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In this paper we begin by considering the equivariant genus of quite arbitrary
hermitian forms over a group ring O4[G], where Oy is the ring of integers in a
number field X and G is an abelian group of odd order. The result we obtain is then
applied to the case where G is the Galois group of a tamely ramified extension E/K
and the form is the one obtained by restricting the bilinear trace form ¢, to the
ring O of integers in E. More precisely let Az, be the unique fractional ideal in
E whose square is the inverse different of the extension E/K; then we construct a
locally free ideal M g in O4[G] such that M A, x= O, and we show that when
equipped with the multiplication form ¢, on K[G], then (M . 1) lies in the
equivariant genus of (O, I5). Finally we show that when K= Q, then (O, /)
(respectively (A k. tgx)) is actually isometric to (Mg, t;) (respectively
(OK[G], ts)): T 1992 Academic Press, Inc.

INTRODUCTION

We recall that the trace form of a finite separable field extension E/K is
the symmetric K-bilinear form 7., on E given by x(x, y)=Trg(xy). If
the extension E/K is normal then the Galois group G = Gal(E/K) acts as
isometries on this form. It is natural to take this additional structure into
account. It has been shown (see Conner—Perlis [4, V.3.3] for K=Q and
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Bayer-Lenstra [2] for a general field) that if G has odd order, then the
trace form 14 is equivariantly isometric to the standard form (g, h) =6,
on the group algebra K[G]. Thus, in the case of number fields, the lattice
(Og, tgk) 1s equivariantly isometric to a full O,[G]-lattice in the group
algebra K[ G]. If, in addition, the extension E/K is tame then by Noether’s
Theorem the ring of integers O is locally free as an O [ G]-module (see
[8, Theorem 3, p.26]). We are thus naturally led to investigate the
equivariant isometry classes of locally free O ([ G]-lattices in (K[G], 1) for
a given group G of odd order. In this article we restrict our attention to the
case when G is abelian.

In Section 2 we show that the equivariant genus of (L, t;), where L is
a locally free Ox[G]-lattice in K[G], is determined by the class of the
associated torsion module L#/L (Theorem 2.3). As an application we show
that the equivariant genus of (O, tg), where E/K is a tame abelian
extension of odd degree, is determined by the inertia subgroups
(see Corollary 2.6). We also show that in tame cyclic extensions the equi-
variant genus of (Op, t5k) is determined by the discriminant of E/K
(Corollary 2.7). We show by means of a counterexample (Example 2.9)
that this result is no longer true for non-cyclic extensions.

In Section 3 we investigate the equivariant isometry class of (O, ¢ £/K)
by means of a canonically defined O, [G]-lattice M, in K[G]. The
form (Mgy, tg) turns out to always be in the genus of (O, fyx)
(Proposition 3.1). Moreover, (M, t;) has the following remarkable
property: the forms (O, t;x) and (Mg, t;) are G-isometric if and only
if the ideal 4, x=D;}* in E possesses a self-dual normal basis over O
(Theorem 3.3).

In Section 4 we consider the case K= Q. It is proved there that 4, has
a self-dual normal basis if and only if E/Q is weakly ramified (Theorem4.1).
In particular if E/Q is tame, this result implies—in virtue of our results of
Section 3—that (Og, tq) and (M, t;) are G-isometric (Corollary 4.4).

To end this introduction we mention that B. Erez and M. Taylor in their
recent work [7] were able to generalize part of the resuits of the present
paper to not necessarily abelian extensions. In particular they define a
module which generalizes the “comparison” module M, and which

aliows them to obtain somewhat more precise results than those contained
in [11].

1. TERMINOLOGY AND NOTATION
Here we recall the terminology and the notation that are used in the next

sections. Let k& be a commutative ring and G a finite group. The canonical
involution on k[G] (ie., the involution induced by inverting elements
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in the group) will be denoted by a+—a. A hermitian form over k[G] is
a pair (M, h) where M is a finitely generated left &[G ]-module and
h:Mx M- k[G] is a map k[G]-linear in the first variable that satisfies
the symmetry condition A(x, v)=~h{y, x). Using the canonical k[G }-
isomorphism

Hom, (M, k) — Hom, (M. k[G])

o 5 e )
geCG

we shall identify the set of hermitian forms over A[G] with the set of

G-invariant symmetric k-bilinear forms. Two symmetric G-invariant forms

(M, 1) and (M, t') over k are said to be G-isometric if there is a k[G]-

isomorphism ¢: M — M’ such that ¢'(¢(x), #(y))=1t(x, y) for all x, yin M.
Let now K be a number field and let O, be the ring of integers of K. Let

(M, t) and (M, t') be G-invariant symmetric belinear forms over O .

(1.1) DerNITION.  We say that (M, 1) and (M, ¢') are in the same class
if they are G-isometric over O,. We say that they are in the same equi-
variant genus (or simply in the same genus) if (M,,t) and (M, ') are
G-isometric over the completions O for all places v of K (archimedean
and non-archimedean).

In order to compare trace forms arising from different Galois extensions
of a given field, we need to introduce the following definition.

(1.2) DerINITION. Let G and G’ be finite groups. Let (M, t) (respec-
tively (M, t')) be a G-invariant (respectively G'-invariant) form over O.
We say that (M, 1) and (M, t') are in the same genus (respectively same
class) if there exists an isomorphism ¢: G — G’ such that (M, t) and
(M, ¢,1') are in the same genus (respectively same class). Here
(g M, ¢,t') means (M, t') endowed with the G-structure induced by ¢.

2. THE EQUIVARIANT GENUS OF THE TRACE FORM

The following notation is used throughout this section:

G is a finite abelian group of odd order
K is a number field

O is the ring of integers of K

p is a prime ideal of O,

k(p) is the residue field O /p
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K, is the p-adic completion of X
O, is the ring of integers of K,
In general the subscript p means local completion at p.

In this section we characterize the genus of (L, t;), where L is a locally
free O [G]-lattice in K[G]. We begin by proving two technical results
that are used in the proof of the main theorem.

(2.1) LemMA. Let k be a field and let V be a simple self-dual k[G]1-
module. Let |=End, (V). Then the adjoint involution (with respect to any
equivariant symmetric or skew-symmetric form on V) is trivial on | if and
only if V' is the trivial 1-dimensional k[ G 1-module.

Proof. Take g in G. Since G is abelian, the linear map g: V' -» V can be
regarded as a k[ G]-endomorphism of V. If the adjoint involution on ¥V is
trivial, we have gx = g~ !x for xe V. Since G has odd order, this implies
that G acts trivially on V. ||

For any commutative ring &, the group ring k[ G will be regarded as a
C,-module, where the generator of C, acts by the canonical involution.

(2.2) LemMa.  The inclusion O [G] — K,[G] induces an injective
homomorphism between the Tate cohomology groups

%Cy, 04, [G1*) — HYC,. K,[GT*)

Proof. Let xeO, [G]* be a representative of an element in the kernel
of the homomorphxsm H%C,, 0, [G1*)~ H(C,, K,[G]*); that is,
x = yjy for some y in K,[G]*. Since G is abelian, the group algebra K, [G]
is isomorphic to a product of fields

K, XE/x -« xE xX{F;xF)x .- x{F,xF,),

where the involution, by Lemma 2.1, induces non-trivial maps on the
factors E; and switches the components of (F;x F;). Suppose first that p
does not divide the order of G. In this case, the group ring O, [G] is a
maximal order (see [5, Proposition 27.1, p. 582]). Therefore

O [Gl1=0g xO0px -+ x0g x(0Opx0p)x - x(OfXxO0p,).

Observe that by the hypothesis on p the field E, is unramified over
the field fixed by the involution (E; is obtained from K, by adjoining dth
roots of unity, where d is a divisor of |G|). In particular H°(C,, 0%)=0
(see for instance [10, Chapter V]). Note that the components Oy x Oy,
do not contribute to H%C,, O, ,[G]*). Hence the augmentatlon

641/40/1-7
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map ¢ Og [G] -0, induces an lsomorphism e HOC ., O 161"

H°(C,, O* )=0% 0** We have g{x)=a(1)” eO*“ thus x represents 0 in
HYC,, 0, [G]

Suppose now thdl p divides |G|. Let r be the radical of 04, [G]. The ring
O, [G]/v s a product of finite fields, and, by Lemma 2.1, the group C, acts
non-trivially on all components except for the component corresponding
to the trivial one-dimensional A(p)[G]-module. Thus the augmentation
map &: O [G] - Ok induces an isomorphism &: H(C,, (O, [G)/)*

HC,. k ( %) ‘)*//‘ )*°. Since &(x)=¢(y)" there exists =, € O, [G]*
such that x=:, “ (mod r). We 5hall construct by induction a 5equence
{2} ns1 with the property x=:, 2, (mod ™) for all m. By completeness
of O, [G] with respect to the r-adic topology. this sequence will converge
to a limit - satisfying x ==zZ, and this will prove the lemma. Here is the
induction step: suppose x ==z, Z,, (mod ") and let w=x—z, Z, . Since p is
not a dyadic prime, we have H° (C,, t"/r”*1y=0. Thus there exists s
in r” such that w=sz,,+35z,, (modr”'') (observe that -, is a unit).
We set £, ,, ==, +5 By the construction of s we have x=z,,,,7, .,
(mod "), |

(2.3) THEOREM. Let L and M be locally free O [ G -lattices in K[G] on
which the form t takes values in O . The following are equivalent

(a) (L,tg) and (M, t;) are in the same equivariant genus.

(by LZ/L and M#M are isomorphic as O,[G-modules (where as
usual * denotes the dual with respect to t;).

Proof. The implication (a)=>(b) is obvious, so let us prove (b)=>(a).
Let p be a prime ideal. Locally M and N are free O 5 LG ]-modules of rank
one. Thus there exists ue K, [G]* such that L, =uM_. An easy calculation
shows that L?=z"'MZ. Consequently we have

MEM, = L¥L, =i "M*uM, = M*/uiM,.

Hence wuit is a unit of O, [G]. By the construction of u, uu represents
an element of the kernel of the natural map H%C,, 0, LG]*)—

O(C,,K [G]*) which is, by Lemma 2.2, an injective homomorphlsm
Therefore there exists ve O &, [G1* such that vo =wit. Let w=up ™", !, Clearly
w satisfies ww =1 and thus gives the desired isometry. ||

(2.4) CorOLLARY. The locally free Oy [Gl-lattices in K[G] which are
self-dual with respect to t; belong to the principal genus (i.e., the genus of

(0x[G], t6)).

In order to apply Theorem 2.3 to the trace form, we need to know the
structure of the torsion module D,;/O, for an abelian extension E/K,
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where the inverse different D, of the extension E/K is by definition the
dual of O, with respect to the trace form. The structure of D /0 is
given by a result of S. Chase [3, Theorem 1.8]. We reformulate this result
in the particular case of an abelian group:

{2.5) ProposITION (S. Chase). Let E/K be a tame abelian extension with
Galois group G. Let p be a prime in K. Then there is an isomorphism of
O [ G 1-modules

where 6, =3 1, with T running over all elements of the inertia subgroup T,.

Proposition 2.5 together with Theorem 2.3 says that the genus of the
trace form is determined by the inertia subgroups. Here is a more precise
statement:

(2.6) CorOLLARY. Let E/K and E'/K be two tame odd degree abelian
extensions. Then (O, tgy) and (Og, tp,x) are in the same genus (in
the sense of Definition 1.2) if and only if there exists an isomorphism
¢: Gal(E/K) —» Gal(E'/K) such that ¢T (E/K)= T, (E'/K) for all primes p
of K.

(2.7) CoroLLARY. Let E/K and E'/K be tame cyclic extensions of odd
degree. If E/K and E'/K have the same degree and discriminant, then their

trace forms (O g, tgx) and (O g, tx) are in the same genus (in the sense of
Definition 1.2).

Proof. Let n be the common degree of E/K and E'/K. Let p be a prime
of K. Let e (respectively e’) be the ramification index of p in E/K (respec-
tively in £'/K). By tameness (see [9, Chapter 3, Section 2, Proposition 8])
we have

ordp(bE/K) = Ordp(NE/K(DE/K))
=(nfe)(e—1).

By hypothesis D=0y, thus the equality above implies e=¢’. Let
¢: Gal(E/K) — Gal(E'/K) be any isomorphism. Since Gal(E/K) is cyclic
and |T(E/K)|=e=¢ =|T,(E'/K)| we must have ¢T (E/K)=T, (E'/K).
We conclude by applying Corollary 2.6. 1|

(2.8) Remark. P. E. Conner and R. Perlis proved in the case K=0Q
and the degree [E:Q] a prime number that (O, 1,,) and (O, o)
are in the same class (in the sense of Definition 1.2). See [4]. See also
[1, Remarque 5.6].
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Corollary 2.7 is no longer true if we do not assume that the Galois group
is cyclic. Here is a counterexample:

(2.9) EXAMPLE. Let [ be an odd prime number. Then there exist two tame
normal extensions E/Q and E'/Q with GallE/'Q) and Gal(E'/Q) bhoth
isomorphic to C,x C, and with the sume discriminant such that (O . ¢t, ..}
and (O, 1..q) are not in the same genus {in the sense of Definition 1.2).

Proof. Let p, (i=1,2,3) be distinct prime numbers such that p,=1
(mod /) (such primes exist by Dirichlet’s Density Theorem). Let f=p, p. p.
and I"=(Z/iZ)*. Let L be the subfield of the cyclotomic field @(f) fixed by
the subgroup I"' of I-powers of elements in /. By the construction of L we
have Gal(L/Q)=I'/T"' = C,x C,;x C,. One can easily check that the primes
p; (i=1,2,3) are ramified in L and that Gal{L/Q) is the direct product of
its three inertia subgroups T,(L/Q) (i= 1, 2, 3). Let H = Gal(L/Q) be a sub-
group of order / and let £= L". It is easy to see that b, = (p, p.p;)"' "
(i.e., all three primes ramify) if and only if the canonical projection
Gal(L/Q) — Gal{E/Q) induces an isomorphism T,(L/Q)— T,(£/Q) for
i=1,2, 3. The latter condition is equivalent to

T, (L/Q)nH={1} for i=1,273 (1
To continue the proof we need the following ad hoc lemma

(2.10) LemMA. Let H and H' be subgroups of Gal(L/Q) satisfying the
condition (1). Let E=L" and E'=L". The following conditions are
equivalent

(a) There exists an automorphism @ : Gal(L/Q) - Gal(L/Q) such that
®O(H)=H' and ®T,(L/Q)=T,(L/Q) for i=1,2, 3.

(b) There exists an isomorphism ¢: Gal(E/Q) — Gal(E'/Q) such that
¢T,(E/Q)=T,(E'/Q) for i=1,2,3.

Proof. (a)= (b) follows immediately from the remarks above. We shall
prove (b}=(a). Let ¢: Gal(E/Q)— Gal(E'/Q) be such that ¢T,(E/Q)=
T,(E'/Q)fori=1,2, 3. Since H and H’ satisfy condition (1), we can define
&, T,(L/Q)—- T,(L/Q) as the unique isomorphism such that the diagram

T,(L/Q)—2— T,(L/Q)

T,(E/Q)—— T,(E'/Q)

commutes. Since Gal(L/Q)=[T;_, T,(L/Q) we define &=[]._, ®..
Clearly @ has the required properties. J
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End of the Proof of 29. For i=1,2,3 choose g,in T,(L/Q) to be dif-
ferent from the identity. Let H be the subgroup of Gal(L/Q) generated by
h=0,06,0, and let H' be the subgroup generated by #'=¢,0,. Clearly H
and H' satisfy condition (1) and there is no @: Gal(L/Q) - Gal(L/Q)
satisfying (a) of (2.10). By Lemma 2.10 there is no intertia-preserving
isomorphism Gal(E/Q) — Gal(E'/Q) (where E = L" and E' = L").
Thus. by Corollary 2.6, the trace forms (0. t,,4) and (O, t ;) are not
in the same genus. Note however that D, =0, o since H and H' satisfy
the condition (1). }

3. THE CLASS OF THE TRACE FORM

Let E/K be a tame abelian extension of odd degree and let G = Gal(E/K).
In this section we study the class of (O, t,,x) as a G-invariant form. We
will define a full lattice M.« in O [ G] such that (M, t;) is in the same
genus as (O, I,) and in many cases even represents the G-isometry class
of (O, tgk). Let p be a prime in K and let *f be a prime of E above p.
Let IT in B be a uniformizing parameter. For 7 in T, we define
8, (t)=t(I)/I1 (mod B). It is well known that 6, is a homomorphism
T, - (0./P)* independent of the choice of /7. The image of 0, actually lies
in the smaller field k(p)= Ok/p. Moreover, in the tame situation this
homomorphism is injective (see [10, Chapter IV, Section 2, Proposi-
tion 7]). The character 6, can be lifted to a character T, - O%  that we
shall also denote by 6,. We define a family of idempotents {¢{"} in the
group ring O, [G] by ey' =(1/e) 2. .r, 0,(t )1 Lete, = o el We

define now the O, [G]-module M . by setting
(ME/K)p = POK‘,[G] +é&, OKV[G]

for all primes K. Note that for unramified p we have (M), =0, [C].

(3.1) PROPOSITION. (a) M is locally free.

(b) (Mg, 1) and (O, tgy) are in the same equivariant genus.

Proof. (a) Let m be a uniformizer in K. Let a =n+ ¢,. The identities

r=[{r(l+7) g, +(1~-¢,)]a

e, =(1+m)"'e,m

show that « generates (M), over O, [G].
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(b) From (a) we have (M, ), =20, [C]. Thus

I

(Mk‘lx’)i/(MIjA')p 3 ]01\;,[(1‘]/‘10/\;[6]
O,‘.“[G]/d& ](),\-})[G]

OK“[G]/( JM/Z‘,"I\A_ATLZ_'I\-' )p . ( 2 )

14

i

We now calculate (Mg M, ),. Using the definition of M, we have

(ME/KME,*I\');\ = (7 e, )m, &)
2 pa— —
= (7, mey, ME,, €,8,)
2 0 0
= (n°, me,, n(l +&y"), &)

(0))

,
=(r", me,. M, &,

-—-(n,ﬁ‘po’) (3)

(here we use the identities ¢, + &, =1 + ¢!’ and ¢,&, =¢!"). In the notation
of Proposition 2.5, we have ¢’ = (1/e)s,. Thus, by combining (2), (3), and
Proposition 2.5, we have

(ME/K)::/(ME/K)D = OKD[G]/(”- 0,)
=k(p)[G/(o,)
2(Dx/08), (4)

We conclude by applying Theorem 2.3. |

By Hilbert’s formula for the order of the different at a given prime in
terms of the ramification groups (see [10, Chapter IV, Section 2, Proposi-
tion 4]) it is clear that the different D, of an odd degree Galois extension
is the square of an ideal. We set 4., =D, " It is readily checked that
A is a self-dual lattice with respect to the trace form. Moreover, in the
tame case, Ay is locally free as a Galois module (see [12]). The following
proposition relates Ay g to M.

(3.2) PROPOSITION. My xApx=0p.

Proof. Let p be a prime in K and B a prime of £ above p. Let I[Te P
be a uniformizing parameter. Let 0<i<(e—1)/2and 1 <j<(e—1)/2. We
shall show

81{)5131/'ch</+1.
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Indeed the module B //B~/* ' has dimension one over O /P and has /T ~/
as a basis. For tin T, we have t(/T )=6/(t"") [T/ (mod B /*"). Thus

Sg’(ﬂ”)z(l/e)( y 9‘”(1‘)) m7  (mod$/+").

te Ty

On the other hand, since 6 is injective and 1<i+j<e—1, the
homomorphism "*/: T, O% is not trivial. Thus 3, _, 6"z~ ") =0.
Consequently, since T, acts (0 £/B)-linearly on P~//P~/*' we have

el [P/P/H1]=0. Slnce el is an idempotent element, applying j times
EL” to P/ yields e P~/ = OE!‘. In particular &)’ B~"" "< 0, . Thus
(A zx)p < (0),. This shows M x A, x < O To finish the proof, we will
show that M, 4, and O, have both the same index in 4 . On the one
hand, since 4, is locally free, we have

dim o (A g /M g A grx)p = dimy o, (O [G1/M gi),,-
On the other hand, using (4) we have
dim, (Ox[G1/Mgy), = 3 dimk(p)((MfS/K/ME/K)p)
= 3dim (D x/0%),
=dim, (4gx/0¢)p- |

(3.3) THEOREM. The following conditions are equivalent
(@) (Og tgk) is G-isometric to (Mg, 1)
(b)  (Apw, tyx) is G-isometric to (O [G], t5).
Proof. (a)=(b). Let ¢: Op— M, be a G-isometry. We extend ¢ to
an isometry £ — K[G]. Using Proposition 3.2 we have
Mgx=¢(0)
= ¢(ME/1<AE/K)
= ME/K¢(A E/K)-

Now, by Proposition 3.1, the module M, is locally free, and therefore is
invertible as an Ox[G]J-ideal in K[G]. Thus we must have @(4, )=
04[G].

(b)=(a). Let ¥: Ox[G] - Ak be an isometry. Using again
Proposition 3.2 we have

l/’(ME/K) = ME/Kw(OK[G])
= ME/KAE/K
= OE' I
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4. THE ABSOLUTE CASE

In this section we prove that condition (b) of Theorem 3.3 1s fulfilled
for absolute extensions. We actually give a more general result which
characterizes absolute abelian extensions such that the square root of the
inverse different has a self-dual normal basis.

(4.1} THEOREM. Let E/Q be an abelian extension of odd degree and let
G = Gal(E/Q). The following conditions are equivalent
(a) There exists a G-isometry between (A g, t o) and (ZLG], t;).
(b) A,g is free over Z[G].

(¢) For all primes p the second ramification subgroups Go{p, E/Q) are
reduced to the identity.

Proof. (a) clearly implies (b) and (b) implies {c) by the work of Ullom
[12, 2.1]. So, there remains to prove that (c) implies (a). The next two
lemmas show that it is sufficient to consider two types of extensions:

Type .  Odd degree extensions E/Q of odd prime conductor.
Type II.  Extensions of odd prime degree p and conductor p?.

These two types of extensions had already been dealt with in [6]
(observe that the argument given there under 2.2 extends to cover all
Type I extensions).

(4.2) LEMMA. The field E is contained in the compositum L of absolute
abelian fields E”/Q such that

(i)  E'"YQ is ramified only at p and totally ramified there.
(ii) The degree [E'” : Q] equals the ramification index of p in E/Q.

Proof. Let | be the conductor of E/Q. For a prime p we write | = p’m
with p not dividing m. Then E'?’ is nothing but the subfield of Q(p*)
corresponding to the group X, of the p-components of Dirichlet characters
attached to E/Q. For more details see [ 13, Theorem 3.5]. |

(4.3) LemMA. (i) Let KcEc L be a tower of odd degree abelian
extensions and let G=Gal(L/K), and H=Gal(L/E). If (A, ! k) IS
G-isometric to (Ok[G], t;) then Try (A x)=Agx and (Agg, tyg) is
(G/H)-isometric to (O [G/H]. tgn).

(ii)) Let K/Q and F/Q be two odd degree Galois extensions whose
discriminants are relatively prime and let L = KF. Then

(Ao 110)=(Age®z Arg. ko ®1g)
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Proof. (i) Choose a self-dual normal generator x of 4, x over Ok[G],
and let y=Tr,,(x). Then y is a self-dual normal generator of 4 over
0x[G/H]. Indeed, y is a normal generator and

TrE/l\'(yz) =Tr gk (Trpe(x) y)
=Tr, x(xy)

=Tr ke (x Trp(x))

= Z Tryk(xo(x))

cgeH

=1.

(it} By the assumption on the discriminants, Ox®,; 0.=0, (see
[9, Chapter 3, Section 3, Proposition 17]). Since A, is the unique
0,-ideal self-dual with respect to the trace form ¢,,, we must have
AL/OzAK/CD@ZAF/@‘ |

Proof of (c)=>(a). The condition (c) implies that the fields E‘” of
Lemma 4.2 are actually of Type I and Type II. As already mentioned at the
beginning of the proof, condition (a) holds for these fields, so by part (i)
of Lemma 4.3, we see that (a) holds for L. We conclude by taking the trace
from L down to E and using part (i) of Lemma 4.3. |

As an immediate consequence of Theorems 3.3 and 4.1 we have:

(4.4) CoroOLLARY. Let E/Q be an abelian tame extension of odd degree.
Let G=Gal(E/Q). Then (O, t ;) is G-isometric 10 (M gq, 15).

ACKNOWLEDGMENT

The authors are grateful to the referce for his/her helpful observations.

REFERENCES

1. C. BacHoc AND B. ErEz. Forme trace et ramification sauvage, Proc. London Math. Soc.
(3) 61 (1990), 209-226.

2. E. BaYER AND H. W. LENSTRA, Forms in odd degree extensions and self-dual normal
bases, Amer. J. Math. 112 (1990), 359-373.

3. S. CHase, Ramification invariants and torsion Galois module structure in number fields.
J. Algebra 91 (1984), 207-257.

4, P. E. CoNNER AND R. PERLIS, “A Survey of Trace Forms of Algebraic Number Fields,”
World Scientific, Singapore, 1984

5. C. CurTis AND 1. REINER, “Methods of Representation Theory,” Wiley, New York, 1981.



104 EREZ AND MORALFES

6. B. Erez, The Galois structure of the trace form in extensions of odd prime degree.
J. Algebra 118 (2) (1988), 438-446.

7. B. EREz AND M. J. TAYLOR, Hermitian modules in Galois extensions of number fields and
Adams operations, Annals of Math.. 0 appear.

8 A. FrROHLICH. Galois module structure of algebraic integers. in “Ergebnisse 1317 Vol 1.
Springer-Verlag, Berlin, 1983,

9. S. LANG, “Algebraic Number Theory,” Addison-Wesley, Reading, MA, 1970.

10. J.-P. SERRE, Local fields, in “Gradvate Texts in Mathematics,” Vol. 67, Springer-Verlag.
Berlin/New York, 1972.

I1. M. J. TAYLOR, Rings of integers and trace forms for tame extensions of odd degree.
Math. Z. 202 (1989), 313-341.

12. S. Urrom, Normal bases in Galois extensions of number fields, Nagova Math. J. 34
(1969), 153-167.

13. L. C. WasHINGTON, Introduction to cyclotomic fields, in “Graduate Texts in Mathe-
matics,” Vol. 83, Springer-Verlag, Berlin/New York, 1982,



