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1. Introduction

It has been a long-standing question to determine whether integral definite Z-lattices are deter-
mined up to isometry by their theta series. In 1979, Watson [16] proved that definite binary Z-lattices
are determined by their primitive representations. The case of ternary lattices had to wait until 1997
to be solved by Schiemann [15] by means of extensive computations. He proved that definite ternary
Z-lattices are indeed determined by their representation numbers. This is not the case for forms of
rank ! 4, where counterexamples have been found (cf. [3,8,14]).

In this paper we prove the analogue of Schiemann’s theorem for definite ternary Fq[t]-lattices,
where Fq is a finite field of odd characteristic. We show first that the representation numbers de-
termine invariants such as the successive minima and the genus (Sections 3 and 4). Our proof that
the representation numbers determine the equivalence class requires different arguments according
to different configurations of the successive minima (Section 6). When the successive minima have
alternating parity, we use a theorem of Carlitz based on Fourier inversion and we are able to con-
clude equivalence under the hypothesis that the ground field Fq is large enough (see Theorem 6.17
for a precise statement). This condition is not required in the two other cases (Theorems 6.5 and 6.9).
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2. Notation and terminology

The following notation will be in force throughout the paper:

Fq: The finite field of order q. We always assume q odd.
A: The polynomial ring Fq[t].
K : The field of rational functions Fq(t).
δ: A fixed non-square of F×

q .

Let L be an A-lattice of finite rank n and let Q be a quadratic form on L. The form Q is definite if
it is anisotropic over the field K∞ = Fq((1/t)). This implies in particular that n " 4.

Let B(x,y) = Q (x + y) − Q (x) − Q (y) be the associated symmetric bilinear form. Djoković [5]
showed that if (L, Q ) is definite, then there exists an A-basis v1, . . . ,vn of L such that the Gram
matrix M = (mij), where mij = 1

2 B(vi,v j), satisfies

degmii " degmjj for i " j and degmij < degmii for i < j. (1)

Such a basis is called reduced. Gerstein [6, Theorem 2] showed that if v′
1, . . . ,v

′
n is another reduced

basis for (L, Q ), then

v′
j =

n∑

i=1

uijvi,

where uij ∈ Fq .
In particular, the increasing sequence of degrees of the diagonal terms of a reduced Gram matrix

(degm11,degm22, . . . ,degmnn)

is an invariant of the equivalence class of the quadratic form. This sequence is called the sequence of
successive minima of Q and will be denoted by

(
µ1(L, Q ),µ2(L, Q ), . . . ,µn(L, Q )

)
.

The representation numbers of (L, Q ) are defined by

R(L, Q ,a) =
∣∣{v ∈ L: Q (v) = a

}∣∣ (a ∈ K ). (2)

It is easy to see that if (L, Q ) is definite, the above numbers are finite. Clearly they depend only
on the isometry class of (L, Q ).

Definition 1. Two definite quadratic forms (L, Q ) and (L′, Q ′) are called isospectral1 if R(L, Q ,a) =
R(L′, Q ′,a) for all a ∈ K .

Following Conway’s [4] terminology, we shall call an invariant of (L, Q ) audible if it is determined
by the representation numbers. The main goal of this paper is to show that the equivalence class of a
ternary definite quadratic form over A is audible. We shall do this in several steps.

1 The terminology comes from the fact that for quadratic forms over Z the representation numbers are naturally the dimen-
sions of the eigenspaces of a Laplace operator, see [9].



J. Bureau, J. Morales / Journal of Number Theory 129 (2009) 2457–2473 2459

3. The successive minima

Let (L, Q ) be a definite quadratic form over A. For m ∈ Z, define

Lm =
{
v ∈ L: deg Q (v) "m

}
. (3)

It is easy to see that the Lm are finite-dimensional Fq-subspaces of L and that they form an increasing
sequence whose union is L. We encode their successive dimensions into the formal power series

SL(u) =
∑

m∈Z
dim(Lm/Lm−1)um and TL(u) =

∑

m∈Z
dim(Lm)um. (4)

Notice that both SL(u) and TL(u) are Laurent series in u since Lm = {0} for m ' 0 (we do not assume
that Q takes integral values on L). It is clear from their definition that both series are audible.

Proposition 3.1.With the notation above we have

SL(u) = uµ1 + uµ2 + uµ3

1− u2 and TL(u) = uµ1 + uµ2 + uµ3

(1− u2)(1− u)
,

where (µ1,µ2,µ3) are the successive minima of (L, Q ). In particular the sequence (µ1,µ2,µ3) is audible.

Proof. Let v2,v2,v3 be a reduced basis of L. Notice that since Q is definite, µ1,µ2,µ3 cannot all
have the same parity.

Suppose first that µ1 ≡ µ2 (mod 2). If m < µ1, then clearly Lm is trivial. When m ≡ µ1 (mod 2)
and µ1 "m < µ2, the quotient space Lm/Lm−1 is 1-dimensional (with basis {t(m−µ1)/2v1}). When m ≡
µ1 (mod2) and m ! µ2, the quotient Lm/Lm−1 is 2-dimensional (with basis {t(m−µ1)/2v1,t(m−µ2)/2v2}).
When m ≡ µ3 (mod 2), the quotient Lm/Lm−1 is trivial if m < µ3 and 1-dimensional if m ! µ3 (with
basis {t(m−µ3)/2v3}).

Putting this information into the series, we get

SL(u) =
(µ2−µ1)/2−1∑

k=0

uµ1+2k + 2
∞∑

k=0

uµ2+2k +
∞∑

k=0

uµ3+2k

= uµ1 + uµ2 + uµ3

1− u2 .

The case when µ1 )≡ µ2 (mod 2) is computed similarly. We spare the reader the details. The
second identity follows from the obvious relation SL(u) = (1 − u)TL(u). !

4. The genus

Let p be a prime ideal of A and let ξ be a root (in an algebraic closure of Fq) of a generator of p.
The canonical character χp : Kp → C× is the homomorphism defined by

χp( f ) = exp
(
2π i Tr

(
Resξ ( f )

)
/p

)
,

where Resξ ( f ) ∈ Fq(ξ) is the residue of f at ξ (i.e. the coefficient of (T − ξ)−1 in the Laurent series
expansion of f at ξ ) and Tr : Fq(ξ) → Fp is the trace to the prime field Fp . Clearly the definition is
independent of the choice of the root ξ , since residues at different roots are conjugate over Fq . Notice
that χp is trivial on Ap; in fact Ap is the largest fractional ideal of Kp on which χp is trivial.
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Let (W , Q ) be a definite quadratic space over K and let L ⊂ W be an A-lattice, not necessarily
integral with respect to Q .

Define

µ(L, Q ,χp) = lim
m→∞

1
|Lm|

∑

x∈Lm

χp
(
Q (x)

)
.

We shall see below that this is a stabilizing limit. We first notice that this “average”, µ(L, Q ,χp), is
audible. Indeed, we have

µ(L, Q ,χp) = lim
m→∞

1
|Lm|

∑

x∈Lm

χp
(
Q (x)

)

= lim
m→∞

1
|Lm|

∑

deg(a)!m

R(L,a)χp(a).

We now express µ(L, Q ,χp) in terms of local data. Let L% be the dual of L with respect to Q . Since L
is the union of the Lm , for m large enough, the restriction Lm → L/(L% ∩ L) of the canonical projection
is surjective. Thus

1
|Lm|

∑

x∈Lm

χp
(
Q (x)

)
= |Lm ∩ L%|

|Lm|
∑

x∈Lm/Lm∩L%

χp
(
Q (x)

)

= 1
|L : L ∩ L%|

∑

x∈L/L∩L%

χp
(
Q (x)

)

= 1

|Lp : Lp ∩ L%
p|

∑

x∈Lp/Lp∩L%
p

χp
(
Q (x)

)
. (5)

Theorem 4.1. Let π be a monic generator of p. The sequence µ(L,π−k Q ,χp) (k = 0,1,2, . . .) determines
completely the local class (Lp, Q ).

Proof. Let (Lp, Q ) = (M1, Q 1) ⊥ (M2, Q 2) ⊥ · · · ⊥ (Mr, Qr) be the Jordan decomposition. Each Mi is
p-modular, i.e. M%

i = π−νi Mi , and we assume ν1 < ν2 < · · · < νr . We define µ for local lattices using
the last line of (5). Then we have

µ
(
Mi,π

−k Q i,χp
)
=

{
[Mi : πk−νi Mi]−1 ∑

x∈Mi/π
k−νi Mi

χp(π−k Q (x)) if k ! νi;
1 if k < νi .

We can express this further using the invariant γp defined in [13, Ch. V, §8] (see also [17, §24]). Then
we have

µ
(
Mi,π

−k Q i,χp
)
=

{ [Mi : πk−νi Mi]−1/2γp(π−k Q i) if k ! νi;
1 if k < νi .

(6)

The invariant γp(π−k Q i) is a 4th root of unity and depends only on the class of π−k Q i over the
field Kp (actually, only on its Witt class) [13, Chapter 5]. In particular |γp(π−k Q i)| = 1, thus
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logq
∣∣µ

(
Mi,π

−k Q i,χp
)∣∣ = −mi degπ

2
sup{0,k − νi},

where mi is the rank of Mi and logq is the logarithm in base q. Using the obvious fact that µ is
compatible with orthogonal sums, we get

logq
∣∣µ

(
L,π−k Q ,χp

)∣∣ = −
r∑

i=1

mi degπ

2
sup{0,k − νi}. (7)

As observed earlier, the left-hand side of (7) is audible as a function of k, then so is the right-hand
side. The functions fν : Z → R given by fν(k) = sup{0,k − ν} are linearly independent, so the expres-
sion of logq |µ(L,π−k Q ,χp)| in (7) as linear combination of these functions is unique; it follows that
the numbers ν1, ν2, . . . , νr and the ranks m1,m2, . . . ,mr of the Jordan factors of Lp are audible.

It is left to show that det(Mi, Q i) is audible. Consider the case i = 1 and k = ν1 + 1. Let F =
π−ν1 Q 1 (note that F is unimodular on M1). By (6), we have

µ
(
L,π−ν1−1Q ,χp

)
= µ

(
M1,π

−1F ,χp
)

= q−m1 degπ/2γp
(
π−1F

)
. (8)

The invariant γp satisfies γp(〈a〉)γp(〈b〉) = γp(〈ab〉)(a,b)p , where (a,b)p is the Hilbert symbol
[17, §28, p. 176]. Applying this identity, we get

γp
(
π−1F

)
= γp

(
〈π〉

)m1γp(F )(det F ,π)p,

where 〈π〉 is the rank-one form π X2. Since F is unimodular on M1, γp(F ) = 1, so γp(π−1F ) =
γp(〈π〉)m1 (det F ,π)p . It follows from this and (8) that the class of (M1, Q 1) is audible. We continue
similarly taking successively k = ν2 + 1, . . . , νr + 1. !

Theorem 4.1 has two immediate consequences:

Corollary 4.2. The genus of (L, Q ) is audible.

Corollary 4.3. The discriminant of (L, Q ) is audible.

5. The theta series and the adjoint form

Let (L, Q ) be a definite ternary A-lattice. We define the theta series of (L, Q ) as in Rück [12] and
Rosson [11]. We shall refer to these papers for details of some computations.

The analogue of the Poincaré complex half-plane is H = SL2(K∞)/SL2(O∞). A complete set of
coset representatives for H is the set

D =
{[

y xy−1

0 y−1

]
: y = tm, m ∈ Z, x ∈ t2m+1A

}
. (9)

Let x = ∑n
i=−∞ xiti ∈ K∞ . We define a character of e : K∞ → C× by

e{x} = exp
(
2iπ Tr(x1)/p

)
,
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where Tr stands for the trace of Fq to its prime subfield and p is the characteristic of Fq . Let Ψ denote

the characteristic function of O∞ . For z =
( y xy−1

0 y−1

)
∈ H and for a lattice L, we define the theta series

of L by

θL(z) =
∑

v∈tL
Ψ

(
y2Q (v)

)
e
{
xQ (v)

}

=
∑

w∈L

Ψ
(
t2 y2Q (w)

)
e
{
t2xQ (w)

}
.

It is readily checked that θL is a function on H, i.e. does not depend on the chosen matrix represen-
tatives. The theta series determines the representation numbers and conversely. Indeed, for y = t−m ,
we have

θL(z) =
∑

v∞(a)"2m−2

R(L,a) e
{
xt2a

}
. (10)

It is clear from this that the representation numbers R(L,a) can be recovered from θL(z) by Fourier
inversion.

Let dv be an additive Haar measure on V∞ . For a locally constant compactly supported function f
on V∞ , we define its Fourier transform by

f̂ (w) =
∫

V∞

f (v)e
{
−B(v,w)

}
dv,

where B is the bilinear form associated to Q . We shall further assume that the Haar measure dv is
self-dual, i.e. it has been normalized so that

ˆ̂f (v) = f (−v). (11)

This is equivalent to saying that the volume with respect to dv of any O∞-lattice M ⊂ V∞ satisfies

vol(M)vol(M∗) = 1,

where M∗ = {w ∈ V∞: B(w,M) ⊂ O∞}.

Proposition 5.1. Let G, H ∈ K∞ , H )= 0, be such that v∞(G) = g > h = v∞(H). Let ϕ : V∞ → C be the
function defined by ϕ(v) = Ψ (Q (v)G)e(Q (v)H). Then the Fourier transform of ϕ is given by

ϕ̂(w) = IΨ
(

G
H2 Q (w)

)
e
(

− 1
H

Q (w)

)
, (12)

where I = |H|−3/2
∞ γ∞(HQ ).

Proof. Essentially the same computation as in [11, Theorem 3.2], shows (12) with

I =
∫

V∞

Ψ
(
Q (v)G

)
e
(
Q (v)H

)
dv.
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We shall evaluate I explicitly. Since Q is definite, there exists a unique O∞-lattice M ⊂ V∞ maximal
with respect to the property GQ (M) ⊂ O∞ . Then

I =
∫

M

e
(
Q (v)H

)
dv.

We shall now see that the form HQ is integral on H−1M∗ . On the one hand, since g > h we have
H−1M∗ = (H−1G)(G−1M∗) ⊂ t−1G−1M∗ . On the other hand, since M is maximal integral with respect
to GQ , we have t−1G−1M∗ ⊂ M . Thus

I = vol
(
H−1M∗)[M : H−1M∗]1/2γ∞(HQ ).

To finish the computation, we observe

vol
(
H−1M∗)[M : H−1M∗]1/2 = vol

(
H−1M∗)1/2 vol(M)1/2

= |H|−3/2
∞

[
vol

(
M∗)vol(M)

]1/2

= |H|−3/2
∞ .

Notice that the last line uses the chosen normalization (11) for the Haar measure. !

Corollary 5.2. Let z =
[ y xy−1

0 y−1

]
∈ D with x )= 0 and let S =

[ 0 −1
1 0

]
. Then

θL(z) = |D|−1/2
∞ I(z)θL% (S · z),

where I(z) = |x|−3/2
∞ γ∞(xQ ).

Proof. Let G = y2 and H = x. Since z ∈ D we have v∞(y2) > v∞(x), so G and H satisfy the hypothe-
ses of Proposition 5.1. Moreover

S · z ∼
[
0 −1
1 0

][
y xy−1

0 y−1

][
1 0

−y2x−1 1

]
=

[
yx−1 −x−1 y−1x
0 y−1x

]
,

so applying Proposition 5.1 to the function

ϕz(v) = Ψ
(
Q (v)y2

)
e
(
Q (v)x

)

we get

ϕ̂z(v) = I(z)ϕS·z(v).

Applying the Poisson summation formula, we obtain

∑

v∈tL
ϕz(v) = vol(V∞/tL)−1

∑

w∈tL%

ϕ̂z(v),

hence
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θL(z) = |D|−1/2
∞ I(z)θL% (S · z).

(Notice that vol(V∞/tL) = |D|1/2∞ .) !

Recall that for a ternary lattice (L, Q ), its adjoint (Lad, Q ad) is defined by

Lad = L% and Q ad = DQ ,

where D = det(L, Q ). Alternatively, (Lad, Q ad) = (
∧2 L,

∧2 Q ), where
∧2 is the second exterior

power operator.

Theorem 5.3. Let (L, Q ) and (L′, Q ′) be isospectral definite ternary lattices. Then (Lad, Q ad) and (L′ad, Q ′ad)
are isospectral.

Proof. Notice that R(L%, Q ,a) = R(Lad, Q ad, Da) for all a ∈ K , so it is enough to prove that θL% = θL′% .
Since L and L′ are in the same genus by Corollary 4.2, we have det(L, Q ) = det(L′, Q ′) and

γ∞(xQ ) = γ∞(xQ ′). So, by Corollary 5.2, θL% (z) = θL′% (z) for x )= 0.
It remains to prove that θL% (z) = θL′% (z) when x = 0. In this case, letting y = t−m we have, by (10),

θL% (z) =
∣∣L%

2m−2

∣∣.

These numbers are determined by the series TL% (u) defined in (4), which in turn depends only on
the successive minima of L% by Proposition 3.1. The successive minima of L% are readily seen to
be (−µ3,−µ2,−µ1), where (µ1,µ2,µ3) are the successive minima of L. We conclude by Proposi-
tion 3.1 that |L%

2m−2| = |L′%
2m−2|. Thus θL% (z) = θL′% (z) for all z. !

6. Equivalence

Let (L, Q ) and (L′, Q ′) be two isospectral definite ternary lattices over A. Our aim in this section
is to prove that they are equivalent.

We already proved in previous sections that they have the same successive minima (µ1,µ2,µ3)
and belong to the same genus – in particular they have the same determinant – and that their ad-
joints are also isospectral.

Proposition 6.1. Assume µ3 > µ2 . Then Lµ2 and L′
µ2

span equivalent binary A-lattices.

Proof. Let (v1,v2,v3) and (v′
1,v

′
2,v

′
3) and be reduced bases of L and L′ respectively. Let M =

Av1 + Av2 and M ′ = Av′
1 + Av′

2. Notice that det(M, Q ) and is a minimal value for (Lad, Q ad), and
that it is unique (up to a square in Fq) with this property since µ1 + µ2 < µ1 + µ3.

Since (Lad, Q ad) and (L′ad, Q ′ad) are isospectral by Theorem 5.3, we conclude that det(M, Q ) =
det(M ′, Q ′). Since µ3 > µ2, Mµ2 = Lµ2 = L′

µ2
= M ′

µ2
. Thus M and M ′ represent the same values up

to degree µ2 and have the same determinant. By [1, Theorem 4.1], we conclude that (M, Q ) and
(M ′, Q ′) are equivalent. !

Corollary 6.2. If (L, Q ) and (L′, Q ′) are isospectral lattices with µ3 > µ2 , then they have reduced bases such
that the corresponding reduced Gram matrices have the form

S =
[a b e
b c f
e f g

]

and S ′ =
[ a b e′

b c f ′

e′ f ′ g′

]

. (13)

Furthermore, g and g′ may be assumed to have the same leading coefficient.
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Proof. Immediate from Proposition 6.1. !

Lemma 6.3. Let S and S ′ be matrices as in (13) representing isospectral forms and assume in addition
µ1 < µ2 < µ3 . Replacing if necessary the pair (e, f ) by (−e,− f ) in the matrix S, the coefficients of S and S ′

satisfy the relation a(g − g′) = e2 − e′2 and b(e − e′) = a( f − f ′). In particular, deg(g − g′) < deg(e − e′)
and deg( f − f ′) < deg(e − e′).

Proof. The Gram matrix Sad of the adjoint (Lad, Q ad) with respect to the reversed dual basis
{v∗

3,v
∗
2,v

∗
1} is also reduced [6, Lemma 4] and has the form

Sad =
[ ac − b2 be − af ∗
be − af ag − e2 ∗

∗ ∗ ∗

]

.

By Theorem 5.3, the adjoints (Lad, Q ad) and (L′ad, Q ′ad) are isospectral, so, by Proposition 6.1, the
binary lattices M = Av∗

3 + Av∗
2 and M ′ = Av′ ∗

3 + Av′ ∗
2 are equivalent. Since their successive minima

are distinct, the only automorphisms of these lattices are of the form diag(±1,±1), so we must have
in particular

ag − e2 = ag′ − e′2 and be − af = ±(be′ − af ′). (14)

Replacing v3 by −v3 if necessary, we can assume that the second equality holds with the +1 sign. So
we get

a(g − g′) = e2 − e′2 and b(e − e′) = a( f − f ′). (15)

The degree inequalities follow immediately from the fact that deg(e + e′) < dega and degb < dega
since S and S ′ are reduced. !

Lemma 6.4. Let M = Av1 + Av2 ⊂ L. Then for every w ∈ M \ {0} we have

deg B(w,v3) < deg Q (w).

Proof. Write w = rv1 + sv2 with r, s ∈ A. Then

deg B(w,v3) " sup{deg r + deg e,deg s + deg f }

< sup{2deg r + µ1,2deg s + µ2}

= deg Q (w). !

Our next task is to show that by modifying suitably the reduced bases, the last columns of the
matrices in (13) can be made equal.

The case µ1 < µ2 < µ3 , µ1 ≡ µ2 (mod 2).

Theorem 6.5. Let (L, Q ) and (L′, Q ′) be isospectral ternary lattices with strictly increasing minima sequence
µ1 < µ2 < µ3 and µ1 ≡ µ2 (mod 2). Then they are equivalent.
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Proof. Let S and S ′ be their corresponding Gram matrices as in (13). Let M = Av1 + Av2 ⊂ L. Since
Q represents g′ , there exists v ∈ L such that Q (v) = g′ . Note that for parity reasons v /∈ M , so it is of
the form v = λv3 +w with λ ∈ F×

q and w ∈ M with deg Q (w) < µ3. We have

g′ = Q (v) = λ2g + λB(w,v3) + Q (w).

Comparing leading coefficients we have λ2 = 1. Hence

g′ − g = Q (w) ± B(w,v3).

If w )= 0, then by Lemma 6.4 we get deg(g′ − g) = deg Q (w) ! µ1, which contradicts the inequality
deg(g′ − g) < deg(e′ − e) < µ1 of Lemma 6.3.

Thus g = g′ and e2 = e′2. If e = e′ , then f = f ′ by (15) and we are done. So assume e′ = −e )= 0
and fix z ∈ F×

q such that b+ ze )= 0 (the reason for this choice of z will become apparent below). Since
Q and Q ′ represent in particular the same polynomials, for each x ∈ Fq the equation

Q (xv1 + v2 + zv3) = Q ′(uv1 + vv2 + zv1) (16)

has a polynomial solution (u, v). Subtracting z2g from both sides and using Lemma 6.4 we conclude
that deg Q ′(uv1 + vv2) = µ2, so v ∈ Fq .

Suppose first that for some x ∈ Fq , there is a solution (u, v) to (16) with v = 1. Then we have

(
x2 − u2)a + 2(x− u)b + 2( f − f ′) + 2e(x+ u)z = 0. (17)

Since deg( f − f ′) < deg e by Lemma 6.3, the above equality implies x2 = u2. If x = u, then (17) reduces
to

f − f ′ = −2eu

and for degree reasons we must have f = f ′ . By (15) we get b = 0 and the transformation v2 1→ −v2
takes S into S ′ . If x = −u, then (17) reduces to

f − f ′ = 2bu

which similarly implies f = f ′ since deg( f − f ′) < degb by (15). We conclude as in the previous case.
Assume now that for all x all solutions (u, v) to (16) have v )= 1. Then, by the pigeonhole principle,

there must be a pair (x1, x2) ∈ F2q , x1 )= x2, such that the equations

{
Q (x1v1 + v2 + zv3) = Q ′(u1v1 + vv2 + zv1),

Q (x2v1 + v2 + zv3) = Q ′(u2v1 + vv2 + zv1)
(18)

have solutions (u1, v) and (u2, v) (with a common v). Taking the difference of the two equations
in (18), we get

(x1 − x2)
[
a(x1 + x2) + 2b + 2ez

]
= (u1 − u2)

[
a(u1 + u2) + 2bv − 2ez

]
, (19)

and comparing degrees we see that u2
1 − u2

2 = x21 − x22. In particular u1 and u2 must be constant.
Taking u1 = u ∈ Fq in (16) we get

(
v2 − 1

)
c = a

(
x2 − u2) + 2b(x− uv) + 2( f − f ′v)z + 2e(u + 2)z.
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Since all the terms on the right-hand side have degree < µ2 = deg c, we must have v2 = 1. Having
already excluded the case v = 1, the only allowed value is v = −1. Substituting this value in (19),
cancelling the equal terms and bringing all terms to one side of the equation, we get

(u1 − u2 + x1 − x2)(b + ez) = 0.

Since we have taken the precaution of choosing z ∈ F×
q so that b + ez )= 0, we conclude u1 − u2 =

−x1 + x2, which combined with the previously established equality u2
1 − u2

2 = x21 − x22 yields u1 = −x1
and u2 = −x2. Substituting in the first equation of (18) we get f = − f ′ . Then the transformation
v3 1→ −v3 takes S into S ′ . !

The case µ1 = µ2 < µ3 . Assume that (L, Q ) and (L′, Q ′) are isospectral with µ1 = µ2 and let S and
S ′ be their Gram matrices as in Corollary 6.2.

The first step is to show after a suitable change of basis we can also assume g = g′ . Since Q
represents g′ , we can write Q (rv1 + sv2 + tv3) = g′ . Comparing leading coefficients, we see t2 = 1, so
there is no loss of generality in assuming t = 1. Consider the transformation

U =
[1 0 r
0 1 s
0 0 1

]

.

Then the matrix S ′′ = U SUt has the form

[ a b E
b c F
E F g′

]

.

Since det(S ′′) = det(S ′), we have

Q 0(−F , E) = Q 0(− f ′, e′),

where Q 0(X, Y ) = aX2 + 2bXY + cZ2. Since Q 0 is definite, deg Q 0(−F , E) = max{2deg E + µ1,
2deg F + µ1} and since S ′ is reduced, deg Q 0(− f ′, e′) < 3µ1 and hence deg E < µ1 and deg F < µ1.
This shows that S ′′ is reduced, i.e., we can assume henceforth g = g′ without loss of generality.

For each (x, y, z) ∈ F3q , the equation

Q (xv1 + yv2 + zv3) = Q ′(x′v1 + y′v2 + z′v3) (20)

has a solution (x′, y′, z′), where (x′, y′, z′) are a priori polynomials. By taking leading coefficients, we
see z2 = z′2, so z′ is in Fq . Subtracting the term z2g = z′2g′ on both sides of (20), and applying
Lemma 6.4, we get

deg Q (xv1 + yv2) = deg Q ′(x′v1 + y′v2),

which immediately implies x′, y′ ∈ Fq .

Lemma 6.6. Assume that Q and Q ′ are ternary definite isospectral quadratic forms with µ1 = µ2 , Gram
matrices as in Corollary 6.2 and the additional condition g = g′ . Then span{e, f } = span{e′, f ′}.
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Proof. We shall show span{e, f } ⊂ span{e′, f ′} and conclude by symmetry. If e = f = 0 there is noth-
ing to prove, so assume (e, f ) )= (0,0). Fix (x, y) ∈ F2q such that xe + yf )= 0. Then, for all z ∈ Fq , the
equation

Q (x, y, z) = Q ′(u, v, z) (21)

has a solution (u, v) ∈ F2q . Taking leading coefficients, we see that (u, v) must satisfy u2 − δv2 =
x2 − δy2, that is, there are at most q + 1 possible pairs (u, v). Up to sign, there are at most (q + 1)/2
possibilities for (u, v). Since q > (q + 1)/2, and the left-hand side of (21) takes q different values as z
runs over Fq , there must be z1 )= z2 in Fq and (u, v) ∈ F2q such that

Q (x, y, z1) = Q ′(u, v, z1) and Q (x, y, z2) = Q ′(εu, εv, z2), (22)

where ε = ±1. Subtracting the two equations we get

(z1 − z2)(xe + yf ) = (z1 − εz2)(ue′ + v f ′), (23)

which shows xe + yf ∈ span{e′, f ′}. !

Lemma 6.7. Let Q 0 be a binary definite quadratic form with µ1 = µ2 and let a be a polynomial of degree µ1
represented by Q 0 . Then Aut(Q 0) acts transitively on the set {(x, y) ∈ F2q : Q 0(x, y) = a}.

Proof. We can assume Q 0 = aX2 + 2bXY + cY 2, where a,b, c are relatively prime and deg(a) =
deg(c) > deg(b).

If a, b, c are linearly independent over Fq , then Q 0(x, y) = a implies x = ±1 and y = 0. We get
a similar conclusion if b = 0 and a, c are linearly independent. If b = 0 and a is proportional to c,
Q 0 is a multiple of a form over Fq and the result is well known. The only case left is when a,b, c
are linearly dependent and b )= 0. In this case, write c = −δa − 2mb, where δ is a non-square and
m ∈ Fq , m )= 0. Suppose Q 0(x, y) = a. If y = 0 we are done, so we may assume y )= 0. We have
Q 0(x, y) = a(x2 − δy2) + 2by(x−my), so by linear independence of a and b we get the relations

x2 − δy2 = 1 and x−my = 0,

which ensure that U =
[ x δy
y x

]
is an automorphism of Q 0. !

Lemma 6.8. Let F ,G ∈ Fq[X] be polynomials of degree 2 such that F (x) ≡ G(x) (mod F∗
q
2) for all x ∈ Fq. Then

F = u2G, where u ∈ Fq.

Proof. The hypothesis implies in particular that the polynomials F and G have the same roots in Fq
(if any) so there is no loss of generality in assuming that they are irreducible.

If F and G are relatively prime, then the equation Y 2 = F (X)G(X) defines an elliptic curve with
at least 2q points over Fq . This contradicts Hasse’s bound [10, Chapter V] if q > 5. For q = 3,5 the
assertion is easily verified by direct computation. !

Theorem 6.9. If two Q and Q ′ ternary definite quadratic forms are isospectral with µ1 = µ2 or µ2 = µ3 ,
then they are equivalent.

Proof. If µ2 = µ3, we replace (L, Q ) and (L′, Q ′) by their adjoints which in this case satisfy
µ1(Q ad) = µ1 + µ2 = µ1 + µ3 = µ2(Q ′ad). So we can limit ourselves to the case µ1 = µ2.
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With the notation and hypotheses of Lemma 6.6, let E = span{e, f } = span{e′, f ′}. If dim E = 0,
there is nothing to prove; we will deal with the other two cases.

Suppose first dim E = 1. Let h ∈ E be a monic polynomial of degree d and write e = edh, f = fdh,
e = e′

dh, f = f ′
dh, where ed, fd, e′

d, f ′
d, are in Fq .

Let Q 0(X, Y ) = Q (X, Y ,0) = Q ′(X, Y ,0). The equality det(Q ) = det(Q ′) implies Q 0(− f , e) =
Q 0(− f ′, e′). Dividing by h2 we get Q 0(− fd, ed) = Q 0(− f ′

d, e
′
d). Applying Lemma 6.7, there is an au-

tomorphism U of Q 0 such that U
[ − f

e

]
=

[ − f ′

e′
]
. Then

W =
[
U 0
0 1

]

satisfies Q W = Q ′ , as desired.
Suppose now dim E = 2. By Lemma 6.6, there exists a matrix M ∈ GL2(Fq) such that

[
− f
e

]
= M

[
− f ′

e′

]
.

We shall prove that M is an automorphism of Q 0. Let (x, y) ∈ F2q , (x, y) )= (0,0), and let (u, v) ∈ F2q
and z1, z2 as in the proof of Lemma 6.6. We get from (23)

[
u
v

]
= hx,yM

[
x
y

]

with hx,y = (z1 − z2)/(z1 − εz2) ∈ F×
q (depending a priori on (x, y)).

Let R = X2 − δY 2. Since R(x, y) = R(u, v), substituting we have R(x, y) = h2x,y(RM)(x, y). Thus
the quadratic forms R and RM represent the same elements of Fq up to squares, i.e. the quadratic
polynomials F (t) = R(t,1) and G(t) = (RM)(t,1) satisfy the hypothesis of Lemma 6.8, hence R =
s2RM for some s ∈ F×

q , i.e. h2x,y = s2 for all (x, y) ∈ F2q .
Now from the equality det(Q )= det(Q ′), we get Q 0(− f , e)= Q 0(− f ′, e′). Let d=max{deg e,deg f }

and take coefficients of degree µ1 + 2d in this equality. Then

R(− fd, ed) = R
(
− f ′

d, e
′
d

)
)= 0,

and therefore s2 = 1 and R = RM .
If hx,y = 1, we conclude from the first equation in (22) that Q 0(x, y) = Q 0(u, v). If hx,y = −1, then

ε = −1 and z1 = 0 and we conclude again from (22) that Q 0(x, y) = Q 0(u, v). Thus Q 0 = Q 0M; this
condition ensures that

N :=
[
M 0
0 1

]

satisfies Q ′ = Q N . !

The case µ1 < µ2 < µ3 , µ1 ≡ µ3 (mod 2). Let (W , φ) be a quadratic space over Fq of dimension n and
rank r. Recall that the Gauss sum associated to (W , φ) is defined by

Γ (W , φ) =
∑

w∈W

χ
(
φ(w)

)
,

where χ : Fq → C× is the character defined by χ(u) = exp(2π i Tr(u)/p) and Tr : Fq → Fp is the trace
to the prime field Fp .
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It is immediate from the definition that Γ is multiplicative on orthogonal sums. Let W1 =
rad(W , φ) and let W0 ⊂ W be a complement of W1. Then Γ (W , φ) = Γ (W0, φ0)Γ (W1,0), where
φ0 = φ|W0 . Clearly Γ (W1,0) = qn−r . Writing φ0 = ∑r

i=1 ai X
2
i in some orthogonal basis of W0, we get

Γ (W0, φ0) = Γ (Fq, 〈a1〉) · · ·Γ (Fq, 〈ar〉). Using further the property that Γ (Fq, 〈ai〉) = ψ(ai)G , where
G = Γ (Fq, 〈1〉) and ψ : F×

q → {±1} is the quadratic character (see e.g. [7, Proposition 6.3.1]), we get

Γ (W , φ) = qn−rψ(detφ0)Gr . (24)

Note that in particular, Γ (W , φ) = Γ (W , φ′) if and only if (W , φ) 2 (W , φ′).

Definition 2. Let Φ = (φ1, φ2, . . . , φm) and Φ ′ = (φ′
1, φ

′
2, . . . , φ

′
m) be systems of quadratic forms on W ,

i.e. quadratic mappings W → Fmq . We shall say that Φ and Φ ′ are isospectral if |Φ−1(y)| = |Φ ′−1(y)|
for all y ∈ Fmq .

The following theorem is a particular case of a result by Carlitz [2, Theorems 3.2–3.3] on systems
of polynomial equations.

Theorem 6.10 (Carlitz). Two systems of quadratic forms Φ and Φ ′ as above are isospectral if and only if

Γ

(
m∑

i=1

xiφi

)

= Γ

(
m∑

i=1

xiφ
′
i

)

for all (x1, x2, . . . , xm) ∈ Fmq .

Let Q , Q ′ be isospectral definite quadratic forms with successive minima (µ1,µ2,µ3) on L and
let W = Lµ3 . Write Q (x) = ∑µ3

i=0 Q i(x)ti (respectively Q ′(x) = ∑µ3
i=0 Q ′

i (x)t
i). Then the systems Φ =

(Q 0, . . . , Qµ3) and Φ ′ = (Q ′
0, . . . , Q

′
µ3

) are isospectral. Let B , Bi , B ′ , B ′
i be the symmetric bilinear

forms associated to Q , Q i , Q ′ , Q ′
i . By Theorem 6.10 and (24), we have in particular

det

( µ3∑

i=0

xi Bi

)

≡ det

( µ3∑

i=0

xi B
′
i

)
(
mod F×

q
2) (25)

for all (x0, x2, . . . , xµ3 ) ∈ Fµ3+1
q .

Let k1 = (µ3 − µ1)/2 and k2 = (µ3 − µ2 − 1)/2. We fix the basis

{
v1, tv1, . . . , tk1v1,v2, tv2, . . . , tk2v2,v3

}
(26)

of W and identify all the symmetric bilinear forms on W with their respective matrices in this basis.

Lemma 6.11.With the notation above, we have

det

(µ3−1∑

i=0

xi Bi

)

= det

(µ3−1∑

i=0

xi B
′
i

)

for all (x0, x2, . . . , xµ3−1) ∈ Fµ3
q .
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Proof. Fix (x0, x2, . . . , xµ3−1) ∈ Fµ3
q and consider det(

∑µ3
i=0 xi Bi) and det(

∑µ3
i=0 xi B

′
i) as polynomials in

the variable xµ3 . They have degree two in xµ3 , the same leading coefficient (= −δ) and are equal up
to squares of F×

q by (25), so, by Lemma 6.8, they must be equal as polynomials in xµ3 . We conclude
by taking xµ3 = 0. !

Lemma 6.12. Let m = (µ1 + µ3)/2. Then for all m " j " µ3 we have B ′
j = B j .

Proof. For x = (x, y, z) ∈ W , we have Q (x) − Q ′(x) = 2(e − e′)xz + 2( f − f ′)yz + (g − g′)z2. By
Lemma 6.3, all three terms have degrees <m. !

We shall use the following notation henceforth: n = dimW , s = max{m−µ2,−1}, r = k2 − s. (Note
that n = k1 + k2 + 3 = (k1 + 1) + (s + 1) + r + 1.)

Lemma 6.13. The forms B j have the following properties

(1) Bl(tiv1, t jv1) = 0 for l !m and i + j < k1;
(2) Bm(tiv1, t jv1) = 1 for i + j = k1;
(3) Bl(tiv1, t jv2) = 0 for l − i − j ! µ1;
(4) Bl(tiv2, t jv2) = 0 for l !m and i + j < s;
(5) Bm(tiv2, t jv2) = cµ2 for i + j = s;
(6) Bl(tiv1,v3) = 0 for l !m and i " k1;
(7) Bl(tiv2,v3) = 0 for l !m and i " s.

Proof. The lemma follows immediately from the fact that {v1,v2,v3} is a reduced basis for Q (x). !

Let B = XmBm + ∑r−1
j=0 Xµ3−1−2 j Bµ3−1−2 j . It follows from Lemma 6.13 that the matrix of B in the

basis (26) has the form

where the greyed areas consist entirely of zeros and the sizes of the blocs correspond to the partition
n = (k1 + 1) + (s + 1) + (r) + (1). Here Y j = B(tk2+ j−rv2, tk2+ j−rv2) for j = 1, . . . , r and γ = cµ2 .

Lemma 6.14. Let C = (ρi j) be the adjoint of the matrix B and let M = Xk1+k2+2−r
m

∏r−1
j=0 Xµ3−1−2 j .

(1) When i < n, the coefficient of M in ρni is equal to 0.
(2) The coefficient of M in ρnn is equal to ±γ k2+1 .

(Note that the entries of C are homogeneous polynomials of degree n − 1 in the variables X j .)
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Proof. Leaving the bottom row untouched, we apply elementary row operations to clear the entries
below the “diagonals” containing Xm . This can be accomplished in the ring Fq[X±1

m ][Xµ3−2r+1, . . . ,
Xµ3−1]. We get a matrix of the form

Note that all the coefficients above (and to the left of) Y j are linear combinations of variables Xi
with i < 2 j + 2m − µ2, so Z j and Y j have the same term in X2 j+2m−µ2 , namely γ X2 j+2m−µ2 .

The elementary row operations have not altered the minors of B along the bottom row (i.e. the
determinants of the submatrices obtained by removing the bottom row and a column). It is clear
from the shape of the above matrix that in these minors, only the product Y1 · · · Yr can yield a term
divisible by

∏r−1
j=0 Xµ3−1−2 j . Thus the minors ρni obtained by removing a column different from the

last one (i < n) do not contain monomials divisible by
∏r−1

j=0 Xµ3−1−2 j . The coefficient of M in the
minor ρnn is ±γ r+s+1. !

Lemma 6.15. For all 0 " i <m we have

det
(
Xi B

′
i + B

)
− det(Xi Bi + B) = ±

(
g′
i − gi

)
γ r+s+1XiM + N,

where M = Xk1+k2+2−r
m

∏r−1
j=0 Xµ3−1−2 j and N is divisible by X2

i .

Proof. Expanding as polynomials in Xi and separating the linear part, we have

det
(
Xi B

′
i + B

)
− det(Xi Bi + B) = Tr

(
C
(
B ′
i − Bi

))
Xi + terms divisible by X2

i . (27)

The matrix of B ′
i − Bi with respect to the basis (26) has zeros everywhere except possibly on the

last row and the last column and (B ′
i − Bi)nn = g′

i − gi . Combining this with Lemma 6.14 we get
that the coefficient of M in Tr(C(B ′

i − Bi)) is ±γ r+s+1(g′
i − gi). The lemma follows now immediately

from (27). !

Corollary 6.16. If q > k1 + k2 + 2− r, then g = g′ .

Proof. A monomial of N that is equal to X jM as functions on Fq must be of the form Xqs

j P , where P
is divisible by all the variables other than X j . In particular deg P ! r + 1, so qs " dim Lµ3 − (r + 1) =
k1 + k2 + 2− r, which implies s = 0. Since det(Xi B ′

i + B) = det(Xi Bi + B) as functions, we must have
gi = g′

i for 0 " i <m. Since deg(g − g′) < µ1 <m by Lemma 6.3, we must have g = g′ . !

Theorem 6.17. If q > max{2+ µ3 − µ2,2+ µ2 − µ1} then Q and Q ′ are isometric.
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Proof. The condition on q ensures that both pairs (Q , Q ′) and (Q ad, Q ′ad) satisfy the hypotheses of
Corollary 6.16. Applying Corollary 6.16 to (Q , Q ′) we get g = g′ and hence e2 = e′2. Applying it to
(Q ad, Q ′ad), we get cg − f 2 = cg′ − f ′2 and hence f 2 = f ′2.

There is no loss of generality in assuming e = e′. If f = f ′ we are done, so assume f = − f ′ )= 0.
Comparing determinants we get be = 0. If b = 0, then the transformation v2 1→ −v2 changes f into
− f and leaves the rest alone. Similarly, if e = 0, the transformation v3 1→ −v3 changes f into − f and
leaves the other coefficients unaltered. !
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