Stabilization in a Chemostat with Sampled and Delayed Measurements

Michael Malisoff

Joint with Jerome Harmand and Frederic Mazenc
Background and Motivation

Chemostat: Laboratory apparatus for continuous culture of microorganisms, many biotechnological applications.
Background and Motivation

Chemostat: Laboratory apparatus for continuous culture of microorganisms, many biotechnological applications..

Models: Represent cell or microorganism growth, wastewater treatment, or natural environments like lakes..
Background and Motivation

Chemostat: Laboratory apparatus for continuous culture of microorganisms, many biotechnological applications.

Models: Represent cell or microorganism growth, wastewater treatment, or natural environments like lakes.

States: Microorganism and substrate concentrations, prone to incomplete measurements and model uncertainties.
Background and Motivation

Chemostat: Laboratory apparatus for continuous culture of microorganisms, many biotechnological applications.

Models: Represent cell or microorganism growth, wastewater treatment, or natural environments like lakes.

States: Microorganism and substrate concentrations, prone to incomplete measurements and model uncertainties.

Our goals: Input-to-state stabilization of equilibria with uncertain uptake functions using only delayed sampled substrate values.
Background and Motivation

Chemostat: Laboratory apparatus for continuous culture of microorganisms, many biotechnological applications.

Models: Represent cell or microorganism growth, wastewater treatment, or natural environments like lakes.

States: Microorganism and substrate concentrations, prone to incomplete measurements and model uncertainties.

Our goals: Input-to-state stabilization of equilibria with uncertain uptake functions using only delayed sampled substrate values

O. Bernard, D. Dochain, J. Gouze, J. Harmand, J. Monod,
Background and Motivation

Chemostat: Laboratory apparatus for continuous culture of microorganisms, many biotechnological applications..

Models: Represent cell or microorganism growth, wastewater treatment, or natural environments like lakes..

States: Microorganism and substrate concentrations, prone to incomplete measurements and model uncertainties..

Our goals: Input-to-state stabilization of equilibria with uncertain uptake functions using only delayed sampled substrate values

S. Pilyugin, G. Robledo, H. Smith, P. Waltman, G. Wolkowicz, ...
Background and Motivation

Chemostat: Laboratory apparatus for continuous culture of microorganisms, many biotechnological applications.

Models: Represent cell or microorganism growth, wastewater treatment, or natural environments like lakes.

States: Microorganism and substrate concentrations, prone to incomplete measurements and model uncertainties.

Our goals: Input-to-state stabilization of equilibria with uncertain uptake functions using only delayed sampled substrate values

S. Pilyugin, G. Robledo, H. Smith, P. Waltman, G. Wolkowicz, ...
Background and Motivation

Chemostat: Laboratory apparatus for continuous culture of microorganisms, many biotechnological applications.

Models: Represent cell or microorganism growth, wastewater treatment, or natural environments like lakes.

States: Microorganism and substrate concentrations, prone to incomplete measurements and model uncertainties.

Our goals: Input-to-state stabilization of equilibria with uncertain uptake functions using only delayed sampled substrate values.
Background and Motivation

Chemostat: Laboratory apparatus for continuous culture of microorganisms, many biotechnological applications.

Models: Represent cell or microorganism growth, wastewater treatment, or natural environments like lakes.

States: Microorganism and substrate concentrations, prone to incomplete measurements and model uncertainties.

Our goals: Input-to-state stabilization of equilibria with uncertain uptake functions using only delayed sampled substrate values

S. Pilyugin, G. Robledo, H. Smith, P. Waltman, G. Wolkowicz, ...
Review of Simple Chemostat

Three vessels: feed bottle, culture vessel, collection vessel.
Review of Simple Chemostat

Three vessels: feed bottle, culture vessel, collection vessel.

Contents go in and out of culture vessel at constant rate $F (l^3/t)$.
Review of Simple Chemostat

Three vessels: feed bottle, culture vessel, collection vessel.

Contents go in and out of culture vessel at constant rate $F \ (l^3/t)$.

Constant culture volume $V \ (l^3)$.
Review of Simple Chemostat

Three vessels: feed bottle, culture vessel, collection vessel.

Contents go in and out of culture vessel at constant rate $F \ (l^3/t)$.

Constant culture volume $V \ (l^3)$.

Constant input nutrient concentration $s_{in} \ (mass/l^3)$.
Review of Simple Chemostat

Three vessels: feed bottle, culture vessel, collection vessel.
Contents go in and out of culture vessel at constant rate $F \ (l^3/t)$.
Constant culture volume $V \ (l^3)$.
Constant input nutrient concentration $s_{\text{in}} \ (\text{mass}/l^3)$.
rate of change of nutrient = input - washout - consumption.
Review of Simple Chemostat

Three vessels: feed bottle, culture vessel, collection vessel.

Contents go in and out of culture vessel at constant rate $F \ (l^3/t)$.

Constant culture volume $V \ (l^3)$.

Constant input nutrient concentration $s_{in} \ (mass/l^3)$.

Rate of change of nutrient = input - washout - consumption.

Rate of change of organism = growth - washout.
Review of Simple Chemostat

Without organisms or consumption, \((Vs)'(t) = s_{in}F - s(t)F\).
Without organisms or consumption, \((Vs)'(t) = s_{in}F - s(t)F\).

\(s\) = concentration of nutrient in culture vessel.
Without organisms or consumption, \((Vs)'(t) = s_{in}F - s(t)F\).

\(s\) = concentration of nutrient in culture vessel.

Consumption: \(\frac{msx}{a+s}\), \(x\) = concentration of organism (mass/l^3).
Without organisms or consumption, \((Vs)'(t) = s_{\text{in}} F - s(t) F\).

\(s\) = concentration of nutrient in culture vessel.

Consumption: \(\frac{msx}{a+s}\), \(x\) = concentration of organism (mass/l^3).

\(m\) = maximum growth rate (1/t). \(a\) = half-saturation constant.
Without organisms or consumption, \((Vs)'(t) = s_{in}F - s(t)F\).

\(s\) = concentration of nutrient in culture vessel.

Consumption: \(\frac{msx}{a+s}\), \(x\) = concentration of organism (mass/l^3).

\(m\) = maximum growth rate (1/t). \(a\) = half-saturation constant.

\[
\begin{align*}
 s' &= (s_{in} - s)D - \frac{ms}{a+s} \frac{x}{\gamma} \\
 x' &= x \left(\frac{ms}{a+s} - D \right)
\end{align*}
\]

(SC)
Without organisms or consumption, \((Vs)'(t) = s_{in}F - s(t)F\).

\(s = \) concentration of nutrient in culture vessel.

Consumption: \(\frac{msx}{a+s} \), \(x = \) concentration of organism (mass/l^3).

\(m = \) maximum growth rate (1/t). \(a = \) half-saturation constant.

\[
\begin{align*}
 s' &= (s_{in} - s)D - \frac{ms}{a+s} \frac{x}{\gamma} \\
 x' &= x \left(\frac{ms}{a+s} - D \right)
\end{align*}
\]

(SC)
Input-to-State Stable (ISS)

ISS (Sontag, ’89) generalizes uniform global asymptotic stability.
Input-to-State Stable (ISS)

ISS (Sontag, ’89) generalizes uniform global asymptotic stability.

\[X'(t) = G(t, X(t), X(t - \tau(t))), \quad X(t) \in \mathcal{X} \] \hspace{1cm} (\Sigma)
Input-to-State Stable (ISS)

ISS (Sontag, ’89) generalizes uniform global asymptotic stability.

\[X'(t) = \mathcal{G}(t, X(t), X(t - \tau(t))), \quad X(t) \in \mathcal{X} \] \hspace{1cm} (\Sigma)

\[|X(t)| \leq \gamma_1 \left(e^{t_0 - t} \gamma_2(|X|_{[t_0 - \bar{\tau}, t_0]}) \right) \] \hspace{1cm} (UGAS)

\(\gamma_i \in \mathcal{K}_\infty: 0 \text{ at } 0, \text{ strictly increasing, unbounded.} \sup_{t \geq 0} \tau(t) \leq \bar{\tau}. \)
Input-to-State Stable (ISS)

ISS (Sontag, ’89) generalizes uniform global asymptotic stability.

\[X'(t) = G(t, X(t), X(t - \tau(t))), \quad X(t) \in X \quad (\Sigma) \]

\[|X(t)| \leq \gamma_1 \left(e^{t_0-t} \gamma_2(|X|_{[t_0-\bar{\tau}, t_0]}) \right) \quad (\text{UGAS}) \]

\(\gamma_i \in \mathcal{K}_\infty: \) 0 at 0, strictly increasing, unbounded. \(\sup_{t \geq 0} \tau(t) \leq \bar{\tau}. \)

\[X'(t) = G(t, X(t), X(t - \tau(t)), \delta(t)), \quad X(t) \in X \quad (\Sigma_{\text{pert}}) \]
Input-to-State Stable (ISS)

ISS (Sontag, ’89) generalizes uniform global asymptotic stability.

\[X'(t) = G(t, X(t), X(t - \tau(t))), \quad X(t) \in \mathcal{X} \] \hspace{1cm} (\Sigma)

\[|X(t)| \leq \gamma_1 \left(e^{t_0 - t} \gamma_2(|X|_{[t_0 - \bar{\tau}, t_0]}) \right) \] \hspace{1cm} (UGAS)

\[\gamma_i \in \mathcal{K}_\infty: \text{0 at 0, strictly increasing, unbounded. } \sup_{t \geq 0} \tau(t) \leq \bar{\tau}. \]

\[X'(t) = G(t, X(t), X(t - \tau(t)), \delta(t)), \quad X(t) \in \mathcal{X} \] \hspace{1cm} (\Sigma_{\text{pert}})

\[|X(t)| \leq \gamma_1 \left(e^{t_0 - t} \gamma_2(|X|_{[t_0 - \bar{\tau}, t_0]}) \right) + \gamma_3(|\delta|_{[t_0, t]}) \] \hspace{1cm} (ISS)
Input-to-State Stable (ISS)

ISS (Sontag, ’89) generalizes uniform global asymptotic stability.

\[X'(t) = G(t, X(t), X(t - \tau(t))), \quad X(t) \in \mathcal{X} \quad (\Sigma) \]

\[|X(t)| \leq \gamma_1 \left(e^{t_0-t} \gamma_2(|X|_{[t_0-\bar{\tau}, t_0]}) \right) \quad (UGAS) \]

\[\gamma_i \in \mathcal{K}_\infty: \text{0 at 0, strictly increasing, unbounded.} \quad \sup_{t \geq 0} \tau(t) \leq \bar{\tau}. \]

\[X'(t) = G(t, X(t), X(t - \tau(t)), \delta(t)), \quad X(t) \in \mathcal{X} \quad (\Sigma_{pert}) \]

\[|X(t)| \leq \gamma_1 \left(e^{t_0-t} \gamma_2(|X|_{[t_0-\bar{\tau}, t_0]}) \right) + \gamma_3(|\delta|_{[t_0, t]}) \quad (ISS) \]

Find \(\gamma_i \)'s by building Lyapunov-Krasovskii functionals (LKFs).
Input-to-State Stable (ISS)

ISS (Sontag, ’89) generalizes uniform global asymptotic stability.

\[X'(t) = G(t, X(t), X(t - \tau(t))), \quad X(t) \in \mathcal{X} \quad (\Sigma) \]

\[|X(t)| \leq \gamma_1 \left(e^{t_0-t} \gamma_2(|X|_{[t_0-\bar{\tau}, t_0]}) \right) \quad \text{(UGAS)} \]

\(\gamma_i \in \mathcal{K}_\infty: 0 \text{ at } 0, \text{ strictly increasing, unbounded. } \sup_{t \geq 0} \tau(t) \leq \bar{\tau}. \)

\[X'(t) = G(t, X(t), X(t - \tau(t)), \delta(t)), \quad X(t) \in \mathcal{X} \quad (\Sigma_{pert}) \]

\[|X(t)| \leq \gamma_1 \left(e^{t_0-t} \gamma_2(|X|_{[t_0-\bar{\tau}, t_0]}) \right) + \gamma_3(|\delta|_{[t_0,t]}) \quad \text{(ISS)} \]

Find \(\gamma_i \)'s by building Lyapunov-Krasovskii functionals (LKFs).

Equivalent to \(\mathcal{KL} \) formulation; see Sontag 1998 SCL paper.
Uncertain Controlled Chemostat with Sampling

\[
\begin{aligned}
\dot{s}(t) &= D(s(t - \tau(t)))[s_{\text{in}} - s(t)] - (1 + \delta(t))\mu(s(t))x(t) \\
\dot{x}(t) &= [(1 + \delta(t))\mu(s(t)) - D(s(t - \tau(t)))]x(t)
\end{aligned}
\]
\tag{C}

\[\tau(t) = \begin{cases}
\tau_f, & t \in [0, \tau_f) \\
\tau_f + t - t_j, & t \in [t_j + \tau_f, t_{j+1} + \tau_f) \text{ and } j \geq 0
\end{cases}\]

0 < \epsilon_1 \leq t_{i+1} - t_i \leq \epsilon_2. \quad \delta : [0, \infty) \rightarrow [d, \infty), \text{ with } d \in (-1, 0].
Uncertain Controlled Chemostat with Sampling

\[
\begin{align*}
\dot{s}(t) &= D(s(t - \tau(t))[s_{in} - s(t)] - (1 + \delta(t))\mu(s(t))x(t) \\
\dot{x}(t) &= [(1 + \delta(t))\mu(s(t)) - D(s(t - \tau(t))]x(t)
\end{align*}
\]

(\text{C})

\[\tau(t) = \begin{cases}
\tau_f, & t \in [0, \tau_f) \\
\tau_f + t - t_j, & t \in [t_j + \tau_f, t_{j+1} + \tau_f) \text{ and } j \geq 0
\end{cases}\]

\[0 < \epsilon_1 \leq t_{i+1} - t_i \leq \epsilon_2. \quad \delta : [0, \infty) \rightarrow [d, \infty), \text{ with } d \in (-1, 0].\]

\[\mu(s) = \frac{\mu_1(s)}{1+\gamma(s)}, \text{ with a unique maximizer } s_M \in (0, s_{in}]\]
Uncertain Controlled Chemostat with Sampling

\[
\begin{aligned}
\dot{s}(t) &= D(s(t - \tau(t)))[s_{\text{in}} - s(t)] - (1 + \delta(t))\mu(s(t))x(t) \\
\dot{x}(t) &= [(1 + \delta(t))\mu(s(t)) - D(s(t - \tau(t)))]x(t)
\end{aligned}
\]

(C)

\[
\tau(t) = \begin{cases}
\tau_f, & t \in [0, \tau_f) \\
\tau_f + t - t_j, & t \in [t_j + \tau_f, t_{j+1} + \tau_f) \text{ and } j \geq 0
\end{cases}
\]

If \(0 < \epsilon_1 \leq t_{i+1} - t_i \leq \epsilon_2\).

\[\delta : [0, \infty) \rightarrow [d, \infty), \text{ with } d \in (-1, 0].\]

\[
\mu(s) = \frac{\mu_1(s)}{1 + \gamma(s)}, \text{ with a unique maximizer } s_M \in (0, s_{\text{in}}]
\]

Assumption 1: The function \(\mu\) is \(C^1\) and \(\mu(0) = 0\). Also, there is a constant \(s_M \in (0, s_{\text{in}}]\) such that \(\mu'(s) > 0\) for all \(s \in [0, s_M]\) and \(\mu'(s) \leq 0\) for all \(s \in [s_M, \infty)\). Finally, \(\mu(s) > 0\) for all \(s > 0\).
Uncertain Controlled Chemostat with Sampling

\[
\begin{cases}
\dot{s}(t) = D(s(t - \tau(t))[s_{in} - s(t)] - (1 + \delta(t))\mu(s(t))x(t) \\
\dot{x}(t) = [(1 + \delta(t))\mu(s(t)) - D(s(t - \tau(t)))]x(t)
\end{cases}
\]

\[\tau(t) = \begin{cases}
\tau_f, & t \in [0, \tau_f) \\
\tau_f + t - t_j, & t \in [t_j + \tau_f, t_{j+1} + \tau_f) \text{ and } j \geq 0
\end{cases}\]

0 < \epsilon_1 \leq t_{i+1} - t_j \leq \epsilon_2. \quad \delta : [0, \infty) \rightarrow [d, \infty), \text{ with } d \in (-1, 0].

\[\mu(s) \overset{(\ast)}{=} \frac{\mu_1(s)}{1 + \gamma(s)}, \text{ with a unique maximizer } s_M \in (0, s_{in}]\]

Lemma: Under Assumption 1, there are \(\mu_1 \in C^1 \cap \mathcal{K}_\infty\) and a nondecreasing \(C^1\) function \(\gamma : \mathbb{R} \rightarrow [0, \infty)\) such that \((\ast)\) holds for all \(s \geq 0\), \(\mu'_1(s) > 0\) on \([0, \infty)\), and \(\gamma'(s) > 0\) on \([s_M, \infty)\).
Uncertain Controlled Chemostat with Sampling

\[
\begin{align*}
\dot{s}(t) &= D(s(t - \tau(t))[s_{\text{in}} - s(t)] - (1 + \delta(t))\mu(s(t))x(t) \\
\dot{x}(t) &= [(1 + \delta(t))\mu(s(t)) - D(s(t - \tau(t)))]x(t)
\end{align*}
\]

\[
\tau(t) = \begin{cases}
\tau_f, & t \in [0, \tau_f) \\
\tau_f + t - t_j, & t \in [t_j + \tau_f, t_{j+1} + \tau_f) \text{ and } j \geq 0
\end{cases}
\]

\((1 + \delta)\mu(s)\) for Different Constant \(\delta\) Choices, \(s_M = 1/\sqrt{2}\) and \(s_{\text{in}} = 1\)
Uncertain Controlled Chemostat with Sampling

\[
\begin{align*}
\dot{s}(t) &= D(s(t - \tau(t))[s_{in} - s(t)] - (1 + \delta(t))\mu(s(t))x(t) \\
\dot{x}(t) &= [(1 + \delta(t))\mu(s(t)) - D(s(t - \tau(t)))]x(t)
\end{align*}
\]

\[\tau(t) = \begin{cases}
\tau_f, & t \in [0, \tau_f) \\
\tau_f + t - t_j, & t \in [t_j + \tau_f, t_{j+1} + \tau_f) \text{ and } j \geq 0
\end{cases}\]

\[0 < \epsilon_1 \leq t_{i+1} - t_i \leq \epsilon_2. \quad \delta : [0, \infty) \rightarrow [d, \infty), \text{ with } d \in (-1, 0].\]

\[\mu(s) \overset{(*)}{=} \frac{\mu_1(s)}{1 + \gamma(s)}, \text{ with a unique maximizer } s_M \in (0, s_{in}]\]

Lemma: Under Assumption 1, there are \(\mu_1 \in C^1 \cap K_\infty\) and a nondecreasing \(C^1\) function \(\gamma : \mathbb{R} \rightarrow [0, \infty)\) such that \((*)\) holds for all \(s \geq 0, \mu_1'(s) > 0\) on \([0, \infty)\), and \(\gamma'(s) > 0\) on \([s_M, \infty)\).
Uncertain Controlled Chemostat with Sampling

\[
\begin{align*}
\dot{s}(t) &= D(s(t - \tau(t))[s_{\text{in}} - s(t)] - (1 + \delta(t))\mu(s(t))x(t) \\
\dot{x}(t) &= [(1 + \delta(t))\mu(s(t)) - D(s(t - \tau(t))]x(t)
\end{align*}
\]
(C)

\[\tau(t) = \begin{cases}
\tau_f, & t \in [0, \tau_f) \\
\tau_f + t - t_j, & t \in [t_j + \tau_f, t_{j+1} + \tau_f) \text{ and } j \geq 0 \end{cases}\]

\[0 < \epsilon_1 \leq t_{i+1} - t_i \leq \epsilon_2. \quad \delta : [0, \infty) \to [d, \infty), \text{ with } d \in (-1, 0].\]

\[\mu(s) = \frac{\mu_1(s)}{1 + \gamma(s)}, \text{ with a unique maximizer } s_M \in (0, s_{\text{in}}]\]

Goal: Under suitable conditions on an upper bound \(\tau_M\) for the delay \(\tau(t)\), and for constants \(s_* \in (0, s_{\text{in}})\), design the control \(D\) to render the dynamics for \(X(t) = (s(t), x(t)) - (s_*, s_{\text{in}} - s_*)\) ISS.
Main Result for Unperturbed Case

\[\omega_s = \inf_{s \in [0,s_{in}]} \mu'_1(s), \quad \omega_l = \sup_{s \in [0,s_{in}]} \mu'_1(s), \quad \rho_l = \sup_{s \in [0,s_{in}]} \gamma'(s), \]

\[\rho_m = \frac{\rho_l^2}{2\omega_s} \max_{l \in [0,s_{in}]} \frac{\mu_1^2(l+1.1\mu_1(s_*)s_{in}\tau_M)}{1+\gamma(l)}, \quad \text{where } \mu(s) = \frac{\mu_1(s)}{1+\gamma(s)} \]
Main Result for Unperturbed Case

\[\omega_s = \inf_{s \in [0,s_{in}]} \mu_1'(s), \quad \omega_I = \sup_{s \in [0,s_{in}]} \mu_1'(s), \quad \rho_I = \sup_{s \in [0,s_{in}]} \gamma'(s), \]

\[\rho_m = \frac{\rho_I^2}{2\omega_s} \max_{l \in [0,s_{in}]} \frac{\mu_1^2(l+1.1\mu_1(s_*)s_{in}\tau_M)}{1+\gamma(l)}, \text{ where } \mu(s) = \frac{\mu_1(s)}{1+\gamma(s)} \]

Assume that \(\frac{\mu_1(s_{in})}{1+\gamma(s_{in})} - \frac{\mu_1(s_*)}{1+\gamma(s_{in}-\mu_1(s_*)s_{in}\tau_M)} > 0 \) \((a) \)

and \(\tau_M < \max \left\{ \frac{1}{2s_{in}\sqrt{2\rho_m\omega_I}}, \frac{1}{2\rho_I s_{in}\mu_1(s_{in})} \right\} \), with \(s_* < s_{in} \).
Main Result for Unperturbed Case

$$\omega_s = \inf_{s \in [0, s_{\text{in}}]} \mu'_1(s), \quad \omega_l = \sup_{s \in [0, s_{\text{in}}]} \mu'_1(s), \quad \rho_l = \sup_{s \in [0, s_{\text{in}}]} \gamma'(s),$$

$$\rho_m = \frac{\rho_l^2}{2\omega_s} \max_{l \in [0, s_{\text{in}}]} \frac{\mu_1^2(l+1.1\mu_1(s_*))s_{\text{in}}\tau_M}{1+\gamma(l)}, \quad \text{where} \quad \mu(s) = \frac{\mu_1(s)}{1+\gamma(s)}$$

Assume that

$$\frac{\mu_1(s_{\text{in}})}{1+\gamma(s_{\text{in}})} - \frac{\mu_1(s_*)}{1+\gamma(s_{\text{in}}-\mu_1(s_*)s_{\text{in}}\tau_M)} > 0$$

and

$$\tau_M < \max \left\{ \frac{1}{2s_{\text{in}}\sqrt{2\rho_m\omega_l}}, \frac{1}{2\rho_l s_{\text{in}} \mu_1(s_{\text{in}})} \right\}, \quad \text{with} \ s_* < s_{\text{in}}.$$

Theorem 1: For all componentwise positive initial conditions, all solutions of the chemostat system (C) with $\delta(t) = 0$ and

$$D(s(t - \tau(t))) = \frac{\mu_1(s_*)}{1+\gamma(s(t-\tau(t)))}$$

remain in $(0, \infty)^2$ and converge to $(s_*, s_{\text{in}} - s_*)$. \[\square\]
Proof Outline for $\delta = 0$ Unperturbed Case

Step 1: For any fixed $\bar{s} \geq s_{in}$, show that $z = s_{in} - s - x$ satisfies

$$|z(t)| \leq |z(0)| e^{-t\mu_1(s_*)}$$

for all $t \geq 0$. (ES)
Proof Outline for $\delta = 0$ Unperturbed Case

Step 1: For any fixed $\bar{s} \geq s_{\text{in}}$, show that $z = s_{\text{in}} - s - x$ satisfies

\[
|z(t)| \leq |z(0)| e^{-t\mu_1(s_*)} \quad \text{for all } t \geq 0. \tag{ES}
\]

$z = -(x - s_{\text{in}} + s_*) - (s - s_*) = -X_2 - X_1$. X= error variable.
Proof Outline for $\delta = 0$ Unperturbed Case

Step 1: For any fixed $\bar{s} \geq s_{in}$, show that $z = s_{in} - s - x$ satisfies

$$|z(t)| \leq |z(0)| e^{\frac{-t\mu_1(s_*)}{1+\gamma(s)}}$$

for all $t \geq 0$. (ES)

$z = -(x - s_{in} + s_*) - (s - s_*) = -X_2 - X_1$. $X =$ error variable.

Step 2: Build $T \in K_\infty$ and a constant $\bar{c} > 0$ such that

$$U_1(s) = \int_0^{s-s_*} \frac{m}{s_{in}-s_*-m} dm, \quad (2)$$

satisfies

$$\dot{U}_1(t) \leq \frac{(s(t)-s_*)(\mu_1(s_*)-\mu_1(s(t)))}{2[1+\gamma(s(t-\tau(t)))]}$$

$$+ \rho m \tau M \int_{t-\tau(t)}^t (\dot{s}(m))^2 dm + \bar{c} |s(t) - s_*| |z(t)|$$

for all $t \geq T(||X(0)||)$ where $X(t) = (s(t), x(t)) - (s_*, s_{in} - s_*)$.
Proof Outline for $\delta = 0$ Unperturbed Case

Step 3: Find constants $c_i > 0$ such that

$$U_2(s_t) = \int_0^{s(t)-s_*} \frac{m}{s_{in}-s_*-m} dm + 2\rho m \tau M \int_{t-M}^{t-M} \int_{\ell}^{t} (\dot{s}(m))^2 dm d\ell. \quad (4)$$

satisfies

$$\dot{U}_2(t) \leq -c_1 U_2(s_t) + c_2 z^2(t) + \bar{c} |s(t) - s_*| |z(t)| \quad (5)$$

for all $t \geq T(|X(0)||)$.
Proof Outline for $\delta = 0$ Unperturbed Case

Step 3: Find constants $c_i > 0$ such that

$$U_2(s_t) = \int_0^{s(t) - s_*} \frac{m}{s_{in} - s_* - m} \, dm + 2\rho m\tau M \int_{t - \tau}^t \int_\ell \dot{s}(m)^2 \, dm \, d\ell. \quad (4)$$

satisfies

$$\dot{U}_2(t) \leq -c_1 U_2(s_t) + c_2 z^2(t) + \bar{c} \lVert s(t) - s_* \rVert \|z(t)\| \quad (5)$$

for all $t \geq T(\|X(0)\|)$.

Step 4: The sum U_3 of a quadratic Lyapunov function for the z variable and U_2 admits a constant $c_3 > 0$ such that

$$\dot{U}_3(t) \leq -c_3 U_3(s_t, z(t)) \quad (6)$$

for all $t \geq T(\|X(0)\|)$.
Extensions and Applications

\[
\begin{align*}
\text{ISS with respect to } \delta(t) \text{ without upper bounds on } |\delta|_{\infty} & \\
= & \left(1 + \delta(t)\right) \mu(s(t)) \\
> & 0 \\
\end{align*}
\]

Functions \(\gamma_i\) from ISS condition measure distance from equilibria at all times, providing both transient and asymptotic information.

Extensions and Applications

ISS with respect to $\delta(t)$ without upper bounds on $|\delta|_\infty$...
Extensions and Applications

ISS with respect to $\delta(t)$ without upper bounds on $|\delta|_\infty$...

\[
\frac{(1+d)\mu_1(s_{in})}{1+\gamma(s_{in})} - \frac{\mu_1(s_*)}{1+\gamma(s_{in}-\mu_1(s_*)s_{in}\tau_M)} > 0 \quad (a)
\]

\[
\ldots (1 + \delta(t))\mu(s(t))
\]
Extensions and Applications

ISS with respect to $\delta(t)$ without upper bounds on $|\delta|_\infty$...

\[\frac{(1+d)\mu_1(s_{in})}{1+\gamma(s_{in})} - \frac{\mu_1(s_*)}{1+\gamma(s_{in} - \mu_1(s_*) s_{in} \tau_M)} > 0 \quad (a) \quad (1 + \delta(t)) \mu(s(t)) \]

\[\mathcal{U}_2(s_t) = \int_{s(t) - s_*} s(t) - s_* \frac{m}{s_{in} - s_* - m} dm + 2\rho_m \tau_M \int_{t-\tau_M}^{t} \int_{\ell}^{t} (\dot{s}(m))^2 dm d\ell. \]
Extensions and Applications

ISS with respect to $\delta(t)$ without upper bounds on $|\delta|_\infty$...

\[
\frac{(1+d)\mu_1(s_{in})}{1+\gamma(s_{in})} - \frac{\mu_1(s_*)}{1+\gamma(s_{in}-\mu_1(s_*)s_{in}\tau_M)} > 0 \quad \left(1 + \delta(t)\right)\mu(s(t))...$

\[
\mathcal{U}_2(s_t) = \int_{s(t)-s_*}^{s(t)} \frac{m}{s_{in}-s_*-m} dm + 2\rho_m\tau_M \int_{t-\tau_M}^{t} \int_{\ell}^{t} (\dot{s}(m))^2 dm d\ell.
\]

Functions γ_i from ISS condition measure distance from equilibria at all times, providing both transient and asymptotic information.
Extensions and Applications

ISS with respect to $\delta(t)$ without upper bounds on $|\delta|_\infty$...

\[
\frac{(1+d)\mu_1(s_{in})}{1+\gamma(s_{in})} - \frac{\mu_1(s_*)}{1+\gamma(s_{in}-\mu_1(s_*)s_{in}\tau_M)} > 0
\]

...(1 + $\delta(t)$)$\mu(s(t))$...

\[
\mathcal{U}_2(s_t) =
\int_0^{s(t)-s_*} \frac{m}{s_{in}-s_*-m}dm + 2\rho m \tau_M \int_{t-\tau_M}^t \int_{\ell}^t (\dot{s}(m))^2 dm d\ell.
\]

Functions γ_i from ISS condition measure distance from equilibria at all times, providing both transient and asymptotic information

Mathematica Simulations of (C)

\[s_{in} = 1, \quad \mu(s) = \frac{0.5s}{1+0.25s+2s^2}, \quad t_j = 0.24j, \quad \delta(t) = 0. \]

\(s(t) \) in Red, \(x(t) \) in Blue, \(D(t) \) in Green.
Mathematica Simulations of (C)

\[s_{in} = 1, \quad \mu(s) = \frac{0.5s}{1+0.25s+2s^2}, \quad t_j = 0.24j, \quad \delta(t) = 0.15(1 + \sin(t)). \]

\[s(t) \text{ in Red, } x(t) \text{ in Blue, } D(t) \text{ in Green.} \]
\[s_{in} = 1, \quad \mu(s) = \frac{0.5s}{1+0.25s+2s^2}, \quad t_j = 0.24j, \quad \delta(t) = 0.15(1 + \sin(t)). \]

\[s(t) \text{ in Red, } x(t) \text{ in Blue, } D(t) \text{ in Green.} \]
Conclusions and Future Work
Conclusions and Future Work

Chemostats model substrate and species interactions.
Conclusions and Future Work

Chemostats model substrate and species interactions. They have uncertainties, delays, and discrete measurements.
Conclusions and Future Work

Chemostats model substrate and species interactions. They have uncertainties, delays, and discrete measurements. Discretization of continuous time controls can produce errors.
Conclusions and Future Work

Chemostats model substrate and species interactions. They have uncertainties, delays, and discrete measurements. Discretization of continuous time controls can produce errors. Our control only needs discrete delayed substrate values.
Conclusions and Future Work

Chemostats model substrate and species interactions. They have uncertainties, delays, and discrete measurements. Discretization of continuous time controls can produce errors. Our control only needs discrete delayed substrate values. We can allow general nonmonotone growth functions.
Conclusions and Future Work

Chemostats model substrate and species interactions. They have uncertainties, delays, and discrete measurements. Discretization of continuous time controls can produce errors. Our control only needs discrete delayed substrate values. We can allow general nonmonotone growth functions. Our barrier functions gave ISS with uncertain growth functions.
Conclusions and Future Work

Chemostats model substrate and species interactions. They have uncertainties, delays, and discrete measurements. Discretization of continuous time controls can produce errors. Our control only needs discrete delayed substrate values. We can allow general nonmonotone growth functions. Our barrier functions gave ISS with uncertain growth functions. We can also cover delayed perturbed multispecies chemostats.
Conclusions and Future Work

Chemostats model substrate and species interactions. They have uncertainties, delays, and discrete measurements. Discretization of continuous time controls can produce errors. Our control only needs discrete delayed substrate values. We can allow general nonmonotone growth functions. Our barrier functions gave ISS with uncertain growth functions. We can also cover delayed perturbed multispecies chemostats. We plan to study PDE models of age-structured chemostats.
Conclusions and Future Work

Chemostats model substrate and species interactions. They have uncertainties, delays, and discrete measurements. Discretization of continuous time controls can produce errors. Our control only needs discrete delayed substrate values. We can allow general nonmonotone growth functions. Our barrier functions gave ISS with uncertain growth functions. We can also cover delayed perturbed multispecies chemostats. We plan to study PDE models of age-structured chemostats.

Thank you for your attention!
References with Hyperlinked Paper Titles

References with Hyperlinked Paper Titles

