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1. Introduction

An important and classical problem in Galois theory is to describe for a field k
and a finite group G all Galois extensions M/L with Galois group G, where L is a 
field containing k. This can be done by means of a generic polynomial, that is a poly-
nomial f(Y ; t1, . . . , tm) with coefficients in the function field k(t1, . . . , tm) and Galois 
group G such that every Galois G-extension M/L, with L ⊃ k, is the splitting field of 
f(Y ; ξ1, . . . , ξm) for a suitable (ξ1, . . . , ξm) ∈ Lm.

A related construction is that of generic extensions introduced by Saltman [10]. These 
are Galois G-extensions of commutative rings S/R, where R = k[t1, . . . , tm, 1/d] and d
is a nonzero polynomial in k[t1, . . . , tm], such that every Galois G-algebra M/L, where 
L is a field containing k, is of the form M � S ⊗ϕ L for a suitable homomorphism of 
k-algebras ϕ : R → L.

Over an infinite ground field k, the existence of generic polynomials is equivalent to 
the existence of generic extensions as shown by Ledet [8], but the dictionary, at least in 
the direction {polynomials} → {extensions}, is not straightforward.

In this paper, we construct explicitly both a generic extension and a generic polynomial 
for groups of the form G = A×, where A is a finite-dimensional Fq-algebra and k is an 
infinite field containing Fq. Both constructions are based on the theory of Frobenius 
modules as developed by Matzat [9]. An important ingredient is Matzat’s “lower bound” 
theorem as formulated in [2, Theorem 3.4] that we use to show that the extensions 
(respectively, polynomials) we construct have the required Galois group.

The number of parameters in our construction is not optimal. For example, if 
A = Mn(Fq), then our method produces a polynomial in n2 parameters, as opposed 
to the standard generic polynomial for GLn(Fq) that needs only n parameters [1], 
[4, Section 1.1]. However, our method has the advantage of being general for all groups 
of the form A×, where A is any finite-dimensional algebra over Fq.

We are indebted to the referee for her/his pertinent and useful comments.

2. Frobenius modules

In this section we recall the basic theory and definitions relating to Frobenius modules 
for convenience of the reader. Most of the material in Sections 2.1–2.3 can be found in 
[9, Part I], [2]. We include it here for the convenience of the reader.
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2.1. Preliminaries

Let K be a field containing the finite field Fq and let K denote an algebraic closure 
of K.

Definition 1. A Frobenius module over K is a pair (M, ϕ) consisting of a finite-dimensional 
vector space M over K and an Fq-linear map ϕ : M → M satisfying

1. ϕ(ax) = aqϕ(x) for a ∈ K and x ∈ M .
2. The natural extension of ϕ to M ⊗K K → M ⊗K K is injective.2

The solution space Solϕ(M) of (M, ϕ) is the set of fixed points of ϕ, i.e.

Solϕ(M) =
{
x ∈ M

∣∣ ϕ(x) = x
}
,

which is clearly an Fq-subspace of M .
Let e1, e2, . . . , en be a K-basis of M . Clearly ϕ is completely determined by its values 

on this basis. Write

ϕ(ej) =
n∑

i=1
aijei,

where aij ∈ K and let A = (aij) ∈ Mn(K). Identifying M with Kn via the choice of this 
basis, we have

ϕ(X) = AX(q),

where X = (x1, . . . , xn)T and X(q) = (xq
1, . . . , x

q
n)T . Condition (2) of Definition 1 ensures 

that A is nonsingular. We shall denote by (Kn, ϕA) the Frobenius module determined 
by a matrix A ∈ GLn(K).

With the above notation, the solution space Solϕ(M) is identified with the set of 
solutions in K of the system of polynomial equations

AX(q) = X. (1)

By the Lang–Steinberg theorem (Theorem 2.5), there is a matrix U = (uij) ∈ GLn(K)
such that

A = U
(
U (q))−1

, (2)

2 Note that if K is not perfect, the injectivity of ϕ : M → M does not imply condition (2) above. For 
example, if a ∈ K \Kq, the map ϕ : K2 → K2 given by ϕ(x, y) = (xq − ayq, 0) is injective over K but not 
over K.
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where U (q) = (uq
ij). Thus, the change of variables Y = U−1X over K yields the “trivial” 

system

Y (q) = Y, (3)

whose solutions are exactly the vectors in Fn
q ⊂ K

n. We have proved:

Proposition 2.1. The columns of U form a basis of Solϕ(M ⊗K K) over Fq. In particular

dimFq
Solϕ(M ⊗K K) = n.

2.2. Separability

We shall now show that the solutions of (1) are in Kn
sep. See [9, Theorem 1.1c] for a 

different argument.

Proposition 2.2. Let A ∈ GLn(K) and let x1, x2, . . . , xn be indeterminates. Then the 
K-algebra

F = K[X]/
〈
AX(q) − X

〉
,

where X = [x1, x2, . . . , xn]T and 〈AX(q) − X〉 is the ideal generated by the coordinates 
of AX(q) − X, is étale over K.

Proof. Consider the change of variables Y = UX over K, where U is as in (2). Then

F ⊗K K = K[Y]/
〈
Y(q) − Y

〉
�

∏
Fn
q

K. �

Corollary 2.3. The solutions of the system of polynomial equations AX(q) = X in K
n lie 

in Kn
sep. In particular, the matrix U of (2) is in GLn(Ksep).

Proof. The solutions of AX(q) = X are exactly the images of X under K-algebra ho-
momorphisms F → K. Since F/K is étale, so are all its quotients. This implies that the 
images of such homomorphisms are contained in Ksep. �
Definition 2. The splitting field E of (M, ϕ) is the subfield of Ksep generated over K by 
all the solutions of AX(q) = X.

Remark 1. The above definition does not depend on the choice of a basis of M over K.

Corollary 2.4. The splitting field E of (M, ϕ) is a finite Galois extension of K generated 
by the coefficients uij of the matrix U of (2).
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Proof. The extension E/K is finite, separable by Proposition 2.2. It is normal since a 
Galois conjugate of a solution X of AX(q) = X is also a solution. Every solution X of 
AX(q) = X is an Fq-linear combination of the columns of U by Proposition 2.1, thus the 
coefficients uij of U generate E over K. �
2.3. The Galois group of a Frobenius module

The Lang–Steinberg theorem (see [6, Theorem 1] and [14, Theorem 10.1]) plays an 
important role in the theory of Frobenius modules.

Theorem 2.5 (Lang–Steinberg). Let Γ ⊂ GLn be a closed connected algebraic subgroup 
defined over Fq and let A ∈ Γ (K). Then there exists U ∈ Γ (K) such that U(U (q))−1 = A.

Remark 2. In fact, the element U given in Theorem 2.5 lies in Γ (Ksep) as discussed in 
Corollary 2.3.

Next we state two theorems due to Matzat [9] that play an important role in the 
determination of the Galois group of a Frobenius module.

Theorem 2.6 (“Upper Bound” Theorem). (See [9, Theorem 4.3].) Let Γ ⊂ GLn be a 
closed connected algebraic subgroup defined over Fq and let A ∈ Γ (K). Let E/K be the 
splitting field of the Frobenius module (Kn, ϕA) defined by A and let U ∈ Γ (E) be an 
element given by the Lang–Steinberg theorem. Then the map

Gal(E/K) ρ−→ Γ (Fq)

σ 
−→ U−1σ(U)

is an injective group homomorphism.

We state next Matzat’s “lower bound” theorem in the particular case that we will 
use. See [2, Theorem 3.4] and ensuing paragraph.

Theorem 2.7 (“Lower Bound” Theorem). Let K = Fq(t) where t = (t1, . . . , tm) are 
indeterminates. Let Γ ⊂ GLn be a closed connected algebraic subgroup defined over Fq

and let A ∈ Γ (K). Let ρ : Gal(E/K) → Γ (Fq) be the homomorphism of Theorem 2.6. 
Then every specialization of A in Fq is conjugate in Γ (Fq) to an element of im(ρ).

2.4. Integrality

In this subsection we discuss integrality properties of the solutions of the system 
AX(q) = X.



410 J. Morales, A. Sanchez / Journal of Algebra 423 (2015) 405–421
Proposition 2.8. Let R be a Noetherian domain containing Fq with field of fractions K
and let A ∈ GLn(R). Then the solutions of the system AX(q) = X have coordinates that 
are integral over R.

Proof. Define recursively B0 = I, Bk = (A−1)(q
k−1)

Bk−1 for k ≥ 1. Let Nk be the 
R-submodule of Mn(R) generated by B0, B1, . . . , Bk. Since R is Noetherian, the ascend-
ing chain of submodules {Nk} stabilizes, that is Nk−1 = Nk for k large enough. For such 
a k we have

Bk =
k−1∑
j=0

cjBj ,

where cj ∈ R. Let X ∈ Kn
sep be such that AX(q) = X. It follows from the definition of 

the Bj ’s that X(qj) = BjX, thus

X(qk) =
k−1∑
j=0

cjX
(qj),

which shows that the coordinates of X are roots of the monic additive polynomial with 
coefficients in R

T qk −
k−1∑
j=0

cjT
qj . �

Proposition 2.9. Let R be a Noetherian integrally closed domain containing Fq with field 

of fractions K and let A ∈ GLn(R). Let U ∈ GLn(Ksep) be such that A = U(U (q))−1

and let S = R[U ] be the ring generated by the coefficients of U over R. Then the ring 
extension S/R is Galois with Galois group G = Gal(E/K), where E = K[U ].

Proof. Let ρ : G → GLn(Fq) be the homomorphism ρ(σ) = U−1σ(U) of Theorem 2.6. 
Then σ(U) = Uρ(σ), so S = R[U ] is preserved by G. By Proposition 2.8, the ring S is 
integral over R and, since R is assumed to be integrally closed, we must have SG = R. 
It remains to show that S/R is unramified at maximal ideals.

Let m ⊂ S be a maximal ideal and let m0 = R ∩ m. Let � = S/m and k = R/m0. 
Notice that since S/R is integral, the ideal m0 is also maximal [3, Corollary 5.8]. Clearly 
� = k[U ] is the splitting field of the system AX(q) = X over k, where A is the class of 
A modulo m0. Hence �/k is Galois. Let Gm ⊂ G be the stabilizer of m. Each σ ∈ Gm

induces an automorphism σ of �/k; we have a canonical homomorphism

Gm
π−→ Gal(�/k)

σ 
−→ σ.
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We need to verify that the map π above is injective. Indeed, let ρ : Gal(�/k) → GLn(Fq)
be the map given by ρ(τ) = U

−1
τ(U). We verify immediately that the following diagram 

is commutative

Gm

ρ

π

GLn(Fq)

Gal(�/k)
ρ

Since ρ is injective by Theorem 2.6, we conclude that so is π. �
2.5. Description of the splitting field

Let K be a field containing Fq and let A ∈ GLn(K).
Let U = (uij), where the uij’s (i, j = 1, . . . , n) are indeterminates. Let d = det(A)

and let J ⊂ K[U] be the ideal

J =
〈
AU(q) − U, det(U)(q−1)d− 1

〉
.

Proposition 2.10. The K-algebra

E = K[U]/J

is a Galois GLn(Fq)-algebra over K. Its indecomposable factors are isomorphic to the 
splitting field E of the Frobenius module (Kn, ΦA).

Proof. Let U ∈ GLn(Ksep) be such that A = UU (q)−1 and let W = U−1U. Then, as in 
Proposition 2.2, we have

E⊗K Ksep = Ksep[W]/
〈
W(q) − W, det(W)q−1 − 1

〉
�

∏
GLn(Fq)

Ksep.

Thus E is étale. The action of GLn(Fq) on E is given by U 
→ Ua for a ∈ GLn(Fq). 
The primitive idempotents of E ⊗K Ksep are represented by eb(U) = fb(U−1U), where 
b ∈ GLn(Fq) and fb(W) ∈ Fq[W ] is the Lagrange interpolation polynomial such that 
fb(w) = δb,w for w ∈ GLn(Fq). We see easily that aeb = eba−1 , so GLn(Fq) acts 
simply transitively on the set of primitive idempotents of E ⊗K Ksep. Thus E is a Galois 
GLn(Fq)-algebra.

The indecomposable factors of E are precisely the images of K-algebra homomor-
phisms E → Ksep. If ϕ : E → Ksep is such a homomorphism, then the columns of 
U = ϕ(U) form an Fq-basis of the space of solutions of the system AX(q) = X. Thus 
E = ϕ(E). �
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Let {ε1, ε2, . . . , εh} be the set of primitive idempotents of E. The group GLn(Fq) acts 
on this set transitively and each subalgebra Eεi (with identity εi) is isomorphic to E by 
Proposition 2.10.

Proposition 2.11. Let R be an integrally closed Noetherian domain with field of frac-
tions K and let S = R[U]/J0, where J0 = J ∩ R[U]. Assume A ∈ GLn(R). Then each 
primitive idempotent εi of E lies in S. In particular, we have a decomposition

S =
h∑

i=1
Sεi. (4)

Proof. It is enough to prove that ε1 ∈ S. Let G be the stabilizer of ε1 in GLn(Fq). Then

ε1 =
∑
a∈G

ea,

where the ea ∈ E ⊗Ksep are absolutely primitive idempotents. As we have seen in the 
proof of Proposition 3, we have ea(U) = fb(U−1U), where fa(W) ∈ Fq[W] is the La-
grange interpolation polynomial such that fa(w) = δa,w for w ∈ GLn(Fq), where δ is 
the Dirichlet symbol. Since the entries of U (and U−1) are integral over R by Proposi-
tion 2.8, we conclude that the coefficients of ea(U), as polynomial in the variables uij , 
are integral over R. It follows that ε1 ∈ K[U] has coefficients integral over R. Since R is 
integrally closed by hypothesis, we have ε1 ∈ R[U]. �
Corollary 2.12. The ring extension S/R is Galois with group GLn(Fq).

Proof. Let ε ∈ S be a primitive idempotent and let G be the stabilizer of ε in GLn(Fq)
and let S = Sε. From the decomposition (4) we have

S � MapG

(
GLn(Fq), S

)
,

where MapG(GLn(Fq), S) is the set of G-equivariant maps GLn(Fq) → S and (aα)(x) =
α(xa) for a ∈ GLn(Fq) and α ∈ MapG(GLn(Fq)). Since S/R is G-Galois by Proposi-
tion 2.9, we conclude that S/R is GLn(Fq)-Galois. �
3. Generic extensions for multiplicative groups

Let k be a field and let G be a finite group. Let R = k[t, 1/d], where t = (t1, . . . , tm)
are indeterminates and d is a nonzero polynomial in k[t]. The following definition is due 
to Saltman [10].

Definition 3. A Galois G-extension S/R of commutative rings is called G-generic over k

if for every Galois G-algebra M/L, where L is a field containing k, there exists a homo-
morphism of k-algebras ϕ : R → L such that S ⊗ϕ L � M as G-algebras over L.
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In this section A ⊂ Mn(Fq) denotes a fixed Fq-subalgebra and m denotes its dimension 
over Fq. The goal of this section is to construct explicitly a Galois A×-extension S/R
that is A×-generic in the above sense.

We denote henceforth by G the multiplicative group Gm(A) as an algebraic group 
defined over Fq. Let a1, a2, . . . , am be a basis of A over Fq and define

A(t) =
m∑
i=1

tiai, (5)

where t = (t1, . . . , tm) are indeterminates.
Let d = det(A) and let R = Fq[t, 1/d]. By the construction of R we clearly have 

A ∈ G(R). Let E be the splitting field of the Frobenius module given by A over K =
Fq(t). By Theorem 2.5, there exists U ∈ G(Ksep) such that A = U(U (q))−1. Recall that 
by Corollary 2.4, the coefficients uij of U generate E over K. We write, by abuse of 
notation, E = K(U). We define similarly S = R[U ], the subring of E generated by the 
uij ’s over R. Note that by Proposition 2.8 the uij ’s are integral over R, so S is finitely 
generated as an R-module.

Here is the main theorem in this section.

Theorem 3.1. With the notation above, we have

1. Gal(E/K) � G(Fq).
2. The ring extension S/R is G(Fq)-generic.

The following two lemmas will be needed in the proof of Theorem 3.1.

Lemma 3.2. Let a, b ∈ G(Fq). If a and b are conjugate in G(Fq), then they are conjugate 
in G(Fq).

Proof. Suppose a = ubu−1 with u ∈ G(Fq). Let σ ∈ Gal(Fq/Fq). Then zσ := u−1σ(u) is 
in (Z⊗ Fq)

×, where Z is the centralizer of b in A. The map σ 
→ zσ is a 1-cocycle with 

values in (Z⊗ Fq)
×. By the generalized Hilbert Theorem 90 (see e.g. [12, Chap. X]), this 

1-cocycle is trivial, that is, there exists w ∈ (Z⊗ Fq)
× such that zσ := w−1σ(w) for all 

σ ∈ Gal(Fq/Fq). Then v := uw−1 satisfies a = vbv−1 and is fixed under Gal(Fq/Fq), 
that is, v is in G(Fq) = A×. �
Lemma 3.3. Let G be a finite group and let C1, C2, . . . , Ch be the conjugacy classes of G. 
Let gi ∈ Ci for i = 1, . . . , h. Then the set {g1, g2, . . . , gh} generates G.

Proof. See [13, Theorem 4′]. �
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Proof of Theorem 3.1. (1) By Theorem 2.5, there exists U ∈ G(Ksep) such that A =
UU (q)−1. Let ρ : Gal(E/K) → G(Fq) be the map defined by ρ(σ) = U−1σ(U). By 
Theorem 2.6, the map ρ is an injective group homomorphism.

We have on the one hand by Theorem 2.7 and Lemma 3.2 that every specialization 
A(ξ) ∈ G(Fq) (where ξ ∈ F

m
q ) is conjugate in G(Fq) to an element of im(ρ). On the 

other hand, every element of G(Fq) is of the form A(ξ) for some ξ ∈ F
m
q , thus every 

conjugacy class of G(Fq) intersects nontrivially im(ρ). We conclude by Lemma 3.3 that 
im(ρ) = G(Fq).

(2) Let L be a field containing Fq and let M/L be a Galois G-algebra with group 
G = G(Fq) and let δ ∈ M be a primitive idempotent. Then N = Mδ is a field that 
is Galois with group H = Gδ over K. Moreover, there is an isomorphism of G-algebras 
over L

M � MapH(G,N),

where MapH(G, N) is the algebra of H-equivariant maps G → N [5, Proposition 18.18]. 
The action of G is given by (gα)(x) = α(xg) for α ∈ MapH(G, N) and g ∈ G. Under 
the above isomorphism, the primitive idempotents of M correspond to the characteristic 
functions of the right cosets of H in G. In particular, δ corresponds to the characteristic 
function of H.

Let ρ : Gal(N/L) → H be an isomorphism. Composing with the inclusion H ⊂ G =
G(Fq) ⊂ G(N), we can view ρ as a 1-cocycle with values in G(N) = (A ⊗N)×. By the 
generalized Hilbert Theorem 90 (see e.g. [12, Chap. X]), ρ is a trivial 1-cocycle, i.e. there 
exists W ∈ G(N) such that ρ(σ) = W−1σ(W ) for all σ ∈ Gal(N/L).

We first observe that N is generated over L by the coefficients wij of W . Indeed, if 
σ ∈ G is such that σ(wij) = wij for i, j = 1, . . . , n, then ρ(σ) = 1 and consequently 
σ = 1 since ρ is injective.

Let B = WW (q)−1. It is readily verified that B is fixed by Gal(N/L) and hence lies in 
G(L). Thus we can write B = A(ξ) for some ξ = (ξ1, . . . , ξn) ∈ Ln. Define an Fq-algebra 
homomorphism f : R → L by t 
→ ξ. Since S is integral over R, we can extend f to a 
ring homomorphism [7, Ch. VII, Proposition 3.1]

f̂ : S → L.

Let U be the class of U in S. Then U(U (q))−1 = A and W1 := f̂(U) ∈ GLn(L)
satisfies W1(W (q)

1 )−1 = B so W1 = Wg for some g ∈ GLn(Fq). Replacing U by Ug−1, 
we can assume f̂(U) = W . Since the coefficients uij of U generate S over R and the 
coefficients wij of W generate N over L, we have

f̂(S)L = N. (6)
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Since f̂ is Fq-linear, we have

f̂(Uh) = Wh

for h ∈ H. Identifying Gal(S/R) with G via the isomorphism σ 
→ U−1σ(U) and 
Gal(N/L) with H via the isomorphism τ 
→ W−1τ(W ), we have from the above that

f̂
(
h(U)

)
= h(W )

for h ∈ H, which implies that f̂ is an H-homomorphism. Then we can consider the 
induced G-homomorphism

F : S −→ M = MapH(G,N)

defined by F (s)(g) = f̂(g(s)) for s ∈ S and g ∈ G.
Since S/R is G-Galois by Proposition 2.9, so is S ⊗f L/L and the map

S ⊗f L −→ M

s⊗ x 
−→ F (s)x
(7)

is a morphism of Galois G-extensions of L, which is automatically an isomorphism (see 
e.g. [4, Proposition 5.1.1]). �
4. Generic polynomials

We recall here the definition of generic polynomial. We refer to [4] for details and a 
wealth of examples.

Let t = (t1, . . . tm) be indeterminates over the field k and let G be a finite group.

Definition 4. A monic separable polynomial f(Y ; t) ∈ k(t)[Y ] is called G-generic over k
if the following conditions are satisfied:

1. Gal(f(Y ; t)/k(t)) � G.
2. Every Galois G-extension M/L, where L is a field containing k, is the splitting field 

of a specialization f(Y ; ξ) for some ξ ∈ Ln.

In this section we give a method to explicitly construct a generic polynomial for the 
group G = A× over the field k = Fq. The method is based on the cyclicity of Frobenius 
modules over k(t) (see [9, Section I.2]).

Definition 5. A Frobenius module (M, ϕ) over a field K is cyclic if there exists a nonzero 
vector v ∈ M such that {v, ϕ(v), ϕ2(v), . . . , ϕn−1(v)} forms a basis of M .
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Note that the matrix of (M, ϕ) relative to a cyclic basis

{
v, ϕ(v), ϕ2(v), . . . , ϕn−1(v)

}

has the form

Δ =

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0 a0
1 0 · · · 0 a1

0 1
. . .

...
...

...
. . . . . . 0

...
0 · · · 0 1 an−1

⎞
⎟⎟⎟⎟⎟⎠

. (8)

In [9, Theorem 2.1], Matzat proves in particular that if the ground field K is infinite, 
all Frobenius modules over K are cyclic. The Frobenius modules we consider in this 
section are over the field K = Fq(t), where t = (t1, . . . , tm), so they are always cyclic.

For B ∈ GLn(K), we denote by B∗ the matrix

B∗ =
(
B−1)T .

Notice that the map B 
→ B∗ is a group homomorphism.

Proposition 4.1. Let B ∈ GLn(K). The systems BX(q) = X and B∗X(q) = X have the 
same splitting fields.

Proof. Let U ∈ GLn(Ksep) be such that B = U(U (q))−1. As we have seen in 2.4, the 
splitting field of the Frobenius module given by B is found by adjoining the coefficients 
of U to the base field K. If we apply the matrix operator ∗, we obtain

B∗ = U∗(U∗(q))−1
,

which shows that the splitting field of the Frobenius module given by B∗ is generated 
over K by the coefficients of U∗. Clearly the coefficients of U and those of U∗ generate 
the same field. �

Let B ∈ GLn(K), where K is an infinite field. Then the Frobenius module (Kn, ϕB), 
where ϕBX = BX(q) admits a cyclic basis, that is, there exists N ∈ GLn(K) such that

N−1BN (q) = Δ, (9)

where Δ is a matrix of the form (8). An immediate application of Proposition 4.1 is

Corollary 4.2. The splitting fields of the Frobenius modules given by B and Δ∗ are the 
same.
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Computing the splitting field of the Frobenius module given by Δ∗ is straightforward. 
We solve explicitly the system Δ∗X(q) = X or, equivalently, the system X(q) = ΔTX. 
Letting X = (x1, . . . , xn)T , we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xq
1 = x2
...

xq
n−1 = xn

xq
n = a0x1 + a1x2 + · · · + an−1xn.

Setting x1 = y, we have from the above system xi = yq
i−1 for i = 1, . . . , n, where y

satisfies the equation

yq
n

= a0y + a1y
q + · · · + an−1y

qn−1
.

Corollary 4.3. The splitting fields of the Frobenius module given by B and the additive 
polynomial f(Y ) = Y qn − a0y − a1Y

q − · · · − an−1Y
qn−1 coincide.

Remark 3. The polynomial f(Y ) above is separable since f ′(Y ) = a0 = detΔ = 0.

We shall now apply the above observations to obtain an explicit generic polynomial 
for the group A×, where A ⊂ Mn(Fq) is an Fq-subalgebra. Recall that G denotes the 
multiplicative group Gm(A) as an algebraic group defined over Fq. Let v1, v2, . . . , vm be 
a basis of A over Fq and define

A(t) =
m∑
i=1

tivi,

where the ti’s are indeterminates.
Our next goal is to show that for K = Fq(t) and B = A(t), the polynomial f ∈ K[Y ]

given by Corollary 4.3 is G(Fq)-generic. We will need the following preliminary lemmas.

Lemma 4.4. Let L be a field and let B ∈ G(L). Then the morphism of affine varieties 
defined over L

ψ : G −→ G

X 
−→ X−1BX(q)
(10)

is an epimorphism, that is, the induced ring homomorphism ψ∗ : L[G] → L[G] is injec-
tive.

Proof. Over an algebraic closure L̄, the map ψ : G(L̄) → G(L̄) is surjective as an 
immediate consequence of the Lang–Steinberg theorem. Indeed, write B = UU (q)−1
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with U ∈ G(L̄) and let Y = U−1X. Then ψ(X) = Y −1Y (q). Theorem 2.5 states that all 
elements of G(L̄) are of the form Y −1Y (q).

Thus the induced ring homomorphism ψ∗ : L̄[G] → L̄[G] is injective. The announced 
result follows trivially from this. �
Lemma 4.5. Assume that L is an infinite field. Let p ∈ L[t, 1/d] be a nonzero rational 
function and let B be an element of G(L). Then there exists ξ ∈ Ln such that p(ξ) = 0
and A(ξ) is Frobenius-equivalent to B in G(L).

Proof. Let O ⊂ A
m be the open subset where d = 0. Then the map α : O → G given by 

α(ξ) = A(ξ) is an isomorphism of affine varieties defined over L. Define ϕ = α−1 ◦ψ ◦α. 
By Lemma 4.4, ϕ∗(p) = p ◦ϕ is not zero. Since L is infinite, there exists η ∈ O(L) ⊂ Lm

such that p(ϕ(η)) = 0. Let ξ = ϕ(η). Then A(ξ) = α(ξ) = α(ϕ(η)) = ψ(α(η)) =
α(η)−1Bα(η)(q). �
Theorem 4.6. Let f(Y ; t) ∈ Fq(t)[Y ] be the polynomial obtained from A(t) as in Corol-
lary 4.3. Then f(Y ; t) is G(Fq)-generic over any infinite field k containing Fq.

Proof. Let K = Fq(t) and let E/K be the splitting field of the Frobenius module 
(Kn, ϕAt). By Corollary 4.3, E is also the splitting field of f(Y ; t). We already know 
by Theorem 3.1 that Gal(E/K) � G(Fq). Thus we need only to show that f(Y ; t) is 
generic.

As in (9), there exists N ∈ GLn(K) such that

N−1AN (q) = Δ. (11)

By choosing a cyclic basis b ∈ Rn (where R = Fq[t, 1/d] as in Section 3), we can assume 
that N has coefficients in R. Let p(t) = detN .

Let M/L be a G(Fq)-extension, where L is an infinite field containing Fq. Choose an 
isomorphism ρ : Gal(M/L) �→ G(Fq). We view ρ as a 1-cocycle with values in G(M). 
By the general Hilbert’s Theorem 90 [12, Chap. X], there exists W ∈ G(M) such that 
ρ(σ) = W−1σ(W ) for σ ∈ Gal(M/L). Define B = WW (q)−1. An elementary verification 
shows that B is fixed under Gal(M/L) and therefore lies in G(L). It is also easy to 
see that M is the splitting field of the system BX(q) = X. By Lemma 4.5, there exists 
ξ ∈ Ln such that p(ξ) = 0 and B′ := A(ξ) is Frobenius-equivalent to B. Since ξ has 
been chosen so that N(ξ) is nonsingular (recall that p(t) = detN), we can evaluate (11)
at t = ξ. We get

N(ξ)−1B′N(ξ)(q) = Δ(ξ). (12)

We conclude by Corollary 4.3 that M is the splitting field of f(Y ; ξ) over L. �
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5. Examples

In this section, we give specific examples of generic polynomials.

Example 1. Let A = F9 be seen as finite-dimensional algebra over F3. Then G =
A× � C8.

Taking the basis {1, 
√
−1} of A over F3, we can embed A into M2(F3) via the regular 

representation. Then the matrix A of (5) is given by

A(t) =
(
t1 −t2
t2 t1

)
.

Let v = (0, 1)T ∈ F
2
3 serve as the generator for the cyclic module. Then as in the last 

section,

N =
(
v|Av(3)) =

(
1 t1
0 t2

)
.

Clearly N is non-singular. Let

Δ = N−1AN (3) =
(

0 −t22(t21 + t22)
1 t1(t21 + t22)

)
.

By Theorem 4.6, the additive polynomial f below build with the coefficients of the last 
column of Δ is generic for the group C8 over any infinite field of characteristic 3.

f(Y ; t) = t22
(
t21 + t22

)
Y − t1

(
t21 + t22

)
Y 3 + Y 9.

This computation generalizes easily for any odd prime p. An additive generic polyno-
mial for Cp2−1 in characteristic p is

f(Y ; t) = tp−1
2

(
t21 − εt22

)
Y − t1

(
tp−1
1 + tp−1

2
)
Y p + Y p2

,

where ε ∈ F
×
p is a nonsquare.

Example 2. Consider the following matrices GL3(F2):

a =

⎛
⎝ 1 1 0

0 1 0
0 0 1

⎞
⎠ , b =

⎛
⎝ 1 0 1

0 1 0
0 0 1

⎞
⎠ , c =

⎛
⎝ 1 1 0

0 1 1
0 1 0

⎞
⎠ .

It is easily verified that they generate a subgroup isomorphic to A4, the alternating group 
on four elements.
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Let A be the subalgebra generated by a, b and c in M3(F2). We verify readily that 
dimF2(A) = 5 and |A×| = 12. Thus A× � A4. After choosing a basis of A, we obtain a 
matrix in 5 parameters

A(t) =

⎛
⎝ t1 + t2 + t3 + t4 + t5 t2 t3 + t4

0 t1 + t2 + t4 + t5 t2 + t3 + t5
0 t2 + t3 + t5 t1 + t3 + t4

⎞
⎠ .

As in the last section, we choose a generator for the associated Frobenius module. Let 
v = (1, 0, 1)T ∈ F

3
2. The matrix

N =
(
v|Av(2)|AA(2)v(4))

is nonsingular, so v is indeed a generator.
As before, we compute Δ = N−1AN (2). Recall that the entries in the last column of Δ

are the coefficients of an additive generic polynomial f(Y ; t) of degree 8 for A× � A4
by Theorem 4.6. We exhibit below an irreducible factor g of f(Y ; t) of degree 4. Since 
no proper quotient of A4 can act transitively on 4 elements, the Galois group of g over 
F2(t) is A4. Obviously g is also generic.

g = Y 4 +
(
t21 + t1t2 + t22 + t1t3 + t2t3 + t23 + t2t4 + t3t4 + t24 + t1t5 + t3t5

+ t4t5 + t25
)
Y 2 +

(
t21t2 + t1t

2
2 + t32 + t21t3 + t1t

2
3 + t33 + t22t4 + t23t4

+ t2t
2
4 + t3t

2
4 + t21t5 + t22t5 + t24t5 + t1t

2
5 + t2t

2
5 + t4t

2
5 + t35

)
Y

+
(
t21t2t4 + t32t4 + t21t3t4 + t1t2t3t4 + t1t

2
3t4 + t2t

2
3t4 + t21t

2
4

+ t22t
2
4 + t2t3t

2
4 + t2t

3
4 + t3t

3
4 + t44 + t1t

2
2t5 + t32t5 + t22t3t5

+ t1t
2
3t5 + t2t

2
3t5 + t33t5 + t21t4t5 + t1t3t4t5 + t3t

2
4t5 + t34t5

+ t22t
2
5 + t23t

2
5 + t2t4t

2
5 + t24t

2
5 + t1t

3
5 + t2t

3
5 + t3t

3
5 + t45

)
.

While this method always produces A∗-generic polynomials, the number of parameters 
is not optimal. A generic polynomial with two parameters was obtained in [11] for A4, 
compared to the five parameters that this method needed.

The function field in one variable F2(s) is Hilbertian, so “most” specializations of g
in F2(s) are irreducible and have Galois group A4. Here are some examples.

g1 = s + Y + Y 2 + Y 4;

g2 = s2 + s3Y + s2Y 2 + Y 4.
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