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Abstract

Let k be a field of characteristic different from 2 and Tebe a fixedk-torus of dimensiom. In
this paper we study faithful-representationg : T — SO(A, o), where(A, o) is a central simple
algebra of degreer2with orthogonal involutionr. Note that in this casg(T) is a maximal torus in
SO(A, o). We are interested in describing the pdiss o) for which there is such a representation.
We compute invariants for these algebras (discriminant and Clifford algebra), which are sufficient to
determine their isomorphism class whetk) =0 by a theorem of Lewis and Tignol. The first part
of the paper is devoted to the case wharis split overk and an application to a theorem of Feit on
orthogonal groups oveD is given.
0 2003 Elsevier Inc. All rights reserved.

1. Introduction

Let k be a field of characteristic different from 2. LEtbe a vector space of dimension
2n overk and letT be an algebraic torus of dimensioenlefined ovek. Letp: T — GL (V)
be a faithful self-dual representation defined aver
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We study nondegenerate quadratic formsiothat areT -invariant under the represen-
tation p. These forms will be called-formsthroughout the paper. Note thatjfis such a
form on V, then, for dimension reasons(T) is a maximal torus irSO(V, ¢), hence the
title of the paper.

The setW of weights of the representatignis naturally a Gaksey/ k)-set and carries
the involutiony — x 1, sincep is self-dual, so it determines a unique étale alggbower
k and an involutiors on E. We show that all-forms onV are equivariantly isomorphic
to certain scaled trace forms dn (see Proposition 3.9). This allows us to compute the
discriminant and the Hasse invariantioforms in terms of invariants attached to the étale
algebraE (see Corollary 4.2 and Theorem 4.3).

In the case wheré3(k) = 0, wherel (k) is the fundamental ideal of the Witt ring &f
we are able to classify the orthogonal groups that adnais a maximal torus. I is odd,
and under some condition af, there is only one orthogonal group containifiigsee
Corollary 4.8). As an application, we give a generalization of a theorem of Feit [3] on
orthogonal groups ove (Corollary 4.9).

In Section 5, we consider more generally representafionrs SO(A, o), whereA is a
central simple algebra of degree @verk ando is an orthogonal involution oA. As in
the case wherd is split, we fix a set of weight® and ask for the isomorphism classes
of algebras with involutioriA, o) for which there is a representatidn— SO(A, o) with
set of weightsW. We compute the discriminant and Clifford algebra of such p@irsr)
in terms of invariants attached . These computations lead to a complete classification
when13(k) = 0, using a theorem of Lewis and Tignol [7, Proposition 6].

We are indebted to the referee for her/his careful reading and many useful and detailed
comments.

2. Notation and definitions

Let k be a field. Throughout this paper, we shall denotédaya separable closure of
k and byT} the Galois group Gétsep/ k). If V is a vector space or an algebra okgwe
shall denote bysepthe tensor produdt ®y ksep

Some algebraic groups

We shall denote b, the multiplicative group ovek and byu, the subgroup o6,
of ¢th roots of unity. If B is a k-algebra, we will denote b§L 1(B) the multiplicative
group of B as an algebraic group ovek. The general linear group of a vector space
overk will be denoted byGL (V).

If (B, o) is an algebra ovet equipped with an involution, thenitary groupof (B, o)
is the group scheme overgiven by

U(B,o)(R) ={u € B& R: o(u)u=1}

for any commutativé-algebrar.
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In the particular case wherd, o) is a central simple algebra overequipped with an
orthogonal involution, the unitary group 64, o) as above will be called therthogonal
groupof (A, o) and will be denoted b (A, o) instead olU(A, o).

We shall denote b¥sO(A, o) the group of similitudes ofA, o) (see [5, Section 23)).
The natural homomorphism INBO(A, o) — Aut(A, o) given by Intu)(x) = uxu~t is
an epimorphism and we have an exact sequence

1— Gm — GO(A,0) % Aut(A, o) — 1. (1)

The quotient groufPGO(A, o) := GO(A, 0)/Gn, is called theprojective orthogonal
groupof (A, o) and will be always identified withut (A, o) via the above exact sequence.

We shall denote b$O(A, o) the subgroup 0O(A, o) of elements of reduced norm 1
and byPSO(A, o) the image ofSO(A, o) in PGO(A, o). In the case wherd has even
degree ovek, PSO(A, o) has index 2 irPGO(A, o).

In the particular case wherd = End.(V) and o is the adjoint involution of a
quadratic forny on V, we use the more standard notat@qVv, ), GO(V, ¢), SO(V, q),
PSO(V, q), PGO(V, ¢) for the groups above.

Galois cohomology

For an algebraic grou defined overk, we shall denote byd’ (k, G) the profinite
cohomology sefl* (I, G(ksep) as defined in [5, Chapter 7, Sections 2829 (1 if G
is not abelian).

3. Maximal tori and étale algebraswith involution

In this section,T denotes a fixed-torus of dimensiom and V a vector space of
dimension 2 overk. For general facts about representations of algebraic tori and weight
space decomposition, see [12, Chapter 2, Section 5], [4, Chapter VI, Section 16], or [1,
Section 5].

Lemma3.1. Letp: T — GL (V) be a faithful self-dual representation. Then all weights of
p are nonzero and are simple.

Proof. Let X(T) := Hom(T, Gry). Recall that an element € X(T) is aweightof p if
there exists a nonzero vectore Vsegp such thatpe(r)v = x (t)v for all ¢ € T(ksep. Let
W C X(T) be the set of nonzero weights of On the one hand, by faithfulness;
generatesX (T), and by self-duality we have W = W. Hence one-half of the elements
of W suffice to generat& (T), so|W| > 2n. On the other hand, since ditV) = 2n, we
also havg W| < 2n. Hence|W| = 2n and the lemma follows. O

If (E, o) is an algebra with involution, we shall denote by Syimo ) the subspace of
symmetric elements f, i.e., SymE, o) ={x € E: o(x) =x}.
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Lemma3.2. Let E be an étale algebra of dimensi@n overk equipped with an involution
o such thatdim Sym(E, o) = n. Then the unitary groupJ(E, o) is an algebraic torus of
dimensiom.

Proof. Letey, ez, ..., ez, be the primitive idempotents dsep Since dimSyniE, o) =n,
none of theg; is fixed byo, so we can renumber them so thde;) =e,+; (n=1,...,n).
Then the elements &f(E, o) (ksep are of the form(zy, . . ., 2, tl_l, e, tn_l) withs; € kSXep
ThusU(E, ) =Gm x - -- x Gy (n times) ovelksep O

Let nowg be a nondegenerate quadratic formloand leto be the adjoint involution
of g.

Proposition 3.3. Let T c SO(V, ¢) be a maximak-torus. Then there is a unique étale
algebraE C EndV) stable by such thafl = U(E, o). Moreover,E satisfieslimE = 2n
anddim SymE, o) =n.

Conversely, for any étale algebr&8 C EndV) stable underoc and satisfying the
dimension conditions above, the unitary grduf¥, o) is a maximak-torus ofSO(V, g).

Proof. LetE =Endr (V) ={f e End(V): ft=tf forallt € T(ksep}. Itis clear thatF is
stable undes. We shall show first thak is an étale algebra. L&V c X (T) be the set of
weights ofT acting onV. Forx € W, we denote by, the corresponding weight subspace
of V and we consider the canonical decomposit@g,= P, . Vy. Notice thatEsepis
the subalgebra of Eri#fsep that preserves the subspadgs thus Esep= ]_[X EndV,).
Since the subspacés are one-dimensional by Lemma 3.1, E¥W¢l) = ksepand therefore
E is étale of dimension2

Lete, be the idempotent afsepcorresponding to En@, ) and letg be the symmetric
bilinear form associated t@. For¢ € T(ksep andv, w € V, we havep(to (ey)v, w) =
B, t7 e w) =B, x Lt)eyw) = B(x ~L(t)o (ey)v, w); SO, by the nondegeneracyf
we haveo (ey)v € V1 for all v € V. It follows thato (e,) = €1, which proves in
particular that dim SytE, o) = n.

If £’ C EndV) is another étale algebra wild(E’, o) = T, then, on the one hand,
E’' C E, sinceE’ commutes withT, and on the other hand= dimU(E’, o) < %dimE’,
s0 E’ = E and unigueness follows.

Conversely, if we start out with an étale subalgelirac End(V) of dimension 2
preserved by and with dimSyniE, o) = n, thenU(E, o) is a torus of dimension
by Lemma 3.2 and is obviously contained@V, ¢). By connectedness, we have in fact
U(E,o) CcSO(V,q). O

It will be useful for later in the paper to have a description of the étale algebra(End
associated witfT in terms of Galois sets. The Galois grofip acts on the weight sev
and we can consider the associated étale algdbra= Mapp, (W, ksep of dimension 2
overk. The involutiony — x~1 on W induces an involution oiE’ that we shall denote
by o’.

1 Forthe general correspondence betwégrsets and étale algebras oversee [5, Section 18].
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Proposition 3.4. There is a canonical isomorphism : (E’, o’) = (Endr(V),o) of
k-algebras with involution. The map induces an isomorphism of-algebraic tori
@:U(E',¢") > T and the following diagram commutes:

E¢ep Endr (Vsep
U U

U(E', 0" (ksep —>  Tlksep

s lll?e

Proof. For v € Vsep We shall writev = >, .y, vy, wherev, lies in the eigenspace,
corresponding to the weight. We definep: Egep: Map(W, ksep — ENndr (Vsep by

(=" FOOvy.

xXeW

One verifies readily thap commutes with the action of}, and is an isomorphism.
Indeed, the primitive idempotents dfg, are the maps/, defined bye, (V) = &,y
(Kronecker delta) fory, ¥ € W, and one sees immediately tha(te;() = e,, Wheree,
is the idempotent of EndVsep corresponding td/, . From the proof of Proposition 3.3,
we haves (ey) =e,-1 = (p(e;(_l) = ¢(0’(€},)), which proves thap is an isomorphism of

algebras with involution. O

Proposition 3.3 will allow us to compute the cohomology gréifik, T) for a maximal
torusT C SO(V, q).

Keeping the notation of Proposition 3.3, we Bt= Sym(E, o) and define the norm
mapNg/r:GL1(E) — GL1(F) by x = xo (x).

Corollary 35. HY(k,T) = F*/Ng,r(E).

Proof. By Proposition 3.3, we havé = U(E, o), soT fits into the exact sequence of
algebraic groups

Ng/F
1-T—GLi(E)— GLy(F)— 1.
Taking cohomology we have

Ng/F

EX 28 < 2 Bk, T) — HY(k, GL1(E)).
By Hilbert's Theorem 90, we havedl(k,GL1(E)) = 0. Hence H(k,T) = F*/
Ng/p(E*). O

We shall now consider tripleéV, p, q), whereV is a vector space of dimensiom 2
overk, p is a faithful representation — GL (V) defined ovek, andg is a nondegenerate
T-formonV.
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Two such triplegV, p, g) and(V’, o', ¢’) are said to bé&somorphidf there is ak-linear
map¢ : V — V' satisfyingpp (m) = p’(m)¢ forallm € T andq’¢ =gq.

An obvious invariant of the tripléV, p, ¢) is the character of the representat{éh p),
or, equivalently, the set of weigh®® of p. If (V, p,q) and(V’, p’,q’) are triples with
the same set of weights, then they are isomorphic bygy This can be seen as follows:
Let W ={x1,---, xn» Xl‘l, e x,,_l} be the set of weights of and letV,;, denote the
corresponding weight spaces. Then we have an orthogonal decomposition

Vsep= (Vg @ V,-1) Lo+ L (Vy, @V, 0),

where eactV,, ® V-1 is a hyperbolic plane.

Hence, by standard descent theory, the triglé§ p’, ¢’) with given weight set are
classified, up to isomorphism, b§1(k, Aut(V, p, ¢)), whereAut(V, p, ¢) denotes the
automorphism group afV, p, ¢) as an algebraic group over

Proposition 3.6. Let (V,p,q) be a triple as above and leE = Endr (V). Then
Aut(V, p,q) =U(E,0) = p(T).

Proof. By the very definition ofAut(V, p, ¢), we have
Aut(V, p,q) =GL1(E)NSO(V,q) =U(E, o).
The equalityp(T) = U(E, o) follows from Proposition 3.3. O

Corollary 3.7. The set of isomorphism classes of triplgs, p, ¢g) with fixed set of
weightsW is in one-to-one correspondence with the elements of the gibt(, T) =
F*/Ng/p(E™).

Proof. This is an immediate consequence of Proposition 3.6 and Corollary 815.

Remark 3.8. In fact, the correspondence of Corollary 3.7 can be made quite explicit as
follows: Let 8 be the bilinear form or/ such that(x, x) = g(x). Fora € F* define
qa(x) = B(ax, x). Then the correspondence is givendow> (V, o, g4).

Fora e F* we defineB,(x,y) = Trg/k(axo(y)) and we letQ,(x) = B,(x,x) =
Tresk(axo(x)) be the associated quadratic form. Note that the gridup, o) acts by
isometries onQ,, and with the equality(T) = U(E, o) given by Proposition 3.6Q,
becomes & -form via p. For simplicity, we letQ = Q1.

Proposition 3.9. (V, p,q) = (E, p, Q) for somea € F* uniquely determined modulo
Ne/r(EX).

Proof. SinceE andV have the same dimension afdacts faithfully onE, V is free
of rank one overE, so we can assume th&t = E. Let 8 be the symmetric bilinear
form associated withy. The adjoint maps a@),adB1): E — E* are isomorphisms,
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so adB;)tad(8), being anE-automorphism ofE, must be multiplication by a unit
of a € E. Hence a@B)(x) = ad(B1)(ax) = ad(B,)(x). It follows that 8 = B,. By the
symmetry of, we must haver € F. The uniqueness af modulo Ng,r(E*) follows
from Corollary 3.7. O

4, Invariantsof T-forms

Let V be a vector space of dimension @verk and letT ¢ GL (V) be a fixed algebraic
torus of dimension. We shall assume that is self-dual as a representationigfsoV can
afford T-invariant quadratic forms. In this section we shall investigate the low-dimensional
invariants of these forms.

Proposition 4.1. Let ¢ be a nondegenerate quadratic form &nwith T € SO(V, ¢). The
isomorphism classes of quadratic forgison V such thatT ¢ SO(g’) are in one-to-one

correspondence with the elements in the image of the Hsg@, T) i H(k,SO(V, q))

induced by the natural inclusiof < SO(V, q). In particular, all theT-forms have the
same determinant.

Proof. We already know by Corollary 3.7 that the tripl€¥®,:,q’) are classified by

H(k,T). It is clear that the natural magt(k, T) = H(k,SO(V,q)) sends the class
of atriple(V,t,q’) totheclassoff. O

Corollary 4.2. Let E and F be as in SectioB and write E = F[¢]/(t2 — d) withd € F*.
Then allT-formsg on V have determinam¥r,(—d).

Proof. By Proposition 3.9, we can assuriie= E andq = Q1, since all thel -forms have
the same determinant. Lete E and writex = r +ts with r, s € F. Thenxox = r? — ds?
andQ1(x) = Trg/x(xo (x)) = 2Tt/ (r?) + 2Trp/k(—ds?). Hence
detQ1 = 2"8p/k - 2"Nr/k(—d)Sp/k = Nr/k(—d) (modk™?),
wheres g is the discriminantof'/k. O
The next step is to determine the Hasse invariant offttierms as above. For this, we
consider the étale algebfaof the previous section and identifywith U(E, o). We can
assume, without loss of generality tHat= E andg = Q.
Theorem 4.3. Leta € F* andE = F[t]/(t2 — d) withd € F*. Then
h(Qq) =h(Q) + Corg/i(a, d), 2)

whereh denotes the Hasse invariant afbrr - H?(k,GL1(F)) — H?%(k,Gp) is the
corestriction map, that is, the map induced by the n&fp : GL 1(F) — Gn.
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As the referee has kindly pointed out, one can obtain a complete formula )
combining (2) with Serre’s formula [10, Théoréeme 1] for the Hasse invariant of the trace
form. Even though Theorem 4.3 is sufficient for our purposes, we work out below the
details of this relation.

Let &5, be the symmetric group iietters, identified with the group of permutations
of the set of primitive idempotents dfsep Let pg: I — &2, be the homomorphism
defined by the action of; on this set. Lek,, € H2(S2,,7/27) be the canonical class
defined in [10, 1.5]. We denote By« the discriminants of / k.

Theorem 4.4. With the notation above, we have

(_17 _1)

~1
h(Qa) = ¢ (s20) + (8e/k. (=" 7'2) + Grpe. —D) + n(nz :

+ Corg/i(a, d).

Proof. We first relates(Q) to the Hasse invariant of the usual trace fogiy(x) =
trE/k(xZ) using an argument similar to one used by D.W. Lewis in [6, Theorem 2].

Let ¢° be the restriction ofyg/x to F and letg! be the restriction ofg/k to the
subspace of antisymmetric elemerise E: o(x) = —x}. Thengg/x = ¢° L ¢ and
0 =4¢"1 (—¢%). Hence

8e/k = detgr x = det¢®) deflg!) = (—1)"detQ and defq®) = 2"85x.

We haveQ L ge/x =¢° L ¢° L H, whereH is a hyperbolic form of rank 2, so
applying the formula for the Hasse invariant of an orthogonal sum [9, 12.6] to both sides
of this equality, we get, after some manipulation:

—1
1(Q) = h(gs/x) + (n — DG5 k. —1) + Gry —1) + LD

-1L-D. ()

We obtain the desired expression &g, ) by putting together (2), (3), and Serre’s formula
h(qe k) = ¢35 (s20) + (BE/k. 2) [10, Théoreme 1]. O

In order to prove Theorem 4.3 we need some preliminaries. Consider the exact sequence
0— GL{(F)— GLy(E) 2 T — 0,

with p(u) = uo (u)~1. Note thatp is surjective by dimension reasons. DenoteNby  «
(respectivelyM g/«) the kernel of the norm map/r,:GL1(F) — G (respectively
Ngsk:GL1(E) — Gm). We have the following commutative diagram with exact rows and
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columns
0 0
f ~
0 MFE/i Mgk ——T ——=0
0—> GLi(F) —= GLy(E) —>T ——=0 (4)
Nryk NE/k l
2
0 Mm2 Gm Gm 0
0 0

whereT := Mg/ /Mg and f:Mg/, — T is the canonical projection. By the Snake
lemma, we get an exact sequence

0> pu,—>T—>T—0, (5)
which shows thaT is a two-fold cover ofT.

Lemma 4.5. There exists a maﬁ:'NI' — Spin(Q) such that the following diagram
commutes

o~ i .
Me/k —— T —— Spin(Q)

JTE T

GLy(E) —= T — = SO(Q).

Proof. SinceT is connected, if a lifting exists, it is unique and hence it is defined
over k. Thus it is enough to show the existenceiobver the separable closukgep
Let {e1,...,en, f1,..., fa} be the set of primitive idempotents dfsep NumMbered so
thato (e;) = fi. We shall first define a map: Mg/ — Spin(Q) and see that it factors
throughT.

We denote by CliffQ) the Clifford algebra o2 and by Cliff" (Q) its even subalgebra.
The canonical involution on CIiQ) will be denoted byx.

Definen; = %e,»f,- in Cliff *(Q). One verifies easily from the definition of the Clifford
algebra that the; satisfy the following relations:

i) n?=mi,
(i) minf =0andny; +n} =1,
(iii) the elementsya, n2, ..., nn, 01, 15, ..., n; commute with each other.
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Letx € Mg/, and writex = Y7, (xje; + yi fi) With x1---x,y1- - -y, = 1. Define

n

<p(x)=l_[(xim +yinf)

i=1

in Cliff T (Q). It follows from the properties (i)—(iii) above thatis a homomorphism.
We also verify readily the relationsn; = nje;, fin; =n; f; fori # j, ande;n; =0,
nie; =e;, fini = fi, ni fi = 0, and the relations obtained from these by applying the
canonical involutior:: njei = e,-njf, njf,- = fm; fori # j, andnfe; =0, ein] = e;,
n; fi = fi, fin7 = 0. Using all these relations, we have:

. -1_,.,71,. n
{w(x)e’go(x)l_x’y C T and e =[x (6)
() fio(x)™ "= yix; " f; o1

Hence(p(x)Esegp(x)_l C Esgpandp(x)¢(x)* =1, sop(x) € Spin(Q).
If x € MF/k; we havex = Z?zlxi(e,' + fl) with ]_[f’:lx,' =1, Sop(x) = H?:lxi(ni +
n}) = 1. Henceyp factors througﬁ. We calli the induced maﬁ — Spin(Q). O

Now we are ready to prove Theorem 4.3.

Proof of Theorem 4.3. From Lemma 4.5 we get the following commutative diagram

~

0 2 T T 0

|

0 K2 —> SpiN(Q) — SO(Q) — 0.

Taking cohomology we have

Hik, T LHZk
(1 ) (7”’2)

S

0
H1(k,SO(Q)) —— H2(k, pp).

By Springer’s interpretation of the coboundary map [11, Formula 4.7], we Ha,) =
h(Qg) — h(Q). Thus, by the commutativity of the diagramy; (a) = h(Q,) — h(Q) €
H2(k, py).
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Now we take cohomology in (4), so the diagram

0—— Hik,T) — H2(k.GLy(F)) —= H2(k,GL1(E))
oT \L Corg i l Corg i l (7)

0 — H2(k, pp) — H?(k, Gm) ——— H?(k, Gm)

commutes. Identifying H(k, T) with F*/Ng/r(EX) we have 3'(a) = (a,d) €
H2(k, GL1(F)), where(a, d) is the cup product of the classesodndd in H1(k, o p) =
FX/FXz. From the commutativity of the diagram, which follows from the commutativity
of (4), we havei(Q,) — h(Q) = Corp/i(a,d). O

Corollary 4.6. If I3(k) = 0 (that is, the quadratic forms ovek are classified by
discriminant and Hasse invariantthen Q, is k-isomorphic to Q, if and only if
Corp/k(a,d)=Corp/k(b,d).

Corollary 4.7. If I3(k) = 0 then the similarity classes of quadratic forms &nwhose
orthogonal group admit3 as a maximal torus are in one-to-one correspondence with the
elements of the group

{Corg/r(a,d): a e F*}
{(h, NEjk(d)): A€ k*}

This correspondence is given By, — Corg,(a, d).
Proof. Observe that fok € k* we have Cof/i (A, d) = (A, Nr/i(d)). Thus, if
Corpk(a,d) = Corgi(b,d) + (A, Np/i(d))

for somei € k>, then Cof i (a, d) = Corg/(Ab, d), which, by Corollary 4.6, implies
Qu=0w=r0p. O

Corollary 4.8. If 13(k) =0, n is odd andd € k*(F*)2, then all T-forms arek-similar
to Q. Consequently, there is only one orthogonal group of rankip to isomorphisms,
containingT as a maximal torus.

Proof. We may assume without loss of generality thiat k*. Fora € F*, we have
Corp/i(a,d) = (Nrjk(a),d) = (Nrsr(a), Nr/i(d)), the last equality using the fact that
is odd. Hence the group of Corollary 4.7 is trivialx

Corollaries 4.6—-4.8 can be easily restated in the more general situation Wigye
is torsion-free, since in this case, by Pfister’s local-global principle [9, Chapter 3,
Theorem 6.2], quadratic forms overare classified by discriminant, Hasse invariant and
signatures. We shall only give a version of Corollary 4.8 in this situation.
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Corollary 4.9. If I3(k)iors= 0, n is odd,d € k>, and Q is positive-definite, then all
positive-definitd -forms arek-similar to Q. Consequently, the orthogonal groups of such
forms are all in the samg-isomorphism class.

Corollary 4.9 is in fact a generalization of the following theorem of Feit [3] (see also
[8]) for positive-definite quadratic forms ove.

Proposition 4.10 (Feit, [3]). Let p be a prime number congruent ®modulo4. Let g
andq’ be positive-definite quadratic forms ov@rof rank p — 1. If bothg andg’ admit a
rational autometry of ordep, then they are similar, and consequently they have isomorphic
orthogonal groups.

Proof. Let E = Q(¢), where¢ is a primitive pth root of unity. Lett be complex
conjugation and leT = U(E, 7). Note that ifr € SO(V, ¢)(Q) is an element of ordep,
there is a unique representatidn— SO(V, ¢) with ¢ — t, so g becomes al-form.
Since E is an abelian extension @, and[F : Q] =n = (p — 1)/2 is odd, we have
E = F[1]/(t%2 — d) with d € Q*. We conclude by Corollary 4.9.00

5. Algebraswith orthogonal involution

In this section, we generalize the results of the previous section to central simple
algebras with orthogonal involution.

As before,T denotes an algebraictorus of dimensiom and we consider faithful
k-representationg: T — SO(A, o), where A is a central simple algebra of degree 2
equipped with an orthogonal involutian. The main question we shall deal with is to
describe, for fixed', the isomorphism classes of algebras with involutiane ) for which
there is such a representation.

We fix T and a set of weight® ¢ X (T) generatingX (T) with |W| = 2n, stable under
both the action off} and the involutiony — x ~1. This is equivalent to fixing an étale
algebra with involution(E, t) of dimension 2 and an isomorphismi = U(E, 7). We
shall study the isomorphism classes of algebras with orthogonal invol(tion) such
thatthere is arepresentationT — SO(A, o) with weight systenW. As in the case when
A is split, E is identified with the elements of that commute withp (T) and with this
identification we have (T) = U(E, t) as in Proposition 3.3. Studying such representations
is equivalent to studying the embeddingg &t 7) < (A, o) as algebras with involution.

We first have the existence problem, which is discussed in [2] in the more general
context of Frobenius algebras.

Proposition 5.1 (see [2, Proposition 5.7]L.et (E, t) be as above and led be a central
simple algebra wittdimg (A) = dimy (E)2. There is an orthogonal involutiom on A and
an embeddingE, ) — (A, o) as algebras with involution if and only f = A°P and A

splits overE /m for all maximal idealan of E.
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The existence question having been addressed, we fix a central simple algebra
satisfying the conditions of Proposition 5.1 and an embedding- A and we describe
the conjugacy classes of involutions drthat extend the involution on E. Following the
notation of the previous section, we denotefyhe subalgebra of of points fixed under
v and we lefTf = U(E, 7). We also writeE = F[t]/(t> — d) ands = Nr/(d).

Lemmab.2. Leto be a fixed orthogonal involution af extending:. Then for alla € F*,
the mapo, := Int(a)o is an orthogonal involution extending All orthogonal involutions
on A that extendr are of the fornp,, for somea € F*.

Proof. An easy application of Skolem—Noether shows thatkalvolutions onA are of
the formo, = Int(a)o, witha € A* ando (a) = ta. Sinceo,|g = o|g = T, Wwe have that
a € Z4(E) = E, and the fact that, is orthogonal implies that(a) =a. O

Let o be a fixed orthogonal involution oA extendingz. Let C(A, o) be its Clifford
algebra (see [5, Chapter II, 8B] for the definition) andZet Z(C(A, 0)). It is known
that Z is an étale quadratic extensioniofsee [5, Chapter Il, Theorem 8.10]).

Recall that the cohomology sétl(k, PSO(A, o)) classifies triplegA’, o’, ¢'), where
A’ is a central simple algebra ovieof degree 2, o’ is an orthogonal involution oA’ and
¢ Z— Z(C(A',d")) is ak-isomorphism (see [5, Chapter VII, 29.F]). We shall denote by
[A’, o', ¢'] the element off 1 (k, PSO(A, o)) that corresponds to the isomorphism class
of (A’,o’,¢'). The triple[A, o, id,] corresponds to the trivial class il (k, PSO(A, 0)).

Once an isomorphisg’: Z — Z(C(A’, o’)) has been chosen, one of the two possible
choices, the Clifford algebra dfd’, ') becomes & -algebra, which will be denoted by
C(A, o', ¢).

We shall be interested in the triplgs\’, o', ¢') that arise from the image of the

incl.

natural mapj, : H(k, T) — H(k, PSO(A, o)) induced by the composite map —

SO(A. o) 2% pso(A. o).

Using the identificatior 1(k, T) = F*/Ng/rp(E™) of Corollary 3.5, the elements of
Im(j,) are, by Lemma 5.2, of the form

Jjx(@) =[A, 04, ¢al € H'(k, PSO(A, 0))
fora e F*/Ng,/r(E*). The isomorphism, : Z — Z(C(A, 0,)) can be described explic-
itly as follows: Letu € ESXep be such thakio (1) = a. Then In(u) : (Asep 0) — (Asep 0a)
is an isomorphism and induces an isomorphisnnt: C(A, 0)sep— C(A, 04)sep We
defineg, := INt(1)s| Zgep It is easy to verify thad, is defined ovek and is independent of

the choice of:.
We can now state the main result of this section:

Proposition 5.3. Fora € F*/Ng,;r(E*), the equality
[C(A,04.94)] =[C(A,0,id2)] + Res i Corr/i(a, d)

holds inBr(Z) = H2(k, GL1(Z2)).
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Proof. Let Spin(A, o) be the universal cover &0(A, o) and letC = kef{Spin(A, o) —
PSO(A, 0)]. Itis known thatC = pyz) if n is odd, andC = Rz,x(py z) if n is even
(see [5, Chapter VII, 31.A]). In any cas€, ¢ GL1(Z), and we have a natural map
H2(k,C) — H?(k,GL1(Z)). Notice thatH?(k, GL1(Z)) = H%(Z,Gm) = Br(Z) by the
Faddeev—Shapiro lemma [5, Lemma 29.6].

From the exact sequence 2 C — Spin(A,o) — PSO(A,0) — 1, we get a
connecting homomorphisi: H1(k, PSO(A, o)) — H?(k, C). Let 3’ be the composite
map

H(k. PSO(A, 0)) = H%(k,C) — Br(Z).

On the one hand, it follows from the Tits class computations in [5, Chapter VII,
Example 31.11] that fofA’, o’, ¢'] € HY(k, PSO(A, 0')) we have

i[A o ¢ ]=[C(A" o', ¢')] - [C(A,0,id2)]. (8)

On the other hand, from the exact sequenee L, — T>T—1o0f (5), we get a map
dt 1 H(k, T) — H?(k, p,), which by diagram (7) is given by

o1 (a) = Corp/i(a,d) 9

fora € H(k, T) = F*/Ng/r(E). The diagram

1 (7] T T 1

[

1——C —— Spin(A,0) ——= PSO(A,0) ——= 1

commutes, so taking cohomology we havér (a) = d[A, o4, ¢4]in H2(k, C). Taking the
image of this equality under the natural mdEpB(k, C) — Br(Z) and using (9), we get

d'[A, 04, pa]l = Resz ik Corpyi(a, d). (11)
The combination of (8) and (11) proves the desired resut.

Corollary 5.4. If 13(k) =0, then(A, 0,) = (A, o) ifand only ifRes;/ Corp/i(a, d) isin
the subgrougof order at mos®) generated byRes, /([A].

Proof. Let* be the nontriviak-automorphism o¥Z. We begin by noting the equality
[C(A, o, *)] — [C(A, o, idz)] =Reg/[A] (12)

in Br(Z). This is an immediate consequence of [5, (9.9)].
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If (A,0,) = (A,0), thenC(A,a,,¢,) is isomorphic to eitherC(A, o,idz) or to
C(A,o0,*). By Proposition 5.3, we have in the first case Re<Lorr/i(a,d) = 0 and
in the second case Reg Corg/(a, d) = Reg/«[A], using (12).

Conversely, if Reg/i Corr/i(a,d) =0 or Reg,;Corr/r(a,d) = Reg i[A], then
[C(A,04,0.)]=[C(A,o,idz)] or [C(A, 04, ¢.)] =[C(A, o, *)], that is, in either case,
C(A,0,) = C(A, o) ask-algebras. Under the hypothegi&k) = 0, this condition implies
(A, 0,) = (A, o) by a theorem of Lewis and Tignol [7].O

Corollary 55. If I13(k) =0, d € k<F*% andn is odd, then, up to conjugacy, there is
exactly one involution od that extends.

Proof. We can assume without loss of generality that k. Thend = Np/i(d) =d" =
d (modk*)2 andZ C E, so Res/« Corg/ = Corg,z Res,r. Sinced is a square irE,
Resz/r(a,d) =0. We conclude by Corollary 5.4.0
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