QUADRATIC FORMS INVARIANT UNDER GROUP ACTIONS

BY
Jorge Morales and Jean-Marc Piveteau

Introduction

Let K be a field and let G be a finite group. A K-bilinear form β : $V \times V \rightarrow K$ on a $K[G]$-module V is said to be G-invariant if $\beta(g v, g w)=$ $\beta(v, w)$ for v, w in V and g in G. For simplicity, a symmetric nondegenerate G-invariant bilinear form will be called throughout a G-form.

In this paper we consider two equivalence relations on the set of G-forms on a given $K[G]$-module V, namely isometry and projective isometry. Two forms β_{1} and β_{2} are said to be isometric if there exists a K-automorphism f : $V \rightarrow V$ such that $\beta_{1}(f(v), f(w))=\beta_{2}(v, w)$ for all v, w in V (notice that we do not require f to commute with the action of G). The forms β_{1} and β_{2} are said to be projectively isometric if there exists a non-zero constant k in K such that β_{1} and $k \beta_{2}$ are isometric in the previous sense.
W. Feit proved in [2] for the cyclic group C_{p} of prime order p with $p \equiv 3$ $(\bmod 4)$, that all positive-definite C_{p}-forms on the irreducible $\mathbf{Q}\left[C_{p}\right]$-module of dimension $p-1$ are projectively isometric. He also proved by giving an explicit counterexample that this is false for $p \equiv 1(\bmod 4)$.

Our work originates in an attempt to generalize Feit's result. The question whether all positive-definite G-forms on a given irreducible $K[G]$-module V are projectively isometric is closely connected with two other problems, interesting for themselves. The first is the classification of all G-forms on V up to (projective) isometry. The second problem is to study the behavior of invariant forms under induction. More precisely, assuming that V is induced from a subgroup H of G, we wish to know which G-forms are obtained, up to isometry, by inducing H-forms (induction of forms is explained in Section 3).

We shall assume throughout this paper that the ground field K is a totally real number field, even though this hypothesis may not be essential for some of our statements.

Here is a summary of the contents of this article:
Section 1 explains the correspondence between symmetric G-invariant bilinear forms on V and G-invariant hermitian forms over the center of the
endomorphism ring of V. This correspondence is applied repeatedly throughout the paper.

In Section 2 we calculate, under suitable hypotheses, the Hasse-Witt invariant of the difference of two G-forms (Proposition 2.1). We apply this result to obtain explicit criteria for (projective) isometry of G-forms (Theorem 2.2 and Theorem 2.4). We also generalize Feit's theorem [2] to arbitrary p-groups (Corollary 2.6).

Section 3 deals with induction of forms. We prove, under some assumptions, that a positive-definite G-form on an irreducible induced $K[G]$-module is isometric to a induced form (Theorem 3.1). In particular, for a nilpotent group G of odd order, all positive-definite G-forms on an irreducible $K[G]=$ module are obtained, up to isometry, by inducing forms invariant by a cyclic subgroup (Corollary 3.2).

1. Lifting forms to the endomorphism ring

Let K be a field and let G be a finite group. Let V be an irreducible $k[G]$-module endowed with a G-form β. Since V is irreducible, the endomorphism ring $\operatorname{End}_{K[G]}(V)$ is a (skew-)field. The form β induces an involution $e \mapsto \bar{e}$ on $\operatorname{End}_{K[G]}(V)$ defined by

$$
\beta(e v, w)=\beta(v, \bar{e} w) \quad \text { for all } v, w \in V .
$$

The restriction of this involution to the center E of $\operatorname{End}_{K[G]}(V)$ is independent of the choice of β : Let β^{\prime} be another G-form on V. The form β^{\prime} can be written $\beta^{\prime}(v, w)=\beta(a v, w)$ for some $K[G]$-automorphism a of V. For any z in the center E we have

$$
\begin{aligned}
\beta^{\prime}(z v, w) & =\beta(a z v, w) \\
& =\beta(z a v, w) \\
& =\beta(a v, \bar{z} w) \\
& =\beta^{\prime}(v, \bar{z} w) .
\end{aligned}
$$

The above computation shows that β^{\prime} induces the same involution as β on E as claimed. This involution will be called the canonical involution on E.

If K is a totally real number field, then the canonical involution on E is either trivial or it coincides with complex conjugation (see e.g. [1, (50.37)]). The dual vector space $V^{*}=\operatorname{Hom}_{K}(V, K)$ can be made into an E-vector space by setting $(e \phi)(v)=\phi(\bar{e} v)$ for e in E and ϕ in V^{*}. Similarly, the vector space $\operatorname{Hom}_{E}(V, E)$ has the E-vector space structure given by $(e \Phi)(v)$ $=\Phi(v) \bar{e}$. We leave to the reader to see that the map

$$
\begin{aligned}
\operatorname{Hom}_{E}(V, E) & \rightarrow \operatorname{Hom}_{K}(V, K) \\
\Phi & \mapsto \operatorname{Tr}_{E / K}(\Phi)
\end{aligned}
$$

is an E-isomorphism. This isomorphism induces a bijection

$$
\begin{align*}
\operatorname{Herm}_{E, G}(V) & \stackrel{\sim}{\rightarrow} \operatorname{Symm}_{K, G}(V), \\
h & \mapsto \operatorname{Tr}_{E / K}(h) \tag{1}
\end{align*}
$$

between the set $\operatorname{Herm}_{E, G}(V)$ of G-invariant hermitian forms on V (with respect to the canonical involution) and the set $\operatorname{Symm}_{K, G}(V)$ of symmetric G-invariant bilinear forms on V.

We conclude this section by an example. Let C_{n} be the cyclic group of order n. The irreducible $\mathbf{Q}\left[C_{n}\right]$-module V of dimension $\varphi(n)$ can be identified with $\mathbf{Q}(\zeta)$, where ζ is a primitive $n^{\text {th }}$ root of unity, and a fixed generator of C_{n} acts on $\mathbf{Q}(\zeta)$ by multiplication by ζ. The canonical involution on $E=\operatorname{End}_{\mathbf{Q}\left[C_{n}\right]}(V)=\mathbf{Q}(\zeta)$ is complex conjugation. Hence the bijection (1) can be written in this case

$$
\begin{aligned}
\mathbf{Q}\left(\zeta+\zeta^{-1}\right) & \rightarrow \operatorname{Symm}_{\mathbf{Q}, G}(V) \\
a & \mapsto \beta_{a},
\end{aligned}
$$

where β_{a} is the form give by $\beta_{a}(v, w)=\operatorname{Tr}_{\mathbf{Q}(\zeta) / \mathbf{Q}}(a v \bar{w})$.

2. The classification of G-forms

We list here for convenience the notation that will be in force from now on:
$G \quad: \quad$ a finite group
$K \quad: \quad$ a totally real number field
V : a non-trivial irreducible $K[G]$-module
$E \quad: \quad$ the center of $\operatorname{End}_{K[G]}(V)$
$F \quad: \quad$ the subfield of E fixed by the canonical involution
$d_{E / F}:$ the determinant of trace form $(x, y) \mapsto \operatorname{Tr}_{E / F}(x y)$
$B r_{2}(L)$: the subgroup of elements of order at most 2 in the Brauer group of L
$N_{a} \quad: \quad$ the norm of the quaternion algebra $\left(\frac{a, d_{E / F}}{F}\right)$
$(,)_{\mathfrak{p}} \quad: \quad$ the Hilbert symbol at the prime \mathfrak{p}
$W(L)$: the Witt ring of L
$I(L) \quad$: the fundamental ideal of $W(L)$
$\phi_{L} \quad: \quad$ the Hasse-Witt homomorphism $\phi_{L}: I^{2}(L) \rightarrow B r_{2}(L)$

We shall assume henceforth the condition
(*) $\operatorname{End}_{K[G]}(V)$ is a commutative field and the canonical involution is non-trivial.

Instances of representations satisfying condition (*) include faithful irreducible representations over K of the following types of groups: abelian groups of order ≥ 3, nilpotent groups of odd order (see [4], Satz 3).

We shall now calculate explicitly under assumption (*) the difference of two G-forms in the Witt group $W(K)$. The class of a bilinear form β in the Witt ring will be denoted by $[\beta]$.
(2.1) Proposition. Assume condition (*). Let β_{1} and β_{2} be two G-forms on V and let a be the unique element in F such that $\beta_{1}(x, y)=\beta_{2}(a x, y)$ for all x, y in V. Then the difference $\left[\beta_{1}\right]-\left[\beta_{2}\right]$ lies in $I^{2}(K)$ and its Hasse-Witt invariant is given by

$$
\begin{equation*}
\phi_{K}\left(\left[\beta_{1}\right]-\left[\beta_{2}\right]\right)=\operatorname{dim}_{E}(V) \operatorname{Cor}_{F / K}\left(\frac{a, d_{E / F}}{F}\right) . \tag{2}
\end{equation*}
$$

Proof. Let $h: V \times V \rightarrow E$ be the hermitian form over E such that $\beta_{1}=\operatorname{Tr}_{E / K}(h)$ (see (1)). Obviously we have $\beta_{2}=\operatorname{Tr}_{E / K}(a h)$. We first compute the class of the form

$$
X_{a}:=\operatorname{Tr}_{E / F}(h) \perp\left(-\operatorname{Tr}_{E / F}(a h)\right)
$$

in $W(F)$. Choosing a diagonalization we write $h=\left\langle c_{1}, \ldots, c_{n}\right\rangle$, where the coefficients c_{i} are in the fixed field F and n is the dimension of V over E. On the one hand we have

$$
\begin{aligned}
X_{a} & =\langle 1,-a\rangle \otimes \operatorname{Tr}_{E / F}(h) \\
& =\langle 1,-a\rangle \otimes\left\langle 1,-d_{E / F}\right\rangle \otimes\left\langle 2 c_{1}, \ldots, 2 c_{n}\right\rangle \\
& =\left\langle 1,-a,-d_{E / F}, a d_{E / F}\right\rangle \otimes\left\langle 2 c_{1}, \ldots, 2 c_{n}\right\rangle \\
& =N_{a} \otimes\left\langle 2 c_{1}, \ldots, 2 c_{n}\right\rangle .
\end{aligned}
$$

On the other hand, the forms N_{a} and $c N_{a}$ are isometric over F for any c in F^{*}. Thus $\left[X_{a}\right]=n\left[N_{a}\right]$ in $W(F)$. In particular $\left[X_{a}\right]$ belongs to $I^{2}(F)$. Using the commutativity of the diagram

$$
\begin{array}{lr}
I^{2}(F) \xrightarrow{\phi_{F}} B r_{2}(F) \\
\operatorname{Tr}_{F / K} \downarrow & \downarrow \operatorname{Cor}_{F / K} \\
I^{2}(K) \underset{\phi_{K}}{\longrightarrow} B r_{2}(K)
\end{array}
$$

(see e.g. [3, Section 6]) we obtain

$$
\begin{aligned}
\phi_{K}\left(\left[\beta_{1}\right]-\left[\beta_{2}\right]\right) & =\phi_{k} \operatorname{Tr}_{F / K}\left(\left[X_{a}\right]\right) \\
& =n \phi_{K} \operatorname{Tr}_{F / K}\left(\left[N_{a}\right]\right) \\
& =n \operatorname{Cor}_{F / K} \phi_{F}\left(\left[N_{a}\right]\right) \\
& =n \operatorname{Cor}_{F / K}\left(\frac{a, d_{E / F}}{F}\right) .
\end{aligned}
$$

We are now able to formulate the main result of this section.
(2.2) Theorem. Let V be a $K[G]$-module satisfying condition (*). Let β_{1} and β_{2} be two G-forms on V. Let $a \in F$ be such that $\beta_{1}(x, y)=\beta_{2}(a x, y)$.
(I) Suppose that $\operatorname{dim}_{E}(V)$ is even. Then β_{1} and β_{2} are isometric if and only if they have the same signature.
(II) Suppose that $\operatorname{dim}_{E}(V)$ is odd. Then β_{1} and β_{2} are isometric if and only if they have the same signature and

$$
\begin{equation*}
\prod_{\mathfrak{B} \mid \mathfrak{p}}\left(a, d_{E / F}\right)_{\mathfrak{B}}=1 \tag{3}
\end{equation*}
$$

for all primes \mathfrak{p} of K.
Proof. Recall that forms over number fields are classified by rank, discriminant, Hasse invariant, and signature. Evidently β_{1} and β_{2} have the same rank and discriminant, and by hypothesis they have the same signature. Hence we need only to test the vanishing of the Hasse-Witt homomorphism ϕ_{K} on the difference $\left[\beta_{1}\right]-\left[\beta_{2}\right]$.
(I) If $\operatorname{dim}_{E}(V)$ is even then $\phi_{K}\left(\left[\beta_{1}\right]-\left[\beta_{2}\right]\right)=0$ by Proposition 2.1.
(II) If $\operatorname{dim}_{E}(V)$ is odd then identity (2) becomes

$$
\phi_{K}\left(\left[\beta_{1}\right]-\left[\beta_{2}\right]\right)=\operatorname{Cor}_{F / K}\left(\frac{a, d_{E / F}}{F}\right)
$$

Let now \mathfrak{p} be a prime of K and let \mathfrak{B} be a prime of F above \mathfrak{p}. Using the commutativity of the diagram

(see e.g. [5, Section 1]), and taking the sum over all primes \mathfrak{B} lying above \mathfrak{p},
we obtain the commutative diagram

which shows immediately that the \mathfrak{p}-component of $\operatorname{Cor}_{F / K}\left(a, d_{E / F} / F\right)$ is given by the product of Hilbert symbols

$$
\prod_{\mathfrak{B} \mid \mathfrak{p}}\left(a, d_{E / F}\right)_{\mathfrak{B}}
$$

This completes the proof of the theorem.
(2.3) Remark. If \mathfrak{B} is inert in E then $B r_{2}\left(F_{\mathfrak{B}}\right)$ can be identified with $F_{\mathfrak{B}}^{*} / N_{E / F}\left(E_{\mathfrak{B}}^{*}\right)$. With this identification, the natural map $\mathrm{Br}_{2}\left(F_{\mathfrak{B}}\right) \rightarrow \mathbf{Z} / 2 \mathbf{Z}$ is given by $x \mapsto \operatorname{ord}_{\mathfrak{B}}(x)(\bmod 2)$. Thus, in this case, condition (3) becomes

$$
\sum_{\mathfrak{B} \mid \mathfrak{p}} \operatorname{ord}_{\mathfrak{B}}(a) \equiv 0(\bmod 2)
$$

or equivalently,

$$
\operatorname{ord}_{\mathfrak{p}}\left(N_{F / K}(a)\right) \equiv 0\left(\bmod 2 f_{\mathfrak{p}}\right)
$$

where $f_{\mathfrak{p}}$ is the inertial degree of \mathfrak{p} in F.
With the same notation, we have:
(2.4) Theorem. Let V be a irreducible $K[G]$-module satisfying (*).
(I) If $\operatorname{dim}_{E}(V)$ is even, then all positive-definite invariant bilinear forms are isometric.
(II) If $\operatorname{dim}_{E}(V)$ is odd, then the following statements are equivalent:
(a) $[F: K]$ is odd;
(b) All positive-definite G-forms are projectively isometric.

Proof. (I). Direct consequence of Theorem 2.2.
(II). Assume now that $\operatorname{dim}_{E}(V)$ is odd.
(a) \Rightarrow (b). Since $[F: K]$ is odd and E / K is normal, we can choose $d_{E / F}$ in K^{*}. Let β_{1} and β_{2} be positive-definite G-forms. Let a be in F such that $\beta_{1}(x, y)=\beta_{2}(a x, y)$ for all x, y in V. Let \mathfrak{p} be a prime of K and fix a prime
\mathfrak{B}_{0} of F above \mathfrak{p}. Let $\Gamma=\operatorname{Gal}(F / K)$. With this notation we have

$$
\begin{aligned}
\prod_{\mathfrak{B} \mid \mathfrak{p}}\left(a, d_{E / F}\right)_{\mathfrak{B}} & =\prod_{\sigma \in \Gamma / \Gamma_{\mathfrak{B}_{0}}}\left(\sigma(a), d_{E / F}\right)_{\mathfrak{B}_{0}} \\
& =\left(N_{F / K}(a), d_{E / F}\right)_{\mathfrak{B}_{0}} \\
& =\prod_{\mathfrak{B} \mid \mathfrak{p}}\left(N_{F / K}(a), d_{E / F}\right)_{\mathfrak{B}}
\end{aligned}
$$

(note that the order of $\Gamma_{\mathfrak{B}_{0}}$ is odd). Applying Theorem 2.2 we conclude that β_{1} and $N_{F / K}(a) \beta_{2}$ are isometric.
(b) \Rightarrow (a). Let β_{1} be a positive-definite G-invariant form on V. Choose a prime \mathfrak{p} of K such that $\mathfrak{p} O_{F}$ is the product of [$F: K$] distinct primes of F which are inert in E (such a prime exists by Tchebotarev's Density Theorem). Let $\mathfrak{B}_{1}, \ldots, \mathfrak{B}_{[F: K]}$ be the primes of F lying above \mathfrak{p} and let a be a totally positive element in F satisfying

$$
\operatorname{ord}_{\mathfrak{B}_{i}}(a)= \begin{cases}1 & \text { if } i=1 \\ 0 & \text { if } i>1\end{cases}
$$

Let $\beta_{2}(v, w)=\beta_{1}(a v, w)$. By hypothesis, there exists k in K^{*} such that $k \beta_{1}$ and β_{2} are isometric. By Theorem 2.2 part II (and Remark 2.3), we must have

$$
\begin{equation*}
\sum_{\mathfrak{B} \mid \mathfrak{p}} \operatorname{ord}_{\mathfrak{B}}(a) \equiv \sum_{\mathfrak{B} \mid \mathfrak{p}} \operatorname{ord}_{\mathfrak{B}}(k) \quad(\bmod 2) \tag{4}
\end{equation*}
$$

The left hand side of (4) is equal to 1 by the construction of a, and, since \mathfrak{p} is totally decomposed in F, the right hand side of (4) is given by

$$
\sum_{\mathfrak{B} \mid \mathfrak{p}} \operatorname{ord}_{\mathfrak{B}}(k)=[F: K] \operatorname{ord}_{\mathfrak{p}}(k)
$$

Therefore [$F: K$] must be odd.
(2.5) Corollary. Let $K=\mathbf{Q}$ and assume condition (*). Suppose that G acts faithfully on V and that $\operatorname{dim}_{E}(V)$ is odd. If all positive-definite G-forms on V are projectively isometric, then the center $Z(G)$ of G is cyclic and its order is either 2^{ν} with $0 \leq \nu \leq 2$, or of the form p^{ν} or $2 p^{\nu}$ with p prime and $p \equiv 3$ $(\bmod 4)$.

Proof. Let $n=|Z(G)|$. The statement being trivial for $n \leq 2$ we may assume $n>2$. Since G acts faithfully, the center $Z(G)$ is mapped injectively into E^{*}, therefore $Z(G)$ is cyclic and E contains the cyclotomic field $\mathbf{Q}\left(\zeta_{n}\right)$.

By Theorem 2.4 Part II the degree $\left[\mathbf{Q}\left(\zeta_{n}+\bar{\zeta}_{n}\right): \mathbf{Q}\right]$ must be odd, or equivalently, $\varphi(n) / 2$ must be odd. This is true only for $n=4$ or of the form p^{α} or $2 p^{\alpha}$ with $p \equiv 3(\bmod 4)$.

We also have a generalization of Feit's result.
(2.6) Corollary. Let G be a p-group $(p>2)$. Let V be a simple non-trivial $\mathbf{Q}[G]-m o d u l e$. The following statements are equivalent:
(a) $p \equiv 3(\bmod 4)$;
(b) All positive-definite G-forms on V are projectively isometric.

Proof. Evident consequence of Theorem 2.4, since in this case E contains $\mathbf{Q}\left(\zeta_{p}\right)$ and is contained in $\mathbf{Q}\left(\zeta_{|G|}\right)$. Notice also that condition (*) is automatically satisfied.

3. Induction of forms

We keep the conventions and the notation from the previous section. Let H be a subgroup of G and let U be a $K[H]$-module. We write the induced $K[G]$-module $\operatorname{Ind}_{H}^{G}(U)=K[G] \otimes_{K[H]} U$ in the form

$$
\operatorname{Ind}_{H}^{G}(U)=\stackrel{r}{\bigoplus_{i=1}} x_{i} \otimes U
$$

where $\left\{x_{1}, \ldots, x_{r}\right\}$ is a system of representatives of the left cosets of G $(\bmod H)$. Let β be an H-form on U. The induced module $\operatorname{Ind}_{H}^{G}(U)$ inherits naturally the G-form $\tilde{\beta}$ defined by

$$
\tilde{\beta}\left(x_{i} \otimes v, x_{j} \otimes w\right)=\delta_{i j} \beta(v, w)
$$

which will be called the form induced from β. We have the following result.
(3.1) Theorem. Let H be a normal subgroup of prime index p in $G(p>2)$ and let U be a $K[H]$-module. Suppose that $V=\operatorname{Ind}_{H}^{G}(U)$ is irreducible and satisfies condition (*) of the previous section. Then any positive-definite G-form on V is isometric to $a G$-form induced from a positive-definite H-form on U.

Proof. The induction functor $\operatorname{Ind}_{H}^{G}$ provides an injection of $M:=$ $\operatorname{End}_{K[H]}(U)$ into $E=\operatorname{End}_{K[G]}(V)$. Two cases have to be distinguished.
(a) $M=E$. In this case $\operatorname{Res}_{H}^{G}(V)$ is the orthogonal sum of non-isomorphic $K[H]$-submodules $x_{i} \otimes U$, where $\left\{x_{1}=1, x_{2}, \ldots, x_{p}\right\}$ is a system of representatives of G / H. Any G-form β on V is in this case the orthogonal sum of p copies of $\bar{\beta}: U \times U \rightarrow K$, where $\bar{\beta}$ is given by $\bar{\beta}(u, v):=\beta(1 \otimes u, 1 \otimes v)$.
(b) $M \subsetneq E$. In this case $\operatorname{Res}_{H}^{G}(V)$ is isomorphic to $U \oplus \cdots \oplus U$; therefore $E \cong \mathbf{M}_{p}(M)^{G / H}$. Comparing the dimensions over M, we see that E / M is an extension of degree p. Note that complex conjugation is non-trivial on M (since $[E: M$] is odd, M cannot be contained in the subfield F of E fixed by complex conjugation). Let N be the intersection $M \cap F$. We sketch here for clarity the related tower of fields:

Let β_{1} and β_{2} be positive definite G-forms on V and assume that β_{1} is a form induced from H, that is

$$
\beta_{1}\left(x_{i} \otimes u, x_{j} \otimes v\right)=\delta_{i j} \bar{\beta}_{1}(u, v)
$$

where $\bar{\beta}_{1}$ is a positive-definite H-form on U. Let $B_{i}: V \times V \rightarrow N$ be such that

$$
\beta_{i}(x, y)=\operatorname{Tr}_{E / K}\left(B_{i}(x, y)\right) \quad \text { for } i=1,2
$$

Since $[F: N]=p$ is odd, by Theorem 2.4 Part II, the forms B_{1} and B_{2} are projectively isometric, that is there exists a in N such that $a B_{1}$ and B_{2} are isometric. Applying the trace $\operatorname{Tr}_{N / K}$ we see that the forms $\beta_{3}:=\operatorname{Tr}_{N / K}\left(a B_{1}\right)$ and $\beta_{2}=\operatorname{Tr}_{N / K}\left(B_{2}\right)$ are isometric. We finish the proof by showing that β_{3} is an induced form as well

$$
\begin{aligned}
\beta_{3}\left(x_{1} \otimes u, x_{j} \otimes v\right) & =\operatorname{Tr}_{N / K} B_{3}\left(x_{i} \otimes u, x_{j} \otimes v\right) \\
& =\operatorname{Tr}_{N / K} B_{1}\left(x_{i} \otimes a u, x_{j} \otimes v\right) \\
& =\bar{\beta}_{1}(a u, v) \delta_{i j}
\end{aligned}
$$

(3.2) Corollary. Let G be a nilpotent group of odd order and let V be an irreducible $K[G]$-module. Let β be a positive-definite G-form on V. Then there exists a divisor n of $|G|$ and a totally positive element a in the cyclotomic field $K\left(\zeta_{n}\right)$ such that β is isometric to an orthogonal sum

$$
\beta_{0} \perp \cdots \perp \beta_{0}
$$

where $\beta_{0}(x, y)=\operatorname{Tr}_{K\left(\zeta_{n}\right) / K}(a x \bar{y})$.

Proof. We may assume that G acts faithfully on V. We prove the corollary by induction on the order of G. For $|G|=1$ the statement is trivial. For $|G|>1$ we have two possible cases.
(1) If $V=\operatorname{Ind}_{H}^{G}(U)$, where H is a subgroup of index p, then we apply Theorem 3.1 and the induction hypothesis.
(2) If V is not induced, then, by [4, Section 3], the group G must be cyclic.
(3.3) Remark. Corollary 3.2 together with Feit's theorem [2] give an alternative proof for Corollary 2.6.

Acknowledgement. The authors are grateful to the referee for her/his useful comments.

References

1. C. Curtis and I. Reiner, Methods of representation theory, vol. II, Wiley, New York 1987.
2. W. Feit, On certain rational quadratic forms, Linear and Multilinear Algebra, vol. 3 (1975), pp. 25-32.
3. C. Riehm, The corestriction of algebraic structures, Invent. Math., vol. 11 (1970), pp. 73-98.
4. P. Roquette, Realisierung von Darstellungen endlicher nilpotenten Gruppen, Arch. Math., vol. 9 (1958), pp. 241-250.
5. J.-P. Serre, "Local class field theory" in Algebraic number theory, J.W.S. Cassels \& A. Fröhlich, editors, Academic Press, New York, 1967.

Louisiana State University
Bâton Rouge, Louisiana
Eidgen Technische Hochschule
Zurich, Switzerland

