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Background and Motivation

Chemostat: Laboratory apparatus for continuous culture of
microorganisms, many biotechnological applications..

Models: Represent cell or microorganism growth, wastewater
treatment, or natural environments like lakes..

States: Microorganism and substrate concentrations, prone to
incomplete measurements and model uncertainties..

Our goals: Input-to-state stabilization of equilibria with uncertain
uptake functions using only delayed sampled substrate values
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Review of Simple Chemostat

Three vessels: feed bottle, culture vessel, collection vessel.

Contents go in and out of culture vessel at constant rate F (l3/t).

Constant culture volume V (l3).

Constant input nutrient concentration sin (mass/l3).

rate of change of nutrient = input - washout - consumption.

rate of change of organism = growth - washout.
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Review of Simple Chemostat

Without organisms or consumption, (Vs)′(t) = sinF − s(t)F .

s = concentration of nutrient in culture vessel.

Consumption: msx
a+s , x = concentration of organism (mass/l3).

m = maximum growth rate (1/t). a = half-saturation constant.{
s′ = (sin − s)D − ms

a+s
x
γ

x ′ = x
(

ms
a+s − D

) (SC)
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Input-to-State Stable (ISS)

ISS (Sontag, ’89) generalizes uniform global asymptotic stability.

X ′(t) = G(t ,X (t),X (t − τ(t))), X (t) ∈ X (Σ)

|X (t)| ≤ γ1
(
et0−tγ2(|X |[t0−τ̄ ,t0])

)
(UGAS)

γi ∈ K∞: 0 at 0, strictly increasing, unbounded. supt≥0 τ(t) ≤ τ̄ .

X ′(t) = G
(
t ,X (t),X (t − τ(t)), δ(t)

)
, X (t) ∈ X (Σpert)

|X (t)| ≤ γ1
(
et0−tγ2(|X |[t0−τ̄ ,t0])

)
+ γ3(|δ|[t0,t]) (ISS)

Find γi ’s by building Lyapunov-Krasovskii functionals (LKFs).

Equivalent to KL formulation; see Sontag 1998 SCL paper.
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Uncertain Controlled Chemostat with Sampling

{
ṡ(t) = D(s(t − τ(t))[sin − s(t)]− (1 + δ(t))µ(s(t))x(t)

ẋ(t) = [(1 + δ(t))µ(s(t))− D(s(t − τ(t))]x(t)
(C)

τ(t) =

{
τf , t ∈ [0, τf )
τf + t − tj , t ∈ [tj + τf , tj+1 + τf ) and j ≥ 0

0 < ε1 ≤ ti+1 − ti ≤ ε2. δ : [0,∞)→ [d ,∞), with d ∈ (−1,0].

µ(s) = µ1(s)
1+γ(s) , with a unique maximizer sM ∈ (0, sin]

Assumption 1: The function µ is C1 and µ(0) = 0. Also, there is
a constant sM ∈ (0, sin] such that µ′(s) > 0 for all s ∈ [0, sM) and
µ′(s) ≤ 0 for all s ∈ [sM ,∞). Finally, µ(s) > 0 for all s > 0.
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nondecreasing C1 function γ : R→ [0,∞) such that (?) holds for
all s ≥ 0, µ′1(s) > 0 on [0,∞), and γ′(s) > 0 on [sM ,∞).
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ẋ(t) = [(1 + δ(t))µ(s(t))− D(s(t − τ(t))]x(t)
(C)

τ(t) =

{
τf , t ∈ [0, τf )
τf + t − tj , t ∈ [tj + τf , tj+1 + τf ) and j ≥ 0

0.5 1.0 1.5 2.0 2.5

0.2

0.4

0.6

0.8

(1 + δ)µ(s) for Different Constant
δ Choices, sM = 1/

√
2 and sin = 1
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0 < ε1 ≤ ti+1 − ti ≤ ε2. δ : [0,∞)→ [d ,∞), with d ∈ (−1,0].

µ(s) = µ1(s)
1+γ(s) , with a unique maximizer sM ∈ (0, sin]

Goal: Under suitable conditions on an upper bound τM for the
delay τ(t), and for constants s∗ ∈ (0, sin), design the control D to
render the dynamics for X (t) = (s(t), x(t))− (s∗, sin − s∗) ISS.
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Main Result for Unperturbed Case

ωs = inf
s∈[0,sin]

µ′1(s) , ωl = sup
s∈[0,sin]

µ′1(s) , ρl = sup
s∈[0,sin]

γ′(s),

ρm =
ρ2

l
2ωs

max
l∈[0,sin]

µ2
1(l+1.1µ1(s∗)sinτM )

1+γ(l) , where µ(s) = µ1(s)
1+γ(s)

Assume that µ1(sin)
1+γ(sin) −

µ1(s∗)
1+γ(sin−µ1(s∗)sinτM )

(a)
> 0

and τM
(b)
< max

{
1

2sin
√

2ρmωl
, 1

2ρl sinµ1(sin)

}
, with s∗ < sin.

Theorem 1: For all componentwise positive initial conditions, all
solutions of the chemostat system (C) with δ(t) = 0 and

D(s(t − τ(t))) = µ1(s∗)
1+γ(s(t−τ(t))) (1)

remain in (0,∞)2 and converge to (s∗, sin − s∗). �
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Proof Outline for δ = 0 Unperturbed Case

Step 1: For any fixed s̄ ≥ sin, show that z = sin − s − x satisfies

|z(t)| ≤ |z(0)|e
−tµ1(s∗)

1+γ(s̄) for all t ≥ 0 . (ES)

z = −(x − sin + s∗)− (s − s∗) = −X2 − X1. X= error variable.

Step 2: Build T ∈ K∞ and a constant c̄ > 0 such that

U1(s) =
∫ s−s∗

0
m

sin−s∗−m dm, (2)

satisfies

U̇1(t) ≤ (s(t)−s∗)(µ1(s∗)−µ1(s(t)))
2[1+γ(s(t−τ(t)))]

+ ρmτM
∫ t

t−τ(t)(ṡ(m))2dm + c̄|s(t)− s∗||z(t)|
(3)

for all t ≥ T (|X (0)|) where X (t) = (s(t), x(t))− (s∗, sin − s∗).
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Proof Outline for δ = 0 Unperturbed Case

Step 3: Find constants ci > 0 such that

U2(st ) =
∫ s(t)−s∗

0
m

sin−s∗−m dm + 2ρmτM
∫ t

t−τM

∫ t
` (ṡ(m))2dm d`. (4)

satisfies

U̇2(t) ≤ −c1U2(st ) + c2z2(t) + c̄|s(t)− s∗||z(t)| (5)

for all t ≥ T (|X (0)|).

Step 4: The sum U3 of a quadratic Lyapunov function for the z
variable and U2 admits a constant c3 > 0 such that

U̇3(t) ≤ −c3U3(st , z(t)) (6)

for all t ≥ T (|X (0)|).
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Extensions and Applications

ISS with respect to δ(t) without upper bounds on |δ|∞...

(1+d)µ1(sin)
1+γ(sin) − µ1(s∗)

1+γ(sin−µ1(s∗)sinτM )

(a)
> 0 ...(1 + δ(t))µ(s(t))...

U2(st ) =∫ s(t)−s∗

0

m
sin−s∗−m dm + 2ρmτM

∫ t

t−τM

∫ t

`
(ṡ(m))2dm d`.

Functions γi from ISS condition measure distance from equilibria
at all times, providing both transient and asymptotic information

Mazenc, F., J. Harmand, and M. Malisoff, “Stabilization in a
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Mathematica Simulations of (C)
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Conclusions and Future Work

Chemostats model substrate and species interactions.

They have uncertainties, delays, and discrete measurements.

Discretization of continuous time controls can produce errors.

Our control only needs discrete delayed substrate values.

We can allow general nonmonotone growth functions.

Our barrier functions gave ISS with uncertain growth functions.

We can also cover delayed perturbed multispecies chemostats.

We plan to study PDE models of age-structured chemostats.

Thank you for your attention!
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