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The second Stiefel–Whitney class of the quadratic form tr
A/k

(ax#) is computed, where A is a
central simple algebra over a perfect field k of characteristic different from 2, a `A is a fixed element,
and tr

A/k
is the reduced trace. This class is related on the one hand to the class of A in the Brauer group,

and on the other hand to corestrictions of quaternion algebras over certain factors arising from EC
k
E,

where E is a commutative e! tale algebra over k that depends on the semisimple part of a.

1. Introduction

Trace forms and their variants arise naturally in the study of finite-dimensional

algebras such as commutative e! tale algebras, central simple algebras and Lie algebras.

It is natural to ask for the associated Stiefel–Whitney classes.

In 1984 J.-P. Serre [18] expressed the second Stiefel–Whitney invariant of the trace

form of a commutative e! tale algebra in terms of other cohomological invariants. His

formula had important applications to embedding problems and to the inverse Galois

problem [23]. Serre’s formula was generalized to all higher Stiefel–Whitney invariants

by B. Kahn [4].

In the case of central simple algebras, D. Saltman (1987, unpublished as far as we

know) and later Serre [19] described by different methods the second Stiefel–Whitney

class of the form tr(x#), where tr is the reduced trace. (See also Tignol [22] and

Lewis–Morales [9].) More recently, A. Que! guiner [14, 15] computed this invariant for

the form tr(σ(x)x) of a central simple algebra equipped with an involution σ.

In this paper we shall be interested in scaled trace forms of central simple algebras,

that is, quadratic forms of the type Q
A,a

(x)¯ tr
A/k

(ax#), where tr
A/k

is the reduced

trace of a central simple algebra A over a perfect field k of characteristic different from

2 and a is a fixed element of A. We shall assume throughout that the form Q
A,a

is

nonsingular, or equivalently, that a and ®a have no common eigenvalue.

The form Q
A,a

was studied by D. Lewis in [7], where he established its general

properties and gave formulas for its signature and discriminant. The next question

was naturally the computation of the Hasse invariant (second Stiefel–Whitney

invariant), which was left as an open problem in [7].

The motivation for this work was the discussions of the second author with David

Lewis a few years ago. Our results are a complement to his results since they provide a

full computation of the second Stiefel–Whitney invariant of Q
A,a

. We warmly thank

him for having brought the question to our attention and for sharing his ideas

with us.
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In Section 2 we introduce the notation and the terminology that will be used

throughout the paper.

In Section 3 we show that the forms Q
A,a

and Q
A,as

, where a
s
is the semisimple part

of a, are isometric.

Section 4 deals with the case where A¯M
n
(k). We show that Q

Mn(k),a
is isometric

to the trace of a certain rank-1 hermitian form over EC
k
E, where E is a

commutative e! tale algebra containing a
s
(Proposition 4.1). This description allows us

to express w
#
(Q

Mn(k),a
) as a sum involving corestrictions of certain quaternion

algebras over the factors of the subalgebra of ECE fixed under the canonical

involution xC yPN yCx (Theorem 4.6).

Section 5 differs from the other sections in that it does not deal directly with trace

forms or with quadratic forms for that matter (other than the presence of orthogonal

and spinor groups). In this section we develop the tools from representation theory

that are needed for the general case. These tools are probably known to specialists ;

we include them here because either we have not been able to find them explicitly in

the literature, or they are not in a form or language suited to our purposes. The main

result in this section is an explicit description, in terms of weights, of the obstruction

to lift a rational orthogonal representation GMNSO of a reductive algebraic group

G to a spinor representation GMNSpin (Theorem 5.9).

Finally, Section 6 is devoted to the computation of w
#
(Q

A,a
) for a general central

simple algebra A over k. This is done by establishing a ‘comparison’ formula with

w
#
(Q

Mn(k),b
), where b `M

n
(k) is an element whose similarity class is canonically

determined by a according to Lemma 6.1. If n is odd, it is easily seen by Springer’s

theorem that Q
A,a

and Q
Mn(k),b

are actually isometric (Proposition 6.2), so in this case

w
#
(Q

A,a
)¯w

#
(Q

Mn(k),b
). If n is even, we use Springer’s spinor interpretation of w

#
and

the results on orthogonal representations from Section 5 to show that w
#
(Q

A,a
)¯

w
#
(Q

Mn(k),b
)(n}2) [A], where [A] is the class of A in the Brauer group (Theorem 6.8).

This result, together with the computation of w
#
(Q

Mn(k),b
) of Section 4, yields the

general formula (Theorem 6.9).

2. Notation and definitions

Let k be a perfect field of characteristic different from 2. We shall denote by k
s
a

separable closure of k and by Γ the Galois group Gal(k
s
}k).

2.1. Pointed algebras

A pointed algebra over k is for us a pair (A, a), where A is a central simple algebra

over k and a is a fixed element of A. Two pointed algebras (A, a) and (B, b) are said

to be isomorphic if there exists a k-algebra isomorphism } :AMNB with }(a)¯ b.

A twist of (A, a) is a pointed algebra (B, b) over k such that (ACk
s
, a)F

(BCk
s
, b) as pointed algebras over the separable closure k

s
.

It will be shown in Lemma 6.1 that all pointed algebras can be obtained as twists

of a pointed algebra of the form (M
n
(k), b).

2.2. Scaled trace forms

The scaled trace form associated to a pointed algebra (A, a) is by definition

Q
A,a

(x)¯ tr
A/k

(ax#), where tr
A/k

is the reduced trace. By invariance of the trace under
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inner automorphism, it is immediate that the isometry class of Q
A,a

depends only on

the isomorphism class of the pointed algebra (A, a).

2.3. Some algebraic groups

Let q be a quadratic form over a vector space V over k. The symbols O(q), SO(q),

Spin(q) will denote respectively the orthogonal group, the special orthogonal group,

and the spinor group of the quadratic space (V, q). These groups will always be

regarded as algebraic groups defined over k. We shall also use the notation O(V ),

SO(V ), Spin(V ) when the form q is unambiguously defined by the context.

In Section 6 we shall be interested in the automorphism group G of the pointed

algebra (M
n
(k), b), regarded as algebraic group over k. This group consists of the

algebra automorphisms of M
n
¯M

n
(k

s
) that commute with b ; we shall study its

structure in more detail in Section 6. Notice that since G preserves the scaled trace

form Q¯Q
Mn,b

, we can regard G as a subgroup of O(Q).

2.4. Galois cohomology

For an algebraic group H defined over k, we shall denote by H i(k,H) the profinite

cohomology set H i(Γ,H(k
s
)) as defined in [17] (i% 1 if H is not abelian).

Recall that H "(k,O(q)) is in one-to-one canonical correspondence with the set of

isometry classes of quadratic forms Q over k of the same rank as q [20, Theorem 2.2].

Similarly, H "(k,SO(q)) is in one-to-one canonical correspondence with the set of

isometry classes of quadratic forms Q over k of the same rank and discriminant as q

[20, Theorem 2.3].

By standard descent theory, the set H "(k,G), where G¯Aut(M
n
, b), is in one-to-

one canonical correspondence with the isomorphism classes of twists of the pointed

algebra (M
n
, b). More explicitly, if (A, a) is a twist of (M

n
, b), we choose an

isomorphism } : (ACk
s
, a)MN (M

n
(k

s
), b) and set c

A,a
(γ)¯}γ(}−"). The map

c
A,a

:ΓMNG is a 1-cocycle and its class [c
A,a

] in H "(k,G) is independent of the

choice of }. The correspondence (A, a)MN [c
A,a

] is a bijection between the set of

isomorphism classes of twists of (M
n
, b) and the cohomology set H "(k,G).

Moreover, it is easy to see that if i :GMNO(Q) is the natural inclusion, then the

induced map ik :H "(k,G)MNH "(k,O(Q)) maps the cohomology class corresponding

to a pointed algebra (A, a) to the cohomology class of the corresponding associated

scaled trace form Q
A,a

.

2.5. Stiefel–Whitney classes

Let q be a nonsingular quadratic form of rank n over k. For i& 0, we denote by

w
i
(q) `H i(k,:}2) the ith Stiefel–Whitney class of q, in the sense of [2]. More explicitly,

if ©a
"
,… , a

n
ª is a diagonalization of q, then

w
i
(q)¯ 3

r
"
!…!ri

(a
r
"

)… (a
ri

) `H i(k,:}2),

where (a) denotes the class in H "(k,:}2) corresponding to a `k*}k*# via the Kummer

isomorphism and the product is the cup product in the ring H*(k,:}2). Delzant [2]

showed that this definition is independent of the diagonalization chosen for q.

With the canonical identifications H "(k,:}2)¯k*}k*# and H #(k,:}2)¯Br
#
(k)

(the subgroup of the Brauer group of elements of order dividing 2), w
"
(q) is equal to
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the discriminant of q, and w
#
(q) is equal to the Hasse invariant of q with respect to

the quaternion symbol, as defined in [16].

3. Reduction to the semisimple case

In this section we reduce the problem to the case where the scaling factor a `A is

a semisimple element.

P 3.1. Let a
s
be the semisimple part of a in its Jordan decomposition.

Then Q
A,a

DQ
A,as

.

Proof. Let a¯ a
s
a

n
be the Jordan decomposition of a, where a

s
is semisimple

and a
n

is nilpotent. We shall in fact show that Q
A,a

and Q
A,as

are Witt-equivalent,

which will be sufficient since the two forms have the same rank.

Recall that if UZA is a totally isotropic subspace, then A is Witt-equivalent to

the space Uv}U endowed with the form induced by Q
A,a

(see [5, Proposition 3.7.9]).

Hence it will be enough to show that there is a subspace UZA totally isotropic with

respect to Q
A,a

such that tr
A/k

(a
n
x#)¯ 0 for all x `Uv.

Let UZA be a subspace satisfying the following conditions :

(i) tr
A/k

(x#)¯ 0 for all x `U ;

(ii) aUZU and UaZU ;

(iii) U is maximal among the subspaces of A satisfying (i) and (ii) above.

Let Uv be the orthogonal complement of U with respect to the form tr
A/k

(x#)

(which is, by virtue of (ii), also the orthogonal of U with respect to tr
A/k

(ax#)). We

shall show that the form tr
A/k

(a
n
x#) is identically zero on Uv by showing the inclusion

a
n
Uv ZU.

Consider the ring R¯k[a]C
k
k[a] equipped with the involution given by xC y¯

yCx. We define an R-module structure on A by (xC y)[α¯xαy for x, y `k[a] and

α `A. Notice that by virtue of (ii), the subspace U is actually an R-submodule of A.

Define ©α, βª¯ tr
A/k

(αβ) for α, β `A. We verify immediately that for z `R we have

©zα, βª¯©α, zaβª (it is enough to see this for z of the form z¯xC y, in which case

it is obvious). It follows immediately from this property that Uv is an R-submodule

as well.

The next step is to show that (iii) implies that Uv}U is a semisimple R-module.

Indeed, let L be the radical of R and let m& 1 be the smallest integer such that

LmUv ZU (L is a nilpotent ideal). Suppose that m& 2 and let l be the smallest integer

with l&m}2. Then

©LlUv, LlUvª¯©Uv, La lLlUvª

¯©Uv, L#lUvª

¯²0´,

since L¯ L- and L#lUv ZU. Hence LlUv is a totally isotropic R-submodule, and

therefore so is ULlUv. By (iii) we must have ULlUv ¯U, that is, LlUv ZU. This

is a contradiction with the minimality of m ; therefore m¯ 1.

Since a
n
C 1 is in the radical L, we have in particular a

n
Uv ZU. Therefore

tr
A/k

(a
n
xy)¯ tr

A/k
((a

n
x) y)¯ 0 for all x, y `Uv, as claimed. *
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4. The case where A is a split algebra

Throughout this section we shall assume that A¯M
n
(k). Let b `M

n
(k) be a fixed

element so that Q
Mn(k),b

is nonsingular. In view of Proposition 3.1 we can assume,

without loss of generality, that b `A is semisimple. For simplicity, we shall write Q
b

for Q
Mn(k),b

.

For the remainder of this section, we fix a commutative e! tale algebra EZM
n
(k)

of degree n over k containing b. We identify the matrix algebra M
n
(k) with the algebra

of k-endomorphisms End
k
(E ).

Let L¯EC
k
E and let } :LMNEnd

k
(E ) be the k-linear homomorphism given

on pure tensors by
}(xC y) (z)¯ tr

E/k
(yz)x. (1)

It is easy to see that } is an isomorphism of k-vector spaces (since it is essentially

the canonical isomorphism EC
k
E*¯End

k
(E ) as k-vector spaces, where E and its

dual E* have been identified via the trace form of E).

P 4.1. Let } be the map of (1). Then for all u, � `L we ha�e

tr
L/k

((bC 1) u�a )¯ tr(b}(u)}(�)), (2)

where a is the in�olution on L gi�en by xC y¯ yCx. In particular, the map } is an

isometry between the quadratic spaces (L, tr
L/k

((bC 1) uua )) and (End
k
(E ), tr(bz#)).

Proof. It is enough to prove (2) for u and � of the form u¯xC y and �¯
x«C y«. By direct computation we have

[}(u)}(�) b] (w)¯}(u) (tr
E/k

(y«bw)x«)

¯ tr
E/k

(y«bw)}(u) (x«)

¯ tr
E/k

(y«bw) tr
E/k

(yx«)x

¯ tr
E/k

(yx«) [tr
E/k

(y«bw)x]

¯ tr
E/k

(yx«)[}(xC y«b) (w).

Therefore }(u)}(�) b¯ tr
E/k

(yx«)}(xC y«b). From (1) we see that tr(}(xC y«b))¯
tr

E/k
(y«bx) ; hence

tr(}(u)}(�) b)¯ tr
E/k

(bxy«) tr
E/k

(yx«)

¯ tr
L/k

(bxy«C yx«)

¯ tr
L/k

((bC 1) (xC y) (x«C y«))

¯ tr
L/k

((bC 1) u�a ). *

Proposition 4.1 allows us to reduce our problem to the case where the underlying

algebra is a commutative e! tale algebra. This situation is generally better understood.

In particular, Proposition 4.1 will allow us to compute invariants for tr
A/k

(bx#).

The following result was proved by D. Lewis in [8, Section 4]. This can also be

proved easily from Proposition 4.1.

C 4.2. If Q
b
¯ tr(bx#) is nonsingular, then its discriminant is equal to

(®1)n(n−")/#det(b).

Let e
"
, e

#
,… , e

n
be the system of indecomposable idempotents for the algebra

E
s
¯ECk

s
. Then 3B ²e

i
C e

j
: i, j¯ 1,… , n´ is a system of indecomposable idem-

potents for E
s
CE

s
.
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The factors in the decomposition of L¯ECE as a product of fields are in one-

to-one correspondence with the orbits of the Galois group Γ acting on 3. The set 3
splits as a disjoint union of Γ-stable subsets

3¯²e
i
C e

i
: i¯ 1,… , n´+ ²e

i
C e

j
: i1 j ; i, j¯ 1,… , n´,

which corresponds to a splitting of L as a product of algebras

L¯E¬M. (3)

Note that the involution xC y¯ yCx on ECE is the identity on the factor E in (3)

and acts nontrivially on all the idempotents corresponding to M. An immediate

consequence of the last observation is the following lemma.

L 4.3. The algebra M of (3) splits as an algebra with in�olution in the form

M¯0
r

i="

L
i
, (4)

where L
i
is either a field preser�ed by the in�olution on which the in�olution is not

the identity, or a product L
i
¯F

i
¬F

i
, where F

i
is a field and the in�olution on L

interchanges the two factors of L
i
.

Given b `E, we denote by T
b

the form tr
E/k

(bx#) on E and by S
b

the form

tr
M/k

(bC 1zza ) on M. Using Proposition 4.1 and the above decomposition (3), we can

write Q
b
as an orthogonal sum

Q
b
DT

b
vS

b
. (5)

Notice that by Corollary 4.2 we have disc(S
b
)¯ (®1)n(n−")/# d

E/k
; in particular,

disc(S
b
) is independent of b.

We shall next calculate the invariant w
#

for the form Q
b
. It is easier first to

calculate w
#
of the form Q

"
vQ

b
and then use the addition formulae. Recall that if q

"

and q
#

are quadratic forms over k, then

w
#
(q

"
v q

#
)¯w

#
(q

"
)w

#
(q

#
)(disc(q

"
), disc(q

#
)). (6)

(See, for instance, [16, Lemma 12.6].)

From (5) we obtain

Q
"
vQ

b
D (T

"
vT

b
)v (S

"
vS

b
). (7)

By taking w
#

on both sides, we get

w
#
(Q

"
vQ

b
)¯w

#
(T

"
vT

b
)w

#
(S

"
vS

b
). (8)

(Note that disc(S
b
vS

"
)¯ 1.)

Let F
i
ZL

i
be the field fixed by the involution and let β

i
`F

i
be the component of

β¯ (1C bbC 1)}2 in L
i
. Let Si

b
(z)¯ tr

Li/k
(β

i
zza ). With this notation, we have

S
"
vS

b
¯vr

i="
(Si

"
vSi

b
). (9)

The following result gives an expression for w
#
of each of the terms on the right-

hand side of (9).

P 4.4. Let β
i
`F

i
be the component of β¯ (1C bbC 1)}2 in L

i
.

Write L
i
¯F

i
[t]}(t#®d

i
), with d

i
`F

i
. Then

w
#
(Si

"
vSi

b
)¯Cor

Fi/k
(d

i
,®β

i
)[F

i
:k] (®1,®1), (10)

where Cor
Fi/k

:Br(F
i
)MNBr(k) is the corestriction map.
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Proof. The proposition is essentially proved in [11, Proposition 2.1]. The reader

should be aware of the differences in the definitions. The ‘Hasse–Witt invariant ’ used

in [11] is not equal to the second Stiefel–Whitney class, but it is related to it by the

formula (in the notation of [11])

φ
k
(Si

"
vSi

b
)¯w

#
(Si

"
vSi

b
)[F

i
:k] (®1,®1).

(We refer to [16, p. 81] for the general conversion formulae.)

An alternative proof of (10) can be given using the general formula of B. Kahn

[4, The!ore' me 2] for the corestriction of total Stiefel–Whitney invariants. *

As an immediate application, we have the following.

C 4.5. Keeping the abo�e notation,

w
#
(S

"
vS

b
)¯

n(n®1)

2
(®1,®1)3

r

i="

Cor
Fi/k

(d
i
,®β

i
).

Proof. This follows immediately from Proposition 4.4 and equation (6) ; recall

that disc(Si

"
vSi

b
) is a square, so w

#
behaves additively on (9). *

We can now state the corresponding result for Q
b
.

T 4.6. With the notation abo�e, we ha�e

w
#
(Q

b
)¯w

#
(Q

"
)w

#
("
#
tr

E «/k
(x#))

n(n®1)

2
(®1, det b)

3
r

i="

Cor
Fi/k

(d
i
,®β

i
), (11)

where E «¯E [t]}(t#®b).

Proof. From (8) and Corollary 4.5 we obtain

w
#
(Q

"
vQ

b
)¯w

#
(T

"
vT

b
)3

r

i="

Cor
Fi/k

(d
i
,®β

i
)

n(n®1)

2
(®1,®1).

Hence by (6)

w
#
(Q

b
)¯w

#
(Q

"
)w

#
(Q

"
vQ

b
)(disc(Q

"
), disc(Q

b
))

¯w
#
(Q

"
)w

#
(T

"
vT

b
)

n(n®1)

2
(®1,®det b)


n(n®1)

2
(®1,®1)3

r

i="

Cor
Fi/k

(d
i
,®β

i
)

¯w
#
(Q

"
)w

#
(T

"
vT

b
)

n(n®1)

2
(®1, det b)

3
r

i="

Cor
Fi/k

(d
i
,®β

i
).

(Recall that disc(Q
b
)¯det(b) (®1)n(n−")/# and note that T

"
vT

b
¯ "

#
tr

E «/k
(x#).) *
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R 4.7. The term w
#
(Q

"
) of the right-hand side of (11) is easy to compute

directly : w
#
(Q

"
)¯ (m(m®1)}2) (®1,®1), where m¯ n(n®1)}2.

The term w
#
("
#
tr

E «/k
(x#)) of (11) can be described using Serre’s formula [18],

adjusted using [6, formula 3.16] to take the factor "

#
into account. Let '

#n
be the

symmetric group on 2n elements ; then

w
#
("
#
tr

E «/k
(x#))¯ e$

E «(s
#n

),

where e
E « :ΓMN'

#n
is the homomorphism defining E «, and s

#n
is a certain canonical

class in H #('
#n

,:}2) (see [18]).

5. Orthogonal representations and weights

For an affine algebraic group H over k, we shall denote by X(H ) the group of

characters of H, that is, the group of rational homomorphisms HMNGL
"

defined

over k
s
. For convenience, we shall write additively the group operation in X(H ).

If H is defined over k, then X(H ) has a natural structure of Γ-module. If g :H
"
MN

H
#

is a morphism of algebraic groups, then we shall denote by g* the dual

homomorphism g*:X(H
#
)MNX(H

"
), that is, the homomorphism defined by

g*(χ)¯ χa g for χ `X(H
#
).

D 5.1. Let ρ :GMNGL(V ) be a rational representation of the reductive

group G and let T be a maximal torus of G. For α `X(T ), let

Vα ¯²� `V :ρ(t) �¯α(t) � for all t `T ´.

If the subspace Vα is not ²0´, we say that α `X(T ) is a weight of ρ relative to T. The

integer mα ¯dim(Vα) is called the multiplicity of α. (See, for instance, [3, Chapter XI].)

The following result is well known.

L 5.2. Let V be a representation of an algebraic torus T o�er k
s
. Then

V¯ G
α`X(T)

Vα. (12)

Proof. See, for instance, [21, 2.5.2]. *

If ρ :GMNGL(V ) is a representation over k
s
of a reductive group G and T is a

maximal torus of G, then the decomposition (12) is called the weight decomposition of

ρ relative to T.

The dual (also called contragradient) representation ρ*:GMNGL(V*) is defined

by ρ*(g) (λ)¯ λa ρ(g)−" for g `G and λ `V*. If ρ is isomorphic to ρ* we say that ρ is

self-dual. It is easy to see that self-dual representations are exactly the ones that leave

invariant some nonsingular bilinear form.

L 5.3. Let G be a reducti�e group and let ρ :GMNGL(V ) be a self-dual

representation. If α `X(T ) is a weight of ρ, then ®α `X(T ) is also a weight of ρ and

mα ¯m
−α.

Proof. Identifying (Vα)* with the set of linear forms on V that vanish on Vβ for

all weights β1α, one has by straightforward computation (Vα)*¯ (V*)
−α. The

lemma follows immediately by self-duality. *
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P 5.4. Let T be an algebraic torus and let ρ :TMNGL(V ) be

a representation preser�ing a nonsingular quadratic form q on V (that is, ρ(T )Z
SO(V, q)). For each weight α1 0 of ρ, we choose one element of the set ²α,®α´. Let

α
"
,…,α

r
be the weights chosen in this way. Then the weight spaces V³α

i

are totally

isotropic (with respect to q) and we ha�e an orthogonal decomposition

VDV
!
vr

i="
(Vα

i

GV
−α

i

), (13)

where V
!

is the space of fixed points and (Vα
i

GV
−α

i

) is hyperbolic for i¯ 1,… , r.

Proof. Let © ,ª denote the symmetric bilinear form associated with q and let

� `Vα and w `Vβ. Since ρ(t) preserves q, we have

©�,wª¯©ρ(t) �, ρ(t)wª

¯©α(t) �, β(t)wª

¯α(t) β(t)©�,wª.

Hence if ©�,wª1 0 then β(t)α(t)¯ 1, that is, in additive notation, β¯®α. This

shows that Vα is orthogonal to Vβ for all β1®α ; hence the subspaces Vα
i

GV
−α

i

are

pairwise orthogonal. The same computation shows also that each Vα
i

is totally

isotropic since α
i
1®α

i
. *

Let M be a maximal torus of SO(V, q) containing ρ(T ). Let s¯ rank(M )¯
:dimV}29 and let χ

"
,…, χ

s
`X(M ) be such that ³χ

"
,…,³χ

s
are all the nonzero

weights for the action of M on V. It is easy to see directly that χ
"
,…, χ

s
is a basis for

X(M ). Since M preserves each factor in the decomposition (13), for each i ` ²1,… , n´,
there exists j ` ²1,… , r´ such that ρ*(χ

i
) ` ²α

j
,®α

j
, 0´. Replacing χ

i
by ®χ

i
if

necessary, we can assume that ρ*(χ
i
) ` ²α

j
, 0´.

L 5.5. Let α
"
,…,α

r
and χ

"
,…, χ

s
be as abo�e and let m

i
be the multiplicity

of α
i
. Let d¯ χ

"
…χ

s
. Then ρ*(d )¯m

"
α
"
…m

r
α
r
.

Proof. On the one hand, each of the subspaces Vα
j

of (13) has a decomposition

Vα
j

¯ G
ρ*(χi)=

α
j

Vχ
i

.

On the other hand, the weight spaces Vχ
i

have dimension 1. Thus there are exactly

m
j
weights χ

i
with ρ*(χ

i
)¯α

j
. *

R 5.6. Note that the class of ρ*(d ) in the quotient group X(T )}2X(T ) is

independent of the choices we have made to define d. We shall see below that this class

is exactly the obstruction for ρ to admit a lifting ρh :TMNSpin(V, q).

Let π :Spin(V, q)MNSO(V, q) be the canonical projection and let Mh ZSpin(V, q)

be the maximal torus with π(Mh )¯M. Identifying X(M ) with its image π*(X(M )), we

can regard X(Mh ) as a lattice in X(M )C1 containing X(M ).

L 5.7. The group X(Mh )}X(M ) is generated by the class of "

#
d¯ "

#
3

i
χ
i
.

Proof. It is well known from the theory of algebraic groups (see, for instance,

[13, Theorem 2.6]) that X(Mh ) can be identified with the lattice of fundamental weights
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of the root system associated with the Lie algebra MI(V, q), which is known to be D
s

if dimV¯ 2s and B
s

if dimV¯ 2s1. The lemma follows immediately from

the explicit description of the lattice of fundamental weights for D
s

and B
s

found

in the tables, for example [12, p. 294] (note that in the notation of [12], χ
i
¯ ε

i
and

"

#
d¯π

s
). *

The following result is certainly well known, but we have not been able to find it

explicitly in the literature.

P 5.8. Let H be a connected reducti�e group o�er k and let TZH be

a maximal torus. Let η :HMNSO(V ) be a rational representation. Then η lifts to

Spin(V ) if and only if ηr
T
:TMNSO(V ) lifts to Spin(V ).

Proof. The ‘only if ’ part being trivial, we shall only prove the ‘ if ’ part of the

statement.

Let us assume first that H is a semisimple algebraic group. Let p :Hh MNH be its

universal covering. Let Th ZHh be the preimage of T by p and let ηh :Hh MNSpin(V ) be

the lifting of η to Hh .
The subgroup ker p is central ; hence it is contained in Th . By hypothesis, ηh vanishes

on Th fker p¯ker p. Thus ηh factors through H.

Now suppose that H is reductive. Then the derived group H « of H is semisimple

and H¯Z(H )[H « with Z(H )fH « finite [3, 27.5].

Write T¯S[Z(H ), where S is a maximal torus in H «. Let η
"
:TMNSpin(V ) be

the lifting of ηr
T

given by our hypothesis and let η
#
:H «MNSpin(V ) be the lifting of

ηr
H « given by the semisimple case considered above. Notice that η

"
and η

#
coincide on

Z(H )fH « ; hence the map ηh (zh«)¯ η
"
(z) η

#
(h«) (z `Z(H ), h« `H «) is well defined and

is a homomorphism on H¯Z(H )[H «. *

We are now ready to prove the main theorem of this section.

T 5.9. Let G}k be a connected reducti�e group and let ρ :GMNSO(V, q)

be a representation rational o�er k. Let ³α
"
,³α

#
,… ,³α

r
be the set of nonzero weights

of ρ relati�e to some maximal torus TZG and let m
"
,m

#
,… ,m

r
be the corresponding

multiplicities.

Then there exists a k-homomorphism ρh :GMNSpin(V ) such that πa ρh ¯ ρ if and

only if 3r

i
m

i
α
i
` 2X(T ).

Proof. It is easy to see that since G is connected, the homomorphism ρh , if it

exists, is unique. It follows immediately from uniqueness that if ρ is defined over k,

then so is ρh , for it must be equal to all its Galois conjugates. Hence it is enough to

prove the theorem over k
s
.

Let M be the maximal torus of SO(V ) such that ρ(T )ZM. Let ρ*:X(M )MN
X(T ) be the map induced by ρ. By Proposition 5.8, it is enough to show that the

restriction of ρ to T can be lifted to ρh :TMNMh if and only if ρ*(d ) ` 2X(T ).

By duality, the map ρ :TMNMZSO(V ) can be lifted to Spin(V ) if and only if

ρ*:X(M )MNX(T ) can be extended to X(Mh ). Since X(Mh )¯X(M )"

#
d:, the

homomorphism ρ* can be extended to X(Mh ) if and only if ρ*(d ) ` 2X(T ). *
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6. The general case

Let (A, a) be a general pointed algebra. By Proposition 3.1, we can assume that

a `A is semisimple. The following lemma shows that we can also assume without loss

of generality that (A, a) is a twist of pointed algebra of the form (M
n
(k), b).

L 6.1. Let A be a central simple algebra o�er k and let a `A. Then there

exists b `M
n
(k), unique up to conjugacy, such that (A, a) is a twist of (M

n
(k), b).

Proof. Since A is a central simple algebra, there exists an isomorphism } :AC
k
s
MNM

n
(k

s
), where n is the degree of A over k. By the Skolem–Noether theorem,

γ(})}−" is an inner automorphism for all γ `Γ. In particular, }(a) and γ(}(a)) are

similar in M
n
(k

s
) for all γ `Γ. It follows that the elementary divisors associated with

}(a) have coefficients in k. Thus }(a) is similar to a matrix in M
n
(k). Uniqueness

follows from the fact that a similarity class is uniquely determined by its elementary

divisors. *

In this section we shall compare the quadratic forms Q
A,a

and Q
Mn(k),b

, where

(A, a) and (M
n
(k), b) are as in Lemma 6.1. For simplicity, we shall write Q

b
in place

of Q
Mn(k),b

, as we did in Section 4.

When n is odd, the situation is particularly simple.

P 6.2. If n is odd then Q
A,a

DQ
b
.

Proof. Let D be the division algebra in the same class of A in Br(k). It is well

known that any maximal subfield L of D is a splitting field for A. Such a field L has

odd degree over k, since D does. The forms Q
A,a

and Q
b
become isometric over L, so

by a theorem of Springer [16, Chapter 2, 5.4], Q
A,a

DQ
b
over k. *

For the case where n is even, we shall establish relations between the lower

Stiefel–Whitney invariants of Q
A,a

and Q
b
using Galois cohomology.

Let G be the automorphism group of the pointed algebra (M
n
, b), regarded as an

algebraic group over k. We shall first investigate the structure of G.

By the Skolem–Noether theorem, the elements of G are the inner automorphisms

of M
n
, and they must fix b. Hence

GDZGL
n

(b)}GL
"
,

where ZGL
n

(b) is the centralizer of b in GL
n

and GL
"

is the subgroup of scalar

matrices.

Since b is semisimple, the vector space V¯kn

s
is equal to the direct sum of its

eigenspaces V
"
,V

#
,… ,V

r
. Hence, over the separable closure k

s
, the group ZGL

n

(b)

admits the decomposition

ZGL
n

(b)¯0
r

i="

GL(V
i
). (14)

This shows that G is a connected reductive algebraic group.

Clearly the group G acts on M
n

by automorphisms of Q
b
, that is, we have GZ

O(Q
b
). Since G is connected, we must actually have GZSO(Q

b
). This simple

observation has a nontrivial consequence.
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P 6.3. w
"
(Q

A,a
)¯w

"
(Q

b
).

Proof. Let detk :H "(k,O(Q
b
))MNH "(k,:}2) be the map induced by the

determinant map O(Q
b
)MN:}2. It is easy to see directly on the cocycles that if c

q

is the class in H "(k,O(Q
b
)) corresponding to a quadratic form q, then w

"
(q)¯

w
"
(Q

b
)detk(c

q
). In particular, if c

q
is represented by a cocycle with values in SO(Q

b
),

as is the case for q¯Q
A,a

, then w
"
(q)¯w

"
(Q

b
). *

R 6.4. D. Lewis proved the equivalent of Proposition 6.3 using generic

splitting fields [7, Proposition 3.1].

Let G"¯ZGL
n

(b)fSL
n
. Observe that the restriction to G" of the canonical

projection ZGL
n

(b)MNG is an isogeny. Its kernel is µ
n
, the group of nth roots of

unity.

Let SZZGL
n

(b) be a maximal torus defined over k. Then T¯S}GL
"

and T"¯
SfSL

n
are maximal tori in G and G" respectively.

By (14), the rank of S is n, so S is conjugated in GL
n

to the group of diagonal

matrices D
n
, say S¯ gD

n
g−". Let π

"
,…,π

n
be the canonical projections D

n
MNGL

"

and define χ
i
:SMNGL

"
by χ

i
(t)¯π

i
(g−"tg) for 1% i% n (notice that the χ

i
are the

weights for S acting on kn

s
via the inclusion S9GL

n
).

The following result is well known (and easy to prove).

L 6.5. Let ρ :ZGL
n

(b)MNGL(M
n
) be the restriction of the adjoint

representation GL
n
MNGL(M

n
). Then the weights of ρ relati�e to S are χ

i
®χ

j
for

i, j¯ 1,… , n.

P 6.6. Let π :Spin(Q
b
)MNSO(Q

b
) be the canonical projection. Let

ρ :G"MNSO(Q
b
) be the adjoint representation. Then there exists a homomorphism

ρh :G"MNSpin(Q
b
) such that πa ρh ¯ ρ.

Proof. We shall verify the condition of Theorem 5.9. According to Lemma 6.5,

the nonzero weights of ρ are χ
i
®χ

j
(i1 j). Since the multiplicities of these weights are

1, by Theorem 5.9, the obstruction for the existence of ρh is given by the class of

ρ*(d )¯3
i!j

(χ
i
®χ

j
) in X(T ")}2X(T"). This class is shown below to be trivial :

ρ*(d )3 3
i!j

(χ
i
χ

j
) (mod2X(T "))

3 (n®1) (χ
"
…χ

n
) (mod2X(T "))

3 0 (mod2X(T ")). (15)

(Note that χ
"
…χ

n
¯ 0 in X(T ").) *

Let ρ :GMNSO(M
n
,Q

b
) be the representation given by ρ(g) (x)¯ gxg−". The

following diagram of algebraic groups over k is commutative and the rows are exact

sequences.

(16)

1

1

µn

µ2

G1 G 1

1Spin (Qb) SO (Qb)

ρρρ̃ ˜
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L 6.7. For n e�en, the induced map ρh :µ
n
MNµ

#
in (16) is nontri�ial.

Proof. By the same computation as in (15), we have ρ*(d )3 (n®1) (χ
"
…χ

n
)

(mod2X(T )). Since χ
"
…χ

n
1 0 in X(T ) and (n®1) is odd, ρ*(d ) ¡ 2X(T ). Thus,

by Theorem 5.9, the homomorphism ρ :GMNSO(Q
b
) cannot be lifted to Spin(Q

b
).

Hence ρh :µ
n
MNµ

#
is nontrivial, for otherwise ρh :G"MNSpin(Q

b
) would factor

through G. *

We are now ready to prove the main result of this section.

T 6.8. Let Q
b
and Q

A,a
be as abo�e. Then

w
#
(Q

A,a
)¯w

#
(Q

b
)

n(n®1)

2
[A],

where [A] is the class of A in the Brauer group Br(k)¯H #(k,GL
"
).

Proof. If n is odd, we have w
#
(Q

A,a
)¯w

#
(Q

b
) by Proposition 6.2. Note that in

this case (n(n®1)}2) [A]¯ 0, since the order of [A] is a divisor of n.

Let us now assume that n is even. The set H "(k,G) classifies all the pointed

algebras that are twists of (M
n
(k), b). Let [A, a] denote the cohomology class in

H "(k,G) associated with (A, a) and let [Q
A,a

] `H "(k,SO(Q
b
)) be the class associated

with the form Q
A,a

. Taking cohomology in (16), we obtain the commutative

diagram

(17)

H1(k, G ) H2(k, µn)

ρ*ρ*

H1(k, SO(Qb))

∂

∂ ! H2(k, µ2)

˜

where ¦ and ¦« are the coboundary maps.

It is easy to see that ρk[A, a]¯ [Q
A,a

] and that ¦[A, a]¯ [A], the class of A in

H #(k,µ
n
)¯Br

n
(k).

By Springer’s theorem [20, Formula 4.7] (in additive notation), we have

w
#
(Q

A,a
)¯w

#
(Q

b
)¦«ρk[A, a]

¯w
#
(Q

b
)ρh k[A], (18)

where the second equality uses the commutativity of diagram (17).

On the other hand, by Lemma 6.7, we have

ρh k[A]¯
n

2
[A].

Combining this equality with (18) we get

w
#
(Q

A,a
)¯w

#
(Q

b
)

n

2
[A]. *

Finally, putting together Theorem 6.8 and Theorem 4.6 we obtain the most

general formula.
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T 6.9. With the notation of Proposition 4.4 and Theorem 4.6, we ha�e

w
#
(Q

A,a
)¯w

#
(Q

"
)

n(n®1)

2
[A]w

#
("
#
tr

E «/k
(x#))


n(n®1)

2
(®1, det b)3

r

i="

Cor
Fi/k

(d
i
,®β

i
), (19)

where E «¯E [t]}(t#®b).

See Remark 4.7 for the computation of the terms w
#
(Q

"
) and w

#
("
#
tr

E«/k
(x#)) in (19).
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