Finding a Fundamental Matrix: Perspective and Summary

Our purpose is to show you a pencil-and-paper procedure for solving

\[x' = Ax. \]

This method always works and gives us a fundamental matrix. The matrix \(e^{At} \), the transition matrix based at \(t = 0 \), is in many ways the nicest fundamental matrix to have, because it is a transition matrix based at \(t = 0 \). But \(e^{At} \), being an infinite series, may be difficult to compute directly. So we will settle for finding, however we can, \(n \) independent solutions in the form of column vectors. Put them together and they form a fundamental matrix \(X(t) \). Then, if we still want \(e^{At} \), we can compute \(X(t)X(0)^{-1} \).

Understanding \(e^{At} \) is the key to our procedure for finding a fundamental matrix. Note that for every column vector \(k \), the matrix product \(e^{At}k \) is a combination of the columns of \(e^{At} \) and therefore is a solution. Next, observe that for every scalar \(\lambda \) and every vector \(k \),

\[e^{At}k = e^{\lambda t} e^{(A - \lambda I)t} k. \]

For suitable choices of \(\lambda \) and \(k \), that solution will in fact be easy to calculate because there will be only a small number of nonzero summands in the infinite series

\[e^{At}k = e^{\lambda t} \left(k + t(A - \lambda I)k + \frac{t^2}{2}(A - \lambda I)^2k + \cdots \right). \]

(1)

Thus for example if \(\lambda \) is an eigenvalue of \(A \) and \(k \) is in the corresponding eigenspace, we have simply

\[e^{At}k = e^{\lambda t}k. \]

If \(A \) is not deficient, we are especially lucky; we get \(n \) independent solutions of the form \(e^{\lambda t}k \). Otherwise, for each case of an eigenvalue \(\lambda \) whose multiplicity exceeds the dimension of its eigenspace, find any \(k \) such that \((A - \lambda I)k \neq 0 \) and \((A - \lambda I)^2k = 0\); then, for such a \(k \), only the first and second summands of the infinite series (1) can be nonzero, and we get a new independent solution-column of the form

\[e^{\lambda t}(k + t(A - \lambda I)k). \]

Now suppose that after putting all of those on our list we find that there is an eigenvalue \(\lambda \) that still has not supplied us with a number of independent solutions equal to its (algebraic) multiplicity. Take any \(k \) such that \((A - \lambda I)^2k \neq 0 \) and \((A - \lambda I)^3k = 0\). Then, for such a \(k \), the infinite series stops after the third summand and we get a new independent solution-column of the form

\[e^{\lambda t} \left(k + t(A - \lambda I)k + \frac{t^2}{2}(A - \lambda I)^2k \right). \]

And so forth! The process always lead us to \(n \) independent columns. Put them together and we’ve got a fundamental matrix \(X(t) \).