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Multiples of Trace Forms in Number Fields

EVA BAYER-FLUCKIGER AND JORGE MORALES

ABSTRACT. Let L/K be a Galois G-algebra over a number field K and let
q; beits trace form. In this paper we give necessary and sufficient conditions
for the orthogonal sum of two and four copies of g; to be G-isometric to
the standard unit form.

1. Introduction

Let G be a finite group and let L be a Galois G-algebra over a number
field K. The trace form g, is the symmetric bilinear form on L defined
by q,(x,y) = TrL/K(xy). The group G acts by isometries on ¢, , and it is
natural to ask whether L admits a self-dual normal basis, that is, whether
there exists an element ¢ € L such that {g(e) : g € G} is an orthonormal
basis for g, .

It is known that if G has odd order then there is always a self-dual normal
basis (Conner-Perlis [3] for X = Q and [1] in general). A natural question is
whether there are other cases for which this is true. It is shown in [2] that if
H'(G, Z/2Z) = H2(G, Z/2Z) =0 and if L splits at all infinite primes then
L possesses a self-dual normal basis ([2, Théoréeme 3.2.1]).

In this paper we discuss the following variation of the self-dual normal
basis problem: Let g, be the trace form of the split G-algebra Map(G, K)
(we shall refer to this form as the unit G-form). When is the orthogonal
sum g, ® q, isometric to g, ® g, as G-forms? It is not difficult to see
that necessary conditions are that the algebra L, is split for all real places
v of K and that the discriminants det(q,) of all quadratic subalgebras of
fixed points F C L are sums of two squares. Our main result is that these
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conditions are also sufficient (Theorem 2.2).

2. Algebras with invelution and cohomology

Throughout this paper Q will denote the algebraic closure of Q in C. By
number field it is meant here a subfield of Q of finite degree over Q. For a
number field F we will denote by Q. the absolute Galois group Gal(Q/F).

Let E be a number field and let B be a central simple E-algebra of index
n equipped with an involution b — b*. If the involution restricted to E is
the identity, then we say that the involution is of type I, otherwise we say
that it is of type II. Let F C E be the field fixed by the involution. We shall
denote by U, the algebraic group over F defined by the equation wu=1.

For an extension L/F we denote by Ug(L) the group of rational points
over L ;thatis, Uy(L) = {u € B L :u u = 1}. The connected component
of the identity in U, will be denoted by Ug .

The reduced norm N : B — E induces a homomorphism N : U, — U,.
Its kernel will be denoted throughout by U ; . The structure of U ; over an
algebraic closure is as follows (see [7]).

If the involution is of type II then U; is isomorphic over an algebraic
closure to SL, .

If the involution is of type I then U}, is isomorphic over an algebraic
closure either to the symplectic group Sp, or to the the special orthogonal
group SO, .

In the case when U ; is of type SO, , we shall define the Hasse-Witt map
8:H'(F,Uy) — H*(F, u,) as follows.

Let U ; be the universal covering of U ; (this group is of course a twisted
form of Spin,).

For n > 2 consider the exact sequence
(1) 0 > Uy » U Ll, » U }, » 0,
and for n = 2 consider the sequence
(2) 0 > Uy >U;—E——+U;———+O.

The Hasse-Witt map is the map 6 : H'(F, U;) — H2(F , 4,) induced in
cohomology by sequence (1) if » > 2 and by sequence (2) if n=2.

The involution on B can be extended in a natural way to any matrix
algebra M, (B) by setting (b, j)* = (b;i). For simplicity, we shall denote by
Ug ,, the unitary group of the algebra M, (B). Replacing B by M, (B)
in the definition above we obtain a Hasse-Witt map & : H' (F, U ;, m) =
H 2(F , i) for every positive integer m .

Let d: Uy ,, — Uy ,,, be the diagonal homomorphism u +— (; 2).

(1.1) LEMMA. The composite map
1 1, 4, 1 1 o 2
H (F’ UB)—_’H (F, UB’2)—')H (Fyﬂz)

is trivial.
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PRrROOF. Let i, : U; — U;,z (k =1, 2) be the natural inclusions i,(u) =

(o (1)) and i,(u) = ((1, 2). Let 7k : f/'; - (7; , be the lifting of i, to the uni-
versal covering. It can be easily seen, for instance using the Clifford algebra
description of the universal covering, that the following diagram commutes:

o~ 1

0 — u, — U; — Uy

o | L

~

0—»/12——-+U;2—-+U

—_———*O

Let d : ﬁ; — f/;,,_ be the lifting of the diagonal map. Clearly d (x) =
71 (x)72(x) . Hence we obtain a commutative diagram

0 —— u, — (7 ; — U ; — 0
I Ja
~ 1
0 ) > Up.2
Applying cohomology, we get

U, ——0

H'(F,Ug) —— H(F, )

a.| |2
HY(F, U} S , HXF
( ’ 3,2) -_— ( ’ ”2)

Hence 0d, =1.

Since the definition of & is different for n = 2, a separate argument is
needed in this case. We leave to the reader to verify that for n = 2 a diagram
similar to (3) may be obtained by replacing the projection U ; - U ; by the

two-fold covering U ; 2, U;. D

(1.2) PrROPOSITION 1.2. Let ¢ be an element in the kernel of the natural
map

1 1 1
H (F, UB) - H'v realHl(Fv’ UB)°

(a) Iftheinvolution on B is of orthogonal type and d(c) =1 then c=1.
(b) If the involution on B is of type Il then ¢ =1.

Proor. By [4, Chapter V, Theorem 1 and remarks at the bottom of page
77], the Hasse Principle holds for H : (F,U ;) (even though it may not hold

for H'(F, Ug)). Hence it is sufficient to show that ¢, = 1 for all finite
places v of XK.

(a) Suppose first that the index n is greater than 2.
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The cohomology set H' (F,, U ;) is trivial for all finite primes v (see [4,
Chapter 4, Theorem 1]). This implies immediately that the local Hasse-Witt
map 9, : H'(F,, Uy) — H*(F, , u,) is injective.

If n =2 then U; is an algebraic torus split by a quadratic extension
L/K. Thus H'(F, U ;) is an elementary abelian 2-group. It follows from
the cohomology exact sequence associated to (2) that the homomorphism 9
is injective.

(b) Since U ; is simply connected we have H I(Fv , U;) =1 for all finite
places v [4, Chapter 4, Theorem 1]. O

Let G be a finite group and let o : G — B™ be a group homomorphism
compatible with the involution, i.e. such that the condition a(g)a(g)" = 1
holds forall g e G.

Let ¢ € H'(F, G) and define ¢ = d,a,(¢) € H' (F, Uy ,) (note that d

maps U, into Ug,2§ see Lemma 1.6a below). If the involution on B is of
orthogonal type, the composition

(4) Qp ? .G a:UB N:ﬂz

defines an element a in H'(F, p,) = F/F <2

(1.3) THEOREM. The cohomology class ¢ € H'(F, Ug’z) is trivial if and
only if the following conditions hold :

(@) ¢, =1 forall real places v of F .
(b) If the involution on B is of orthogonal type then the element a € F*

defined up to squares by (4) can be written in the form a = x4y
with x,y € F.

Before proving Theorem 1.3, we shall establish three technical lemmas.
(1.4) LEMMA. The map H'(F, U;) - H'(F, Ug) induced by the inclu-
sion Uy — Ug is injective.

Proor. If the involution on B is of type I, there is nothing to prove,
since U ; = Ug . Suppose that the involution is of type II. In this case Uj is
connected, i.e. Ug = Uy and the reduced norm gives an exact sequence

0 >U}, » Up N:UE——->0.

This sequence induces an exact sequence in cohomology
Uy(F) —~— U (F) —— H'(F, Uy) —— H'(F, Up).

It follows from [4, §5.6 Proposition a)] that the norm homomorphism Uy(F)
— Ug(F) is surjective. It is easy to see that this implies that H 1(F , U ;) —
H'(F, Up) is injective. O
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(1.5) Remark. If the involution is of orthogonal type, the map H : (F, Ug)

— H l(F , Ug) 1s in general not injective. This happens when U, is the
automorphism group of a skew-hermitian form over a quaternion algebra
with center F (see [4, p. 135]).

(1.6) LeMMA. (a) da(G) C Ug,z.
(b) The image of d,a, : H'(F,G) —» H'(F, Uy ,) is contained in
H'(F, Uy ,).
Proor. (a) U, is disconnected only in orthogonal case. It is obvious
that the image of the diagonal map O, — O,,, is contained in SO,,, .
Thus d maps U, into Ug 5

(b) Let N: Uy — U, be ‘the reduced norm map. It is easy to see that

the diagram

d 0
UB UB 2

v| 5

UET) UE

commutes. Since H l(F , Ug) is an elementary 2-group, the composite map
N,od,:H'(F,Uy) — H'(F, Uy) is trivial. Hence the image of H'(F, G)
in H'(F, Uy ,) is actually contained in H'(F, U ;). O

(1.7) LEMMA. Let F be a field and let u : F"/F’<2 — Br,(F) be the map

given by u(a) = (a, —1). Let Q be a fixed quadratic form over F . Then the
Sfollowing diagram commutes:

H'(F,0Q) —%— H'(F,SO0(QeQ))

] Js

H'(F, ) = F*|F** —— HX(F, ) = Bry(F)

PRrROOF. Let c € H 1(F , 0(Q)) and let g be the quadratic form over F
associated to ¢. With this notation d,(c) corresponds to the orthogonal sum
q®q. By|[6, 4.7], we have

d(d.c)=h(geq)h(Qe Q),
where A denotes the Hasse symbol. Combining this with the elementary
identity h(g & q) = h(q)z(det(q) , det(q)) = (det(q), —1) (see [S, Chapter 2,
Lemma 12.6]), we obtain
0(d,c) = (det(g) det(Q), —1) = (det(c), —1). O

ProOOF OF THEOREM 1.3. By Lemma 1.6(b) we may regard ¢ as a class in
H 1(F , U ;,2). We shall show that ¢ fulfills the hypotheses of Proposition
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1.2 (applied to M,(B) ) and therefore it is trivial. We need only to consider
the orthogonal case and show that d(c)=1.

Assume that the involution on B is of orthogonal type. Two cases need
to be distinguished:

(1) B is a matrix algebra over a quaternion algebra D/E . In this case U,
is the automorphism group of a skew-hermitian form over D. It is known
(see [4, 2.6 Lemma 1a]) that Uy(F) = U;(F ). Hence the image of G lies
in U,. By Lemma 1.1 we have d(c) = 8(d,a,(¢)) = 1.

(ii) B is a matrix algebra over E. In this case Uy = O(Q), where Q is
some quadratic form with coefficients in E. By Lemma 1.7, d(c) = (a, —1).
Our hypothesis on a says precisely that (a, —1)=1. O

3. Application to trace forms

In this section we shall apply the previous results to the study of the trace
forms. Although many of the definitions below make sense for any field, we
shall restrict ourselves for simplicity to the case of number fields.

Let G be a finite group and let K be a number field. The set Map(G, K)
of all set-theoretical maps G — K is naturally a K-algebra with respect
to pointwise addition and multiplication. Moreover, the group G acts on
Map(G, K) as algebra automorphisms by the rule (ga)(x) = a(g_lx) . We
shall refer to Map(G, K) as the split Galois G-algebra over K .

In general, a Galois G-algebra over K is a K-algebra L on which G
acts by algebra automorphisms and such that there exists an isomorphism of
Q-algebras

L®, Q=~Map(G, Q)

commuting with the action of G. For other equivalent definitions of Galois
algebras, we refer to [2, Section 1.3].

Standard descent theory shows that the set of isomorphism classes of Ga-
lois G-algebras over X is in one-to-one correspondence with the set H 1(K , G)
of G-conjugacy classes of homomorphisms Q, — G (the Galois group Q
acts trivially on G ). Under this correspondence, Galois field extensions L/K
with group G correspond to conjugacy classes of surjective homomorphisms
Q. —G.

DEerFINITION. Let L be a Galois G-algebra over K. A subalgebra F C L
is called subalgebra of fixed points if there exists a subgroup H C G such
that F = LY.

Let L/K be a Galois G-algebra. We will be interested in describing the
isometry class of the symmetric bilinear form

q,(x, y)= TrL/K(xy) >

as a G-form. For example, if L is the split algebra, then ¢, is the stan-
dard unit form over K. In general, g, defines a cohomology class u; in
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H' (,U ) - The following lemma relates this class to the element ¢, €
H'(K, G) defining L.

(2 1) LEMMA. Let 1 : G — U, be the natural inclusion and let 1,
H! (K, G) — H' (K, U,) be the induced map. Then u, =1_(¢,).

Proor. See [2, Théoreme 1.5.3]. 0O

For a (G-) quadratic form g we shall denote by [m]q the orthogonal sum
q €B - @ q (m-times). The standard unit G-form (i.e. the trace form of the
split G-algebra) will be denoted by g, .

We are now ready to state and prove our main theorem.

(2.2) THEOREM. Let L/K be a Galois G-algebra. The forms [2]q, and
[2lg, are G-isometric if and only if the two following conditions are satisfied .

(a) L®g K, issplit for all real places v of K .
(b) For all quadratic subalgebras of fixed points K C F C L, the discrim-

2
inant Oy = det(qr) € K™ /K™ is a sum of two squares.

Proor. We first show the necessity of conditions (a) and (b). If [2]g,
is isometric to [2]g,, then g, must be positive definite at all real places.
This can only happen if L is split at all real places, that is, Condition (a) is
satisfied. We shall next see that Condition (b) must also be satisfied

Let € : G — pu, be a surjective homomorphism and let F = LX) After

identification of H' (K, p,) with K*/K x2 , the discriminant d, , coincides
with €_(¢,).
The map € induces an algebra homomorphism A4 := K[G] — K, which
in turn induces homomorphisms €, : U Am ™ UK,m =0,.
Clearly the following diagram commutes:
d

G — U, -2 Uy,
2 TRRRT R
Hy == 0, —— SO,

On the one hand, by Lemma 1.7, 8(d,€,(¢,)) = (9> —1). On the other
hand, since d,(¢,) = 1 by hypothesis, diagram (5) shows that d €, (¢,) = 1.
Thus (dp /K> —1) =1; that is, dp /K is the sum of two squares.

We shall now show that Conditions (a) and (b) imply that [2]g, is iso-
morphic to [2]g,. By Lemma 2.1, this is equivalent to d,1,(¢,) = 1. The
group algebra K[G] has a decomposition as algebras with involution

K[Gl=B x...B x---x (C;x C¥)x ---x (C, x C;"),
where the algebras B,, Cj are simple. The involution preserves the factors

B, and switches the two components of C; x C;.’p . It is very easy to see that
Uq o is isomorphic to the multiplicative group of C;, and therefore, by
J 7]
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Hilbert 90, has trivial H I Let E; be the center of B, and let F, C E; be
the field fixed by the involution. With the notation of Section 1 we have

,
1 1
H(K,U, ) =]]H K, Resg x Uy 1n)
i=1
(here Resp /K is the restriction of scalars functor).
The set H' (K, Res FJK U B, ») can be canonically identified with

H 1(Fl. , UB_,m) via restriction of cocycles. Let a : G — Bix be the restric-
tion to G of the canonical projection K[G] — B;. The following diagram

commutes: o
H'(K,G) —— H'(K,Res , Up)

restrictionl “

H'(F,,G) ——  H'(F,, Uy)

*

Let ¢ € H 1(K , G) be the homomorphism associated to L. By the di-
agram above, it is sufficient to show that the restriction ¢, of ¢ to Qg
satisfies the hypothesis of Theorem 1.3 for all i. Condition (a) implies that
a,(@;) is trivial at all real places. In view of Theorem 1.3, it is enough to
consider the case when the involution on B, is of orthogonal type.

Let N be the reduced norm and let v be the composite map

G =2 U, 2 u,

By Condition (b), v,(¢) € H' (K, p,) = K™ /(K*)” is the sum of two squares
in K. The restriction v, (#;) is a fortiori the sum of two squares in F;.
Hence the hypotheses of Theorem 1.3 are fulfilled, and therefore d,a,(¢;) =
1. O

(2.3) CoroLLARY (Compare [2, Théoréme 3.2.1]). Assume that G has no
quotient of order 2. Then [2]q, ~[2]q, as G-forms if and only if L is splits
at all real places of K .

(2.4) CoroLLARY (Compare [2, Théoreme 3.2.2]). If G has no quotient

of order 2 and K is totally imaginary then [2]q, = [2]lq, for all Galois G-
algebras L/K .

A weaker result may be obtained without any condition on the quadratic
subalgebras of fixed points (Condition (b) of Theorem 2.2).

(2.5) THEOREM. The forms [4]q, and [4]q, are G-isometric if and only if
L splits at all real places of K .

PROOF. With the notation of the proof of Theorem 2.2, let ¢, € H'(F,, G)
be the restriction of ¢ to . By virtue of Theorem 1.3, we can restrict

ourselves to the case where the involution on B, is orthogonal.
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Clearly the composite map

d N
Up — UB,.,z — 4

is trivial; hence, applying Theorem 1.3 to the algebra M, (B), we conclude
that d d a,(¢,) is trivial in H'(F,, Uy ,). O
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