begin{equation*}
\dot{Y}=\mathcal{F}(t, Y, u(t, Y), \delta(t)), \quad Y \in \mathcal{Y} \tag{1}
\end{equation*}
$$

We design the controller $u(t, Y)$ based on the control objective.

What Do We Mean By Control Systems?

Continuous time forced deterministic systems.
These are doubly parameterized families of ODEs of the form

$$
\begin{equation*}
\dot{Y}=\mathcal{F}(t, Y, u(t, Y), \delta(t)), \quad Y \in \mathcal{Y} . \tag{1}
\end{equation*}
$$

We design the controller $u(t, Y)$ based on the control objective.
The functions $\delta:[0, \infty) \rightarrow \mathcal{D}$ represent uncertainty.

What Do We Mean By Control Systems?

Continuous time forced deterministic systems.
These are doubly parameterized families of ODEs of the form

$$
\begin{equation*}
\dot{Y}=\mathcal{F}(t, Y, u(t, Y), \delta(t)), \quad Y \in \mathcal{Y} \tag{1}
\end{equation*}
$$

We design the controller $u(t, Y)$ based on the control objective. The functions $\delta:[0, \infty) \rightarrow \mathcal{D}$ represent uncertainty.

Specify $u(t, Y)$ to get a singly parameterized family

$$
\begin{equation*}
\dot{Y}=\mathcal{G}(t, Y, \delta(t)), \quad Y \in \mathcal{Y}, \tag{2}
\end{equation*}
$$

where $\mathcal{G}(t, Y, d)=\mathcal{F}(t, Y, u(t, Y), d)$.

What are Some Possible Objectives?

What are Some Possible Objectives?

$$
\dot{Y}=\mathcal{G}(t, Y), \quad Y \in \mathcal{Y} .
$$

What are Some Possible Objectives?

$$
\begin{gather*}
\dot{Y}=\mathcal{G}(t, Y), \quad Y \in \mathcal{Y} . \\
|Y(t)| \leq \gamma_{1}\left(e^{t_{0}-t} \gamma_{2}\left(\left|Y\left(t_{0}\right)\right|\right)\right)
\end{gather*}
$$

(UGAS)

What are Some Possible Objectives?

$$
\begin{gather*}
\dot{Y}=\mathcal{G}(t, Y), \quad Y \in \mathcal{Y} . \\
|Y(t)| \leq \gamma_{1}\left(e^{t_{0}-t} \gamma_{2}\left(\left|Y\left(t_{0}\right)\right|\right)\right)
\end{gather*}
$$

(UGAS)
Our γ_{i} 's are 0 at 0 , strictly increasing, and unbounded.

What are Some Possible Objectives?

$$
\begin{gather*}
\dot{Y}=\mathcal{G}(t, Y), \quad Y \in \mathcal{Y} . \\
|Y(t)| \leq \gamma_{1}\left(e^{t_{0}-t} \gamma_{2}\left(\left|Y\left(t_{0}\right)\right|\right)\right) \tag{UGAS}
\end{gather*}
$$

Our γ_{i} 's are 0 at 0 , strictly increasing, and unbounded. $\gamma_{i} \in \mathcal{K}_{\infty}$.

What are Some Possible Objectives?

$$
\begin{gather*}
\dot{Y}=\mathcal{G}(t, Y), \quad Y \in \mathcal{Y} . \\
|Y(t)| \leq \gamma_{1}\left(e^{t_{0}-t} \gamma_{2}\left(\left|Y\left(t_{0}\right)\right|\right)\right) \tag{UGAS}
\end{gather*}
$$

Our γ_{i} 's are 0 at 0 , strictly increasing, and unbounded. $\gamma_{i} \in \mathcal{K}_{\infty}$.

$$
\begin{equation*}
\dot{Y}=\mathcal{G}(t, Y, \delta(t)), \quad Y \in \mathcal{Y} . \tag{pert}
\end{equation*}
$$

What are Some Possible Objectives?

$$
\begin{gather*}
\dot{Y}=\mathcal{G}(t, Y), \quad Y \in \mathcal{Y} . \\
|Y(t)| \leq \gamma_{1}\left(e^{t_{0}-t} \gamma_{2}\left(\left|Y\left(t_{0}\right)\right|\right)\right) \tag{UGAS}
\end{gather*}
$$

Our γ_{i} 's are 0 at 0 , strictly increasing, and unbounded. $\gamma_{i} \in \mathcal{K}_{\infty}$.

$$
\begin{gather*}
\dot{Y}=\mathcal{G}(t, Y, \delta(t)), \quad Y \in \mathcal{Y} \tag{pert}\\
|Y(t)| \leq \gamma_{1}\left(e^{t_{0}-t} \gamma_{2}\left(\left|Y\left(t_{0}\right)\right|\right)\right)+\gamma_{3}\left(|\delta|_{\left[t_{0}, t\right]}\right) \tag{ISS}
\end{gather*}
$$

What are Some Possible Objectives?

$$
\begin{gather*}
\dot{Y}=\mathcal{G}(t, Y), \quad Y \in \mathcal{Y} . \\
|Y(t)| \leq \gamma_{1}\left(e^{t_{0}-t} \gamma_{2}\left(\left|Y\left(t_{0}\right)\right|\right)\right) \tag{UGAS}
\end{gather*}
$$

Our γ_{i} 's are 0 at 0 , strictly increasing, and unbounded. $\gamma_{i} \in \mathcal{K}_{\infty}$.

$$
\begin{gather*}
\dot{Y}=\mathcal{G}(t, Y, \delta(t)), \quad Y \in \mathcal{Y} . \tag{pert}\\
|Y(t)| \leq \gamma_{1}\left(e^{t_{0}-t} \gamma_{2}\left(\left|Y\left(t_{0}\right)\right|\right)\right)+\gamma_{3}\left(|\delta|_{\left[t_{0}, t\right]}\right) \tag{ISS}\\
\gamma_{0}(|Y(t)|) \leq \gamma_{1}\left(e^{t_{0}-t} \gamma_{2}\left(\left|Y\left(t_{0}\right)\right|\right)\right)+\int_{t_{0}}^{t} \gamma_{3}(|\delta(r)|) \mathrm{d} r
\end{gather*}
$$

(iISS)

What are Some Possible Objectives?

$$
\begin{gather*}
\dot{Y}=\mathcal{G}(t, Y), \quad Y \in \mathcal{Y} . \\
|Y(t)| \leq \gamma_{1}\left(e^{t_{0}-t} \gamma_{2}\left(\left|Y\left(t_{0}\right)\right|\right)\right) \tag{UGAS}
\end{gather*}
$$

Our γ_{i} 's are 0 at 0 , strictly increasing, and unbounded. $\gamma_{i} \in \mathcal{K}_{\infty}$.

$$
\begin{gather*}
\dot{Y}=\mathcal{G}(t, Y, \delta(t)), \quad Y \in \mathcal{Y} . \tag{pert}\\
|Y(t)| \leq \gamma_{1}\left(e^{t_{0}-t} \gamma_{2}\left(\left|Y\left(t_{0}\right)\right|\right)\right)+\gamma_{3}\left(|\delta|_{\left[t_{0}, t\right]}\right) \tag{ISS}\\
\gamma_{0}(|Y(t)|) \leq \gamma_{1}\left(e^{t_{0}-t} \gamma_{2}\left(\left|Y\left(t_{0}\right)\right|\right)\right)+\int_{t_{0}}^{t} \gamma_{3}(|\delta(r)|) \mathrm{d} r \\
\text { (ilSS) }
\end{gather*}
$$

Find γ_{i} 's by building certain strict LFs for $\dot{Y}=\mathcal{G}(t, Y, 0)$.

What Makes a LF Nonstrict or Strict?

What Makes a LF Nonstrict or Strict?

A LF for $\dot{Y}=\mathcal{G}(t, Y)$ is a proper positive definite C^{1} function V that admits a nonnegative definite function W such that $V_{t}(t, Y)+V_{Y}(t, Y) \mathcal{G}(t, Y) \leq-W(Y)$ for all $t \geq 0$ and $Y \in \mathcal{Y}$.

What Makes a LF Nonstrict or Strict?

A LF for $\dot{Y}=\mathcal{G}(t, Y)$ is a proper positive definite C^{1} function V that admits a nonnegative definite function W such that $V_{t}(t, Y)+V_{Y}(t, Y) \mathcal{G}(t, Y) \leq-W(Y)$ for all $t \geq 0$ and $Y \in \mathcal{Y}$.

If, in addition, W is positive definite, then we call V strict.

What Makes a LF Nonstrict or Strict?

A LF for $\dot{Y}=\mathcal{G}(t, Y)$ is a proper positive definite C^{1} function V that admits a nonnegative definite function W such that $V_{t}(t, Y)+V_{Y}(t, Y) \mathcal{G}(t, Y) \leq-W(Y)$ for all $t \geq 0$ and $Y \in \mathcal{Y}$.

If, in addition, W is positive definite, then we call V strict.
Example 1:

What Makes a LF Nonstrict or Strict?

A LF for $\dot{Y}=\mathcal{G}(t, Y)$ is a proper positive definite C^{1} function V that admits a nonnegative definite function W such that $V_{t}(t, Y)+V_{Y}(t, Y) \mathcal{G}(t, Y) \leq-W(Y)$ for all $t \geq 0$ and $Y \in \mathcal{Y}$.

If, in addition, W is positive definite, then we call V strict.
Example 1: $\dot{y}_{1}=y_{2}, \dot{y}_{2}=-y_{1}-y_{2}^{3}$.

What Makes a LF Nonstrict or Strict?

A LF for $\dot{Y}=\mathcal{G}(t, Y)$ is a proper positive definite C^{1} function V that admits a nonnegative definite function W such that $V_{t}(t, Y)+V_{Y}(t, Y) \mathcal{G}(t, Y) \leq-W(Y)$ for all $t \geq 0$ and $Y \in \mathcal{Y}$.

If, in addition, W is positive definite, then we call V strict.
Example 1: $\dot{y}_{1}=y_{2}, \dot{y}_{2}=-y_{1}-y_{2}^{3} . V(Y)=0.5|Y|^{2}$.

What Makes a LF Nonstrict or Strict?

A LF for $\dot{Y}=\mathcal{G}(t, Y)$ is a proper positive definite C^{1} function V that admits a nonnegative definite function W such that $V_{t}(t, Y)+V_{Y}(t, Y) \mathcal{G}(t, Y) \leq-W(Y)$ for all $t \geq 0$ and $Y \in \mathcal{Y}$.

If, in addition, W is positive definite, then we call V strict.
Example 1: $\dot{y}_{1}=y_{2}, \dot{y}_{2}=-y_{1}-y_{2}^{3} \cdot V(Y)=0.5|Y|^{2} . \dot{V}=-y_{2}^{4}$.

What Makes a LF Nonstrict or Strict?

A LF for $\dot{Y}=\mathcal{G}(t, Y)$ is a proper positive definite C^{1} function V that admits a nonnegative definite function W such that $V_{t}(t, Y)+V_{Y}(t, Y) \mathcal{G}(t, Y) \leq-W(Y)$ for all $t \geq 0$ and $Y \in \mathcal{Y}$.

If, in addition, W is positive definite, then we call V strict.
Example 1: $\dot{y}_{1}=y_{2}, \dot{y}_{2}=-y_{1}-y_{2}^{3} \cdot V(Y)=0.5|Y|^{2} . \dot{V}=-y_{2}^{4}$.
Example 2:

What Makes a LF Nonstrict or Strict?

A LF for $\dot{Y}=\mathcal{G}(t, Y)$ is a proper positive definite C^{1} function V that admits a nonnegative definite function W such that $V_{t}(t, Y)+V_{Y}(t, Y) \mathcal{G}(t, Y) \leq-W(Y)$ for all $t \geq 0$ and $Y \in \mathcal{Y}$.

If, in addition, W is positive definite, then we call V strict.
Example 1: $\dot{y}_{1}=y_{2}, \dot{y}_{2}=-y_{1}-y_{2}^{3} \cdot V(Y)=0.5|Y|^{2} . \dot{V}=-y_{2}^{4}$.
Example 2: $\dot{Y}=-\frac{Y}{1+Y^{2}}$.

What Makes a LF Nonstrict or Strict?

A LF for $\dot{Y}=\mathcal{G}(t, Y)$ is a proper positive definite C^{1} function V that admits a nonnegative definite function W such that $V_{t}(t, Y)+V_{Y}(t, Y) \mathcal{G}(t, Y) \leq-W(Y)$ for all $t \geq 0$ and $Y \in \mathcal{Y}$.

If, in addition, W is positive definite, then we call V strict.
Example 1: $\dot{y}_{1}=y_{2}, \dot{y}_{2}=-y_{1}-y_{2}^{3} \cdot V(Y)=0.5|Y|^{2} . \dot{V}=-y_{2}^{4}$.
Example 2: $\dot{Y}=-\frac{Y}{1+Y^{2}} . V(Y)=\ln \left(1+Y^{2}\right)$.

What Makes a LF Nonstrict or Strict?

A LF for $\dot{Y}=\mathcal{G}(t, Y)$ is a proper positive definite C^{1} function V that admits a nonnegative definite function W such that $V_{t}(t, Y)+V_{Y}(t, Y) \mathcal{G}(t, Y) \leq-W(Y)$ for all $t \geq 0$ and $Y \in \mathcal{Y}$.

If, in addition, W is positive definite, then we call V strict.
Example 1: $\dot{y}_{1}=y_{2}, \dot{y}_{2}=-y_{1}-y_{2}^{3} \cdot V(Y)=0.5|Y|^{2} . \dot{V}=-y_{2}^{4}$.
Example 2: $\dot{Y}=-\frac{Y}{1+Y^{2}} . V(Y)=\ln \left(1+Y^{2}\right) . \dot{V} \leq-\frac{Y^{2}}{\left(1+Y^{2}\right)^{2}}$.

What Makes a LF Nonstrict or Strict?

A LF for $\dot{Y}=\mathcal{G}(t, Y)$ is a proper positive definite C^{1} function V that admits a nonnegative definite function W such that $V_{t}(t, Y)+V_{Y}(t, Y) \mathcal{G}(t, Y) \leq-W(Y)$ for all $t \geq 0$ and $Y \in \mathcal{Y}$.

If, in addition, W is positive definite, then we call V strict.
Example 1: $\dot{y}_{1}=y_{2}, \dot{y}_{2}=-y_{1}-y_{2}^{3} \cdot V(Y)=0.5|Y|^{2} . \dot{V}=-y_{2}^{4}$.
Example 2: $\dot{Y}=-\frac{Y}{1+Y^{2}} . V(Y)=\ln \left(1+Y^{2}\right) \cdot \dot{V} \leq-\frac{Y^{2}}{\left(1+Y^{2}\right)^{2}}$.
Warning 1 :

What Makes a LF Nonstrict or Strict?

A LF for $\dot{Y}=\mathcal{G}(t, Y)$ is a proper positive definite C^{1} function V that admits a nonnegative definite function W such that $V_{t}(t, Y)+V_{Y}(t, Y) \mathcal{G}(t, Y) \leq-W(Y)$ for all $t \geq 0$ and $Y \in \mathcal{Y}$.

If, in addition, W is positive definite, then we call V strict.
Example 1: $\dot{y}_{1}=y_{2}, \dot{y}_{2}=-y_{1}-y_{2}^{3} \cdot V(Y)=0.5|Y|^{2} . \dot{V}=-y_{2}^{4}$.
Example 2: $\dot{Y}=-\frac{Y}{1+Y^{2}} . V(Y)=\ln \left(1+Y^{2}\right) \cdot \dot{V} \leq-\frac{Y^{2}}{\left(1+Y^{2}\right)^{2}}$.
Warning 1: For each constant $\bar{\delta}>0$, we can find a Y_{0} such that the solution $\phi\left(t, Y_{0}\right)$ for $\dot{Y}=-\frac{Y}{1+Y^{2}}+\bar{\delta}$ is unbounded.

How Can We Robustify Controllers?

How Can We Robustify Controllers?

Assume that we have a controller u such that

$$
\begin{equation*}
\dot{Y}=\mathcal{G}(t, Y) \stackrel{\text { def }}{=} f(t, Y)+g(t, Y) u(t, Y) \tag{3}
\end{equation*}
$$

is UGAS to the origin.

How Can We Robustify Controllers?

Assume that we have a controller u such that

$$
\begin{equation*}
\dot{Y}=\mathcal{G}(t, Y) \stackrel{\text { def }}{=} f(t, Y)+g(t, Y) u(t, Y) \tag{3}
\end{equation*}
$$

is UGAS to the origin.
Assume that we have a strict Lyapunov function V so that $W(Y)=\inf _{t}\left\{-\left[V_{t}(t, Y)+V_{Y}(t, Y) \mathcal{G}(t, Y)\right]\right\}$ is proper.

How Can We Robustify Controllers?

Assume that we have a controller u such that

$$
\begin{equation*}
\dot{Y}=\mathcal{G}(t, Y) \stackrel{\text { def }}{=} f(t, Y)+g(t, Y) u(t, Y) \tag{3}
\end{equation*}
$$

is UGAS to the origin.
Assume that we have a strict Lyapunov function V so that $W(Y)=\inf _{t}\left\{-\left[V_{t}(t, Y)+V_{Y}(t, Y) \mathcal{G}(t, Y)\right]\right\}$ is proper.

Then

$$
\begin{equation*}
\dot{Y}=f(t, Y)+g(t, Y)[u(t, Y)-\overbrace{D_{X} V(t, Y) \cdot g(t, Y)}^{L_{g} V(t, Y)}+\delta] \tag{4}
\end{equation*}
$$

is ISS with respect to actuator errors δ in any control set.

What is Strictification?

What is Strictification?

This is the transformation of a nonstrict LF V_{1} into a strict LF $V^{\#}$ on its domain, and is the subject of my book.

What is Strictification?

This is the transformation of a nonstrict LF V_{1} into a strict LF V^{\sharp} on its domain, and is the subject of my book.

Doing so often strengthens a UGAS result to an ISS or iISS result to quantify the effects of uncertainties.

What is Strictification?

This is the transformation of a nonstrict LF V_{1} into a strict LF V^{\sharp} on its domain, and is the subject of my book.

Doing so often strengthens a UGAS result to an ISS or iISS result to quantify the effects of uncertainties.

The required nondegeneracy of V_{1} is often expressed in terms of Jurdjevic-Quinn, LaSalle, or Matrosov conditions.

What is Strictification?

This is the transformation of a nonstrict LF V_{1} into a strict LF V^{\sharp} on its domain, and is the subject of my book.

Doing so often strengthens a UGAS result to an ISS or iISS result to quantify the effects of uncertainties.

The required nondegeneracy of V_{1} is often expressed in terms of Jurdjevic-Quinn, LaSalle, or Matrosov conditions.

Active magnetic bearings, adaptive systems, bioreactors, brushless DC motors, heart rate controllers, marine robots, microelectromechanical relays, systems with control delays, underactuated ships, unmanned air vehicles,..

What is Strictification?

This is the transformation of a nonstrict LF V_{1} into a strict LF V^{\sharp} on its domain, and is the subject of my book.

Doing so often strengthens a UGAS result to an ISS or iISS result to quantify the effects of uncertainties.

The required nondegeneracy of V_{1} is often expressed in terms of Jurdjevic-Quinn, LaSalle, or Matrosov conditions.

Active magnetic bearings, adaptive systems, bioreactors, brushless DC motors, heart rate controllers, marine robots, microelectromechanical relays, systems with control delays, underactuated ships, unmanned air vehicles,..

What is Strictification?

This is the transformation of a nonstrict LF V_{1} into a strict LF V^{\sharp} on its domain, and is the subject of my book.

Doing so often strengthens a UGAS result to an ISS or iISS result to quantify the effects of uncertainties.

The required nondegeneracy of V_{1} is often expressed in terms of Jurdjevic-Quinn, LaSalle, or Matrosov conditions.

Active magnetic bearings, adaptive systems, bioreactors, brushless DC motors, heart rate controllers, marine robots, microelectromechanical relays, systems with control delays, underactuated ships, unmanned air vehicles,..

What is Strictification?

This is the transformation of a nonstrict LF V_{1} into a strict LF V^{\sharp} on its domain, and is the subject of my book.

Doing so often strengthens a UGAS result to an ISS or iISS result to quantify the effects of uncertainties.

The required nondegeneracy of V_{1} is often expressed in terms of Jurdjevic-Quinn, LaSalle, or Matrosov conditions.

Active magnetic bearings, adaptive systems, bioreactors, brushless DC motors, heart rate controllers, marine robots, microelectromechanical relays, systems with control delays, underactuated ships, unmanned air vehicles,..

What is Strictification?

This is the transformation of a nonstrict LF V_{1} into a strict LF V^{\sharp} on its domain, and is the subject of my book.

Doing so often strengthens a UGAS result to an ISS or iISS result to quantify the effects of uncertainties.

The required nondegeneracy of V_{1} is often expressed in terms of Jurdjevic-Quinn, LaSalle, or Matrosov conditions.

Active magnetic bearings, adaptive systems, bioreactors, brushless DC motors, heart rate controllers, marine robots, microelectromechanical relays, systems with control delays, underactuated ships, unmanned air vehicles,..

Adaptive Tracking and Parameter Identification

Consider a suitably regular nonlinear system

$$
\begin{equation*}
\dot{\xi}=\mathcal{J}(t, \xi, \Gamma, u) \tag{5}
\end{equation*}
$$

with a smooth reference trajectory ξ_{R} and a vector Γ of unknown constant parameters.

Adaptive Tracking and Parameter Identification

Consider a suitably regular nonlinear system

$$
\begin{equation*}
\dot{\xi}=\mathcal{J}(t, \xi, \Gamma, u) \tag{5}
\end{equation*}
$$

with a smooth reference trajectory ξ_{R} and a vector Γ of unknown constant parameters. $\dot{\xi}_{R}=\mathcal{J}\left(t, \xi_{R}, \Gamma, u_{R}(t)\right) \forall t \geq 0$.

Adaptive Tracking and Parameter Identification

Consider a suitably regular nonlinear system

$$
\begin{equation*}
\dot{\xi}=\mathcal{J}(t, \xi, \Gamma, u) \tag{5}
\end{equation*}
$$

with a smooth reference trajectory ξ_{R} and a vector Γ of unknown constant parameters. $\dot{\xi}_{R}=\mathcal{J}\left(t, \xi_{R}, \Gamma, u_{R}(t)\right) \forall t \geq 0$.

Problem:

Adaptive Tracking and Parameter Identification

Consider a suitably regular nonlinear system

$$
\begin{equation*}
\dot{\xi}=\mathcal{J}(t, \xi, \Gamma, u) \tag{5}
\end{equation*}
$$

with a smooth reference trajectory ξ_{R} and a vector Γ of unknown constant parameters. $\dot{\xi}_{R}=\mathcal{J}\left(t, \xi_{R}, \Gamma, u_{R}(t)\right) \forall t \geq 0$.

Problem: Design a dynamic feedback with estimator

$$
\begin{equation*}
u=u(t, \xi, \hat{\Gamma}), \quad \hat{\Gamma}=\tau(t, \xi, \hat{\Gamma}) \tag{6}
\end{equation*}
$$

that makes the $Y=(\tilde{\Gamma}, \tilde{\xi})=\left(\Gamma-\hat{\Gamma}, \xi-\xi_{R}\right)$ system UGAS.

Adaptive Tracking and Parameter Identification

Consider a suitably regular nonlinear system

$$
\begin{equation*}
\dot{\xi}=\mathcal{J}(t, \xi, \Gamma, u) \tag{5}
\end{equation*}
$$

with a smooth reference trajectory ξ_{R} and a vector Γ of unknown constant parameters. $\dot{\xi}_{R}=\mathcal{J}\left(t, \xi_{R}, \Gamma, u_{R}(t)\right) \forall t \geq 0$.

Problem: Design a dynamic feedback with estimator

$$
\begin{equation*}
u=u(t, \xi, \hat{\Gamma}), \quad \hat{\Gamma}=\tau(t, \xi, \hat{\Gamma}) \tag{6}
\end{equation*}
$$

that makes the $Y=(\tilde{\Gamma}, \tilde{\xi})=\left(\Gamma-\hat{\Gamma}, \xi-\xi_{R}\right)$ system UGAS.
Flight control, electrical and mechanical engineering, etc.

Adaptive Tracking and Parameter Identification

Consider a suitably regular nonlinear system

$$
\begin{equation*}
\dot{\xi}=\mathcal{J}(t, \xi, \Gamma, u) \tag{5}
\end{equation*}
$$

with a smooth reference trajectory ξ_{R} and a vector Γ of unknown constant parameters. $\dot{\xi}_{R}=\mathcal{J}\left(t, \xi_{R}, \Gamma, u_{R}(t)\right) \forall t \geq 0$.

Problem: Design a dynamic feedback with estimator

$$
\begin{equation*}
u=u(t, \xi, \hat{\Gamma}), \quad \hat{\Gamma}=\tau(t, \xi, \hat{\Gamma}) \tag{6}
\end{equation*}
$$

that makes the $Y=(\tilde{\Gamma}, \tilde{\xi})=\left(\Gamma-\hat{\Gamma}, \xi-\xi_{R}\right)$ system UGAS.
Flight control, electrical and mechanical engineering, etc.
Persistent excitation.

Adaptive Tracking and Parameter Identification

Consider a suitably regular nonlinear system

$$
\begin{equation*}
\dot{\xi}=\mathcal{J}(t, \xi, \Gamma, u) \tag{5}
\end{equation*}
$$

with a smooth reference trajectory ξ_{R} and a vector Γ of unknown constant parameters. $\dot{\xi}_{R}=\mathcal{J}\left(t, \xi_{R}, \Gamma, u_{R}(t)\right) \forall t \geq 0$.

Problem: Design a dynamic feedback with estimator

$$
\begin{equation*}
u=u(t, \xi, \hat{\Gamma}), \quad \hat{\Gamma}=\tau(t, \xi, \hat{\Gamma}) \tag{6}
\end{equation*}
$$

that makes the $Y=(\tilde{\Gamma}, \tilde{\xi})=\left(\Gamma-\hat{\Gamma}, \xi-\xi_{R}\right)$ system UGAS.
Flight control, electrical and mechanical engineering, etc.
Persistent excitation. Annaswamy, Narendra, Teel..

First-Order (Mazenc, de Queiroz, M., '09)

First-Order (Mazenc, de Queiroz, M., '09)

In 2009, we gave a solution for the special case

$$
\begin{equation*}
\dot{\xi}=\omega(\xi)[\Gamma+\delta]+u . \tag{7}
\end{equation*}
$$

First-Order (Mazenc, de Queiroz, M., '09)

In 2009, we gave a solution for the special case

$$
\begin{equation*}
\dot{\xi}=\omega(\xi)[\Gamma+\delta]+u . \tag{7}
\end{equation*}
$$

Our adaptive controllers have the form

$$
u=\dot{\xi}_{R}(t)-\omega(\xi) \hat{\Gamma}+K\left(\xi_{R}(t)-\xi\right), \quad \dot{\hat{\Gamma}}=-\omega(\xi)^{\top}\left(\xi_{R}(t)-\xi\right) .
$$

First-Order (Mazenc, de Queiroz, M., '09)

In 2009, we gave a solution for the special case

$$
\begin{equation*}
\dot{\xi}=\omega(\xi)[\Gamma+\delta]+u . \tag{7}
\end{equation*}
$$

Our adaptive controllers have the form

$$
u=\dot{\xi}_{R}(t)-\omega(\xi) \hat{\Gamma}+K\left(\xi_{R}(t)-\xi\right), \quad \dot{\hat{\Gamma}}=-\omega(\xi)^{\top}\left(\xi_{R}(t)-\xi\right)
$$

Classical PE assumption: \exists constants $T, \mu>0$ s.t.

$$
\begin{equation*}
\mu \operatorname{Id}_{p \times p} \leq \int_{t-T}^{t} \omega\left(\xi_{R}(I)\right)^{\top} \omega\left(\xi_{R}(I)\right) \mathrm{d} / \quad \text { for all } t \in \mathbb{R} . \tag{8}
\end{equation*}
$$

First-Order (Mazenc, de Queiroz, M., '09)

In 2009, we gave a solution for the special case

$$
\begin{equation*}
\dot{\xi}=\omega(\xi)[\Gamma+\delta]+u . \tag{7}
\end{equation*}
$$

Our adaptive controllers have the form

$$
u=\dot{\xi}_{R}(t)-\omega(\xi) \hat{\Gamma}+K\left(\xi_{R}(t)-\xi\right), \quad \dot{\hat{\Gamma}}=-\omega(\xi)^{\top}\left(\xi_{R}(t)-\xi\right)
$$

Classical PE assumption: \exists constants $T, \mu>0$ s.t.

$$
\begin{equation*}
\mu \operatorname{Id}_{p \times p} \leq \int_{t-T}^{t} \omega\left(\xi_{R}(I)\right)^{\top} \omega\left(\xi_{R}(I)\right) \mathrm{d} / \quad \text { for all } t \in \mathbb{R} . \tag{8}
\end{equation*}
$$

Novelty:

First-Order (Mazenc, de Queiroz, M., '09)

In 2009, we gave a solution for the special case

$$
\begin{equation*}
\dot{\xi}=\omega(\xi)[\Gamma+\delta]+u . \tag{7}
\end{equation*}
$$

Our adaptive controllers have the form

$$
u=\dot{\xi}_{R}(t)-\omega(\xi) \hat{\Gamma}+K\left(\xi_{R}(t)-\xi\right), \quad \dot{\hat{\Gamma}}=-\omega(\xi)^{\top}\left(\xi_{R}(t)-\xi\right) .
$$

Classical PE assumption: \exists constants $T, \mu>0$ s.t.

$$
\begin{equation*}
\mu \operatorname{Id}_{p \times p} \leq \int_{t-T}^{t} \omega\left(\xi_{R}(I)\right)^{\top} \omega\left(\xi_{R}(I)\right) \mathrm{d} / \quad \text { for all } t \in \mathbb{R} \tag{8}
\end{equation*}
$$

Novelty: Our global strict Lyapunov function for the $Y=\left(\Gamma-\hat{\Gamma}, \xi-\xi_{R}\right)$ dynamics gave ISS with respect to δ.

Higher-Order (Mazenc, de Queiroz, M., '11)

Higher-Order (Mazenc, de Queiroz, M., '11)

We solved the tracking and identification problem for

$$
\left\{\begin{array}{l}
\dot{x}=f(\xi) \tag{9}\\
\dot{z}_{i}=g_{i}(\xi)+k_{i}(\xi) \cdot \theta_{i}+\psi_{i} u_{i}, \quad i=1,2, \ldots, s .
\end{array}\right.
$$

Higher-Order (Mazenc, de Queiroz, M., '11)

We solved the tracking and identification problem for

$$
\left\{\begin{align*}
\dot{x} & =f(\xi) \tag{9}\\
\dot{z}_{i} & =g_{i}(\xi)+k_{i}(\xi) \cdot \theta_{i}+\psi_{i} u_{i}, \quad i=1,2, \ldots, s .
\end{align*}\right.
$$

$$
(x, z) \in \mathbb{R}^{r+s}
$$

Higher-Order (Mazenc, de Queiroz, M., '11)

We solved the tracking and identification problem for

$$
\begin{align*}
&\left\{\begin{array}{l}
\dot{x}=f(\xi) \\
\dot{z}_{i}=g_{i}(\xi)+k_{i}(\xi) \cdot \theta_{i}+\psi_{i} u_{i}, \quad i=1,2, \ldots, s
\end{array}\right. \tag{9}\\
&(x, z) \in \mathbb{R}^{r+s} . \Gamma=(\theta, \psi)=\left(\theta_{1}, \ldots, \theta_{s}, \psi_{1}, \ldots, \psi_{s}\right) \in \mathbb{R}^{p_{1}+\ldots+p_{s}+s}
\end{align*}
$$

Higher-Order (Mazenc, de Queiroz, M., '11)

We solved the tracking and identification problem for

$$
\left\{\begin{align*}
\dot{x} & =f(\xi) \tag{9}\\
\dot{z}_{i} & =g_{i}(\xi)+k_{i}(\xi) \cdot \theta_{i}+\psi_{i} u_{i}, \quad i=1,2, \ldots, s
\end{align*}\right.
$$

$(x, z) \in \mathbb{R}^{r+s} . \Gamma=(\theta, \psi)=\left(\theta_{1}, \ldots, \theta_{s}, \psi_{1}, \ldots, \psi_{s}\right) \in \mathbb{R}^{p_{1}+\ldots+p_{s}+s}$.
The $C^{2} T$-periodic reference trajectory $\xi_{R}=\left(x_{R}, z_{R}\right)$ to be tracked is assumed to satisfy $\dot{x}_{R}(t)=f\left(\xi_{R}(t)\right) \forall t \geq 0$.

Higher-Order (Mazenc, de Queiroz, M., '11)

We solved the tracking and identification problem for

$$
\left\{\begin{align*}
\dot{x} & =f(\xi) \tag{9}\\
\dot{z}_{i} & =g_{i}(\xi)+k_{i}(\xi) \cdot \theta_{i}+\psi_{i} u_{i}, \quad i=1,2, \ldots, s
\end{align*}\right.
$$

$(x, z) \in \mathbb{R}^{r+s} . \Gamma=(\theta, \psi)=\left(\theta_{1}, \ldots, \theta_{s}, \psi_{1}, \ldots, \psi_{s}\right) \in \mathbb{R}^{p_{1}+\ldots+p_{s}+s}$.
The $C^{2} T$-periodic reference trajectory $\xi_{R}=\left(x_{R}, z_{R}\right)$ to be tracked is assumed to satisfy $\dot{x}_{R}(t)=f\left(\xi_{R}(t)\right) \forall t \geq 0$.

Main PE Assumption:

Higher-Order (Mazenc, de Queiroz, M., '11)

We solved the tracking and identification problem for

$$
\left\{\begin{align*}
\dot{x} & =f(\xi) \tag{9}\\
\dot{z}_{i} & =g_{i}(\xi)+k_{i}(\xi) \cdot \theta_{i}+\psi_{i} u_{i}, \quad i=1,2, \ldots, s
\end{align*}\right.
$$

$(x, z) \in \mathbb{R}^{r+s} . \Gamma=(\theta, \psi)=\left(\theta_{1}, \ldots, \theta_{s}, \psi_{1}, \ldots, \psi_{s}\right) \in \mathbb{R}^{p_{1}+\ldots+p_{s}+s}$.
The $C^{2} T$-periodic reference trajectory $\xi_{R}=\left(x_{R}, z_{R}\right)$ to be tracked is assumed to satisfy $\dot{x}_{R}(t)=f\left(\xi_{R}(t)\right) \forall t \geq 0$.

Main PE Assumption: positive definiteness of the matrices

$$
\begin{equation*}
\mathcal{P}_{i} \stackrel{\text { def }}{=} \int_{0}^{T} \lambda_{i}^{\top}(t) \lambda_{i}(t) \mathrm{d} t, \quad 1 \leq i \leq s \tag{10}
\end{equation*}
$$

where $\lambda_{i}(t)=\left(k_{i}\left(\xi_{R}(t)\right), \dot{z}_{R, i}(t)-g_{i}\left(\xi_{R}(t)\right)\right)$ for each i.

Two Other Key Assumptions

Two Other Key Assumptions

- We know v_{f} and a global strict LF V for

$$
\left\{\begin{align*}
\dot{X} & =f\left((X, Z)+\xi_{R}(t)\right)-f\left(\xi_{R}(t)\right) \tag{11}\\
\dot{Z} & =v_{f}(t, X, Z)
\end{align*}\right.
$$

such that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0,

Two Other Key Assumptions

- We know v_{f} and a global strict LF V for

$$
\left\{\begin{align*}
\dot{X} & =f\left((X, Z)+\xi_{R}(t)\right)-f\left(\xi_{R}(t)\right) \tag{11}\\
\dot{Z} & =V_{f}(t, X . Z)
\end{align*}\right.
$$

such that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0 , and V and v_{f} are T-periodic.

Two Other Key Assumptions

- We know v_{f} and a global strict LF V for

$$
\left\{\begin{align*}
\dot{X} & =f\left((X, Z)+\xi_{R}(t)\right)-f\left(\xi_{R}(t)\right) \tag{11}\\
\dot{Z} & =v_{f}(t, X, Z)
\end{align*}\right.
$$

such that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0 , and V and v_{f} are T-periodic.

Key:

Two Other Key Assumptions

- We know v_{f} and a global strict LF V for

$$
\left\{\begin{align*}
\dot{X} & =f\left((X, Z)+\xi_{R}(t)\right)-f\left(\xi_{R}(t)\right) \tag{11}\\
\dot{Z} & =v_{f}(t, X, Z)
\end{align*}\right.
$$

such that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0 , and V and v_{f} are T-periodic.

Key: Reduces the LF construction problem to (11).

Two Other Key Assumptions

- We know v_{f} and a global strict LF V for

$$
\left\{\begin{align*}
\dot{X} & =f\left((X, Z)+\xi_{R}(t)\right)-f\left(\xi_{R}(t)\right) \tag{11}\\
\dot{Z} & =v_{f}(t, X, Z)
\end{align*}\right.
$$

such that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0 , and V and v_{f} are T-periodic.

Key: Reduces the LF construction problem to (11).

- There are known positive constants $\theta_{M}, \underline{\psi}$ and $\bar{\psi}$ such that

$$
\begin{equation*}
\underline{\psi}<\psi_{i}<\bar{\psi} \text { and }\left|\theta_{i}\right|<\theta_{M} \tag{12}
\end{equation*}
$$

for each $i \in\{1,2, \ldots, s\}$.

Two Other Key Assumptions

- We know v_{f} and a global strict LF V for

$$
\left\{\begin{align*}
\dot{X} & =f\left((X, Z)+\xi_{R}(t)\right)-f\left(\xi_{R}(t)\right) \tag{11}\\
\dot{Z} & =v_{f}(t, X, Z)
\end{align*}\right.
$$

such that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0 , and V and v_{f} are T-periodic.

Key: Reduces the LF construction problem to (11).

- There are known positive constants $\theta_{M}, \underline{\psi}$ and $\bar{\psi}$ such that

$$
\begin{equation*}
\underline{\psi}<\psi_{i}<\bar{\psi} \text { and }\left|\theta_{i}\right|<\theta_{M} \tag{12}
\end{equation*}
$$

for each $i \in\{1,2, \ldots, s\}$. Known directions for the ψ_{i} 's.

Dynamic Feedback

Dynamic Feedback

The estimator evolves on $\left\{\prod_{i=1}^{s}\left(-\theta_{M}, \theta_{M}\right)^{p_{i}}\right\} \times(\underline{\psi}, \bar{\psi})^{s}$.

Dynamic Feedback

The estimator evolves on $\left\{\prod_{i=1}^{s}\left(-\theta_{M}, \theta_{M}\right)^{p_{i}}\right\} \times(\underline{\psi}, \bar{\psi})^{s}$.

$$
\left\{\begin{align*}
\dot{\hat{\theta}}_{i, j} & =\left(\hat{\theta}_{i, j}^{2}-\theta_{M}^{2}\right) \varpi_{i, j}, \quad 1 \leq i \leq s, 1 \leq j \leq p_{i} \tag{13}\\
\hat{\psi}_{i} & =\left(\hat{\psi}_{i}-\underline{\psi}\right)\left(\hat{\psi}_{i}-\bar{\psi}\right) \Upsilon_{i}, \quad 1 \leq i \leq s
\end{align*}\right.
$$

Dynamic Feedback

The estimator evolves on $\left\{\prod_{i=1}^{s}\left(-\theta_{M}, \theta_{M}\right)^{p_{i}}\right\} \times(\underline{\psi}, \bar{\psi})^{s}$.

$$
\left\{\begin{align*}
\dot{\hat{\theta}}_{i, j} & =\left(\hat{\theta}_{i, j}^{2}-\theta_{M}^{2}\right) \varpi_{i, j}, \quad 1 \leq i \leq s, 1 \leq j \leq p_{i} \tag{13}\\
\dot{\hat{\psi}}_{i} & =\left(\hat{\psi}_{i}-\psi\right)\left(\hat{\psi}_{i}-\bar{\psi}\right) \Upsilon_{i}, \quad 1 \leq i \leq s
\end{align*}\right.
$$

Here $\hat{\theta}_{i}=\left(\hat{\theta}_{i, 1}, \ldots, \hat{\theta}_{i, p_{i}}\right)$ for $i=1,2, \ldots, s$

Dynamic Feedback

The estimator evolves on $\left\{\prod_{i=1}^{s}\left(-\theta_{M}, \theta_{M}\right)^{p_{i}}\right\} \times(\underline{\psi}, \bar{\psi})^{s}$.

$$
\left\{\begin{align*}
\dot{\hat{\theta}}_{i, j} & =\left(\hat{\theta}_{i, j}^{2}-\theta_{M}^{2}\right) \varpi_{i, j}, \quad 1 \leq i \leq s, 1 \leq j \leq p_{i} \tag{13}\\
\dot{\hat{\psi}}_{i} & =\left(\hat{\psi}_{i}-\psi\right)\left(\hat{\psi}_{i}-\bar{\psi}\right) \Upsilon_{i}, \quad 1 \leq i \leq s
\end{align*}\right.
$$

Here $\hat{\theta}_{i}=\left(\hat{\theta}_{i, 1}, \ldots, \hat{\theta}_{i, p_{i}}\right)$ for $i=1,2, \ldots, s$,

$$
\varpi_{i, j}=-\frac{\partial V}{\partial \tilde{z}_{i}}(t, \tilde{\xi}) k_{i, j}\left(\tilde{\xi}+\xi_{R}(t)\right)
$$

Dynamic Feedback

The estimator evolves on $\left\{\prod_{i=1}^{s}\left(-\theta_{M}, \theta_{M}\right)^{p_{i}}\right\} \times(\underline{\psi}, \bar{\psi})^{s}$.

$$
\left\{\begin{align*}
\dot{\hat{\theta}}_{i, j} & =\left(\hat{\theta}_{i, j}^{2}-\theta_{M}^{2}\right) \varpi_{i, j}, \quad 1 \leq i \leq s, 1 \leq j \leq p_{i} \tag{13}\\
\dot{\hat{\psi}}_{i} & =\left(\hat{\psi}_{i}-\underline{\psi}\right)\left(\hat{\psi}_{i}-\bar{\psi}\right) \Upsilon_{i}, \quad 1 \leq i \leq s
\end{align*}\right.
$$

Here $\hat{\theta}_{i}=\left(\hat{\theta}_{i, 1}, \ldots, \hat{\theta}_{i, p_{i}}\right)$ for $i=1,2, \ldots, s$,

$$
\begin{align*}
\varpi_{i, j} & =-\frac{\partial V}{\partial \tilde{z}_{i}}(t, \tilde{\xi}) k_{i, j}\left(\tilde{\xi}+\xi_{R}(t)\right) \text { and } \tag{14}\\
\Upsilon_{i} & =-\frac{\partial V}{\partial \tilde{z}_{i}}(t, \tilde{\xi}) u_{i}(t, \tilde{\xi}, \hat{\theta}, \hat{\psi})
\end{align*}
$$

Dynamic Feedback

The estimator evolves on $\left\{\prod_{i=1}^{S}\left(-\theta_{M}, \theta_{M}\right)^{p_{i}}\right\} \times(\underline{\psi}, \bar{\psi})^{s}$.

$$
\left\{\begin{align*}
\dot{\hat{\theta}}_{i, j} & =\left(\hat{\theta}_{i, j}^{2}-\theta_{M}^{2}\right) \varpi_{i, j}, \quad 1 \leq i \leq s, 1 \leq j \leq p_{i} \tag{13}\\
\dot{\hat{\psi}}_{i} & =\left(\hat{\psi}_{i}-\underline{\psi}\right)\left(\hat{\psi}_{i}-\bar{\psi}\right) \Upsilon_{i}, \quad 1 \leq i \leq s
\end{align*}\right.
$$

Here $\hat{\theta}_{i}=\left(\hat{\theta}_{i, 1}, \ldots, \hat{\theta}_{i, p_{i}}\right)$ for $i=1,2, \ldots, s$,

$$
\begin{gather*}
\varpi_{i, j}=-\frac{\partial V}{\partial \tilde{z}_{i}}(t, \tilde{\xi}) k_{i, j}\left(\tilde{\xi}+\xi_{R}(t)\right) \text { and } \tag{14}\\
\Upsilon_{i}=-\frac{\partial V}{\partial \tilde{z}_{i}}(t, \tilde{\xi}) u_{i}(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}) \\
u_{i}(t, \tilde{\xi}, \hat{\theta}, \hat{\psi})=\frac{V_{f, i}(t, \tilde{\xi})-g_{i}(\xi)-k_{i}(\xi) \cdot \hat{\theta}_{i}+\dot{z}_{R, i}(t)}{\hat{\psi}_{i}} \tag{15}
\end{gather*}
$$

Dynamic Feedback

The estimator evolves on $\left\{\prod_{i=1}^{s}\left(-\theta_{M}, \theta_{M}\right)^{p_{i}}\right\} \times(\underline{\psi}, \bar{\psi})^{s}$.

$$
\left\{\begin{align*}
\dot{\hat{\theta}}_{i, j} & =\left(\hat{\theta}_{i, j}^{2}-\theta_{M}^{2}\right) \varpi_{i, j}, \quad 1 \leq i \leq s, 1 \leq j \leq p_{i} \tag{13}\\
\dot{\hat{\psi}}_{i} & =\left(\hat{\psi}_{i}-\underline{\psi}\right)\left(\hat{\psi}_{i}-\bar{\psi}\right) \Upsilon_{i}, \quad 1 \leq i \leq s
\end{align*}\right.
$$

Here $\hat{\theta}_{i}=\left(\hat{\theta}_{i, 1}, \ldots, \hat{\theta}_{i, p_{i}}\right)$ for $i=1,2, \ldots, s$,

$$
\begin{gather*}
\varpi_{i, j}=-\frac{\partial V}{\partial \tilde{z}_{i}}(t, \tilde{\xi}) k_{i, j}\left(\tilde{\xi}+\xi_{R}(t)\right) \text { and } \tag{14}\\
\Upsilon_{i}=-\frac{\partial V}{\partial \tilde{z}_{i}}(t, \tilde{\xi}) u_{i}(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}) \\
u_{i}(t, \tilde{\xi}, \hat{\theta}, \hat{\psi})=\frac{v_{f, i}(t, \tilde{\xi})-g_{i}(\xi)-k_{i}(\xi) \cdot \hat{\theta}_{i}+\dot{z}_{R, i}(t)}{\hat{\psi}_{i}} \tag{15}
\end{gather*}
$$

The estimator and feedback can only depend on things we know.

Augmented Error Dynamics

Augmented Error Dynamics

$$
\left\{\begin{align*}
\dot{\tilde{x}}= & f\left(\tilde{\xi}+\xi_{R}(t)\right)-f\left(\xi_{R}(t)\right) \tag{16}\\
\dot{\tilde{z}}_{i}= & v_{f, i}(t, \tilde{\xi})+k_{i}\left(\tilde{\xi}+\xi_{R}(t)\right) \cdot \tilde{\theta}_{i} \\
& +\widetilde{\psi}_{i} u_{i}(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}), 1 \leq i \leq s \\
\dot{\tilde{\theta}}_{i, j}= & -\left(\hat{\theta}_{i, j}^{2}-\theta_{M}^{2}\right) \varpi_{i, j}, 1 \leq i \leq s, 1 \leq j \leq p_{i} \\
\dot{\widetilde{\psi}}_{i}= & -\left(\hat{\psi}_{i}-\underline{\psi}\right)\left(\hat{\psi}_{i}-\bar{\psi}\right) r_{i}, 1 \leq i \leq s .
\end{align*}\right.
$$

Augmented Error Dynamics

$$
\left\{\begin{align*}
\dot{\tilde{x}}= & f\left(\tilde{\xi}+\xi_{R}(t)\right)-f\left(\xi_{R}(t)\right) \tag{16}\\
\dot{\tilde{z}}_{i}= & v_{f, i,}(t, \tilde{\xi})+k_{i}\left(\tilde{\xi}+\xi_{R}(t)\right) \cdot \widetilde{\theta}_{i} \\
& +\tilde{\psi}_{i} u_{i}(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}), \quad 1 \leq i \leq s \\
\dot{\tilde{\theta}}_{i, j}= & -\left(\hat{\theta}_{i, j}^{2}-\theta_{M}^{2}\right) \varpi_{i, j}, 1 \leq i \leq s, 1 \leq j \leq p_{i} \\
\dot{\tilde{\psi}}_{i}= & -\left(\hat{\psi}_{i}-\psi\right)\left(\hat{\psi}_{i}-\bar{\psi}\right) r_{i}, 1 \leq i \leq s .
\end{align*}\right.
$$

Tracking error: $\tilde{\xi}=(\tilde{x}, \tilde{z})=\xi-\xi_{R}=\left(x-x_{R}, z-z_{R}\right)$ Parameter estimation errors: $\widetilde{\theta}_{i}=\theta_{i}-\hat{\theta}_{i}$ and $\widetilde{\psi}_{i}=\psi_{i}-\hat{\psi}_{i}$

Augmented Error Dynamics

$$
\left\{\begin{align*}
\dot{\tilde{x}}= & f\left(\tilde{\xi}+\xi_{R}(t)\right)-f\left(\xi_{R}(t)\right) \\
\dot{\tilde{z}}_{i}= & v_{f, i,}(t, \tilde{\xi})+k_{i}\left(\tilde{\xi}+\xi_{R}(t)\right) \cdot \widetilde{\theta}_{i} \\
& +\tilde{\psi}_{i} u_{i}(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}), 1 \leq i \leq s \tag{16}\\
\dot{\tilde{\theta}}_{i, j}= & -\left(\hat{\theta}_{i, j}^{2}-\theta_{M}^{2}\right) \varpi_{i, j}, 1 \leq i \leq s, 1 \leq j \leq p_{i} \\
\tilde{\psi}_{i}= & -\left(\hat{\psi}_{i}-\psi\right)\left(\hat{\psi}_{i}-\bar{\psi}\right) \Upsilon_{i}, 1 \leq i \leq s .
\end{align*}\right.
$$

Tracking error: $\tilde{\xi}=(\tilde{x}, \tilde{z})=\xi-\xi_{R}=\left(x-x_{R}, z-z_{R}\right)$
Parameter estimation errors: $\widetilde{\theta}_{i}=\theta_{i}-\hat{\theta}_{i}$ and $\widetilde{\psi}_{i}=\psi_{i}-\hat{\psi}_{i}$

$$
\begin{aligned}
\mathcal{Y}= & \mathbb{R}^{r+s} \times\left(\prod_{i=1}^{s}\left\{\prod_{j=1}^{p_{i}}\left(\theta_{i, j}-\theta_{M}, \theta_{i, j}+\theta_{M}\right)\right\}\right) \\
& \times\left(\prod_{i=1}^{s}\left(\psi_{i}-\bar{\psi}, \psi_{i}-\underline{\psi}\right)\right) .
\end{aligned}
$$

Stabilization Analysis

Stabilization Analysis

We build a strict LF for the augmented tracking and identification vector $Y=(\tilde{\xi}, \tilde{\theta}, \tilde{\psi})=\left(\xi-\xi_{R}, \theta-\hat{\theta}, \psi-\hat{\psi}\right)$ dynamics on \mathcal{Y}.

Stabilization Analysis

We build a strict LF for the augmented tracking and identification vector $Y=(\tilde{\xi}, \tilde{\theta}, \tilde{\psi})=\left(\xi-\xi_{R}, \theta-\hat{\theta}, \psi-\hat{\psi}\right)$ dynamics on \mathcal{Y}.

We start with this nonstrict barrier type LF on \mathcal{Y} :

$$
\begin{aligned}
V_{1}(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi})= & V(t, \tilde{\xi})+\sum_{i=1}^{s} \sum_{j=1}^{p_{i}} \int_{0}^{\tilde{\theta}_{i, j}} \frac{m}{\theta_{M}^{2}-\left(m-\theta_{i, j}\right)^{2}} \mathrm{~d} m \\
& +\sum_{i=1}^{s} \int_{0}^{\widetilde{\psi}_{i}} \frac{m}{\left(\psi_{i}-m-\underline{\psi}\right)\left(\bar{\psi}-\psi_{i}+m\right)} \mathrm{d} m .
\end{aligned}
$$

Stabilization Analysis

We build a strict LF for the augmented tracking and identification vector $Y=(\tilde{\xi}, \tilde{\theta}, \tilde{\psi})=\left(\xi-\xi_{R}, \theta-\hat{\theta}, \psi-\hat{\psi}\right)$ dynamics on \mathcal{Y}.

We start with this nonstrict barrier type LF on \mathcal{Y} :

$$
\begin{aligned}
V_{1}(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi})= & V(t, \tilde{\xi})+\sum_{i=1}^{s} \sum_{j=1}^{p_{i}} \int_{0}^{\tilde{\theta}_{i, j}} \frac{m}{\theta_{M}^{2}-\left(m-\theta_{i, j}\right)^{2}} \mathrm{~d} m \\
& +\sum_{i=1}^{s} \int_{0}^{\widetilde{\psi}_{i}} \frac{m}{\left(\psi_{i}-m-\underline{\psi}\right)\left(\bar{\psi}-\psi_{i}+m\right)} \mathrm{d} m .
\end{aligned}
$$

On $\mathcal{Y}, \dot{V}_{1} \leq-W(\tilde{\xi})$ for some positive definite function W.

Stabilization Analysis

We build a strict LF for the augmented tracking and identification vector $Y=(\tilde{\xi}, \tilde{\theta}, \tilde{\psi})=\left(\xi-\xi_{R}, \theta-\hat{\theta}, \psi-\hat{\psi}\right)$ dynamics on \mathcal{Y}.

We start with this nonstrict barrier type LF on \mathcal{Y} :

$$
\begin{aligned}
V_{1}(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi})= & V(t, \tilde{\xi})+\sum_{i=1}^{s} \sum_{j=1}^{p_{i}} \int_{0}^{\tilde{\theta}_{i, j}} \frac{m}{\theta_{M}^{2}-\left(m-\theta_{i, j}\right)^{2}} \mathrm{~d} m \\
& +\sum_{i=1}^{s} \int_{0}^{\widetilde{\psi}_{i}} \frac{m}{\left(\psi_{i}-m-\underline{\psi}\right)\left(\bar{\psi}-\psi_{i}+m\right)} \mathrm{d} m .
\end{aligned}
$$

On $\mathcal{Y}, \dot{V}_{1} \leq-W(\tilde{\xi})$ for some positive definite function W.

We transform V_{1} into the desired strict LF.

Our Transformation

Our Transformation

Theorem: We can construct $K \in \mathcal{K}_{\infty} \cap C^{1}$ such that

$$
\begin{align*}
& V \sharp(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi}) \stackrel{\text { def }}{=} K\left(V_{1}(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi})\right)+\sum_{i=1}^{s} \bar{\Omega}_{i}(t, \tilde{\xi}, \tilde{\theta}, \widetilde{\psi}), \tag{17}\\
& \text { where } \quad \bar{\Omega}_{i}(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi})=-\tilde{z}_{i} \lambda_{i}(t) \alpha_{i}\left(\widetilde{\theta}_{i}, \widetilde{\psi}_{i}\right) \\
&+\frac{1}{T \bar{\psi}} \alpha_{i}^{\top}\left(\widetilde{\theta}_{i}, \widetilde{\psi}_{i}\right) \Omega_{i}(t) \alpha_{i}\left(\widetilde{\theta}_{i}, \widetilde{\psi}_{i}\right), \tag{18}\\
& \alpha_{i}\left(\widetilde{\theta}_{i}, \widetilde{\psi}_{i}\right)= {\left[\begin{array}{c}
\tilde{\theta}_{i} \psi_{i}-\theta_{i} \tilde{\psi}_{i} \\
\widetilde{\psi}_{i}
\end{array}\right], \text { and } } \tag{19}\\
& \Omega_{i}(t)= \int_{t-T}^{t} \int_{m}^{t} \lambda_{i}^{\top}(s) \lambda_{i}(s) \mathrm{d} s \mathrm{~d} m
\end{align*}
$$

is a strict LF for the $Y=(\tilde{\xi}, \tilde{\theta}, \tilde{\psi})$ dynamics on \mathcal{Y}.

Application: BLDC Motor (Dawson-Hu-Burg)

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

$$
\left\{\begin{array}{l}
\dot{y}_{1}=y_{2} \tag{20}\\
\dot{y}_{2}=-\frac{B}{M} y_{2}-\frac{N}{M} \sin \left(y_{1}\right)+K_{\tau}\left[K_{b} \zeta_{1}+1\right] \zeta_{2} \\
\dot{\zeta}_{i}=H_{i}(y, \zeta) \beta_{i}+\gamma_{i} u_{i}, \quad i=1,2
\end{array}\right.
$$

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

$$
\begin{align*}
& \left\{\begin{aligned}
\dot{y}_{1} & =y_{2} \\
\dot{y}_{2} & =-\frac{B}{M} y_{2}-\frac{N}{M} \sin \left(y_{1}\right)+K_{\tau}\left[K_{b} \zeta_{1}+1\right] \zeta_{2} \\
\dot{\zeta}_{i} & =H_{i}(y, \zeta) \beta_{i}+\gamma_{i} u_{i}, \quad i=1,2
\end{aligned}\right. \tag{20}\\
& H_{1}(y, \zeta)
\end{align*}=\left(-\zeta_{1}, y_{2} \zeta_{2}\right) . .
$$

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

$$
\begin{align*}
& \left\{\begin{array}{l}
\dot{y}_{1}=y_{2} \\
\dot{y}_{2}=-\frac{B}{M} y_{2}-\frac{N}{M} \sin \left(y_{1}\right)+K_{\tau}\left[K_{b} \zeta_{1}+1\right] \zeta_{2} \\
\dot{\zeta}_{i}=H_{i}(y, \zeta) \beta_{i}+\gamma_{i} u_{i}, \quad i=1,2
\end{array}\right. \tag{20}\\
& H_{1}(y, \zeta)=\left(-\zeta_{1}, y_{2} \zeta_{2}\right) . H_{2}(y, \zeta)=\left(-\zeta_{2},-y_{2} \zeta_{1},-y_{2}\right) .
\end{align*}
$$

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

$$
\begin{align*}
& \left\{\begin{array}{l}
\dot{y}_{1}=y_{2} \\
\dot{y}_{2}=-\frac{B}{M} y_{2}-\frac{N}{M} \sin \left(y_{1}\right)+K_{\tau}\left[K_{b} \zeta_{1}+1\right] \zeta_{2} \\
\dot{\zeta}_{i}=H_{i}(y, \zeta) \beta_{i}+\gamma_{i} u_{i}, \quad i=1,2
\end{array}\right. \tag{20}\\
& H_{1}(y, \zeta)=\left(-\zeta_{1}, y_{2} \zeta_{2}\right) . H_{2}(y, \zeta)=\left(-\zeta_{2},-y_{2} \zeta_{1},-y_{2}\right) .
\end{align*}
$$

- $y_{1}, y_{2}=$ load position and velocity.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

$$
\begin{align*}
& \left\{\begin{array}{l}
\dot{y}_{1}=y_{2} \\
\dot{y}_{2}=-\frac{B}{M} y_{2}-\frac{N}{M} \sin \left(y_{1}\right)+K_{\tau}\left[K_{b} \zeta_{1}+1\right] \zeta_{2} \\
\dot{\zeta}_{i}=H_{i}(y, \zeta) \beta_{i}+\gamma_{i} u_{i}, \quad i=1,2
\end{array}\right. \tag{20}\\
& H_{1}(y, \zeta)=\left(-\zeta_{1}, y_{2} \zeta_{2}\right) . H_{2}(y, \zeta)=\left(-\zeta_{2},-y_{2} \zeta_{1},-y_{2}\right) .
\end{align*}
$$

- $y_{1}, y_{2}=$ load position and velocity. $\zeta_{i}=$ winding currents.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

$$
\begin{align*}
& \left\{\begin{array}{l}
\dot{y}_{1}=y_{2} \\
\dot{y}_{2}=-\frac{B}{M} y_{2}-\frac{N}{M} \sin \left(y_{1}\right)+K_{\tau}\left[K_{b} \zeta_{1}+1\right] \zeta_{2} \\
\dot{\zeta}_{i}=H_{i}(y, \zeta) \beta_{i}+\gamma_{i} u_{i}, \quad i=1,2
\end{array}\right. \tag{20}\\
& H_{1}(y, \zeta)=\left(-\zeta_{1}, y_{2} \zeta_{2}\right) . H_{2}(y, \zeta)=\left(-\zeta_{2},-y_{2} \zeta_{1},-y_{2}\right) .
\end{align*}
$$

- $y_{1}, y_{2}=$ load position and velocity. $\zeta_{i}=$ winding currents.
- $B=$ viscous friction coefficient.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

$$
\begin{align*}
& \left\{\begin{array}{l}
\dot{y}_{1}=y_{2} \\
\dot{y}_{2}=-\frac{B}{M} y_{2}-\frac{N}{M} \sin \left(y_{1}\right)+K_{\tau}\left[K_{b} \zeta_{1}+1\right] \zeta_{2} \\
\dot{\zeta}_{i}=H_{i}(y, \zeta) \beta_{i}+\gamma_{i} u_{i}, \quad i=1,2
\end{array}\right. \tag{20}\\
& H_{1}(y, \zeta)=\left(-\zeta_{1}, y_{2} \zeta_{2}\right) . H_{2}(y, \zeta)=\left(-\zeta_{2},-y_{2} \zeta_{1},-y_{2}\right) .
\end{align*}
$$

- $y_{1}, y_{2}=$ load position and velocity. $\zeta_{i}=$ winding currents.
- $B=$ viscous friction coefficient. $M=$ mechanical inertia.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

$$
\begin{align*}
& \left\{\begin{array}{l}
\dot{y}_{1}=y_{2} \\
\dot{y}_{2}=-\frac{B}{M} y_{2}-\frac{N}{M} \sin \left(y_{1}\right)+K_{\tau}\left[K_{b} \zeta_{1}+1\right] \zeta_{2} \\
\dot{\zeta}_{i}=H_{i}(y, \zeta) \beta_{i}+\gamma_{i} u_{i}, \quad i=1,2
\end{array}\right. \tag{20}\\
& H_{1}(y, \zeta)=\left(-\zeta_{1}, y_{2} \zeta_{2}\right) . H_{2}(y, \zeta)=\left(-\zeta_{2},-y_{2} \zeta_{1},-y_{2}\right) .
\end{align*}
$$

- $y_{1}, y_{2}=$ load position and velocity. $\zeta_{i}=$ winding currents.
- $B=$ viscous friction coefficient. $M=$ mechanical inertia. $N=$ related to the load mass and gravitational constant.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

$$
\begin{align*}
& \left\{\begin{array}{l}
\dot{y}_{1}=y_{2} \\
\dot{y}_{2}=-\frac{B}{M} y_{2}-\frac{N}{M} \sin \left(y_{1}\right)+K_{\tau}\left[K_{b} \zeta_{1}+1\right] \zeta_{2} \\
\dot{\zeta}_{i}=H_{i}(y, \zeta) \beta_{i}+\gamma_{i} u_{i}, \quad i=1,2
\end{array}\right. \tag{20}\\
& H_{1}(y, \zeta)=\left(-\zeta_{1}, y_{2} \zeta_{2}\right) . H_{2}(y, \zeta)=\left(-\zeta_{2},-y_{2} \zeta_{1},-y_{2}\right) .
\end{align*}
$$

- $y_{1}, y_{2}=$ load position and velocity. $\zeta_{i}=$ winding currents.
- $B=$ viscous friction coefficient. $M=$ mechanical inertia. $N=$ related to the load mass and gravitational constant. $K_{\tau}, K_{b}=$ torque transmission coefficients.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

$$
\begin{align*}
& \left\{\begin{array}{l}
\dot{y}_{1}=y_{2} \\
\dot{y}_{2}=-\frac{B}{M} y_{2}-\frac{N}{M} \sin \left(y_{1}\right)+K_{\tau}\left[K_{b} \zeta_{1}+1\right] \zeta_{2} \\
\dot{\zeta}_{i}=H_{i}(y, \zeta) \beta_{i}+\gamma_{i} u_{i}, \quad i=1,2
\end{array}\right. \tag{20}\\
& H_{1}(y, \zeta)=\left(-\zeta_{1}, y_{2} \zeta_{2}\right) . \quad H_{2}(y, \zeta)=\left(-\zeta_{2},-y_{2} \zeta_{1},-y_{2}\right) .
\end{align*}
$$

- $y_{1}, y_{2}=$ load position and velocity. $\zeta_{i}=$ winding currents.
- $B=$ viscous friction coefficient. $M=$ mechanical inertia. $N=$ related to the load mass and gravitational constant. $K_{\tau}, K_{b}=$ torque transmission coefficients.
- The unknown vectors $\beta_{1} \in \mathbb{R}^{2}$ and $\beta_{2} \in \mathbb{R}^{3}$ and unknown scalars γ_{1} and γ_{2} are the motor electric parameters.

Application: Marine Robots (with Georgia Tech)

Application: Marine Robots (with Georgia Tech)

Application: Marine Robots (with Georgia Tech)

20 days of field work off Grand Isle.

Application: Marine Robots (with Georgia Tech)

20 days of field work off Grand Isle. Search for oil spill remnants.

Curve Tracking Dynamics

Curve Tracking Dynamics

$$
\left\{\begin{align*}
\dot{\rho} & =-\sin (\phi) \tag{21}\\
\dot{\phi} & =\frac{\kappa \cos (\phi)}{1+\kappa \rho}-u_{2}, \quad(\rho, \phi) \in(0,+\infty) \times(-\pi / 2, \pi / 2)
\end{align*}\right.
$$

Curve Tracking Dynamics

$$
\begin{align*}
& \left\{\begin{array}{l}
\dot{\rho}=-\sin (\phi) \\
\dot{\phi}=\frac{k \cos (\phi)}{1+\kappa \rho}-u_{2}, \quad(\rho, \phi) \in(0,+\infty) \times(-\pi / 2, \pi / 2)
\end{array}\right. \tag{21}\\
& u_{2}=\frac{\kappa \cos (\phi)}{1+\kappa \rho}-h^{\prime}(\rho) \cos (\phi)+\mu \sin (\phi) \tag{22}
\end{align*}
$$

Curve Tracking Dynamics

$$
\begin{align*}
& \left\{\begin{array}{l}
\dot{\rho}=-\sin (\phi) \\
\dot{\phi}=\frac{\kappa \cos (\phi)}{1+\kappa \rho}-u_{2}, \quad(\rho, \phi) \in(0,+\infty) \times(-\pi / 2, \pi / 2)
\end{array}\right. \tag{21}\\
& u_{2}=\frac{\kappa \cos (\phi)}{1+\kappa \rho}-h^{\prime}(\rho) \cos (\phi)+\mu \sin (\phi) \tag{22}\\
& h(\rho)=\alpha\left\{\rho+\frac{\rho_{0}^{2}}{\rho}-2 \rho_{0}\right\} \tag{23}
\end{align*}
$$

Curve Tracking Dynamics

$$
\left\{\begin{array}{c}
\dot{\rho}=-\sin (\phi) \\
\dot{\phi}=\frac{\kappa \cos (\phi)}{1+\kappa \rho}-u_{2}, \quad(\rho, \phi) \in(0,+\infty) \times(-\pi / 2, \pi / 2) \\
u_{2}=\frac{\kappa \cos (\phi)}{1+\kappa \rho}-h^{\prime}(\rho) \cos (\phi)+\mu \sin (\phi) \\
h(\rho)=\alpha\left\{\rho+\frac{\rho_{0}^{2}}{\rho}-2 \rho_{0}\right\} \tag{24}\\
V(\rho, \phi)=-\ln (\cos (\phi))+h(\rho)
\end{array}\right.
$$

Curve Tracking Dynamics

$$
\begin{gather*}
\left\{\begin{array}{l}
\dot{\rho}=-\sin (\phi) \\
\dot{\phi}=\frac{\kappa \cos (\phi)}{1+\kappa \rho}-u_{2}, \quad(\rho, \phi) \in(0,+\infty) \times(-\pi / 2, \pi / 2) \\
u_{2}=\frac{\kappa \cos (\phi)}{1+\kappa \rho}-h^{\prime}(\rho) \cos (\phi)+\mu \sin (\phi) \\
h(\rho)=\alpha\left\{\rho+\frac{\rho_{0}^{2}}{\rho}-2 \rho_{0}\right\} \\
V(\rho, \phi)=-\ln (\cos (\phi))+h(\rho) \\
U_{2}(\rho, \phi)=-h^{\prime}(\rho) \sin (\phi)+\frac{1}{\mu} \int_{0}^{v(\rho, \phi)} \Gamma_{0}(m) \mathrm{d} m
\end{array}, .\right. \tag{21}
\end{gather*}
$$

Robustly Forwardly Invariant Hexagons

Robustly Forwardly Invariant Hexagons

We can use U_{2} to prove ISS of the perturbed closed loop system

$$
\begin{equation*}
\dot{\rho}=-\sin (\phi), \quad \dot{\phi}=h^{\prime}(\rho) \cos (\phi)-\mu \sin (\phi)+\delta \tag{26}
\end{equation*}
$$

with respect to $\delta:[0, \infty) \rightarrow\left[-\delta_{*}, \delta_{*}\right]$ on forward invariant sets.

Robustly Forwardly Invariant Hexagons

We can use U_{2} to prove ISS of the perturbed closed loop system

$$
\begin{equation*}
\dot{\rho}=-\sin (\phi), \quad \dot{\phi}=h^{\prime}(\rho) \cos (\phi)-\mu \sin (\phi)+\delta \tag{26}
\end{equation*}
$$

with respect to $\delta:[0, \infty) \rightarrow\left[-\delta_{*}, \delta_{*}\right]$ on forward invariant sets.

$$
\begin{aligned}
& A=\left(\rho_{*}, 0\right), B=\left(2 \rho_{*}, \mu \rho_{*}\right), \\
& C=\left(\rho_{*}+K \rho_{o}, \mu \rho_{*}\right), D=\left(\rho_{*}+K \rho_{o}, 0\right), \\
& E=\left(K \rho_{o},-\mu \rho_{*}\right), F=\left(\rho_{*},-\mu \rho_{*}\right), \\
& \mu \tan \left(\mu \rho_{*}\right)>\left\|h^{\prime}\right\|_{\left[\rho_{*}, \rho_{*}+K \rho_{0}\right]}
\end{aligned}
$$

Robustly Forwardly Invariant Hexagons

We can use U_{2} to prove ISS of the perturbed closed loop system

$$
\begin{equation*}
\dot{\rho}=-\sin (\phi), \quad \dot{\phi}=h^{\prime}(\rho) \cos (\phi)-\mu \sin (\phi)+\delta \tag{26}
\end{equation*}
$$

with respect to $\delta:[0, \infty) \rightarrow\left[-\delta_{*}, \delta_{*}\right]$ on forward invariant sets.

$$
\begin{aligned}
& \boldsymbol{A}=\left(\rho_{*}, 0\right), \boldsymbol{B}=\left(2 \rho_{*}, \mu \rho_{*}\right), \\
& \boldsymbol{C}=\left(\rho_{*}+K \rho_{o}, \mu \rho_{*}\right), \boldsymbol{D}=\left(\rho_{*}+K \rho_{o}, 0\right), \\
& \boldsymbol{E}=\left(K \rho_{o},-\mu \rho_{*}\right), F=\left(\rho_{*},-\mu \rho_{*}\right),
\end{aligned}
$$

$$
\left.\mu \tan \left(\mu \rho_{*}\right)>\left\|h^{\prime}\right\|_{\left[\rho_{*}, \rho_{*}\right.}+K \rho_{0}\right]
$$

Tight Disturbance Bound:

Robustly Forwardly Invariant Hexagons

We can use U_{2} to prove ISS of the perturbed closed loop system

$$
\begin{equation*}
\dot{\rho}=-\sin (\phi), \quad \dot{\phi}=h^{\prime}(\rho) \cos (\phi)-\mu \sin (\phi)+\delta \tag{26}
\end{equation*}
$$

with respect to $\delta:[0, \infty) \rightarrow\left[-\delta_{*}, \delta_{*}\right]$ on forward invariant sets.

$$
\begin{aligned}
& A=\left(\rho_{*}, 0\right), B=\left(2 \rho_{*}, \mu \rho_{*}\right), \\
& C=\left(\rho_{*}+K \rho_{o}, \mu \rho_{*}\right), \boldsymbol{D}=\left(\rho_{*}+K \rho_{o}, 0\right), \\
& E=\left(K \rho_{o},-\mu \rho_{*}\right), F=\left(\rho_{*},-\mu \rho_{*}\right), \\
& \mu \tan \left(\mu \rho_{*}\right)>\left\|h^{\prime}\right\|_{\left[\rho_{*}, \rho_{*}+K \rho_{0}\right]}
\end{aligned}
$$

Tight Disturbance Bound: Choose any $\delta_{*} \in\left(0, \min \left\{\Delta_{*}, \Delta_{* *}\right\}\right)$.

Robustly Forwardly Invariant Hexagons

We can use U_{2} to prove ISS of the perturbed closed loop system

$$
\begin{equation*}
\dot{\rho}=-\sin (\phi), \quad \dot{\phi}=h^{\prime}(\rho) \cos (\phi)-\mu \sin (\phi)+\delta \tag{26}
\end{equation*}
$$

with respect to $\delta:[0, \infty) \rightarrow\left[-\delta_{*}, \delta_{*}\right]$ on forward invariant sets.

$$
\begin{aligned}
& A=\left(\rho_{*}, 0\right), B=\left(2 \rho_{*}, \mu \rho_{*}\right), \\
& C=\left(\rho_{*}+K \rho_{o}, \mu \rho_{*}, D=\left(\rho_{*}+K \rho_{o}, 0\right),\right. \\
& E=\left(K \rho_{o},-\mu \rho_{*}\right), F=\left(\rho_{*},-\mu \rho_{*}\right), \\
& \mu \tan \left(\mu \rho_{*}\right)>\left\|h^{\prime}\right\|\left[\rho_{*}, \rho_{*}+K \rho_{0}\right]
\end{aligned}
$$

Tight Disturbance Bound: Choose any $\delta_{*} \in\left(0, \min \left\{\Delta_{*}, \Delta_{* *}\right\}\right)$.
$\Delta_{*}=\min \left\{\left|h^{\prime}(\rho) \cos (\phi)\right|:(\rho, \phi)^{\top} \in \mathrm{AB} \cup \mathrm{ED}\right\}$
$\Delta_{* *}=\min \left\{\left|h^{\prime}(\rho) \cos (\phi)-\mu \sin (\phi)\right|:(\rho, \phi)^{\top} \in \mathrm{BC} \cup E F\right\}$.

Adaptive Robust Curve Tracking

Adaptive Robust Curve Tracking

$$
\left\{\begin{array}{l}
\dot{\rho}=-\sin (\phi) \tag{27}\\
\dot{\phi}=\frac{\kappa \cos (\phi)}{1+\kappa \rho}-K_{2}[v+\delta]
\end{array}\right.
$$

Adaptive Robust Curve Tracking

$$
\left\{\begin{array}{l}
\dot{\rho}=-\sin (\phi) \tag{27}\\
\dot{\phi}=\frac{\kappa \cos (\phi)}{1+\kappa \rho}-K_{2}[v+\delta]
\end{array}\right.
$$

We proved ISS of the tracking and identification dynamics

$$
\left\{\begin{array}{l}
\dot{\tilde{q}}_{1}=-\sin \left(\tilde{q}_{2}\right) \tag{28}\\
\dot{\tilde{q}}_{2}=\frac{\kappa \cos \left(\tilde{(}_{2}\right)}{1+\kappa\left(\tilde{(}_{1}+\rho_{0}\right)}-\frac{K_{2}}{\dot{K}_{2}+K_{2}} u_{2}-K_{2} \delta \\
\dot{\tilde{K}}_{2}=-\left(\tilde{K}_{2}+K_{2}-c_{\min }\right)\left(c_{\max }-\tilde{K}_{2}-K_{2}\right) \frac{\partial U_{2}}{\partial \phi} \frac{u_{2}}{\dot{K}_{2}+K_{2}}
\end{array}\right.
$$

for $\left(\tilde{q}_{1}, \tilde{q}_{2}, \tilde{K}_{2}\right)=\left(\rho-\rho_{0}, \phi, \hat{K}_{2}-K_{2}\right)$ on each set in a nested sequence of sets that fill the state space.

Conclusions

Conclusions

- Nonlinear control systems are ubiquitous in aerospace, bio, electrical, and mechanical engineering.

Conclusions

- Nonlinear control systems are ubiquitous in aerospace, bio, electrical, and mechanical engineering.
- One central problem is to build functions called closed loop controllers that force desired tracking behaviors.

Conclusions

- Nonlinear control systems are ubiquitous in aerospace, bio, electrical, and mechanical engineering.
- One central problem is to build functions called closed loop controllers that force desired tracking behaviors.
- We designed controllers for several applications including models with unknown parameters that we can identify.

Conclusions

- Nonlinear control systems are ubiquitous in aerospace, bio, electrical, and mechanical engineering.
- One central problem is to build functions called closed loop controllers that force desired tracking behaviors.
- We designed controllers for several applications including models with unknown parameters that we can identify.
- Our strict Lyapunov function approach gave key robustness properties such as input-to-state stability.

Conclusions

- Nonlinear control systems are ubiquitous in aerospace, bio, electrical, and mechanical engineering.
- One central problem is to build functions called closed loop controllers that force desired tracking behaviors.
- We designed controllers for several applications including models with unknown parameters that we can identify.
- Our strict Lyapunov function approach gave key robustness properties such as input-to-state stability.
- We aim to find extensions that apply under time delays and state constraints including obstacle avoidance.

