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Introduction 

For any ring with unit R equipped with an involution, we consider the sets FP(R) 
and F(R) of isomorphism classes of unimodular sesquilinear forms defined on 
finitely generated projective, respectively free, R-modules. We do not require the 
forms to satisfy any symmetry condition. The orthogonal sum of sesquilinear 
forms puts a monoid structure on these sets. 

We also define a natural notion of exactness for triples of elements of FP(R) and 
F(R) and consider the corresponding Grothendieck groups KFP(R) and KF(R). 
Each can be viewed as the quotient of the Grothendieck group associated to the 
monoid by the subgroup generated by all "exactness relations". This fits into the 
formalism developed in [11, Sects. 1,2]. 

The aim of this article is to determine the groups KFP(R) and KF(R) in terms of 
known algebraic objects. 

Their study was motivated by the fact that the first author tried to use KF(Z) as 
an obstruction group for a question that arose in the theory of high-dimensional 
knots [15]. The question however turned out to have a positive answer and this 
provided a computation of KF(~') and indeed with some modification of KF(R) for 
R any euclidian ring. The method used failed for principal ideal domains and this 
led us to a study of these groups for rings with an involution in general. 

Here is an outline of the contents and main results of this article. 
Section 1 contains the basic definitions and shows that KF(R) can be described 

in terms of matrices. The related notion of stable equivalence of matrices is 
introduced. 

In Sect. 2 we give an exact sequence connecting KF(R), KFP(R) and a 
subgroup of the projective class group/~o(R) (Theorem 2.2). 

In Sect. 3 we show that the block sum operation puts an abelian group 
structure on the set S(R) of stable equivalence classes of matrices (Proposition 3.4). 
The groups KF(R) and Z(R) are essentially quotients of the K-theory group KI(R ) 
(Theorems 3.2 and 3.6). 

These quotients depend on the way the transpose-conjugation acts on K~(R). 
As a consequence, we show in Sect. 4 that S(R) is trivial for instance in the case of a 
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field, a euclidian ring and the ring of algebraic integers in a number field 
(Theorem 4.2), but can fail to be finitely generated even for a principal ideal domain 
(Example 4.3). Finally, using topological K-theory, we give examples of different 
ways in which the transposition acts on KI(R ) and compute the corresponding 
X(R). 

1. Definitions 

Let R be a ring with unit equipped with an involution, that is a map x ~ s  on R such 
that x + y = x + y, xy = yx, and ~ = x for x and y in R. We denote by U(R) the group 
of units of R. 

We shall always assume that the rank of free finitely generated modules over R 
is well-defined, that is: if R" is isomorphic to R" then n=m; (for a discussion of 
this condition, see [17, Chap. II]). 

All the R-modules considered in this article are finitely generated projective 
left R-modules. For an R-module P, we denote by P* the dual HomR(P, R) of P 
with R operating on the left by (ag)(x)= ~o(x)6 for a in R and ~0 in P*. For  a 
homomorphism f :  P1 ~P2,  we denote by f *  the dual homomorphism P*~PT. 

By a sesquilinear form (or simply a form) B on P we mean a R-homomorphism 
B: P-~P*. Following the usual convention we say that B is unimodular if B is an 
isomorphism. 

Two sesquilinear forms Bi:Pi-~P* (i= 1,2) are isomorphic if there exists a 
R-isomorphism f :  P1-~P2 such that f*B2f= B 1. 

Let Bi'Pi~P* ( i=1,2)  be sesquilinear forms; we denote by BtOB2 the 
orthogonal sum of B 1 and B 2. 

A triple (B1, B2, B3) of unimodular forms B i �9 P ~ P *  (i = 1,2, 3) is exact if there 

I B1 0 ]  and B2 are exists a R-homomorphism C" Pt ~ P *  such that the forms B3 

isomorphic. For  instance (B 1, B10B3, B3) is an exact triple. 
Let FP(R) be the set of isomorphism classes of unimodular forms defined on 

finitely generated projective R-modules and denote by ( B )  the class of the form B. 
Let F(R) be the subset of FP(R) consisting of isomorphism classes of forms 

defined on free R-modules. 
Both F(R) and FP(R) are commutative monoids with respect to the orthogonal 

sum of forms O,  the zero element being represented by the unique form on the zero 
module. 

The Grothendieck groups KFP(R) and KF(R) are defined as follows: 
KFP(R) [respectively KF(R)] is the quotient of the free abelian group on FP(R) 

[respectively F(R)] by the subgroup generated by all expressions of the form 
(B2)--(B2)--(B3) where (B 1, B2, B3) is an exact triple of forms on projective 
(respectively free) R-modules. 

Alternatively, KFP(R) [respectively KF(R)] can be viewed as the quotient of 
the Grothendieck group associated to the monoid (FP(R),O) [respectively 
(F(R), 0 ) ]  by the exactness relations. 

The map F(R)~Z which associates to a form the rank of its underlying free 
module gives a surjective homomorphism 0 : KF(R)~Z and we set K~F(R) = ker0. 
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The homomorphism which sends 1 to the class of the rank one form (1 )  on R is a 
section for ~ and gives a canonical splitting I~F(R)~-I~F(R)| 

The group KF(R) can also be described in terms of matrices with coefficients in 
R as follows: 

By convention the empty matrix ~b is the unique invertible matrix of rank0. 
Two matrices A and B are congruent if there exists an invertible matrix U such that 
U*AU=B,  where U* stands for the transpose-conjugate of U. 

F(R) can be identified with the set of congruence classes of invertible matrices. 

The orthogonal sum of forms corresponds to the block sum ( At 0 )  o f the  
matrices A 1 and A 2. A2 

Let (A L, A2, A3) be a triple of invertible matrices. We say that (A 1, A z, A3) is 
exact if there exists a matrix X with coefficients in R such that A 2 is congruent to o3) 

The group KF(R) can therefore be viewed using the identification above as the 
quotient of the free abelian group on F(R) by the subgroup generated by all 
elements of the form ( A 2 ) -  (A t ) -  (A3) where (A t, Az, A3) is an exact triple of 
matrices. 

Remark. For R = Z, the exactness condition on triples of matrices has a geometric 
interpretation in knot theory; it corresponds to the plumbing operation on two 
fibre-surfaces of fibred knots (see [14, Sect. 2]). 

Closely related to the study of KF(R) is the following notion of stable 
equivalence of matrices. We borrow our notation from simple-homotopy theory 
(see [5, Sect. 4]). 

Definitions. Let A1 and A 2 be two invertible matrices with coefficients in R. We say 
that A 2 is an elementary expansion of A t (denoted by A~ 4 Az) if there exist u in 
U(R), x 1 . . . .  , x ,  in R such that A z is congruent to 

[ 0 

A t  �9 

0 

X l ,  . . . ~ X  n U 

where n = rank A~. The matrix A~ expands to A z (A t ~ A z) if there is a sequence of 
elementary expansions connecting A 1 and A2; A 2 collapses to A 1 (A z "~ At) if A 1 
expands to  A 2. The matrix AI is stably equivalent to A 2 (A~ A, Az) if there is a 
sequence of expansions and collapses connecting A t and A 2. This is clearly an 
equivalence relation. 

Remarks. i) If A~ is congruent to Az, A ~ is stably equivalent to A 2. 

ii) IfA~A, Az, there is a matrix B such that A~ ~ B  and B'~A z. 
Let us denote by S(R) the set of stable equivalence classes ofinvertible matrices 

over R. We shall see in Sect. 3 that the block sum operation puts an abelian group 
structure on X(R). 

When X(R) is trivial, the ring R has the following property: 
For  any invertible matrix A there exist invertible triangular matrices T t and T 2 

( A  0 ) i s c o n g r u e n t t  ~ Tz" and a matrix X such that T~ 
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This will be the case in particular when R is a field or  the ring of integers (see 
Theorem 4.2). 

2. An Exact Sequence Connecting KF(R) and KFP(R) 

The map  P - , P *  which sends a projective module over R to its dual determines an 
action of the cyclic group of order  2 on the projective class group/~o(R). We denote 
by / s  the subgroup of elements of/~o(R) that are fixed under this action. 

We recall that  a projective module  is self-dual if it admits a unimodular  form. 

Lemma 2.1. i) Each class of K~(R) contains a self-dual projective module. 
ii) I f  P is a self-dual projective module, there is a self-dual projective module Q 

such that PO)Q is free. 

Proof i) Let [P ]  be i n / ~ ( R ) ,  then [P ]  = [P*]  so that PGRs~--P*OR ' for some 
integers s,t=>0. Since projective modules are canonically isomorphic to their 
biduals [4, Chap. II, 2.7], the dualization of this i somorphism gives 
P * O R  s '~ POR t. Combining these two isomorphisms one sees that  
PO)Ras~-pOR2t. Since P is projective, there is a module Q such that P@Q~-R m 
for some m. Thus R m § 2s is isomorphic to R m + 2, and therefore s = t. Set P' = P O R s, 
we have: 

(P')* ~- P*O(RS) * ~- P*O R ~ ~- P O  R s = P' 

so that P '  is self-dual and [P ' ]  = [P].  
ii) Let P be a self-dual projective module and set x = [P]  ; then x* = x so that 

by i), x is represented by a self-dual module  Q and there exist integers s and t => 0 
such that POQO)R*"~R t. The module  Q ' =  Q~)R ~ is clearly self-dual and POQ' is 
flee. 

The inclusion of  F(R) in FP(R) determines a homomorph i sm  i :KF(R) 
~KFP(R) ;  the map F P ( R ) ~ _ ~ ( R )  which associates to a form the class of its 
underlying projective module induces a homomorph i sm n : K F P ( R ) ~ K ~ ( R )  and 
we have: 

Theorem 2.2. The sequence 

i n 

O~KF(R)----~ KFP(R) , R~(R)~O 

is exact. 

Proof The map n is surjective by Lemma 2.1 and clearly n o i : 0 .  Let y be in 
KFP(R) such that n(y) = 0; we can represent y as y = [B 1] - [B2] where B i : Pi ~ P* 
is unimodular  and Pi is projective. By Lemma 2.1, there is a self-dual module Q2 
equipped with a form B~ such that P20Q2 is flee. We have y=[B10B'2]  
- [B2  �9 B~]. As [P l  O Q2] = [P1]  - [ P 2 ]  = n(y)= 0, there are integers s and t such 
that P~OQ20)W"~R t. Let C a be a unimodular  form on R ~ and denote by C4 the 
form B 1 ~)B'20C3. The equality y = [C4] -- [C3] -- [B2@B~] shows that  y is in the 
image of  i. 

Let x =  [ B 1 ] -  [B2] be an element of  KF(R), where B i : L ~ L *  is a unimodular  
form defined on a free module  and suppose that  i(x)= 0. There exist un imodular  
forms C~,'Wk~(P~,)*, a = 1 , 2 , 3  where P~, is a projective module, such that  
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(C~, C~, C 3) is an exact triple and such that the following equality holds in the free 
abelian group on FP(R): 

( B , )  - ( B 2 )  = g/~k( ( C~ ) + ( C  3 ) - (C~) )  
k 

with flk in 2g. By Lemma 2.1, there exist forms D~,: Q~--*(Q~,)*, c~= 1, 3 such that 
P~,q)Q~ is free. For each k, 

(c~ | C~| | 3, C3e021 

is an exact triple of forms defined on free modules, so that 

X = ~ , f l k ( E C l ~ ) o  1 ] -I- 3 3 2 1 3 [CkOOk]--[CkOOkOOk])=O inKF(R) .  
k 

Example. For a Dedekind ring D with trivial involution, KFP(D) is an extension of 
KF(D) by the subgroup of elements of order < 2 of the ideal class group of D. 

3. Determination of KF(R) and Z(R) 

Let G be an abelian group written multiplicatively and suppose that the cyclic 
group of order two C2 acts on G by g ~ .  We denote by NG the norm subgroup 

NG={yeG[y=2x  for some x in G} 

Let U(R) "b denote the abelianization of U(R). The involution on R gives a 
C2-action on U(R) ab. 

Recall that KI(R) is the abelian group defined as the quotient of the infinite 
general linear group GL(R) by the subgroup generated by the elementary matrices 
over R (see [19, Chap. 13] for the basic facts about KI(R)). We shall write the group 
operation multiplicatively. 

The map 

GL(R)~GL(R), 

A~--~ A* 

which sends a matrix A to its transpose-conjugate yields a C2-action on KI(R ). 
The canonical homomorphism U(R)= GLI(R)~KI(R ) induces a homomor- 

phism j :  U(R)ab-.KI(R) and we se t / ( l (R)=coker j .  
The homomorphism j is compatible with the actions on U(R) ab and K~(R), so 

that there is an induced C2-action on /~I(R). 
We can therefore consider the norm subgroups N U(R) "b, NK 1 (R), and N/(  1 (R). 
Let 1 denote the unit matrix in GL,(R). 

Lemma 3.1. i) I f  A and B are in G L,( R) the equality [A] + [B] = [ AB] + [1] holds in 
KF(R). 

ii) For every element x in KF(R) there is an integer n and a matrix C in GL,(R) 
such that x = [C] - [1]. 

Proof i) The matrix 

, ,  A. :)(A: o) 
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is invertible and we have the equality: 

so that [A] + [B] = lAB] + [ 1 ]  in KF(R). 
ii) Any element x of KF(R) can be written as x = [A] - [B] with A and B in 

GL.(R) for some n. Set C = AB -1, then [-C]-  [4] = [ A ] -  [B] using i). 
The map 

F(R)-+ K, (R)/NK , (R), 

<A> ~ [A] 

is clearly well-defined and induces a homomorphism KF(R)--.KI(R)/NK I(R). To 
show this, suppose that (A1, A2, A3) is an exact triple of matrices so there exist an 
invertible matrix U and a matrix X such that 

Since ( ~  : )  is a product of elementary matrices we have 

[A2] [A;1] [A 3 , ] = [ U , ]  [U] =1 

in KI(R)/NK~(R ). Let ~0 denote the restriction of this homomorphism to KF(R). 
Conversely, Lemma 3.1 i) shows that the maps 

GLn(R)~K~F(R), 
A w-. [A] - [4] 

are homomorphisms. They induce a homomorphism KI(R)--*K'~F(~ which 
vanishes on NK~(R) since [ U * U ] -  [4] =0. Let $':Ka(R)/NKI(R)--*KF(R ) de- 
note the induced homomorphism. 

Clearly q~ o 7, is the identity on K~(R)/NKI(R ). Let x in KF(R) be represented as 
x = [ C ] - [ t ]  with C in GL,(R)using Lemma 3.1ii); ~oCb(x)=T([C])=x. We 
therefore deduce the following theorem which characterizes KF(R): 

Theorem 3.2. The homomorphism r " K F( R )--* K1( R )/ N K I ( R ) is an isomorphism. 

We now turn to the determination of Z(R). 

Lemma 3.3. i) Let A be an m • m invertible matrix, B be an n • n invertible matrix, 
and X be any n • m matrix, then: 

( A OB) is stably equivalent tO ( o OB)" 

ii) Let A and B be two invertible matrices of the same rank, then: 

( 0  O) is stably equivalent t~ AB" 

Proof. We denote by I k the unit matrix in GLk(R). ( 00) 
i) [ 0 0 l e x p a n d s t o  0 B 0 

V --B I n 
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where V will be determined below. The matrix 

is invertible and 

(,o 0 0tt, 0 U = "~. 0 0 1. 
1. ~. 0 0 

i 0 U* B 
- B  

This last matrix is congruent to 

which collapses to [Av  

B * - ]  

~ t 
0 U= ~. . 

~. BV 0 

/ 

A 0 0 
BV B 0 

V B* ~. 

0BI. Setting V=B 'X proves i). 

ii) Byi)'[O 0B] is stably equivalent t~ [ l  -AA-B Ol" The equality (*) in the 

~ proof of Lemma 3.1 shows that the latter is congruent to A*+ B - ~  
collapses to AB. 

Proposition 3.4. X(R) forms an abelian group for the operation induced by the block 
sum of matrices. 

Proof To see that the addition is well-defined, it clearly suffices to prove that if 
A 1 4A 2 then A 1 0 B d A 2 G B  for any invertible matrix B. Suppose that A 2 is 
congruent to 

Al 

XI~ . . . ~ X  n 

where the x/are in R and u is in U(R); A2GB is congruent to 

0 

. . ,  

B 

and therefore to 0 B 

x l . . . x .  0 . . .0  

0 
A1 i 

0 
;1  " "  X n  U 

0 
0 

0 

which collapses to AIOB. 
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The zero element is represented by the class of the empty matrix. If A is an 
invertible matrix, [A] admits [A T] = [A ~] as an inverse since by Lemma 3.3, 

[ 0 0 * ] / ~ ' A A ' w h i c h i s c ~ 1 7 6  AO-'I/ '~AA-x-='and'c~ 

to q~. 
The map 

U(R)~KF(R), 

u ~ [ u ] -  [1]  

is a homomorphism by Lemma 3.1 and induces a homomorphism U(R)~b~K~F(R) 
which vanishes on NU(R) ab. Denote by j':U(R)"b/NU(R)"b~KF(R) the induced 
homomorphism. 

The map 
F(R)~Z(R), 

(A)--+[A] 

o] stab,, induces a surjective homomorphism KF(R)~X(R) since A3 

equivalent to [ Ax 031for any invertible matrices Al and A3 and any matrix X. 

We denote by / t  its restriction to KF(R). 

Proposition 3.5. There is an exact sequence: 

U(R)~b/NU(R) "b J-~ K'~F(R) u X(R)~O 

Proof The homomorphism # is clearly surjective and/~ oj '=  0. Let x in KF(R) be 
represented as x = [C] - [1] with C in GL,(R). If #(x) = 1, C is stably equivalent to 
the empty matrix, so there is a sequence q~ = Ao, A1, ..., A k = C such that Ai 4 Ai+ 1 
or Ai+14A i. This shows that there exist elements u i in U(R) such that [Ai+ 1] 
= [Ai] "4-ei[Ui] in KF(R) where ei = + 1 ifA i 4 Ai+ 1, el= - 1 ifAi+ l 4 Ai. Moreover 

k k 
we have ~ e i = n. Thus the equality [C] = ~ ei[ui] holds in KF(R) and [C] - [1] 

i = 1  i = 1  
k 

= y, ~/([u/] -- [1]) is in the image o f f .  
i = 1  

Theorem 3.6. The group Z(R) is isomorphic to K I(R)/NKI(R). 

Proof The homomorphism j :  U(R)"b~KI(R)induces 

f: U(R)"b/N U( R) "b ~ K I(R)/NK1 (R) 

and the diagram 

U(R)~b/NU(R)ab S' K~F(R) 

~ K , ( R ) / N K , ( R ) / ~  

clearly commutes. Proposition 3.5 shows that Z(R) is isomorphic to cokerj' and it 
is easy to see that K~(R)/NK-~I(R) is isomorphic to cokerj. The result follows from 
the fact that ~ is an isomorphism. 
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Remark. Neither j nor ]-are injective in general. For instance, let R be the ring of 
2 x 2 matrices over 7Z together with the transposition of matrices as an involution. 
The group K~(R) is isomorphic to C2 while U(R) "b is isomorphic to Ca x C 2. 
Moreover the C2-actions on U(R) "b and KI(R ) induced by the transposition are 
trivial; this shows that f i s  not injective. 

When R is a commutative ring the determinant induces a split epimorphism 
d e t : K I ( R ) ~ U ( R )  so that SKi(R)= ker det can be identified with K I(R). This 
identification commutes with the C2-actions induced on SK1(R ) and/s by the 
transpose-conjugation of matrices and we get: 

Corollary 3.7. For a commutative ring R, 

Z(R) is isomorphic to SKI(R)/NSK~(R), 

KF(R) is isomorphic to ZOU(R) /NU(R)OSKa(R) /NSKI(R  ). 

Remark. This corollary shows that for a commutative ring R the sequence of 
Proposition 3.5 can be extended to a short exact sequence. 

The following corollary gives a "stable range" condition for Z(R). 

Corollary 3.8. Let R be a commutative ring which is a finite algebra over a ring of 
Krull dimension d, then every element of Y,(R) can be represented by an invertible 
matrix of rank d + 1. 

Proof A theorem of Bass (see [19], Theorem 12.3 and Theorem 13.5) shows that in 
this situation the natural map GLd+ I(R)~K~(R) is surjective. 

In particular we obtain the following: 

Corollary 3.9. Let R be a commutative ring which is a finite algebra over a ring of 
Krull dimension 1 and suppose that the involution on R is trivial, then x* = x - ~ in 
SKl(R ) and X(R) is isomorphic to SKI(R ). 

Proof The maps GL2(R)~K~(R) and therefore SL2(R)--*SK~(R ) are surjective. 
Since any matrix C in SLz(R ) satisfies 

'01 [ ~ '01 
x* =x  -1 holds in SKi(R). 

4. Examples 

Example 4.1. Let G be a torsion abelian group. By a theorem of Bak ([2]), the 
involution g ~ g-1 for g in G induces the trivial C2-action on SKI(ZG ). This 
shows that for this involution S(2~G) is isomorphic to SKI(2~G)/SKI(ZG) 2. 

From now on we restrict ourselves to the case where R is a commutative ring 
with trivial involution and compute the corresponding group S(R). 

The condition in Corollary 3.9 is fulfilled for instance in the following cases: 
- R = Z G ,  where G is a finite abelian group; 
- R is a Dedekind ring; 
- R is a field. 

Let C n denote the cyclic group of order n, we deduce: 
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Theorem 4.2. i) X(R) is trivial in the following cases: 
- R is a euclidian ring (in particular 2g, the p-adic integers Z r or a .field) 
- R is the ring of algebraic integers in a number field. 
ii) I f  G is a finite abelian group, X(ZG) is trivial if and only if 
- G is either an elementary abelian 2-group or 
- every p-Sylow subgroup of G is either cyclic or of the form Cp x C~. 

Proof It is well known that if R is euclidian (in particular a field or a discrete 
valuation ring), SK1(R ) is trivial. A theorem of Bass, Serre, and Milnor (see [163, 
Sect. 16) shows that SKI(R)=O in the case of the ring of algebraic integers in a 
number field. For the result mentioned about group rings, see [1, Theorem 4.9]. 

Remark. The fact that X(Z) is trivial has a geometric interpretation in knot theory: 
it shows that every high-dimensional fibred knot is stably obtained by Hopf 
plumbing and gives another proof of [153, Theorem 1. 

We now give examples of rings for which Z(R) is non trivial. 

Example 4.3. Bass [3, Sect. 9.2] gives a method for constructing examples of 
principal ideal domains B such that SK ~(B) and therefore Z(B), although generated 
by rank 2 matrices, are not finitely generated. It can be shown that the ring 
B=@(t) [X, Y ] / ( Y 2 - X 3 - 7 )  is an instance of such a ring. 

Example 4.4. Let R be the coordinate ring of an affine algebraic variety X defined 
over the reals such that the set of real points X~ of X is a non-empty compact 
connected topological space. Topological K-theory can be used to show that X(R) 
is non trivial. 

The group R'O-I(X~) is isomorphic to the group of homotopy classes 
[XR;SL(R)] and the inclusion of SO in SL(P,) induces an isomorphism 
7 j : [XR; SO] ~[XR;  SL(R)] (see [6, Sect. 3] which clearly preserves transposition. 
The natural map SL(R)~[XR;SL(R)]  induces a homomorphism 4):SKl(R ) 
--* [X~; SL(R)] and the composite ~ -  1 o q~ vanishes on N S K  I(R). This gives a well- 
defined homomorphism X(R)--*KO-l(xn~). 

Consider for instance Rm = lR[Xo, X 1 ..... Xm]/(X 2 +. . .  + X2~-- 1), the coordi- 
nate ring of the m-sphere Sm. 

For  m = 1, 3 the matrices 

X~ --X1 -X2 t - - X  3 

A1 = Xo  X1 Xo  - - X  3 X 2 

' --X| XI Xo X2 X3 Xo 

X 3 - X  2 X 1 Xo 

represent elements in Z(R,,). 
The maps 

Sm-+SO(m+ l),  

X ~ Am(x ) 

correspond to the multiplication of complex and quaternionic numbers of unit 
norm respectively and give generators for the groups FIre(SO), m = 1, 3. (Hm(SO) is 
cyclic of order 2 for m = 1 and infinite cyclic for m = 3; see [12, Chap. V, Sect. 3] and 
[20].) 
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The matrices above are therefore specific examples of matrices that are not 
stably trivial. For  m=7,  a similar example can be constructed using Cayley 
numbers. 

Even when R is a commutative ring with trivial involution, we shall show that 
the equation x* = x - 1  does not necessarily hold in SKi(R). 

Let C(Y) denote the ring of continuous real valued functions on the topological 
space Y. Recall that if Y is compact and connected, K,~C(Y)) is isomorphic to 
KO(Y) [18, Theorem 2] and SK1(C (Y)) is isomorphic to K 0 -  l(y) [6, Lemma 3.1]. 

Let Rm be the coordinate ring of S", m>  1, and let 

S={r~R,.Ir(x)#O for all x in S m} 

The set S is multiplicative and we consider the ring of fractions A., = S-  1R,.. Since 
R m is a regular integral domain, so is A,,. 

It is well known that R,, and therefore A,, can be viewed as dense subalgebras of 
C(S"). Using [6, Theorem 2.7], [7, Theorem 1] and [8] it can be shown that/s 
is isomorphic to K;o(C(S')) and SKI(A.,) is isomorphic to SKI(C(Sm)). 

Set Am=Am[X,X-~]. Since A,. is a regular integral domain, 

U(Arn ) '~ ~ X U(hm) 

and SK I(A,,) "~ K,o(A,,)| I(A,.) "~ KO(S')OKO- 1(S") [19, Corollary 16.5]. 
The transposition in SKi(Am) corresponds to the dualization of modules over 

A,, and hence of bundles over S" [18, Sect. 2]. Since every bundle is isomorphic to 
its dual, the transposition acts trivially on the first summand. On the second 
summand it corresponds to the transposition in [S"; SO] and therefore x * =  x 1 
holds in K~O - 1(S"). We deduce that 

S(A m) ~- K~O(Sm)/2K~O(Sin) �9 K~O - l(Sm), 

Example 4.5 [where x* = x  holds in SK1(A)]: 
For m=4(8),  KO(S")',~JE, and K~0-1(S")=0 [13, Chap. 9, Sect. 5] so that 

x * =  x holds in SKi(Am) and Z(A,,)~_7l/2. 
The ring C(IRP") of continuous real valued functions on the projective space 

~ ,P"  can be identified with the subring of even functions of C(S'). Let/~., denote 
the subring of R,. whose elements are represented by even polynomials. Set 
S-= Sn/~,. and consider the ring of fractions 4,. = S-  1/~. It can be shown that/~,. 
and therefore A., are regular integral domains which inject as dense subalgebras 
into C(~,,Pm). Using [7, Theorem 1], [10, Sect. 6] and [6, Theorem 2.7], we see that 
/~o(,4,,) is isomorphic to Ro(C(~,,P")) and SK 1(4,,) is isomorphic to SK I(C(~,P")). 

Set Am = A,,[X,X-1]. The same arguments as above show that 

SKt(A.,) ~- Ko(A.,)@SK I(A,. ) ~-- K'O(RP')GI~O- '(RP") 

and 

Z( A.,) ~- K~O(RP")/2K~O(~P")�9 K~O - ~(IRP') . 

Example 4.6 [where neither x * =  x nor x * =  x-1 holds in SK(A)]: 
For m = 8r + 3 (respectively 8r + 7), K~O(~P") -~ 7Z/2 4' + z (respectively 2~/2 4~ + 3) 

and I~O-lORP")~_ZOTZ/2 (see [9, Theorem 1]); therefore 
S(//,,) ~7Z/2@(Z@Z/2) so that neither x * =  x nor x * =  x-~ holds in SKi(A,, ). 
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