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0. INTRODUCTION 

Let I- be a finitely generated group. By a Irform over L we mean a non- 
degenerate bilinear form h: Z” x L” + L, either symmetric or skew-sym- 
metric, together with a representation p: r-+ CL,,(Z) which verifies 
h(p(y)x, p(y)y)=h(s, .v) for all X, .V in Z” and all y in r. 

We do not expect to obtain a general classification, up to isomorphism, 
of r-forms over Z. Nevertheless, we can fruitfully develop an arithmetic 
theory of r-forms, and most classical results on integral quadratic forms, 
for instance the Siegel mass formula, can be generalized to this context. 

Section 1 is concerned with finiteness questions. We show that for a 
given nonzero integer d and a given semi-simple complex representation p. 
of f there are, up to isomorphism, only finitely many r-forms (h, p) over Z 
such that p N pO over C and disc(h) = ci. 

In Section 2 we compute the Tamagawa number of the group of 
automorphisms of a f-form and use it to establish the generalization of the 
classical Siegel mass formula. 

Finally, in Section 3, we consider the special case in which r is a finite 
abelian group, and we compute the local densities for a unimodular r-form 
(6, p) such that p is isotypic over Q. 

I am inebted to M. Kervaire and E. Bayer for many useful conversations. 
I want also to express my gratitude to D. Coray for correcting may 
manuscript. 

1. A FINITENESS THEOREM 

Let r be a finitely generated group and R a commutative ring. A r-form 
over R will be an RT-module M, projective and finitely generated over R, 
together with an s-symmetric non-degenerate bilinear form b: IM --f M* : = 
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Hom,(M, R) which is r-equivariant. Two r-forms (M, h) and (M’, h’) are 
isomorphic if there is an Rf-isomorphism 4: A4 + M’ such that (6*h’d = h. 

1.1. THEOREM. Let V he a semi-simple @T-module and d a nonzero 
integer, Then there are only finitely tnany isomorphism classes of r-forms 
(M, h) over Z such that MOO C z V and disc(b) = d. 

Prooj: We know, by a classical theorem, that there are only finitely 
many equivalence classes of integral bilinear forms of given rank and dis- 
criminant. Thus we can assume that we are dealing with a fixed .s-sym- 
metric matrix BE M,(Z) of determinant equal to d. We will show that there 
are only finitely many ways in which r can act on Z” so as to induce a 
given semi-simple representation of f in @’ and preserve B. 

Let (x, ,..., x,, I relations) be a presentation of r. We can present the 
group algebra @r as a quotient of the free (noncommutative) algebra 
@{x I,“‘, x,,, yj,..., J,,,} modulo X, yi- 1 and all the relations which arise 
from those defining r. We denote by (*) this set of relations. The set &!,! of 
all n-dimensional complex representations of f can be viewed as the subset 
of M,,( c ym consisting of 2m-tuples (X, ,..., X,,, Y, ,..., Y,,) of matrices 
satisfying (*), which is clearly a closed algebraic subset defined by integral 
equations. The group GL,(C) acts in an obvious way on .%,, and its orbits 
correspond to isomorphism classes of representations. We know by a 
theorem of H. Kraft see [Kr, Chap. II, Sect. 71) that a representation 
p E ;IiA, is semi-simple if and only if its orbit GL,,(@)p is closed in :3-?,?. 

Let &?lj be the set of orthogonal representations (with respect t the 
matrix B) of r in @“, i.e., :%?I: = ((A’, ,..., A’,, Y, ,..., Y,) E g,,: A’: BX, = B}. 
J?tfi is of course closed in %,,. The orthogonal group of B, O,,(@, B), acts on 
Wf, and its orbits can be interpreted as classes of r-forms over C. It is easy 
to see that if p E 3: is semi-simple, then CL,(C) p n %!I,’ contains only one 
O,JC, B)-orbit (this is the geometric translation of the fact that there is 
only one class of r-forms over 0: with a given underlying semisimple CT- 
module). It follows that O,(@, B)p is closed. By applying a general theorem 
of Bore1 and Harish-Chandra (see [Bo-HC], theorem 6.9) on closed orbits 
of reductive algebraic groups, we conclude that the intersection 
O,,(C, B)p n Mn(Z’)2n’ contains only linitely many O,(Z, B)-orbits. This is 
exactly what we wanted. 1 

1.2. COROLLARY. Let (M, 6) a r-form over 27 such that M OZ C is a 
semi-simple CT-module. Then there are only jkitely many isomorphism 
classes in the genus of (M, 6). 

Proqf: The discriminant of b and the class of M Oz @ are invariants of 
the genus of (M, hf. Thus Corollary 1.2 follows directly from the 
theorem. 1 
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Remark. Theorem 1.1 has been proved by E. Bayer and F. Michel (see 
[B-M] ) for r cyclic. 

More generally, Theorem 1.1 for ZT-lattices in a semi-simple Qr-module 
whose simple self-dual components have commutative endomorphism ring 
is a consequence of H. G. Quebbemann results (see [Q, 1.4-1.51) together 
with the Jordan-Zassenhaus Theorem (see, e.g., [R, 26.41). 

2. THE MASS FORMULA 

We assume from now on that r is a finite group. Let ( V, b) be an s-sym- 
metric r-form over Q. Let G be the group of automorphisms of (V, h), con- 
sidered as an algebraic group defined over a;S. The group G is reductive but 
not semi-simple in general. We will determine the Tamagawa number of 
the connected component, Go, of the identity in G. We will show in par- 
ticular, that r(G’) does not depend on the form b but only on the CV- 
module structure of V. 

The field Q is ordered, hence each CDT-module is selfdual. In particular, 
the isotypic (or homogeneous) components of V are all self-dual. Therefore 
the restriction of b to an isotypic component must be non-degenerate. 
Hence (V, 6) splits canonically as an orthogonal sum: 

where the Vi are the isotypic components of V. The group G splits over Q 
as the product of the automorphism groups of the isotypic components 
(V,, b,). The Tamagawa number is multiplicative. Therefore it will be 
enough to compute it in the isotypic case. 

Assume now that V is isotypic an let S be its simple component. We take 
first any form c: S-+ S*, symmetric or skew-symmetric, and call i the 
adjoint involution on D, := End,,-(S). We will say that S is of the first 
kind if the restriction of i to the centre of D, is trivial, and of the second 
kind otherwise (remark that this definition does not depend on the choice 
of c; every form c will induce the same automorphism of the center of D,). 

We fix once for all a form cs on each simple Q;eT-module S with the 
following conventions: 

(i) If S is of the first kind and D, is a quaternion algebra, we choose 
a r-form es on S in such a way that it induces the standard quaternion 
involution on D, (this is possible by applying the Skolem-Noether 
theorem). Such a form is unique up to a central factor and in particular its 
sign sS is uniquely determined. 

(ii) In all other cases we choose cs to be positive definite. 
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Hom,,(S, V) has a natural structure as a right vector space over D,. 
We define an EC,-hermitian D,-valued form h on Hom,,(S, V) by 
h(f, g) = cs ‘f*hg (this is a particular case of the general “transfer” con- 
struction in [Q-SX] ). 

Let E be the centre of D, and Fc E the fixed field of the involution. Let 
li be the unitary group of h, viewed as an algebraic group defined over F. 
It is easy to check that the group G of automorphisms of (V, h) is obtained 
by applying the restriction functor R,, to U. Hence G and U have the 
same Tamagawa number. 

Let SU be the subgroup of U consiting of all elements with reduced 
norm 1. We have the following table of values for r(SU) (see [W] and 
WI): 
First kind. 

D Commutative field Quaternion algebra 

EF ,y fl -1 +I -1 

T(SU) 1 I 2 

Second kind, 

DS Commutative fietd Skew-field 

T(SU) 1 1 

In the case of an involution of the first kind, SU is actually the connected 
component of 1 in U. 

In the other case U is connected and we have a short exact sequence of 
algebraic groups over F: 

where Nrd denotes the reduced norm. By Proposition 2.2.1 in Ono’s paper 
[IO,] we have z(U)= s(SU) r(Ker NEIP). Now Ker N,, is the special 
orthogonal group of a quadratic form of rank 2, and hence we have 
r(Ker N,,) = 2 by the Siegel-Tamagawa theorem. Therefore 7(U) = 2. 

2.1. THEOREM. Let ( V, b) he any rTform otter Q and G its automorph~s~z 
group, considered us an algebraic group damped or;er Q. The Tamaga~a nMm- 
her of Go is: 
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where the numbers p, q and r are defined by 

p = 0 if b is skew-symmetric. If b is sMymmetric, then p is the number qf dis- 
tinct simple components S qf V qf the,first kind such that; 

(a) D, is a commutative,field, 

(b) S has multiplicity at least 2 in V; 

q = number of distinct simple components S qf V of the first kind such that: 

(a) D, is a quaternion algebra, 

(b) EELS= -I; 

r = number of distinct simple components of V of the second kind. 

Proof: The Tamagawa number is multiplicative and remains unchanged 
under restriction of scalars, so we may apply the above known results on 
Tamagawa numbers of unitary groups. 1 

2.2. COROLLARY. T(G’) depends only! on the QI-module structure of V 
and on the sign E of b. 1 

DEFINITION. We say that a f-form (V, b) over Q is definite if the group 
G(R), the group of real points of G, is compact. 

Let (V, b) a definite r-form over Q. The adelized group G(A) acts on the 
set of f-stable lattices in V in the following way: for a lattice A4 and an 
addle o = (a,) E G(A), crM is the lattice defined by (aM), = oJM,) for all 
p. The isomorphism classes of lattices in V which are in the genus of (M, b) 
are in one-to-one correspondence with the set of double cosets 
G(A ),\G(AYG(Q), where 64 I,,., is the stabilizer of A4 in G(A). Let 
M, ,..., M, be representatives of the classes of lattices in V that belong to 
the genus of M. There are only finitely many of them by Corollary 1.2. 
Denote by wi the order of the finite group G(A),,,,,nG(Q) (which is the 
group of automorphisms of the r-form (Mi, b)). With these notations we 
have the familiar formula: 

where vol is any invariant measure on G(A). 
A word of caution. The set of classes in the whole genus of M will in 

general be bigger than {M, ,..., MA}, because the Hasse Principle may not 
hold. 
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QUESTION (Hasse Principle). Let (V, h) and ( v’, h’) be two r-forms 
over Q which are isomorphic everywhere locally. Are they isomorphic over 
Q? 

To answer this question, it is enough to consider isotypic QT-modules. 
Let (V, h) a r-form, where I/ is isotypic with simple component S. After 
choosing a r-form c’,> on S as above, we get a (+ I )-hermitian form h on 
the right D,Y-vector space Hom,,(.S, V), where the involution on D, is the 
adjoint ~nvolutil~1~ of cs. It is easy to verify that the Hasse Principle holds 
for (V, h) iff it holds for (Hom,,(S, Y), h). 

We know (see Kneser [K]) that the Hasse Principle is true for (+ l)- 
hermitian forms over (skew) fields. But the Hasse Principle may fail for 
( - 1)-hermitian forms over a quaternion division algebra D. (see [K, 
Sect. 5.101). More precisely: if y denotes the equivalence relation “being 
isomorphic cvcrywhere locafly,” each equivalence class with respect to - 
contains exactly 2”‘. ’ isomorphism classes, where m is the number of 
places of the centre E of D where D does not split. 

The following example shows that we cannot avoid this (- 1 )-hermitian 
situation, even for symmetric r-forms. 

Let D be a quaternion algebra with centre Q which splits at infinity. By a 
theorem of M. Benard and K. L. Fields (see [Be]) there exists a finite 
group r and a simple Qf-module S such that End,,(S)= 13. It follows 
from the assumption D go !R rr M*(R) that a r-form cs on S which 
induces the standard quaternion involution on /I must be skew-symmetric. 
Any symmetric f-form h on a S-isotypic module V will rise to a (- l)-her- 
mitian form on Hom,,(S, V). 

To interpret the term vol(G(A f, ) of formula (I ) in terms of “local den- 
sities” as in Siegel’s classical formula, we need some preparatory lemmas. 

2.3. LEMMA. Let e be the exponent oJ‘ I- and E the ,fieeld qj’eth-roots qf 1 
over Q. Then E is a splitting,fi:cld,fi,r Go (in the sense that all characters of 
Go me dqfimd over E). 

Proof By representation theory (see [Se, 12.3]), Y@q E is decom- 
posed as a direct sum of absolutely simple Er-modules. Using the isotypic 
orthogonal decomposition of V 0, E, we see that there is an isomorphism 
defined over E: 

G=G, X . * . x G,. x GL,,,, x . - . x CL,,, , 

where the Gj are orthogonal or symplectic groups over E (according as h 
is symmetric or skew-symmetric) and the GL,,, are general linear groups 
over E. 1 
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2.4. LEMMA (Landau). Let E he a cyclotomic field and x a nontrivial 
irreducible character of Gal(E/Q). Then the product &(l - x(p)p ‘) ’ 
converges to L( 1, x; E/Cl), provided we take the primes in increasing order. 

Proof: see Landau [L, Sect. 1091. 1 

2.5. LEMMA. Let Ic/ be the character of the Galois module 6’ ( = 6:. by 
Lemma 2.3). Let L(s, $; E/Q), the p-component of the L-series L(s, $; E/Q). 
Then the product n, L( 1, $; E/Q), converges to L( 1, $; E/Q) (provided we 
take the primes by increasing order). 

Proof: By hypothesis Go(R) is compact. Hence Go has no nontrivial 
characters defined over Iw and a fortiori over Q, i.e., the Galois module Go 
has no nonzero fixed points. Therefore $ is either zero or a sum of non- 
trivial irreducible characters. We conclude the proof by applying 
Lemma 2.4. 

2.6. LEMMA. Let w be a gauge:ftirm on G” defined over Q. The product: 

is convergent (provided we take the primes in increasing order). 

Proof. We know (see Ono [Or]) that {L(l, Ic/; E/Q),} is a system of 
convergence factors for Go. Thus Lemma 2.6 follows from Lemma 2.5. 1 

Now we are ready to express vol(G(A),) in terms of local densities, 
Let M be a r-stable lattice in ( V, h) and M# = {x E V: b(x, M) c L } its 

dual lattice, which is also r-stable. The free abelian subgroup 
Hom,,(M, M#) of End,,(V) is preserved by the adjoint involution. The 
subgroup of all self-adjoint homomorphisms in HomZr(M, M# ) will be 
denoted by Hom,,(M, M#)+. 

Sometimes it will be useful to view G as a group scheme over Z, rather 
than an algebraic group over an universal domain, for instance when we 
want to consider the points of G over a finite ring. 

For any commutative ring R, we denote by b(R) the R-algebra 
End,,.(M) Oz R and by d+(R) the free R-module 
Hom,,(M, M#)+ Or R. Let fR: &(R)-+&‘+(R) be the map defined by 
C-J -+ &T. The functor G is defined by G(R) = f i '( 1). 

For a finite prime p, we provide &(Zi,) and 8 + (Z,) with invariant 
measures of total mass 1. For the prime at infinity, &([w) and F+(R) are 
provided with the Lebesgue measures giving total mass 1 to the tori 
~?(rW)/S(i7) and F+([W)/B+(Z). 
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2.7. PROPOSITION. There exists a gauge form o on G, defined ouer Q, 
which is relatively invariant with respect to some character 4 E G, and such 
that 

(2) 

for all primes p, including the prime at infinity. For finite primes p the right- 
hand side of (2) is equal to IG(Z/p’Z)l p ~ “dimC; if v is sufficiently large. 

The limit is taken over a fundamental system of compact neighborhoods of 
1 in 6 + (Z,) and vol denotes the normalized measure in &(Z,) or &+ (Z,). 
For simplicity we denote by f, the map fz,. 

Proof: Let cI, resp a +, be a generator of the exterior power det a(Z) 
(resp. det d+(Z)). Put d= dim G. It is easy to see that there exists a d-dif- 
ferential form Sz over B’, the group of units of Q, such that (i) l.z!L? = 
(det 1,)Q for all x E G, where 1,: B -+ Q denotes the left translation by x, and 
(ii) Q A f*(a + ) = X. 

We claim that the form w = D 1 c; has the required properties. Indeed, it 
follows from (i) that it is relatively invariant with respect to d(~) = det 1,. 
Furthermore, if we denote by w, the restriction of w to f’ l(t), it is a con- 
sequence of Fubini’s theorem that 

(3) 

We get formula (2) by shrinking U to 1 in (3). 1 

2.8. LEMMA. For almost all p the canonical map G(Z,) + (noG)(Z,) is 
surjective (z,,G denotes the quotient group scheme G/G’). 

Proof It is enough to prove the lemma in the case where V is an 
isotypic module. In this case G = R,,Q( U), where U is some unitary group 
defined over a number field F. Furthermore, we can suppose that U is the 
unitary group of a skew-hermitian form h over a quaternion algebra, the 
lemma being trivial in all other cases. Let Nrd: U + pLz be the reduced 
norm, @ = Ker Nrd the connected component of 1 in U. We may assume 
that U is defined over OF, the ring of integers of F. Let X be the subscheme 
of U defined by Nrd(u) = - 1. It is easy to see that for almost all primes p 
of F, the scheme X has points over the residue field 0,/p (for almost all p 
the reduction of U modulo p is an ordinary orthogonal group over 0,/p). 
By Hensel’s lemma X has points over OF,, i.e., the map Nrd: U(Opp) + 
pz(Fp) = ( + 1 } is surjective. Moreover, for almost all p, G(Z,) = 
np, p U( OFp) and (rco G)( Z,) = np, p pz( Fp). Thus the homomorphism 
G&J + (noG)(Z,) must be surjective, except for a finite number of places 
P. I 
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2.9. COROLLARY. Let j: G-+n,G the canonical projection and 
j,: G(A) -+ (qG)(A) he the induced adele map. Then Im j, has finite index 
in (qG)(A). 

Proof: Since rcOG is a finite scheme, we have (rr,G)(Z,) = (rr,G)(Q,) 
and hence (n,G)(A) = n,(rc,G)(Z,). Thus the corollary follows immediatly 
from the lemma. 1 

DEFINITION. Let o be a (relatively) invariant gauge-form on G. We 
define the Tamagawa measure on G(A) to be the restricted product: 

1 ’ := v [G(Q,):G”(Q,)] ‘w’P’ 

This definition makes sense. Indeed 

1 
i 

CG&J:G”(~,)l 
[G(Qa,):GOPQ,)l c(e,) ‘“‘p = [G(Qp):Go(Qp)] I c;qz,) lo” 

and, by Lemma 2.8, 

CW,): Go@,)1 = 1 
CG(Q,) :G”(Q,)l 

for almost all p. Hence the product defining Jo is convergent provided we 
take the primes in increasing order. 

2.10. PROPOSITION. p(G(A)/G(Q)) = z(G”)/[G(Q):Go(Q)]. We will 
denote by z(G) this number. 

Proof From Lemma 2.8 we see that p can be characterized as the uni- 
que invariant measure on G(A) which is compatible with the exact 
sequence 1 + Go(A) + G(A) + Im j, + 1, after Go(A) is provided with the 
usual Tamagawa measure and the compact group Im j, with the measure 
of total mass equal to 1. It follows from this characterization of p that 

7(G) = p(G(A)/G(Q)) = vol(G”(A)/Go(Q)) vol(Im j,/j(G(O)) 

1 
=z(Go) [G(Q):G”(Q)]’ ’ 

2.11. COROLLARY. z(G) depends only on the QT-module structure of V 
and on the sign E of b. 

Proof. We saw already that z(G”) depends only on the module V and 
on the sign E of 6. It is easy to verify that the index [G(Q) : G”( Q)] depends 
only on V and E. 1 
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1.12. THEOREM. Let (44,) bI),..., (Mhr bh) he representatives of the 
classes in the genus of (M, h), and denote by wi the order of the 
automorphism group of (Mi, hi). Let n he the number of classes of r-forms 
(V’, b’) over Q which are isomorphic everywhere locally to (V, 6). We have 
the mass for~nula~ 

where 6,(M, b) is the “local density” defined by 

1 
6p(M’ ‘I’= [G(~p):Ga(~p)] !?I 

vol f;‘(U) 
vol u ’ 

For p finite and v large enough, one can also write 

1 IG(Q’P”~)I 
‘pt”, ‘)= [G(~~):G~(~~)] pvdimC 

The product is taken over all places p of Q in increasing order. 

Proof: Let { ( Vj, b’)},iE l,...,n b e a set of representatives of the classes of 
f-forms over Q which are isomorphic to (V, b) everywhere locally. We 
denote by G’ the automorphism group of ( Yj, hi). On applying formula (1) 
for a lattice (Mj, b’) in (V’, b’) which belongs to the genus of (AJ, b), we 
get 

k 1 
i -.= t(G’) vol(G.‘(A),i) ~’ 
is, w; 

(vol is now the Tamagawa measure on G’(A)). 
The underlying QT-modules Vi are all isomorphic to V; hence, by 

Corollary 2.1 l., r(G’) = r(G) for all j. By Proposition 2.7 vol(G’(A),,,,) = 
np 6,(M), b’). Clearly, the local densities S,(M’, b’) depend only on the 
genus. Thus S,(M’, bj) = 6,(M, b) for all j. We get the announced formula 
by summing (3} over all .j and by renaming the w{‘s. 1 

Remark. The number n which appears in the mass formula can be com- 
puted in the following way: let V, ,..., V, the isotypic “skew-hermitian” com- 
ponents of V, i.e., Vi has a simple component Si of the first kind, Di := 
Endo, is a quaternion algebra over its centre, and the form ci on Si 
which induces the standard invoIution on II, is ( -&)-symmetric. 

Let Pi be the finite set of places of F, : = centre of Di for which Di does 
not split. We know, by a theorem of M. Kneser (see [K]), that the number 
of classes of skew-hermitian forms which are locally everywhere isomorphic 
to a given one is equal to 21p81-2. It follows that n = 2z’1p61--2). 
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3. AN EXAMPLE 

We keep the notations of Section 2. We assume from now on that f is 
abehan and Y is an isotypic CV-module. The r-form (V, h) wiii be sym- 
metric and definite. The integral lattice (M, 6) will be unimodular. In this 
situation, the centre E of the simple algebra End,,(V) is a cyclotomic field 
Q(<,). We will assume moreover that m is not a power of 2. Being a 
quotient of the group algebra QF, E can also be considered as a QPT- 
module and is in fact the simple component of V. There is a canonical 
choice of F-form on E: the trace form (x, ~)r-,Tr,,(xy), where JJH j is 
complex conjugation on E. Let 0, = Z[l,] be the ring of integers of E and 
Ol, the co-different of E/Q; the map (TrEo),: Hom,,(M, 0;) + 
Hom(M, Z) is a F-equivariant isomorphism. We can associate to b the uni- 
que hermitian form Iz: M + Homo,(M, Ot,) defined by Tr,, c h = h. Let F 
be the maximal real subfield of E and denote by U the unitary group of h, 
which is defined over OF. By construction we have 

C(Z/p’Z) = n U(O,lp”‘), 
PIP 

where e is the ramification index of p in F, and v is any positive integer. 
Then, to compute local densities, it will suffke to find the order of 
U(OF/pk) for large k. 

3.1. LEMMA. For k 2 1 B’e have a short exact sequence: 

0 -+ (Lie U)(O,/p) -$ U(OFJ’pk+ ‘) -4 U(OF/pk) -+ 1, 

where (Lie U)(O,/p) denotes the 0,/p-module {U E End&M/PM): 
u + ii = 01, which is a/so, as suggested by the flotation, the group of points 
over 0,/p of the Lie aIgebra Lie U of U. The homomorphism j is induced by 
the canonical prqjection OF/pk i ’ --+ 0,/p”, and i is defined by i(u) = 1 + rckzi, 
Mjhere 71 E p is any uniforrnising element. 

Proof: One sees easily that 1 + rrku belongs to U(OF/pktl) if and only if 
u + U = 0 modulo p. Therefore Ker .j = Im i. 

Now E/F has no dyadic rami~cation, since m is not a power of 2. Thus 
the trace map Tr,,,: O,+ 0, is surjective. We choose aE 0, such that 
a + G = 1. Let UE End,,(M) be such that UU = 1 mod pk and define 
v = u + a(u - U -I) in the ring (End,, M),,, localized at p. An easy 
calculation shows that v verifies Vu = I mod p”+ ‘. Hence j is surjective. 1 

3.2. COROLLARY. jU(O,/pk)/ = lU(O~~~)~ N(P)'~ ‘ldimU.for k& I. 
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3.3. PROPOSITION. Let x be the non trivial character of E/F. For every 
finite prime p of F we have 

n (1 -X(P) Np)rk), 
1 Ckodd<r 

(4) 

where r is the rank of A4 over 0,. 

ProoJ: (a) Assume that p splits in E, i.e., p = pp, p prime of E, p # $I 
Then U(O,jp) may be identified with the general iinear group of the OJp- 
vector space ~/p~. The equality (4) follows from the well known formula 
for the order of GL,(OJp). In this case x(p) = 1. 

(b) Suppose p remains prime when extended to 0,. Then U(O,/p) is 
the unitary group of a hermitian form over a finite field. In this case for- 
mula (4) is just the standard formula for the order of such a group (now 
x(p)= -1). 

(c) The extension E/F ramifies at some finite place if and only if 1~ is 
a power of a prime number p (see, e.g., [Wa]). In this case the co-different 
Ok. is a principal ideal and we can choose a generator c1 of Ok such that 
Sr= --c(. We define a skew-hermitian form g: M + Horn&M, 0,) by 
g = cth. By construction g is unimodular. The unique ramified prime p of E 
is generated by (5, - 1 ), where t, is a primitive mth-root of 1. Put 
p = p R 0,. The ring OJpO, is isomorphic to IF,[T]/(T’), where T 
corresponds to r,,, - 1. It is easy to see that the corresponding involution 
on Fp[ T]/( T’) is given by TH -T. Let i\“i be F,,[ T]/( T2)-module M/PM. 
Since 2 is a unit in iF, (we assumed that there is no dyadic ramification) 
and the reduction 2 of g modulo p is unimodular, &i has a E,[T]/( T’)- 
basis e, ,..., P, such that 

(g(e,.e,))=(: (i? := S. 

We can identify U(O~/p) with the subgroup of GL~(~~[T]/(T’)) con- 
sisting of ail matrices X verifying X*SX= S, where X* denotes the trans- 
posed conjugate of X. The matrics X in GL,( Fp[ T]/( T2)) can be written in 
the form X=X, + TX,, where Xi E M,( F,). The homomorphism 
j: GL,(IF,[T]/( T2)) + GL,(IF,) given by j(X) = X,, sends 17(0,/p) onto the 
symplectic group Sp,(ff,). The kernel of the restriction of j to U(O,/p) can 
be identified with the subspace {X, f M,(ff,): X;S= SX,}, which has 
dimension r(r- 1)/2 over iF,. Hence lU(O,jp)j = /Sp,(lF,)j prcr ‘)” and the 
equality (4) follows from the formula for the order of the symplectic group 
over a finite field (x(p) = 0 if p is ramified). 1 
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3.4. COROLLARY. 

Proof: o,(M, b)= IG(Z/p’Z)I p vd’mC;=&P lU(O,/p”)l N(p) ‘vd’mu 
for v large enough. Now apply Corollary 3.2 and Proposition 3.3. Now we 
have to compute the density at infinity 6,,(M, h). The calculations for this 
are rather long and tedious but elementary. We shall only sketch the main 
steps, stating them as lemmas without proof. We refer to [MO] for 
details. 1 

3.5. LEMMA. We define a real scalar product ( , ) on the algebra a( iw) by 
(0, r ) = Trace,(c?r), where Trace,(a) means the trace of CJ as an [W-linear 
endomorphism of VQ, [w. The subspace d +([W) is provided with the restric- 
tion of ( , ). We denote by vol (resp. vol + ) the Lebesgue measure given by 
(, ) on I(Iw) (resp. on &+(iw)). 

With these notations we have: 

(i) vol(&(R)/&(Z)) = dp’, 
(ii) v~~+(&+([W)/&+(Z))=~‘~[“Q~/~A~~*N(~~,~)~(~+~)’~, 

where A, (resp. A r) is the absolute discriminant of E (resp. F) and 9E,F is the 
different of E/F. 

3.6. LEMMA. The scalar product on &( [w) induces a Riemannian metric on 
G([W), which is actually invariant by left (or right) translations in G([W). Let 
vol be the associated invariant measure on G([W). We have: 

vol G(R) = (vol U r )cEQ’, 

where Ur is the standard unitary group in M,(C) and vol U, is the volume of 
U, with respect to the Riemannian metric on U, given by the scalar product 
(X, Y) = Tr,,,(Tr(X* Y)) on M,.(C). 

Hint. G(IW) can be identified in a natural way with the product 
( U,)cF:Q1. We need only verify that this identification is metric-preserving. 

3.7. LEMMA. vol U, = 2r2’2 vol S’ vol S3.. . vol S*‘~ ’ (here vol Sk is the 
volume of Sk with respect to the standard scalar product of (Wk+ ‘). 

Hint. Consider the tibration U, , + U, -+ S2’+ ’ and proceed by induc- 
tion on r. 
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3.8. PROPOSITION. The value of 6,(M, h) i.r 

N(S&,,)“‘+ “‘4(A#Jr2’2 kc, 

cp Ql 

ProoJ: Let o be the gauge-form on G given by Proposition 2.7. We 
have 

Hence the proposition follows from Lemmas 3.5, 3.6, and 3.7, together with 
the fact that vol S2k ’ = 27rk/(k - 1 )!. 1 

3.9. THEOREM. The ,following mass formula holds: 

ij, ; = ~N%,F) d+ ‘)/4(AE.&)r2/2 fi (znk/(k - I)!)- CC:Ql 

1 k=l 

2 <?< ~ i,(k 1 fl L(k xi ElFI. 
. . I<kCr 
k even kodd 

ProoJ We apply Theorem 2.12, Corollary 3.4, and Proposition 3.8. In 
this case G is connected and r(G) = 2. The number n in theorem 2.12 is 
equal to 1 because, f being abelian, Qf cannot have any quaternion com- 
ponent. 1 

3.10. COROLLARY. Zf V is simple (i.e., r = l), rhe class number h of 
(M, h) is given by 

h = hJh,, 

where h, (req. h,-) is the ideal class number qf E (resp. F). 

Proqj: In this case G = Ker N,, and hence u’, = . ’ ’ = u’,, = w = number 
of roots of 1 in E. The rank of A4 over 0, is odd (in fact equal to 1); hence 
E/F has no ramified finite primes. Therefore $S?E,,F= (1). The mass formula 
of Theorem 3.9 becomes 

h/w = = 2(AJA.)“2(27c) CF:Q’L( 1, x; E/F). 

This formula happens to be the classical relation for the relative class 
number of cyclotomic fields (see, e.g., [Wa]). 1 

Remark. Corollary 3.10 can also be obtained without using the mass 
formula, by direct considerations and some class field theory, as in 
E. Bayer’s paper (see [B]). 
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