REPRESENTATIONS OF DEFINITE BINARY QUADRATIC FORMS OVER $\mathbf{F}_q[t]$

JEAN BUREAU AND JORGE MORALES

ABSTRACT. In this paper, we prove that a binary definite quadratic form over $\mathbf{F}_q[t]$, where q is odd, is completely determined up to equivalence by the polynomials it represents up to degree 3m - 2, where m is the degree of its discriminant. We also characterize, when q > 13, all the definite binary forms over $\mathbf{F}_q[t]$ that have class number one.

1. Introduction

It is a natural question to ask whether binary definite quadratic forms over the polynomial ring $\mathbf{F}_q[t]$ are determined, up to equivalence, by the set of polynomials they represent. Here \mathbf{F}_q is the finite field of order q and q is odd.

The analogous question over \mathbb{Z} has been answered affirmatively – with the notable exception of the forms $X^2 + 3Y^2$ and $X^2 + XY + Y^2$, which have the same representation set but are not equivalent—by Watson [13]. Several related results appear in the literature as far back as the mid-nineteenth century (see [14]).

We begin with the easier question whether the discriminant of a binary definite quadratic form over $\mathbf{F}_q[t]$ is determined by its representation set. In the classical case over \mathbf{Z} , Schering [11] showed that this is the case up to powers of 2. The same type of ideas are used here to show in the polynomial context that if Q and Q' represent the same polynomials up to degree 3m-2, where $m = \max\{\deg \operatorname{disc}(Q), \deg \operatorname{disc}(Q')\}$, then $\operatorname{disc}(Q) = \operatorname{disc}(Q')$ (Proposition 3.5).

The main result of this paper is that if Q and Q' have the same discriminant and represent the same polynomials up to degree equal to their second successive minimum, then they are equivalent (Theorem 4.1). We show that if

©2010 University of Illinois

Received August 6, 2008; received in final form September 16, 2008.

²⁰⁰⁰ Mathematics Subject Classification. Primary 11E25, 11E12. Secondary 11E41, 11D09.

such forms were not equivalent, then there would be an elliptic curve over \mathbf{F}_q that has more rational points than allowed by Hasse's bound. If the condition on the discriminants is omitted, then having the same representation set up to degree 3m - 2 is enough to conclude equivalence (Theorem 4.2).

The same questions can be asked for ternary definite quadratic forms. We show that in this case, the representation *sets* (as opposed to the representation *numbers*), are not enough in general to determine the equivalence class. We do so by constructing a family of counterexamples (Corollary 5.3). It turns out, however, that the representation *numbers*, that is the number of times that each polynomial is represented, are sufficient to determine the equivalence class of a ternary form, as it will be showed in an upcoming paper [2].

Finally, in Section 6, we show, assuming q > 13, that if a definite binary quadratic form Q has class number one (i.e., its genus contains only one equivalence class), then deg disc $(Q) \le 2$ (Theorem 6.2).

We are indebted to the referee for her/his useful remarks.

2. Notation and terminology

The following notation will be in force throughout the paper:

- \mathbf{F}_q : The finite field of order q. We always assume q odd.
- A: The polynomial ring $\mathbf{F}_q[t]$.
- K: The field of rational functions $\mathbf{F}_q(t)$.
- δ : A fixed non-square of \mathbf{F}_q^{\times} .

A quadratic form Q over A is a homogeneous polynomial

$$Q = \sum_{1 \le i,j \le n} m_{ij} X_i X_j,$$

where $M = (m_{ij})$ is an $n \times n$ symmetric matrix with coefficients in A. The group $\mathbf{GL}_n(A)$ acts by linear change of variables on the set of such forms. Two forms in the same $\mathbf{GL}_n(A)$ -orbit are called *equivalent*. Two forms in the same $\mathbf{SL}_n(A)$ -orbit are called *properly equivalent*.

The *discriminant* of Q is defined by

$$disc(Q) = (-1)^{n(n-1)/2} det(M)$$

as an element of $A/\mathbf{F}_q^{\times 2}$. This is an invariant of the equivalence class of Q. The *representation set* of Q is the set of polynomials

 $V(Q) = \{Q(\mathbf{x}) : \mathbf{x} \in A^n\},\$

and the degree k representation set is

$$V_k(Q) = \{Q(\mathbf{x}) : \mathbf{x} \in A^n, \deg Q(\mathbf{x}) \le k\}.$$

The form Q is *definite* if it is anisotropic over the field $K_{\infty} = \mathbf{F}_q((1/t))$. This implies in particular that $n \leq 4$. A definite quadratic form Q is reduced if deg $m_{ii} \leq \text{deg } m_{jj}$ for $i \leq j$ and deg $m_{ij} < \text{deg } m_{ii}$ for i < j. Gerstein [5] showed that every definite quadratic form is equivalent to a reduced form and that two reduced forms in the same equivalence class differ at most by a transformation in $\mathbf{GL}_n(\mathbf{F}_q)$. In particular, the increasing sequence of degrees of the diagonal terms of a reduced form

$$(\deg m_{11}, \deg m_{22}, \ldots, \deg m_{nn})$$

is an invariant of its equivalence class. This sequence is called the *successive* minima of Q and will be denoted by $(\mu_1(Q), \mu_2(Q), \dots, \mu_n(Q))$.

In the case of binary forms, which are the main topic of this paper, we will often write

$$Q = (a, b, c)$$

for the quadratic form

$$Q = aX^2 + 2bXY + cY^2$$

For binary forms, it is easy to see that being definite means simply that $\operatorname{disc}(Q) = b^2 - ac$ has either odd degree or has even degree and nonsquare leading coefficient. Also, Q reduced translates into the condition

$$(2.1) \qquad \qquad \deg b < \deg a \le \deg c.$$

If Q = (a, b, c) is definite and reduced, then

(2.2)
$$\deg Q(x,y) = \max\{2\deg x + \mu_1, 2\deg y + \mu_2\}$$

for all $x, y \in A$, where μ_1 and μ_2 are the successive minima. When μ_1 and μ_2 have distinct parity, the equality (2.2) follows immediately from (2.1). When μ_1 and μ_2 have the same parity, (2.2) follows from (2.1) together with the fact that the leading coefficient of -ac is a non-square by definiteness.

3. Successive minima and discriminant

LEMMA 3.1. Let Q = (a, b, c) be a definite reduced form with successive minima $\mu_1 < \mu_2$. If $f \in A$ is represented by Q and $\mu_1 \leq \deg f < \mu_2$, then $f = r^2 a$ for some $r \in A$.

Proof. Write $f = ar^2 + 2brs + cs^2$, with $r, s \in A$. If deg $f < \mu_2$, then by (2.2) we must have s = 0, that is $f = r^2 a$.

LEMMA 3.2. Let Q and Q' be definite binary forms over A with discriminants d and d' respectively. Let $m = \max\{\deg d, \deg d'\}$. If $V_m(Q) = V_m(Q')$, then $\mu_i(Q') = \mu_i(Q)$ (i = 1, 2) and $\deg d = \deg d'$. Moreover, there are reduced bases in which the diagonal entries of the matrices of Q and Q' have the same leading coefficients. *Proof.* Let Q = (a, b, c) and Q' = (a', b', c') be in reduced form. Let $\mu_i = \mu_i(Q)$ and $\mu'_i = \mu'_i(Q)$ (i = 1, 2). Since a is represented by Q', we clearly have $\mu'_1 \leq \mu_1$. If $\mu'_2 > \mu_2$, then

$$\mu_1' \le \mu_1 \le \mu_2 < \mu_2',$$

and applying Lemma 3.1 to Q', we get $a = a'r^2$ and $c = a's^2$ for some $s, r \in A$. In particular, $\mu_1 \equiv \mu_2 \pmod{2}$. Let $k = (\mu_2 - \mu_1)/2$ and consider the expression

$$Q(t^k x, y) = t^{2k}ax^2 + 2t^kbxy + cy^2$$

with $x, y \in \mathbf{F}_q$. Using the inequality (2.1), we see that the coefficient of degree μ_2 of $Q(t^k x, y)$ is

(3.1)
$$a_{\mu_1}x^2 + c_{\mu_2}y^2,$$

where a_{μ_1} and c_{μ_2} are the leading coefficients of a and c, respectively. Since $a_{\mu_1}c_{\mu_2} \neq 0$, the quadratic form (3.1) is nondegenerate over \mathbf{F}_q , and therefore represents all elements of \mathbf{F}_q^{\times} . If we choose in particular x, y so that (3.1) is not in the square class of $a'_{\mu'_1}$, then $Q(t^k x, y)$ cannot be represented by Q', since otherwise it would be of the form r^2a' by Lemma 3.1. Hence $\mu'_2 \leq \mu_2$, and by symmetry $\mu_1 = \mu'_1$ and $\mu_2 = \mu'_2$. The equality deg $d = \deg d'$ follows immediately.

We can assume without loss of generality that a = a'. It remains to see that the leading coefficients of c and c' are in the same square class. When $\mu_1 \equiv \mu_2 \pmod{2}$, the leading coefficients of c and of c' are both in the square class of $-\delta a_{\mu_1}$, where $\delta \in \mathbf{F}_q$ is a nonsquare. When $\mu_1 \not\equiv \mu_2 \pmod{2}$, the leading coefficient of any element in V(Q') whose degree has the same parity as μ_2 must be in the same square class as the leading coefficient of c'. This applies in particular to c.

LEMMA 3.3. Let Q be a primitive definite binary quadratic form over A with discriminant d and let p be an irreducible factor of d. Then Q represents a polynomial not divisible by p of degree $< \deg d$.

Proof. Write Q in reduced form Q = (a, b, c). Clearly either a or c satisfies the condition.

LEMMA 3.4. Let Q be a primitive definite binary quadratic form over A with discriminant d. Let $p \in A$. Then each element of V(Q) is congruent modulo p to an element in $V_{2 \deg p + \deg d - 2}(Q)$.

Proof. Let $\{e_1, e_2\}$ be a reduced basis for Q. Each element of V(Q) is congruent modulo p to an element of the form $Q(x_1e_1 + x_2e_2)$ with $\deg x_i \leq \deg p - 1$. Clearly $\deg Q(x_1e_1 + x_2e_2) \leq 2(\deg p - 1) + \mu_2(Q) \leq 2(\deg p - 1) + \deg d$.

COROLLARY 3.5. Let Q and Q' be definite binary quadratic form over A with discriminants d, d', respectively. Let $m = \max\{\deg d, \deg d'\}$. If $V_{3m-2}(Q) = V_{3m-2}(Q')$, then $d' \in d \mathbf{F}_q^{\times 2}$.

Proof. The statement is trivial if m = 0, so we shall assume through the proof that $m \ge 1$.

Notice that the equality of representation sets is preserved by scaling; hence Q and Q' may be assumed primitive.

We shall prove that for each irreducible polynomial $p \in A$:

 $V_{3m-2}(Q) \subset V_{3m-2}(Q')$ implies $v_p(d') \le v_p(d)$,

where $v_p(\cdot)$ denotes the *p*-adic valuation. This will show that d = ud', where $u \in \mathbf{F}_{q}^{\times}$, and Lemma 3.2 shows that u must be a square.

Let $n = v_p(d)$ and $n' = v_p(d')$. If $\deg(p) > m$, then trivially n = n' = 0, so we may assume $\deg p \le m$.

Let L be the A-lattice on which Q is defined and let $M = (p^n L^{\sharp}) \cap L$, where L^{\sharp} is the dual lattice with respect to Q. Then it is easy to see that the form $Q_0 = p^{-n}Q|_M$ is integral and primitive and has discriminant d. By Lemma 3.3, Q_0 represents a polynomial u relatively prime to p with deg $u \leq m-1$. It follows that $p^n u$ is represented by Q and since deg $p^n u \leq 2m-1 \leq 3m-2$ it must also be represented by Q'. In particular, $p^n u$ must be represented p-adically by Q'. Over A_p , the form Q' is equivalent to a diagonal form $(a, 0, p^{n'}b)$ where a, b are p-adic units. Then there exist $x, y \in A_p$ such that

(3.2)
$$p^n u = ax^2 + p^{n'} by^2.$$

It follows from (3.2) that if n' > n, then $n = v_p(ax^2) \equiv 0 \pmod{2}$. Consider now the lattice $N = (p^{n/2}L^{\sharp}) \cap L$ and let $Q_1 = p^{-n}Q|_N$. One sees immediately that Q_1 is primitive, integral and $\operatorname{disc}(Q_1) = p^{-n}d$, so Q_1 is *p*-unimodular and thus $V(Q_1)$ contains representatives of all classes modulo *p*. In particular, Q_1 represents a polynomial *w* that is relatively prime to *p* and is in a different square class modulo *p* as *a*. Furthermore, by Lemma 3.4, *w* can be chosen so that deg $w \leq 2 \deg p + \deg(p^{-n}d) - 2$.

The polynomial $f = p^n w$ is obviously represented by Q and has degree $\leq 2 \deg p + \deg d - 2 \leq 3m - 2$, so it is also represented by Q'. Writing f as in (3.2) and dividing by p^n we see that w is in the same square class as a, which is a contradiction. Hence, $n' \leq n$.

4. Forms with the same representation sets in small degree

THEOREM 4.1. Assume q > 3. Let Q and Q' be two binary definite positive binary quadratic forms over A with the same discriminant and the same successive minima sequence (μ_1, μ_2) . Suppose that $V_{\mu_2}(Q) = V_{\mu_2}(Q')$. Then Q and Q' are equivalent. *Proof.* Let Q = (a, b, c) and Q' = (a', b', c') be reduced forms. There is no loss of generality in making the following assumptions: a = a' is monic and c, c' have same leading coefficients. When $\mu_1 \equiv \mu_2 \pmod{2}$, the leading coefficients of c and c' can be assumed to be equal to $-\delta$, for the fixed nonsquare $\delta \in \mathbf{F}_q$.

1. Suppose that $\mu_1 \not\equiv \mu_2 \pmod{2}$. Since c is also represented by Q, it is represented by Q'; hence, there are $f \in A$ and β $in\mathbf{F}_q$ such that $c = af^2 + 2b'f\beta + c'\beta^2$. The different parity of the successive minima implies that $\beta = \pm 1$. By changing b' into -b' if necessary, we can assume that $\beta = 1$. Let $\varphi = \begin{pmatrix} 1 & f \\ 0 & 1 \end{pmatrix} \in \mathbf{GL}_2(\mathbf{F}_q)$. Then $Q'' := Q \circ \varphi = (a, b'', c')$, for some $b'' \in A$. Since $\det(\varphi) = 1$, it follows that $\operatorname{disc}(Q'') = \operatorname{disc}(Q) = \operatorname{disc}(Q')$; hence, $ac' - b''^2 = ac' - b'^2$. This leads to $b'' = \pm b'$.

2. Suppose that $\mu_1 \equiv \mu_2 \pmod{2}$ and that $\mu_1 < \mu_2$. It follows from the equality of the discriminants that $\deg(c'-c) < \max\{\deg b, \deg b'\} < \deg a$.

If b = b' = 0, we conclude immediately that c = c' by the equality of the discriminants. So we may assume $b \neq 0$.

Consider all the elements $au^2 + 2bu + c \in V(Q)$ with $u \in \mathbf{F}_q$. By assumption, the equation

(4.1)
$$au^2 + 2bu + c = ax^2 + 2b'xy + c'y^2$$

is always solvable for some $x = x_k t^k + x_{k-1} t^{k-1} + \cdots + x_0 \in A$, where $k = (\mu_2 - \mu_1)/2$, and $y \in \mathbf{F}_q$.

Notice that for degree reasons, the polynomials a, b and c are linearly independent over \mathbf{F}_q (recall that we are assuming $b \neq 0$), hence the left hand side of (4.1) takes exactly q values as u runs over \mathbf{F}_q . The equality of the leading coefficients in (4.1) gives

(4.2)
$$-\delta = x_k^2 - \delta y^2.$$

It is a standard fact that the number of pairs (x_k, y) satisfying (4.2) is q+1 (see e.g., [6, Theorem 2.59]). Notice that if (x_k, y) is a solution of (4.2), then so is $(-x_k, y)$, thus the number of possible y's appearing in a solution of (4.2) is (q-1)/2 + 2 = (q+3)/2.

Since q > (q+3)/2 by hypothesis, there must be two different values of u on the left-hand side of (4.1) with the same y on the right-hand side. In other words, there exist $u, v \in \mathbf{F}_q$, $u \neq v$, such that the system

(4.3)
$$\begin{cases} au^2 + 2bu + c = ax^2 + 2b'xy + c'y^2, \\ av^2 + 2bv + c = az^2 + 2b'zy + c'y^2 \end{cases}$$

has a solution (x, y, z), with $x, z \in A$ and $y \in \mathbf{F}_q$. By subtracting the two lines of (4.3), we get

$$a(u^2 - v^2) + 2b(u - v) = a(x^2 - z^2) + 2b'(x - z)y.$$

By degree considerations $x^2 - z^2 = u^2 - v^2$ and hence x and z are constant. In particular $x_k = 0$ (since $k = (\mu_2 - \mu_1)/2 > 0$) and hence, by (4.2), we have $y^2 = 1$.

Going back to (4.1), we get

 $a(u^{2} - x^{2}) + 2(bu - b'xy) = c' - c.$

As observed earlier, $\deg(c'-c) < \max\{\deg b, \deg b'\} < \deg a$. Thus, the above equality implies $u^2 = x^2$. Thus, $2(bu - b'xy) = 2u(b \pm b') = c' - c$. Replacing b' by -b' if necessary, we can assume 2u(b + b') = c' - c. Multiplying by b - b' gives $2ua(c - c') = 2u(b^2 - b'^2) = (c' - c)(b - b')$ by the equality of the discriminants. Degree considerations again imply c = c' and $b = \pm b'$.

3. Suppose that $\mu_1 = \mu_2 = n$. Write

$$a = t^{n} + a_{n-1}t^{n-1} + \dots + a_{0},$$

$$c = -\delta t^{n} + c_{n-1}t^{n-1} + \dots + c_{0},$$

$$c' = -\delta t^{n} + c'_{n-1}t^{n-1} + \dots + c'_{0},$$

$$b = b_{k}t^{k} + \dots + b_{0},$$

$$b' = b'_{k}t^{k} + \dots + b'_{0},$$

where $k = \max\{\deg b, \deg b'\}$. If b = b' = 0, we are done, so we may assume $k \ge 0$ and $b'_k \ne 0$. Note that since $\operatorname{disc}(Q) = \operatorname{disc}(Q')$, we have $\operatorname{deg}(c - c') < k$ as in the previous case.

Since $V_n(Q) = V_n(Q')$, for any pair $(u, v) \in \mathbf{F}_q^2$, there exists a pair $(x, y) \in \mathbf{F}_q^2$ such that

$$(4.4) Q(u,v) = Q'(x,y).$$

Taking the coefficients of t^n and t^k in the above polynomials, we get the system of quadrics:

(4.5)
$$\begin{cases} u^2 - \delta v^2 = x^2 - \delta y^2, \\ a_k u^2 + 2b_k uv + c_k v^2 = a_k x^2 + 2b'_k xy + c_k y^2, \end{cases}$$

which defines an algebraic curve E in \mathbf{P}^3 . For every $(u, v) \in \mathbf{F}_q^2 \setminus \{0\}$, there is $(x, y) \in \mathbf{F}_q^2 \setminus \{0\}$ satisfying (4.5). Notice also that if a quadruplet (u, v, x, y)satisfies (4.5), so does (u, v, -x, -y) and that the two sides of the first equation are forms anisotropic over \mathbf{F}_q , so $|E(\mathbf{F}_q)| \geq 2(q+1)$.

If the curve E given by (4.5) were smooth, then it would be an elliptic curve and by the Hasse estimate [12, Chapter V] we would have $|E(\mathbf{F}_q)| \leq 2\sqrt{q} + q + 1$, which would contradict the above count. Thus, E cannot be a smooth curve.

It is also known that the intersection of two quadric hypersurfaces, say $Q_1 = 0, Q_2 = 0$, in \mathbf{P}^m is a smooth variety of codimension 2 if and only if the binary form det $(XQ_1 + YQ_2)$ of degree m + 1 has no multiple factor (see e.g., [4, Remark 1.13.1] or [7, Chapter XIII, Section 11]). In the case of our system

(4.5), by computing explicitly the discriminant of det $(XQ_1 + YQ_2)$, where Q_1, Q_2 are the two quaternary quadratic forms of (4.5), we get the condition (4.6) $\delta^4(b_k - b'_k)^4(b_k + b'_k)^4((a_k\delta + c_k)^2 - 4\delta b'_k^2)((a_k\delta + c_k)^2 - 4\delta b_k^2) = 0.$

Since δ is not a square in \mathbf{F}_q and $b'_k \neq 0$ by assumption, we must have either $b_k = \pm b'_k$ or $b_k = 0$ and $a_k \delta + c_k = 0$. We shall rule out the second possibility.

Since $V_n(Q) = V_n(Q')$, these sets span the same \mathbf{F}_q -subspace of A; in particular b' must be an \mathbf{F}_q -linear combination of a, b and c. Write

$$b' = \alpha a + \beta b + \gamma c,$$

with $\alpha, \beta, \gamma \in \mathbf{F}_q$. Taking terms of degree *n* gives

$$0 = \alpha - \delta \gamma,$$

which implies

$$b' = \gamma(\delta a + c) + \beta b.$$

Taking now terms of degree k we get

$$b_k' = \gamma(\delta a_k + c_k) + \beta b_k.$$

If $b_k = 0$ and $a_k \delta + c_k = 0$, then $b'_k = 0$, which is a contradiction with our assumption.

Thus, $b_k = \pm b'_k$ is the only possibility. Replacing b by -b if needed, we shall assume $b_k = b'_k$.

We shall now show that b = b'. Suppose by contradiction that $b \neq b'$ and let $m = \deg(b - b') < k$. Then, by the equality of the discriminants, $\deg(b^2 - b'^2) = m + k = n + \deg(c - c')$, which implies $\deg(c - c') < m$ and in particular $c_m = c'_m$.

Exactly the same argument that showed $b_k^2 = {b'}_k^2$ (just replace k by m in (4.5)) shows that $b_m^2 = {b'}_m^2$. Now consider the system

(4.7)
$$\begin{cases} a_m u^2 + 2b_m uv + c_m v^2 = a_m x^2 + 2b'_m xy + c_m y^2, \\ a_k u^2 + 2b_k uv + c_k v^2 = a_k x^2 + 2b'_k xy + c_k y^2. \end{cases}$$

Adding the two equations and combining the result with the first equation in (4.5) we get the system

(4.8)
$$\begin{cases} u^2 - \delta v^2 = x^2 - \delta y^2, \\ (a_k + a_m)u^2 + 2(b_k + b_m)uv + (c_k + c_m)v^2 \\ = (a_k + a_m)x^2 + 2(b'_k + b'_m)xy + (c_k + c_m)y^2, \end{cases}$$

Applying one more time the rational-point counting argument, this time to the above system, we conclude that $(b_m - b_k)^2 = (b'_m - b'_k)^2$, which yields $b_m b_k = b'_m b'_k$. Since $b_k = b'_k \neq 0$, we conclude $b_m = b'_m$, which contradicts the hypothesis that $m = \deg(b - b')$. Hence, b = b' as claimed.

Finally, putting together Proposition 3.5, Lemma 3.2, and Theorem 4.1, we get our main result.

THEOREM 4.2. Assume q > 3. Let Q and Q' be definite binary quadratic forms over A with discriminants d and d' respectively. Let $m = \max\{\deg d, \deg d'\}$. If $V_{3m-2}(Q) = V_{3m-2}(Q')$, then Q and Q' are equivalent.

5. The Ternary case

In this section, we give an example showing that in the case of ternary definite forms over A, the representation *sets* in general do not determine the discriminant, much less the equivalence class of the form.¹

LEMMA 5.1. Let $Q_a = X^2 + tY^2 - \delta(t + a^2)Z^2$, where $a \in \mathbf{F}_q^{\times}$. Then a polynomial $f \in A$ is represented by Q_a over A if and only if it is represented by Q_a over $A_{(t)} = \mathbf{F}_q[[t]]$.

Proof. By [3, Theorem 3.5], the form Q_a has class number one, so a polynomial $f \in A$ is represented by Q_a over A if and only if it is represented locally everywhere. At primes \mathfrak{p} not dividing disc $(Q_a) = \delta t(t + a^2)$, Q_a is unimodular and isotropic, hence represents everything. At $\mathfrak{p} = (t + a^2)$, since $t \equiv -a^2 \pmod{\mathfrak{p}}$, Q_a is equivalent to $X^2 - Y^2 - \delta(t + a^2)Z^2$ which also represents everything since $X^2 - Y^2$ already does so. Thus, the only condition is at the prime $\mathfrak{p} = (t)$ (the condition at ∞ is automatic by reciprocity).

COROLLARY 5.2. For each $a \in \mathbf{F}_q^{\times}$, let Q_a be as in Lemma 5.1. The representation set $V(Q_a)$ does not depend upon the choice of a.

Proof. By virtue of Lemma 5.1, it is enough to notice that Q_a is equivalent to $X^2 + tY^2 - \delta Z^2$ over $\mathbf{F}_q[[t]]$, which is independent of a.

COROLLARY 5.3. Assume $q \ge 5$ and choose $a, b \in \mathbf{F}_q^{\times}$ such that $a^2 \ne b^2$. Then $V(Q_a) = V(Q_b)$ but $\operatorname{disc}(Q_a) \ne \operatorname{disc}(Q_b)$.

Proof. Clear by Corollary 5.2.

6. Primitive binary forms of class number one

In this section, we characterize primitive binary quadratic forms over $A = \mathbf{F}_q[t]$ of class number one. Although it should be possible, in principle, to deduce the results below from general formulas such as the ones in [9], we prefer to give here a direct argument.

We begin by a statement on orders in quadratic extensions of $K = \mathbf{F}_q(t)$.

COROLLARY 6.1. Let $D = f^2 D_0 \in A$, where D_0 is a square-free polynomial of either odd degree or of even degree and nonsquare leading coefficient, and $f \in A$ is a monic polynomial. Let $B = A[\sqrt{D}]$. Assume that Pic(B) is an Abelian 2-group and has at most one cyclic component of order 4 and all other components of order 2. Then

¹ However, the representation *numbers* do determine the equivalence class of such forms as showed in [1], [2].

(1) If deg $D_0 > 0$ and q > 13, then D is square-free (i.e., f = 1) and deg $D \le 2$.

(2) If deg $D_0 = 0$ and q > 5, then deg $D \le 2$.

Proof. Let $\mathfrak{O} = A[\sqrt{D_0}]$. Notice that \mathfrak{O} is the maximal A-order in the field $E = K(\sqrt{D_0})$ and that f is the conductor of B in \mathfrak{O} .

There is an exact sequence

(6.1)
$$1 \longrightarrow \frac{\mathfrak{O}^{\times}}{B^{\times}} \longrightarrow \frac{(\mathfrak{O}/f\mathfrak{O})^{\times}}{(A/fA)^{\times}} \longrightarrow \operatorname{Pic}(B) \longrightarrow \operatorname{Pic}(\mathfrak{O}) \longrightarrow 1.$$

1. Assume deg $D_0 > 0$. Then $\mathfrak{O}^{\times} = B^{\times} = \mathbf{F}_q^{\times}$ and we get a shorter exact sequence

(6.2)
$$1 \longrightarrow \frac{(\mathfrak{O}/f\mathfrak{O})^{\times}}{(A/fA)^{\times}} \longrightarrow \operatorname{Pic}(B) \longrightarrow \operatorname{Pic}(\mathfrak{O}) \longrightarrow 1.$$

Let *h* be the radical of *f* (i.e., the product of all irreducible monic divisors of *f*). The subgroup $(1 + h\mathfrak{O}/f\mathfrak{O})/(1 + hA/fA)$ of $(\mathfrak{O}/f\mathfrak{O})^{\times}/(A/fA)^{\times}$ has order $q^{\deg f - \deg h}$ and is a 2-group by the exact sequence (6.2), so we must have f = h, i.e., *f* is square-free.

Let π be an irreducible factor of f of degree d. Then $(\mathfrak{O}/\pi\mathfrak{O})^{\times}/(A/\pi A)^{\times}$ is a direct factor of $(\mathfrak{O}/f\mathfrak{O})^{\times}/(A/fA)^{\times}$ and is cyclic of order $q^d - 1$ or $q^d + 1$ (according to whether π is split or inert in E) or is isomorphic to the additive group \mathbf{F}_{q^d} when π is ramified. Clearly, the latter case is impossible since qis odd and in the first two cases we must have $q^d \pm 1 = 2$ or 4, which is also impossible when q > 5. Hence, f = 1, D is square-free and $B = \mathfrak{O}$.

Let r be the number of irreducible factors of D. It is well known that the 2-rank of $\operatorname{Pic}(\mathfrak{O})$ is r-1. Hence, under our present hypotheses, $|\operatorname{Pic}(\mathfrak{O})| \leq 2^r$. The order of $\operatorname{Pic}(\mathfrak{O})$ is essentially the class number h_E of E; more precisely $|\operatorname{Pic}(\mathfrak{O})| = h_E$ if deg D is odd and $|\operatorname{Pic}(\mathfrak{O})| = 2h_E$ if deg D is even [10, Proposition 14.7].

Using the lower bound for h_E given by the Riemann Hypothesis [10, Proposition 5.11], we get

$$(\sqrt{q}-1)^{\deg D-1} \leq 2^r$$
 if deg is odd;
 $(\sqrt{q}-1)^{\deg D-2} \leq 2^{r-1}$ if deg *D* is even.

When deg $D \ge 3$, using the above inequalities and the obvious fact that $r \le \deg D$, we get easily the inequality $\log_2(\sqrt{q}-1) \le 3/2$, which is impossible if q > 13.

2. Assume deg $D_0 = 0$ and deg f > 0. Then $\mathfrak{O} = \mathbf{F}_{q^2}[t]$, so Pic(\mathfrak{O}) = {1}, $\mathfrak{O}^{\times} = \mathbf{F}_{q^2}^{\times}$ and $B^{\times} = \mathbf{F}_q^{\times}$. The exact sequence (6.1) becomes

(6.3)
$$1 \longrightarrow \frac{\mathbf{F}_{q^2}^{\times}}{\mathbf{F}_q^{\times}} \longrightarrow \frac{(\mathfrak{O}/f\mathfrak{O})^{\times}}{(A/fA)^{\times}} \longrightarrow \operatorname{Pic}(B) \longrightarrow 1.$$

Let p be the characteristic of \mathbf{F}_q . Taking p-parts in the sequence above (i.e., tensoring by \mathbf{Z}_p), we get $[(\mathfrak{O}/f\mathfrak{O})^{\times}/((A/fA)^{\times})]_p = 0$. Exactly the same argument as in Case 1 shows that f must be square-free. Hence,

(6.4)
$$\frac{(\mathfrak{O}/f\mathfrak{O})^{\times}}{(A/fA)^{\times}} = \prod_{\pi|f} \frac{(\mathfrak{O}/\pi\mathfrak{O})^{\times}}{(A/\pi A)^{\times}},$$

where π runs over all irreducible monic divisors of f.

Notice that the factors on the right-hand side of (6.4) are cyclic of order $q^{\deg \pi} + 1$ if $\deg \pi$ is odd, and $q^{\deg \pi} - 1$ if $\deg \pi$ is even.

Let π be an irreducible factor of f of even degree, say deg $\pi = 2m$, then by the exact sequence (6.3), $(q^{2m} - 1)/(q + 1)$ must be a 2-power ≤ 4 . This is possible only when m = 1 and q = 3 or q = 5. Similarly, if deg π is odd, say deg $\pi = 2m + 1$, then $(q^{2m+1} + 1)/(q + 1)$ must be a 2-power, but it is always an odd number, so the only possibility is m = 0, i.e. deg $\pi = 1$. Thus, when q > 5, f is a product of linear factors.

If q+1 is divisible by an odd prime ℓ , then, since Pic(B) is a 2-group, taking ℓ -parts in (6.3) shows that there must be only one factor in the decomposition (6.4), i.e., f is irreducible (necessarily linear as shown above).

The only case left is when q + 1 is a 2-power. Notice that the factors on the right-hand side of (6.4) are all cyclic of order q + 1, since all the π 's are linear. By the hypothesis on $\operatorname{Pic}(B)$, if there is more than one factor in (6.4), then q + 1 is a 2-power ≤ 4 . This is impossible if q > 3. Thus, also in this case, f has only one irreducible, necessarily linear, factor.

Let (V,Q) be a quadratic space over the field $K = \mathbf{F}_q(t)$. Let $L \subset V$ be an A-lattice and let $\operatorname{Gen}(L)$ be the set of lattices of V in the genus of L. The orthogonal group $\mathbf{O}(V,Q)$ acts on $\operatorname{Gen}(L,Q)$ and the number of orbits (which is well known to be finite) is called the *class number* of L and will be denoted by h(L,Q), or simply h(Q) when the underlying lattice is obvious. The number of orbits of the action of the subgroup $\mathbf{SO}(V,Q)$ on $\operatorname{Gen}(L,Q)$ will be denoted by $h^+(L,Q)$. Since $\mathbf{SO}(V,Q)$ has index 2 in $\mathbf{O}(V,Q)$, we have $h^+(L,Q) \leq 2h(L,Q)$.

If (L, Q) is primitive of rank 2, then $h^+(L, Q)$ depends only on $D = \operatorname{disc}(L, Q)$. Indeed, let G_D be the set of classes of primitive binary quadratic forms of discriminant D up to orientation-preserving (i.e., of determinant 1) linear transformation. This set is a group for Gaussian composition [8] and there is a natural exact sequence relating G_D and $\operatorname{Pic}(B)$, where $B = A[\sqrt{D}]$, (see [8, Section 6]), which in our situation is

(6.5)
$$1 \longrightarrow \mathbf{F}_q^{\times} / \mathbf{F}_q^{\times 2} \longrightarrow G_D \longrightarrow \operatorname{Pic}(B) \to 1.$$

The principal genus consists of forms in the genus of the norm form $X^2 - DY^2$ of *B*, and their classes in G_D form a subgroup G_D^0 . The different genera are cosets for this subgroup and hence they have all the same number of classes, i.e. $h^+(L,Q) = |G_D^0|$ for all primitive quadratic lattices (L,Q) of discriminant D. It is also well known (and easy to see) that G_D/G_D^0 is 2-elementary.

THEOREM 6.2. Let Q be a definite primitive binary quadratic form over A, where q > 13. If h(Q) = 1, then deg disc $(Q) \le 2$.

Proof. If h(Q) = 1, then $h^+(Q) = |G_D^0| \le 2$ and by the remarks above G_D is an Abelian 2-group with at most one cyclic component of order 4 and all others of order 2. So is Pic(B) by the exact sequence (6.5), and we conclude by Proposition 6.1.

REMARK. Theorem 6.2 is incorrect without the assumption q > 13. Here is a counterexample for q = 13.

Let $D = t(t^2 - 1)$ and let E be the elliptic curve over \mathbf{F}_{13} given by the equation $s^2 = D$. Let $B = A[\sqrt{D}]$. Then $\operatorname{Pic}(B) = E(\mathbf{F}_{13}) \cong \mathbf{Z}/2\mathbf{Z} \oplus \mathbf{Z}/4\mathbf{Z}$. It is easy to see that the exact sequence (6.5) is split in this case, so $G_D^0 = 2G_D = 2E(\mathbf{F}_{13}) \cong \mathbf{Z}/2\mathbf{Z}$. Let Q_0 be a form whose class $[Q_0]$ generates G_D^0 . Then the genus of any form Q of discriminant D consists of the classes [Q] and $[Q'] = [Q] + [Q_0]$ in G_D . If [Q] has order 4, then [Q'] = -[Q] i.e., Q and Q' are (improperly) equivalent, and thus h(Q) = 1. An explicit example is $Q = (t - 5, 4, -(t^2 + 5t + 11))$, which corresponds to the point P = (5, 4) of order 4 in $E(\mathbf{F}_{13})$.

Theorem 6.2 gives a converse of a result of Chan–Daniels [3]. We summarize this in the following statement.

COROLLARY 6.3. Assume q > 13. A binary definite quadratic form Q over A of discriminant D has class number one if and only if it satisfies one of the following conditions:

- (1) $\deg D \leq 1$.
- (2) deg D = 2 and $\mu_1(Q) = 1$.
- (3) deg D = 2, $\mu_1(Q) = 0$ and D is reducible.

Proof. The "if" part follows from [3, Lemma 3.7] and the ensuing remark. The "only if" part is a consequence of Theorem 6.2. \Box

References

- J. Bureau, Representation properties of definite lattices in function fields, Ph.D. thesis, Louisiana State University, 2006.
- [2] J. Bureau and J. Morales, *Isospectral definite ternary* $\mathbf{F}[t]$ *-lattices*, to be published in J. Number Theory, 2009.
- [3] W. K. Chan and J. Daniels, Definite regular quadratic forms over $\mathbb{F}_q[T]$, Proc. Amer. Math. Soc. **133** (2005), 3121–3131 (electronic). MR 2160173
- [4] J.-L. Colliot-Thélène, J.-J. Sansuc and P. Swinnerton-Dyer, Intersections of two quadrics and Châtelet surfaces. I, J. Reine Angew. Math. 373 (1987), 37–107. MR 0870307
- [5] L. J. Gerstein, Definite quadratic forms over $\mathbb{F}_q[x]$, J. Algebra 268 (2003), 252–263. MR 2005286

- [6] _____, Basic quadratic forms, Graduate Studies in Mathematics, vol. 90, Amer. Math. Soc., Providence, RI, 2008. MR 2396246
- [7] W. V. D. Hodge and D. Pedoe, Methods of algebraic geometry. Vol. II. Book III: General theory of algebraic varieties in projective space. Book IV: Quadrics and Grassmann varieties, Cambridge, Univ. Press, 1952. MR 0048065
- [8] M. Kneser, Composition of binary quadratic forms, J. Number Theory 15 (1982), 406–413. MR 0680541
- U. Korte, Class numbers of definite binary quadratic lattices over algebraic function fields, J. Number Theory 19 (1984), 33–39. MR 0751162
- [10] M. Rosen, Number theory in function fields, Graduate Texts in Mathematics, vol. 210, Springer, New York, 2002. MR 1876657
- [11] M. Schering, Théorèmes relatifs aux formes quadratiques qui représentent les mêmes nombres, J. Math. Pures Appl. 2 (1859), 253–269.
- [12] J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer, New York, 1986. MR 0817210
- G. L. Watson, Determination of a binary quadratic form by its values at integer points, Mathematika 26 (1979), 72–75. MR 0557128
- [14] _____, Acknowledgement: "Determination of a binary quadratic form by its values at integer points" [Mathematika 26 (1979), 72–75; MR 81e:10019], Mathematika 27 (1980), 188 (1981). MR 0557128

JEAN BUREAU, MATHEMATICS DEPARTMENT, LOUISIANA STATE UNIVERSITY, BATON ROUGE, LA 70803-4918, USA

E-mail address: jbureau@math.lsu.edu

JORGE MORALES, MATHEMATICS DEPARTMENT, LOUISIANA STATE UNIVERSITY, BATON ROUGE, LA 70803-4918, USA

E-mail address: morales@math.lsu.edu