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Let E be a set of N integers, and let

@) =Y fm)e,

nekE
where |f(n)| > 1 for n € E. The Conjecture is that

1 ™
3 | @)z 2 ClogN, (1)

where C is a constant independent of N and E. Let A = A(Z) = LT(E"); with || f]| 4 defined
to mean ||f]jz1, what (1) says in the case when f =1 on E is that

Ixella > Clog(#E). | (2)

J. E. Littlewood is said to have pr.oposed this result over 60 years ago; a formulation
appeared in a 1948 paper by Hardy and Littlewood.

Does (1) hold at least for some function of N on the right-hand side that tends to
infinity with N?

Paul Cohen’s 1960 paper told us that the answer was Yes. That result is both an
instance and the source of a set of principles which are important for understanding the
behavior of Fourier transforms.

We will come back later to the story of “C log N.”

Some Principles of Transform Behavior

Let G be a locally compact abelian group, T the dual group of G. Let M (G) denote the
convolution algebra of bounded complex-valued Borel measures on G with the total-mass

norm, and let B = B(I') = M(G). Define |||l 5 to mean ||z|{r(q)-

The indicator function of a set E is denoted by x g and defined as follows: X g(n)=1
if n € E, xg(n) =0 otherwise.

What Henry Helson had shown for Z in 1953, Cohen proved for an arbitrary I':

For ECT, xg € B(T) if and only if E is in the coset ring of .
That statement is not the end of the structure theory. It has a quantitative aspect.

lixellgry equals 1 only when E is itself o coset.
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The more complicated E is as a combination of cosets, the larger ||xgl|B must be.

One instance is (1) itself. A finite set of IV integers is a combination of no fewer than
N cosets. Accordingly, the norm of its indicator function is bounded below by a function
that tends to infinity with IV.

Another instance (Saeki [1,2]):

Let E belong to the coset ring. If E is not itself a coset, then

1+2
Ixzllz > 2‘/— ~ 1.2071.
If
1+V2 14 V17
2 <llxells 5—4——

~1.2808,

then E is the union of two cosets of one subgroup.
Beyond those results of Helson and Cohen, we now know that:

If xg is merely uniformly close to something in B(T') that is not too big, then E
is in the coset ring.

Jean-Frangois Méla, perfecting work begun by L. T. Ramsey, proved this elegant -
theorem. Its quantitative aspects are very nearly best possible.

Let E C Z. If h is a Fourier-Stieltjes transform and
|h(n) — xe(n)| <€ Vne Z,

and if
iklls < 1.135 |log €] — 2,

then E 1is in the coset ring.

Such a result is not just about idempotent functions. The principle involved is some-
thing like this:

Let g be a function on a discrete I'. If the range of g has a gap in it, and g takes
on the values on each side of the gap on a substantial set, and if the corresponding
break in the domain does not respect the group structure of ', then either g is not
a transform or, if it is, then ||g||g must be large.

A transform on a non-discrete group must observe that principle with respect to
discrete subgroups.

So the principle is not limited to discrete groups. It is important quite generally in
understanding what transforms can and cannot do.

N. N. Lusin asked whether, for every continuous F on T, there is 2 homeomorphism
¢ : T — T such that the rearrangement of F by ¢, F 0 ¢, is in A(T).
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Adapting the procedure in Cohen’s proof of (1), A. M. Olevskii constructed a contin-
uous real-valued F of which every rearrangement violates the principle and thus fails to
be in A(T)!

Here is a simple and familiar instance of the principle: If h € A(T') and & is monotone
near g, then

Ih(z) — h(zo)] = o (m) as - 0, 3)

Using just that, Kahane and Katznelson showed that the answer to Lusin’s question
is No with a complex-valued example, F = f + ig, as follows. Let f(z) = z near 0 and
construct g such that g o ¢ is not in A, not even locally at zero, if ¢ is any monotone
function satisfying (3) at o = 0. Suppose now that for some homeomorphism ¢, F o9
and hence both f o ¢ and g o ¢ were in A. We may suppose that $(0)=0.If fope A, it
must equal ¢ near 0, so ¢ satisfies (3) at zo = 0, so that by the choice of g, g 0 ¢ cannot
be in A, a contradiction.

Return we now to the Conjecture. Why might one expect (1) or (2) to be true, with
Clog N on the right? Look at examples. Consider first the set E consisting of all the
integers from —N to N. Its indicator function is the transform of the N*t* entry in the
Dirichlet kernel. As we all know, as N — oo,

4
Ixi-~nlla ~ (}5) logN. (4)

Secondly, consider a lacunary set E. It is easy to show that

N\ ]
Ixtossnomla 2 (3) - )

Let us try to explain what is going on with these examples. We will assume 0 € E to
allow simpler statements.

Let E C Z. Consider in steps the process as E generates a group. Here is one way
to do so. First take the sums and differences of pairs of elements of E; then take such
combinations of triples, getting the elements +z £ y % z; and so forth.

If the very first step gives elements that all lie outside E, as with the powers-of-three
set in (5), then there is very little of Z’s group structure within E; the break between E
and its complement does not respect the group structure in the least.

But an arithmetic progression, as in (4), is somewhat better in that respect. The first
step produces many elements that are within E. A progression already contains many of
the points that arrive early in the stepwise process. That is why the norm in (5) is larger
than in (4).

Thus the two examples represent two extremes of how a set of N elements can “lie”
in the group Z. That makes it reasonable to expect (2) to be true for all E C Z. The
examples suggest more:

If we want a Fourier transform to equal one on a big set E, and to equal zero on
most of its complement, and also to have ¢ relatively small norm, then we must
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allow it to take on some values which are intermediate between zero and one at
certain points. Just allow the function to move gently down from 1 to 0 along
points that are arithmetically close to E.

It is well-known how this works with (4) and (5): Replace the box with a trapezoid,
or extend the indicator function of the powers-of-three set by the transform of a Riesz
product, and you get an object whose norm is under control—no greater than 2 or 3,
regardless of N.

More generally: We can find a Fourier transform with prescribed large values on
E, and with relatively small values on most of the complement of E, and still
keep some control on the norm of f, provided we let f do what it wants to do on
the points outside E that are arithmetically close to E.

That principle finds very sophisticated expression in  the separation theorems devel-
oped by S. W. Drury, N. Th. Varopoulos, and C. S. Herz to solve the union problem for
Helson sets. See Graham & McGehee, Chapter 3, for an exposition. Here is a sample of
their results:

Theorem. Let E C Z. For each integer K > 0, let Ex be the set of sums

Y ncE UnT, considering all the sequences {tun}neg such that

‘leunl2 < 2K and Z un, = 1.

nekE

Let F be a set that does not intersect Ex. Let € > 0. Let w be a function defined
on E such that |w(n)| < 1 for eachn € E. Then there ezists f € A such that

(i) f= wonk,
(i1) |fl < € on F, and
(i60) |flla < 2K REYHIK,

A Brief History of C logN
Paul Cohen’s procedure (1960) gave (1) with

C logN 178
loglog N '

A modification due to H. Davenport gave

c logN 14 .
loglog N

An improvement by S. K. Pichorides (1974) gave

c logN 12
loglogN )
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J. J. F. Fournier [1] (1978) discovered an advanced version of Cohen’s proof which yields
C(logN)*/2.

Pichorides [4] (1977) had obtained the same result in the case when | fl=1o0nE, ard
his 1978 paper [5] removed that condition.
Pichorides’s approach was completely different, and turned out to be most productive.

In 1979, he [6] got
- logN
(loglogN)?”
That result appeared first in the Orsay publications of that year.
Pichorides’s ideas underlie the proof of (1) given by S. V. Konjagin (1981).
A Proof of (1)

We present here the proof due to Brent Smith and others (1981), but with the refic=
ment due to J. D. Stegeman (and also to K626 Yabuta) giving

C > 0.1293, which exceeds ;45 =~ 0.1290.

The constant can of course be no greater than

2~ 0.4053.
3

The procedure is similar to Cohen’s in that, given the function f, whose transfor—
vanishes off E, we undertake to construct a function G such that }° fG is large (like log N';
while ||G||o is bounded. In other words, we hope to fill in the blanks satisfactorily in th2

following line:
..._<_/fG=ZfG5 ©

<Al < Il --- -

The procedure is similar to Cohen’s also in that we break up E into subsets E; C E.
for j =0,1,...,m. Choose integers d > 2 and m such that

logN

= log(1-+—d) < m+1l. ({f

Then o
Y @ <(1+dm <N,
3=0

Let E, contain only the first element of E. Let Ey contain the next d elements, E» the
next d2 elements, and so forth up to E.,.



The exponential growth rate in the size of the sets E; allows the advantageous use of
the Cauchy-Schwarz inequality, which replaces the counting arguments in Cohen’s proce-
dure.

Here is a preliminary definition of Gj; it will not quite work, and we will need to modify

it. Let S
Pj(z) = Z d—Je—ze,.etnz,
nGEj
where 6,, is chosen so that X X -
- f(n) = |f(n)]e¥.
Then
[ B2 1B =, s 1Bl <1

Let -
G=)Y P
7=0

The integral of Gf is now at least m+ 1. The difficulty is that we do not have satisfactory
control on the sup-norm of G. So we will revise our choice of G.
For each j, write |P;| in its Fourier series expansion:

|Pi(2)l = D cae™.

Then ¢, = €_n, cg is real, and 3 |c,|> = d=7. Let a > 0. Let

hj(z) =a <co +2 Z cnei”’) .

n<0

Then
Re hi(z) = a|P;(z)| and [lhj]lz < aV2||Pjll2.

With those definitions and observations, we are prepared to define the function G
that will make (6) effective; G will be Gm, where the sequence {G;} is defined inductively:
Go = Po and

G;= P+ Gj-1e_hj.

It is a calculus exercise to show that

by L for 0<t<1 (8)
l—-e2 — 1l—¢e@ -
We claim that for each 7,
G52 < —
J —l—ec



It is trivial for j = 0, and if it is true for j — 1 then it is also true for j by (8), since

—a|P;(z)|
|G;(z)] < |Pj(z)] + 6—1:?.:;—-

With G defined to be G,, we have a usable bound on its sup-norm:

1
Gl < .
16l < 7= ©)

With the old G, G =Y g5 P;, we had

/Gf:‘;/P,-fzmH.

We must now find a lower bound for [ Gf using the new G:

G = Py exp(—hy —hy — ... — hm)
+P, exp(—h2 — ... —hm)+...+
(10)
+P; exp(—hj41— ... —hm) +...+

+Ppn—y ezp(—hm) + Pm.

The question is whether the exponential factors in (10) change the values of G on E by
too much.

It is helpful that each h;, and hence each exponential in (10), has a Fourier transform
that vanishes on the positive integers.

Thus the factors by which P;, Pjy,... are multiplied in (10) will affect the Fourier
coefficients of G on E; but the factors by which P;_;, P;_2,...are multiplied will not.

Thus on E;, G — P; agrees with the transform of

g =P, [eop(=hiss — ...~ hm) ~ 1]+

+Pjy1 [exp(—hjp2 —... — hm) = 1]+.

+...4 Pp_y [ezp(—hm) - 1]

Using the fact that |ezp(—z) — 1} < |z| for Re z > 0, estimate g; pointwise:
la;l 1P -1 hielHPigal - 1D hul+
i+l i+2
+ ...+ |Pm—1] - |hml;

then obtain a bound on g; :

m—1 m
131 < llgills D0 1Pz D Mhallz <

k=j =k+1
S Zd—k/Z Z a‘/id—l/Z =
k=j {=k+1
aﬁd —-j

= Va-ne-1°

7



The last number is 2 bound for the difference between G(n) and d~Je~*~ for each n € E;.
Therefore, with G = G,

Re f 16 =R Y Y Fn)m) >

j=0ngE;

(11)
av2d
(ﬁ—l)(d—l)) ‘

>(m+1) (1 -

By (7), (9), and (11), then, for every choice of d > 2 and every a > 0,
17l > Gog M)x (oo ) %
1= tog log(1+d)

av2d
" (1" (Va- 1)~ 1)) |

Stegeman’s computations show that with d = 95, and the optimal choice of a, one obtains

Il > 0.1293 log N.

Thé proof is complete.
Hardy’s Inequality
Hardy proved that

D% VBN for £ e B (T).
k:

17l > v

A

The proof above shows that if the support of fis {ny <nz <...}, then

DI

k=1

8

where the constant is at least .032.
Ivo Klemes [1] used that generalization of Hardy’s inequality to prove the following
result, which was a conjecture of A. Pelczynski:

Theorem. Let E be a set of nonnegative integers. Then xg is the transform of
an idempotent multiplier of H 1 if and only if E is a finite Boolean combination
of lacunary sets, finite sets, and intersections with Z* of arithmetic sequences.
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