Integral Bilinear Forms with a Group Action

JORGE F. MORALES

Department of Mathematics, University of Geneva, 1211 Geneva 24, Switzerland Communicated by A. Fröhlich Received February 27, 1984

0. INTRODUCTION

Let Γ be a finitely generated group. By a Γ -form over \mathbb{Z} we mean a nondegenerate bilinear form $b: \mathbb{Z}^n \times \mathbb{Z}^n \to \mathbb{Z}$, either symmetric or skew-symmetric, together with a representation $\rho: \Gamma \to GL_n(\mathbb{Z})$ which verifies $b(\rho(\gamma)x, \rho(\gamma)y) = b(x, y)$ for all x, y in \mathbb{Z}^n and all γ in Γ .

We do not expect to obtain a general classification, up to isomorphism, of Γ -forms over \mathbb{Z} . Nevertheless, we can fruitfully develop an arithmetic theory of Γ -forms, and most classical results on integral quadratic forms, for instance the Siegel mass formula, can be generalized to this context.

Section 1 is concerned with finiteness questions. We show that for a given nonzero integer d and a given semi-simple complex representation ρ_0 of Γ there are, up to isomorphism, only finitely many Γ -forms (b, ρ) over \mathbb{Z} such that $\rho \simeq \rho_0$ over \mathbb{C} and disc(b) = d.

In Section 2 we compute the Tamagawa number of the group of automorphisms of a Γ -form and use it to establish the generalization of the classical Siegel mass formula.

Finally, in Section 3, we consider the special case in which Γ is a finite abelian group, and we compute the local densities for a unimodular Γ -form (b, ρ) such that ρ is isotypic over \mathbb{Q} .

I am inebted to M. Kervaire and E. Bayer for many useful conversations. I want also to express my gratitude to D. Coray for correcting may manuscript.

1. A FINITENESS THEOREM

Let Γ be a finitely generated group and R a commutative ring. A Γ -form over R will be an $R\Gamma$ -module M, projective and finitely generated over R, together with an ε -symmetric non-degenerate bilinear form $b: M \to M^* :=$ Hom_{*R*}(*M*, *R*) which is Γ -equivariant. Two Γ -forms (*M*, *b*) and (*M'*, *b'*) are isomorphic if there is an $R\Gamma$ -isomorphism $\phi: M \to M'$ such that $\phi^*b'\phi = b$.

1.1. THEOREM. Let V be a semi-simple $\mathbb{C}\Gamma$ -module and d a nonzero integer. Then there are only finitely many isomorphism classes of Γ -forms (M, b) over \mathbb{Z} such that $M \otimes_{\mathbb{Z}} \mathbb{C} \cong V$ and $\operatorname{disc}(b) = d$.

Proof. We know, by a classical theorem, that there are only finitely many equivalence classes of integral bilinear forms of given rank and discriminant. Thus we can assume that we are dealing with a fixed ε -symmetric matrix $B \in M_n(\mathbb{Z})$ of determinant equal to d. We will show that there are only finitely many ways in which Γ can act on \mathbb{Z}^n so as to induce a given semi-simple representation of Γ in \mathbb{C}^n and preserve B.

Let $\langle x_1,..., x_m |$ relations \rangle be a presentation of Γ . We can present the group algebra $\mathbb{C}\Gamma$ as a quotient of the free (noncommutative) algebra $\mathbb{C}\{x_1,..., x_m, y_1,..., y_m\}$ modulo $x_i y_i - 1$ and all the relations which arise from those defining Γ . We denote by (*) this set of relations. The set \mathcal{R}_n of all *n*-dimensional complex representations of Γ can be viewed as the subset of $M_n(\mathbb{C})^{2m}$ consisting of 2m-tuples $(X_1,..., X_m, Y_1,..., Y_m)$ of matrices satisfying (*), which is clearly a closed algebraic subset defined by integral equations. The group $GL_n(\mathbb{C})$ acts in an obvious way on \mathcal{R}_n and its orbits correspond to isomorphism classes of representations. We know by a theorem of H. Kraft see [Kr, Chap. II, Sect. 7]) that a representation $\rho \in \mathcal{R}_n$ is semi-simple if and only if its orbit $GL_n(\mathbb{C})\rho$ is closed in \mathcal{R}_n .

Let \mathscr{R}_n^0 be the set of orthogonal representations (with respect t the matrix B) of Γ in \mathbb{C}^n , i.e., $\mathscr{R}_n^0 = \{(X_1, ..., X_m, Y_1, ..., Y_m) \in \mathscr{R}_n : X_i^t B X_i = B\}$. \mathscr{R}_n^0 is of course closed in \mathscr{R}_n . The orthogonal group of B, $O_n(\mathbb{C}, B)$, acts on \mathscr{R}_n^0 , and its orbits can be interpreted as classes of Γ -forms over \mathbb{C} . It is easy to see that if $\rho \in \mathscr{R}_n^0$ is semi-simple, then $GL_n(\mathbb{C}) \rho \cap \mathscr{R}_n^0$ contains only one $O_n(\mathbb{C}, B)$ -orbit (this is the geometric translation of the fact that there is only one class of Γ -forms over \mathbb{C} with a given underlying semisimple $\mathbb{C}\Gamma$ -module). It follows that $O_n(\mathbb{C}, B)\rho$ is closed. By applying a general theorem of Borel and Harish–Chandra (see [Bo-HC], theorem 6.9) on closed orbits of reductive algebraic groups, we conclude that the intersection $O_n(\mathbb{C}, B)\rho \cap M_n(\mathbb{Z})^{2m}$ contains only finitely many $O_n(\mathbb{Z}, B)$ -orbits. This is exactly what we wanted.

1.2. COROLLARY. Let (M, b) a Γ -form over \mathbb{Z} such that $M \otimes_{\mathbb{Z}} \mathbb{C}$ is a semi-simple $\mathbb{C}\Gamma$ -module. Then there are only finitely many isomorphism classes in the genus of (M, b).

Proof. The discriminant of b and the class of $M \otimes_{\mathbb{Z}} \mathbb{C}$ are invariants of the genus of (M, b). Thus Corollary 1.2 follows directly from the theorem.

471

Remark. Theorem 1.1 has been proved by E. Bayer and F. Michel (see [B-M]) for Γ cyclic.

More generally, Theorem 1.1 for $\mathbb{Z}\Gamma$ -lattices in a semi-simple $\mathbb{Q}\Gamma$ -module whose simple self-dual components have commutative endomorphism ring is a consequence of H. G. Quebbemann results (see [Q, 1.4–1.5]) together with the Jordan–Zassenhaus Theorem (see, e.g., [R, 26.4]).

2. The Mass Formula

We assume from now on that Γ is a *finite* group. Let (V, b) be an ε -symmetric Γ -form over \mathbb{Q} . Let G be the group of automorphisms of (V, b), considered as an algebraic group defined over \mathbb{Q} . The group G is reductive but not semi-simple in general. We will determine the Tamagawa number of the connected component, G^0 , of the identity in G. We will show in particular, that $\tau(G^0)$ does not depend on the form b but only on the $\mathbb{Q}\Gamma$ -module structure of V.

The field \mathbb{Q} is ordered, hence each $\mathbb{Q}\Gamma$ -module is selfdual. In particular, the isotypic (or homogeneous) components of V are all self-dual. Therefore the restriction of b to an isotypic component must be non-degenerate. Hence (V, b) splits canonically as an orthogonal sum:

$$(V, b) = (V_1, b_1) \bot \cdots \bot (V_r, b_r),$$

where the V_i are the isotypic components of V. The group G splits over \mathbb{Q} as the product of the automorphism groups of the isotypic components (V_i, b_i) . The Tamagawa number is multiplicative. Therefore it will be enough to compute it in the isotypic case.

Assume now that V is isotypic an let S be its simple component. We take first any form $c: S \to S^*$, symmetric or skew-symmetric, and call i the adjoint involution on $D_S := \operatorname{End}_{QT}(S)$. We will say that S is of the *first* kind if the restriction of i to the centre of D_S is trivial, and of the second kind otherwise (remark that this definition does not depend on the choice of c; every form c will induce the same automorphism of the center of D_S).

We fix once for all a form c_s on each simple $\mathbb{Q}\Gamma$ -module S with the following conventions:

(i) If S is of the first kind and D_S is a quaternion algebra, we choose a Γ -form c_S on S in such a way that it induces the standard quaternion involution on D_S (this is possible by applying the Skolem-Noether theorem). Such a form is unique up to a central factor and in particular its sign ε_S is uniquely determined.

(ii) In all other cases we choose c_s to be positive definite.

Hom_Q_{*I*}(*S*, *V*) has a natural structure as a right vector space over D_S . We define an $\varepsilon\varepsilon_S$ -hermitian D_S -valued form *h* on Hom_Q_{*I*}(*S*, *V*) by $h(f, g) = c_S^{-1}f^*bg$ (this is a particular case of the general "transfer" construction in [Q-S-S]).

Let *E* be the centre of D_S and $F \subset E$ the fixed field of the involution. Let *U* be the unitary group of *h*, viewed as an algebraic group defined over *F*. It is easy to check that the group *G* of automorphisms of (V, b) is obtained by applying the restriction functor $R_{F/\mathbb{Q}}$ to *U*. Hence *G* and *U* have the same Tamagawa number.

Let SU be the subgroup of U consiting of all elements with reduced norm 1. We have the following table of values for $\tau(SU)$ (see [W] and [M]):

First kind:

D	Commutative field		Quaternion algebra	
88 _S	+1	1	+1	-1
r(SU)	$\frac{2}{(rk(h) \ge 2)}$	1	t	2

Second kind:

Ds	Commutative field	Skew-field
τ(<i>SU</i>)	1	l

In the case of an involution of the first kind, SU is actually the connected component of 1 in U.

In the other case U is connected and we have a short exact sequence of algebraic groups over F:

$$1 \rightarrow SU \rightarrow U \xrightarrow{\text{Nrd}} \text{Ker } N_{E/F} \rightarrow 1,$$

where Nrd denotes the reduced norm. By Proposition 2.2.1 in Ono's paper $[O_1]$ we have $\tau(U) = \tau(SU) \tau(\text{Ker } N_{E/F})$. Now Ker $N_{E/F}$ is the special orthogonal group of a quadratic form of rank 2, and hence we have $\tau(\text{Ker } N_{E/F}) = 2$ by the Siegel-Tamagawa theorem. Therefore $\tau(U) = 2$.

2.1. THEOREM. Let (V, b) be any Γ -form over \mathbb{Q} and G its automorphism group, considered as an algebraic group defined over \mathbb{Q} . The Tamagawa number of G^0 is:

$$\tau(G^0) = 2^{p+q+r},$$

where the numbers p, q and r are defined by

p = 0 if b is skew-symmetric. If b is symmetric, then p is the number of distinct simple components S of V of the first kind such that:

- (a) D_s is a commutative field,
- (b) S has multiplicity at least 2 in V;

q = number of distinct simple components S of V of the first kind such that:

- (a) D_s is a quaternion algebra,
- (b) $\varepsilon \varepsilon_s = -1;$

r = number of distinct simple components of V of the second kind.

Proof. The Tamagawa number is multiplicative and remains unchanged under restriction of scalars, so we may apply the above known results on Tamagawa numbers of unitary groups.

2.2. COROLLARY. $\tau(G^0)$ depends only on the $\mathbb{Q}\Gamma$ -module structure of V and on the sign ε of b.

DEFINITION. We say that a Γ -form (V, b) over \mathbb{Q} is *definite* if the group $G(\mathbb{R})$, the group of real points of G, is compact.

Let (V, b) a definite Γ -form over \mathbb{Q} . The adelized group G(A) acts on the set of Γ -stable lattices in V in the following way: for a lattice M and an adèle $\sigma = (\sigma_p) \in G(A)$, σM is the lattice defined by $(\sigma M)_p = \sigma_p(M_p)$ for all p. The isomorphism classes of lattices in V which are in the genus of (M, b)are in one-to-one correspondence with the set of double cosets $G(A)_M \setminus G(A)/G(\mathbb{Q})$, where $G(A)_M$ is the stabilizer of M in G(A). Let M_1, \dots, M_k be representatives of the classes of lattices in V that belong to the genus of M. There are only finitely many of them by Corollary 1.2. Denote by w_i the order of the finite group $G(A)_{M_i} \cap G(\mathbb{Q})$ (which is the group of automorphisms of the Γ -form (M_i, b)). With these notations we have the familiar formula:

$$\sum_{i=1}^{k} \frac{1}{w_i} = \operatorname{vol}(G(A)/G(\mathbb{Q})) \cdot \operatorname{vol}(G(A)_M)^{-1},$$
(1)

where vol is any invariant measure on G(A).

A word of caution. The set of classes in the whole genus of M will in general be bigger than $\{M_1, ..., M_k\}$, because the Hasse Principle may not hold.

474

QUESTION (Hasse Principle). Let (V, b) and (V', b') be two Γ -forms over \mathbb{Q} which are isomorphic everywhere locally. Are they isomorphic over \mathbb{Q} ?

To answer this question, it is enough to consider isotypic $\mathbb{Q}\Gamma$ -modules. Let (V, b) a Γ -form, where V is isotypic with simple component S. After choosing a Γ -form c_S on S as above, we get a (± 1) -hermitian form h on the right D_S -vector space $\operatorname{Hom}_{\mathbb{Q}\Gamma}(S, V)$, where the involution on D_S is the adjoint involution of c_S . It is easy to verify that the Hasse Principle holds for (V, b) iff it holds for $(\operatorname{Hom}_{\mathbb{Q}\Gamma}(S, V), h)$.

We know (see Kneser [K]) that the Hasse Principle is true for (+1)hermitian forms over (skew) fields. But the Hasse Principle may fail for (-1)-hermitian forms over a quaternion division algebra D. (see [K, Sect. 5.10]). More precisely: if \sim denotes the equivalence relation "being isomorphic everywhere locally," each equivalence class with respect to \sim contains exactly 2^{m-2} isomorphism classes, where m is the number of places of the centre E of D where D does not split.

The following example shows that we cannot avoid this (-1)-hermitian situation, even for symmetric Γ -forms.

Let D be a quaternion algebra with centre \mathbb{Q} which splits at infinity. By a theorem of M. Benard and K. L. Fields (see [Be]) there exists a finite group Γ and a simple $\mathbb{Q}\Gamma$ -module S such that $\operatorname{End}_{\mathbb{Q}I}(S) \simeq D$. It follows from the assumption $D \otimes_{\mathbb{Q}} \mathbb{R} \simeq M_2(\mathbb{R})$ that a Γ -form c_S on S which induces the standard quaternion involution on D must be skew-symmetric. Any symmetric Γ -form b on a S-isotypic module V will rise to a (-1)-hermitian form on $\operatorname{Hom}_{\mathbb{Q}\Gamma}(S, V)$.

To interpret the term $vol(G(A)_M)$ of formula (1) in terms of "local densities" as in Siegel's classical formula, we need some preparatory lemmas.

2.3. LEMMA. Let e be the exponent of Γ and E the field of eth-roots of 1 over Q. Then E is a splitting field for G^0 (in the sense that all characters of G^0 are defined over E).

Proof. By representation theory (see [Se, 12.3]), $V \otimes_{\mathbb{Q}} E$ is decomposed as a direct sum of absolutely simple $E\Gamma$ -modules. Using the isotypic orthogonal decomposition of $V \otimes_{\mathbb{Q}} E$, we see that there is an isomorphism defined *over* E:

$$G \simeq G_1 \times \cdots \times G_r \times GL_m \times \cdots \times GL_m$$

where the G_i are orthogonal or symplectic groups over E (according as b is symmetric or skew-symmetric) and the GL_{m_i} are general linear groups over E.

2.4. LEMMA (Landau). Let E be a cyclotomic field and χ a nontrivial irreducible character of Gal(E/\mathbb{Q}). Then the product $\prod_p (1 - \chi(p) p^{-1})^{-1}$ converges to $L(1, \chi; E/\mathbb{Q})$, provided we take the primes in increasing order.

Proof. see Landau [L, Sect. 109].

2.5. LEMMA. Let ψ be the character of the Galois module \hat{G}^0 (= \hat{G}_E^0 by Lemma 2.3). Let $L(s, \psi; E/\mathbb{Q})_p$ the p-component of the L-series $L(s, \psi; E/\mathbb{Q})$. Then the product $\prod_p L(1, \psi; E/\mathbb{Q})_p$ converges to $L(1, \psi; E/\mathbb{Q})$ (provided we take the primes by increasing order).

Proof. By hypothesis $G^0(\mathbb{R})$ is compact. Hence G^0 has no nontrivial characters defined over \mathbb{R} and a fortiori over \mathbb{Q} , i.e., the Galois module \hat{G}^0 has no nonzero fixed points. Therefore ψ is either zero or a sum of nontrivial irreducible characters. We conclude the proof by applying Lemma 2.4.

2.6. LEMMA. Let ω be a gauge-form on G^0 defined over Q. The product:

$$\prod_p \int_{G^0(\mathbb{Z}_p)} |\omega|_p$$

is convergent (provided we take the primes in increasing order).

Proof. We know (see Ono $[O_1]$) that $\{L(1, \psi; E/Q)_p\}$ is a system of convergence factors for G^0 . Thus Lemma 2.6 follows from Lemma 2.5.

Now we are ready to express $vol(G(A)_M)$ in terms of local densities,

Let *M* be a Γ -stable lattice in (V, b) and $M^{\#} = \{x \in V: b(x, M) \subset \mathbb{Z}\}$ its dual lattice, which is also Γ -stable. The free abelian subgroup $\operatorname{Hom}_{\mathbb{Z}\Gamma}(M, M^{\#})$ of $\operatorname{End}_{\mathbb{Q}\Gamma}(V)$ is preserved by the adjoint involution. The subgroup of all self-adjoint homomorphisms in $\operatorname{Hom}_{\mathbb{Z}\Gamma}(M, M^{\#})$ will be denoted by $\operatorname{Hom}_{\mathbb{Z}\Gamma}(M, M^{\#})^+$.

Sometimes it will be useful to view G as a group scheme over \mathbb{Z} , rather than an algebraic group over an universal domain, for instance when we want to consider the points of G over a finite ring.

For any commutative ring R, we denote by $\mathscr{E}(R)$ the R-algebra $\operatorname{End}_{\mathbb{Z}I}(M) \otimes_{\mathbb{Z}} R$ and by $\mathscr{E}^+(R)$ the free R-module $\operatorname{Hom}_{\mathbb{Z}I}(M, M^{\#})^+ \otimes_{\mathbb{Z}} R$. Let $f_R : \mathscr{E}(R) \to \mathscr{E}^+(R)$ be the map defined by $\sigma \to \overline{\sigma}\sigma$. The functor G is defined by $G(R) = f_R^{-1}(1)$.

For a finite prime p, we provide $\mathscr{E}(\mathbb{Z}_p)$ and $\mathscr{E}^+(\mathbb{Z}_p)$ with invariant measures of total mass 1. For the prime at infinity, $\mathscr{E}(\mathbb{R})$ and $\mathscr{E}^+(\mathbb{R})$ are provided with the Lebesgue measures giving total mass 1 to the tori $\mathscr{E}(\mathbb{R})/\mathscr{E}(\mathbb{Z})$ and $\mathscr{E}^+(\mathbb{R})/\mathscr{E}^+(\mathbb{Z})$.

2.7. **PROPOSITION.** There exists a gauge form ω on G, defined over \mathbb{Q} , which is relatively invariant with respect to some character $\phi \in \hat{G}_{\mathbb{Q}}$ and such that

$$\int_{G(\mathbb{Z}_p)} |\omega|_p = \lim_{U \to 1} \frac{\operatorname{vol} f_p^{-1}(U)}{\operatorname{vol}(U)}$$
(2)

for all primes p, including the prime at infinity. For finite primes p the righthand side of (2) is equal to $|G(\mathbb{Z}/p^{\nu}\mathbb{Z})| p^{-\nu \dim G}$ if ν is sufficiently large.

The limit is taken over a fundamental system of compact neighborhoods of 1 in $\mathscr{E}^+(\mathbb{Z}_p)$ and vol denotes the normalized measure in $\mathscr{E}(\mathbb{Z}_p)$ or $\mathscr{E}^+(\mathbb{Z}_p)$. For simplicity we denote by f_p the map $f_{\mathbb{Z}_p}$.

Proof. Let α , resp α^+ , be a generator of the exterior power det $\mathscr{E}(\mathbb{Z})$ (resp. det $\mathscr{E}^+(\mathbb{Z})$). Put $d = \dim G$. It is easy to see that there exists a d-differential form Ω over \mathscr{E}^x , the group of units of \mathscr{E} , such that (i) $l_x^*\Omega = (\det l_x)\Omega$ for all $x \in G$, where $l_x : \mathscr{E} \to \mathscr{E}$ denotes the left translation by x, and (ii) $\Omega \wedge f^*(\alpha^+) = \alpha$.

We claim that the form $\omega = \Omega|_G$ has the required properties. Indeed, it follows from (i) that it is relatively invariant with respect to $\phi(x) = \det l_x$. Furthermore, if we denote by ω_i the restriction of ω to $f^{-1}(t)$, it is a consequence of Fubini's theorem that

$$\operatorname{vol} f_{p^{-1}}(U) := \int_{f_{p^{-1}(U)}} |\alpha|_{p} = \int_{U} \left(\int_{f_{p^{-1}(t)}} |\omega_{t}|_{p} \right) |\alpha^{+}|_{p}.$$
(3)

We get formula (2) by shrinking U to 1 in (3).

2.8. LEMMA. For almost all p the canonical map $G(\mathbb{Z}_p) \to (\pi_0 G)(\mathbb{Z}_p)$ is surjective $(\pi_0 G$ denotes the quotient group scheme G/G^0).

Proof. It is enough to prove the lemma in the case where V is an isotypic module. In this case $G = R_{F/\mathbb{Q}}(U)$, where U is some unitary group defined over a number field F. Furthermore, we can suppose that U is the unitary group of a skew-hermitian form h over a quaternion algebra, the lemma being trivial in all other cases. Let Nrd: $U \to \mu_2$ be the reduced norm, $U^0 = \text{Ker Nrd}$ the connected component of 1 in U. We may assume that U is defined over O_F , the ring of integers of F. Let X be the subscheme of U defined by Nrd(u) = -1. It is easy to see that for almost all primes p of F, the scheme X has points over the residue field O_F/\mathfrak{p} (for almost all p the reduction of U modulo p is an ordinary orthogonal group over O_F/\mathfrak{p}). By Hensel's lemma X has points over O_{F_p} , i.e., the map Nrd: $U(O_{F_p}) \to \mu_2(F_p) = \{\pm 1\}$ is surjective. Moreover, for almost all p, $G(\mathbb{Z}_p) = \prod_{\mathfrak{p} \mid p} U(O_{F_p})$ and $(\pi_0 G)(\mathbb{Z}_p) = \prod_{\mathfrak{p} \mid p} \mu_2(F_p)$. Thus the homomorphism $G(\mathbb{Z}_p) \to (\pi_0 G)(\mathbb{Z}_p)$ must be surjective, except for a finite number of places p.

2.9. COROLLARY. Let $j: G \to \pi_0 G$ the canonical projection and $j_A: G(A) \to (\pi_0 G)(A)$ be the induced adele map. Then Im j_A has finite index in $(\pi_0 G)(A)$.

Proof. Since $\pi_0 G$ is a finite scheme, we have $(\pi_0 G)(\mathbb{Z}_p) = (\pi_0 G)(\mathbb{Q}_p)$ and hence $(\pi_0 G)(A) = \prod_p (\pi_0 G)(\mathbb{Z}_p)$. Thus the corollary follows immediatly from the lemma.

DEFINITION. Let ω be a (relatively) invariant gauge-form on G. We define the Tamagawa measure on G(A) to be the restricted product:

$$\mu := \prod_{p} \frac{1}{\left[G(\mathbb{Q}_p) : G^0(\mathbb{Q}_p) \right]} |\omega|_p.$$

This definition makes sense. Indeed

$$\frac{1}{\left[G(\mathbb{Q}_p):G^0(\mathbb{Q}_p)\right]}\int_{G(\mathbb{Z}_p)}|\omega|_p = \frac{\left[G(\mathbb{Z}_p):G^0(\mathbb{Z}_p)\right]}{\left[G(\mathbb{Q}_p):G^0(\mathbb{Q}_p)\right]}\int_{G^0(\mathbb{Z}_p)}|\omega|_p$$

and, by Lemma 2.8,

$$\frac{[G(\mathbb{Z}_p):G^0(\mathbb{Z}_p)]}{[G(\mathbb{Q}_p):G^0(\mathbb{Q}_p)]} = 1$$

for almost all p. Hence the product defining μ is convergent provided we take the primes in increasing order.

2.10. PROPOSITION. $\mu(G(A)/G(\mathbb{Q})) = \tau(G^0)/[G(\mathbb{Q}):G^0(\mathbb{Q})]$. We will denote by $\tau(G)$ this number.

Proof. From Lemma 2.8 we see that μ can be characterized as the unique invariant measure on G(A) which is compatible with the exact sequence $1 \rightarrow G^0(A) \rightarrow G(A) \rightarrow \text{Im } j_A \rightarrow 1$, after $G^0(A)$ is provided with the usual Tamagawa measure and the compact group Im j_A with the measure of total mass equal to 1. It follows from this characterization of μ that

$$\tau(G) = \mu(G(A)/G(\mathbb{Q})) = \operatorname{vol}(G^0(A)/G^0(\mathbb{Q})) \operatorname{vol}(\operatorname{Im} j_A/j(G(\mathbb{Q})))$$
$$= \tau(G^0) \frac{1}{[G(\mathbb{Q}):G^0(\mathbb{Q})]}.$$

2.11. COROLLARY. $\tau(G)$ depends only on the $\mathbb{Q}\Gamma$ -module structure of V and on the sign ε of b.

Proof. We saw already that $\tau(G^0)$ depends only on the module V and on the sign ε of b. It is easy to verify that the index $[G(\mathbb{Q}):G^0(\mathbb{Q})]$ depends only on V and ε .

1.12. THEOREM. Let $(M_1, b_1),..., (M_h, b_h)$ be representatives of the classes in the genus of (M, b), and denote by w_i the order of the automorphism group of (M_i, b_i) . Let n be the number of classes of Γ -forms (V', b') over \mathbb{Q} which are isomorphic everywhere locally to (V, b). We have the mass formula:

$$\sum_{i=1}^{h} \frac{1}{w_i} = n\tau(G) \prod_{p} \delta_p(M, b)^{-1},$$

where $\delta_{p}(M, b)$ is the "local density" defined by

$$\delta_p(M, b) := \frac{1}{[G(\mathbb{Q}_p): G^0(\mathbb{Q}_p)]} \lim_{U \to 1} \frac{\operatorname{vol} f_p^{-1}(U)}{\operatorname{vol} U}.$$

For p finite and v large enough, one can also write

$$\delta_p(M, b) = \frac{1}{[G(\mathbb{Q}_p): G^0(\mathbb{Q}_p)]} \frac{|G(\mathbb{Z}/p^{\nu}\mathbb{Z})|}{p^{\nu \dim G}}$$

The product is taken over all places p of \mathbb{Q} in increasing order.

Proof. Let $\{(V^j, b^j)\}_{j=1,\dots,n}$ be a set of representatives of the classes of Γ -forms over \mathbb{Q} which are isomorphic to (V, b) everywhere locally. We denote by G^j the automorphism group of (V^j, b^j) . On applying formula (1) for a lattice (M^j, b^j) in (V^j, b^j) which belongs to the genus of (M, b), we get

$$\sum_{i=1}^{k_j} \frac{1}{w_i^j} = \tau(G^j) \operatorname{vol}(G^j(A)_{M^j})^{-1}$$
(3)

(vol is now the Tamagawa measure on $G^{j}(A)$).

The underlying $\mathbb{Q}\Gamma$ -modules V^j are all isomorphic to V; hence, by Corollary 2.11., $\tau(G^j) = \tau(G)$ for all *j*. By Proposition 2.7 vol $(G^j(A)_{M^j}) = \prod_p \delta_p(M^j, b^j)$. Clearly, the local densities $\delta_p(M^j, b^j)$ depend only on the genus. Thus $\delta_p(M^j, b^j) = \delta_p(M, b)$ for all *j*. We get the announced formula by summing (3) over all *j* and by renaming the w_i^j 's.

Remark. The number *n* which appears in the mass formula can be computed in the following way: let $V_1, ..., V_s$ the isotypic "skew-hermitian" components of V, i.e., V_i has a simple component S_i of the first kind, $D_i := \text{End}_{QT}(S_i)$ is a quaternion algebra over its centre, and the form c_i on S_i which induces the standard involution on D_i is $(-\varepsilon)$ -symmetric.

Let P_i be the finite set of places of F_i := centre of D_i for which D_i does not split. We know, by a theorem of M. Kneser (see [K]), that the number of classes of skew-hermitian forms which are locally everywhere isomorphic to a given one is equal to $2^{|P_i|-2}$. It follows that $n = 2^{\sum (|P_i|-2)}$.

3. AN EXAMPLE

We keep the notations of Section 2. We assume from now on that Γ is abelian and V is an isotypic $\mathbb{Q}\Gamma$ -module. The Γ -form (V, b) will be symmetric and definite. The integral lattice (M, b) will be unimodular. In this situation, the centre E of the simple algebra $\operatorname{End}_{\mathbb{Q}\Gamma}(V)$ is a cyclotomic field $\mathbb{Q}(\xi_m)$. We will assume moreover that m is not a power of 2. Being a quotient of the group algebra $\mathbb{Q}\Gamma$, E can also be considered as a $\mathbb{Q}\Gamma$ module and is in fact the simple component of V. There is a canonical choice of Γ -form on E: the trace form $(x, y) \mapsto \operatorname{Tr}_{E/\mathbb{Q}}(x\bar{y})$, where $y \mapsto \bar{y}$ is complex conjugation on E. Let $O_E = \mathbb{Z}[\xi_m]$ be the ring of integers of E and O'_E the co-different of E/\mathbb{Q} ; the map $(\operatorname{Tr}_{E/\mathbb{Q}})_*: \operatorname{Hom}_{O_E}(M, O'_E) \to$ $\operatorname{Hom}(M, \mathbb{Z})$ is a Γ -equivariant isomorphism. We can associate to b the unique hermitian form $h: M \to \operatorname{Hom}_{O_E}(M, O'_E)$ defined by $\operatorname{Tr}_{E/\mathbb{Q}} \circ h = b$. Let Fbe the maximal real subfield of E and denote by U the unitary group of h, which is defined over O_E . By construction we have

$$G(\mathbb{Z}/p^{\nu}\mathbb{Z}) = \prod_{\mathfrak{p}\mid p} U(O_F/\mathfrak{p}^{e\nu}),$$

where e is the ramification index of p in F, and v is any positive integer. Then, to compute local densities, it will suffice to find the order of $U(O_F/\mathfrak{p}^k)$ for large k.

3.1. LEMMA. For $k \ge 1$ we have a short exact sequence:

$$0 \to (\text{Lie } U)(O_F/\mathfrak{p}) \xrightarrow{i} U(O_F/\mathfrak{p}^{k+1}) \xrightarrow{j} U(O_F/\mathfrak{p}^k) \to 1,$$

where $(\text{Lie } U)(O_F/\mathfrak{p})$ denotes the O_F/\mathfrak{p} -module $\{u \in \text{End}_{O_E}(M/\mathfrak{p}M): u + \overline{u} = 0\}$, which is also, as suggested by the notation, the group of points over O_F/\mathfrak{p} of the Lie algebra Lie U of U. The homomorphism j is induced by the canonical projection $O_F/\mathfrak{p}^{k+1} \rightarrow O_F/\mathfrak{p}^k$, and i is defined by $i(u) = 1 + \pi^k u$, where $\pi \in \mathfrak{p}$ is any uniformising element.

Proof. One sees easily that $1 + \pi^k u$ belongs to $U(O_F/\mathfrak{p}^{k+1})$ if and only if $u + \overline{u} = 0$ modulo \mathfrak{p} . Therefore Ker $j = \operatorname{Im} i$.

Now E/F has no dyadic ramification, since *m* is not a power of 2. Thus the trace map $\operatorname{Tr}_{E/F}: O_E \to O_F$ is surjective. We choose $a \in O_E$ such that $a + \bar{a} = 1$. Let $u \in \operatorname{End}_{O_E}(M)$ be such that $\bar{u}u = 1 \mod \mathfrak{p}^k$ and define $v = u + a(u - \bar{u}^{-1})$ in the ring $(\operatorname{End}_{O_E} M)_{(\mathfrak{p})}$ localized at \mathfrak{p} . An easy calculation shows that v verifies $\bar{v}v = 1 \mod \mathfrak{p}^{k+1}$. Hence *j* is surjective.

3.2. COROLLARY.
$$|U(O_F/\mathfrak{p}^k)| = |U(O_F/\mathfrak{p})| N(\mathfrak{p})^{(k-1)\dim U}$$
 for $k \ge 1$.

3.3. **PROPOSITION.** Let χ be the non trivial character of E/F. For every finite prime p of F we have

$$|U(O_F/\mathfrak{p})| N(\mathfrak{p})^{-\dim U} = \prod_{2 \leq k \text{ even } \leq r} (1 - N(\mathfrak{p})^{-k}) \prod_{1 \leq k \text{ odd } \leq r} (1 - \chi(\mathfrak{p}) N(\mathfrak{p})^{-k}),$$
(4)

where r is the rank of M over O_E .

Proof. (a) Assume that p splits in E, i.e., $p = p\bar{p}$, p prime of E, $p \neq \bar{p}$. Then $U(O_F/p)$ may be identified with the general linear group of the O_E/p -vector space M/pM. The equality (4) follows from the well known formula for the order of $GL_r(O_E/p)$. In this case $\chi(p) = 1$.

(b) Suppose p remains prime when extended to O_E . Then $U(O_F/p)$ is the unitary group of a hermitian form over a finite field. In this case formula (4) is just the standard formula for the order of such a group (now $\chi(p) = -1$).

(c) The extension E/F ramifies at some finite place if and only if m is a power of a prime number p (see, e.g., [Wa]). In this case the co-different O'_E is a principal ideal and we can choose a generator α of O'_E such that $\bar{\alpha} = -\alpha$. We define a skew-hermitian form $g: M \to \text{Hom}_{O_E}(M, O_E)$ by $g = \alpha h$. By construction g is unimodular. The unique ramified prime p of Eis generated by $(\xi_m - 1)$, where ξ_m is a primitive *m*th-root of 1. Put $p = p \cap O_F$. The ring O_E/pO_E is isomorphic to $\mathbb{F}_p[T]/(T^2)$, where Tcorresponds to $\xi_m - 1$. It is easy to see that the corresponding involution on $\mathbb{F}_p[T]/(T^2)$ is given by $T \mapsto -T$. Let \tilde{M} be $\mathbb{F}_p[T]/(T^2)$ -module M/pM. Since 2 is a unit in \mathbb{F}_p (we assumed that there is no dyadic ramification) and the reduction \tilde{g} of g modulo p is unimodular, \tilde{M} has a $\mathbb{F}_p[T]/(T^2)$ basis $e_1, ..., e_r$ such that

$$(\tilde{g}(e_i, e_j)) = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix} := S.$$

We can identify $U(O_F/\mathfrak{p})$ with the subgroup of $GL_r(\mathbb{F}_p[T]/(T^2))$ consisting of all matrices X verifying $X^*SX = S$, where X^* denotes the transposed conjugate of X. The matrics X in $GL_r(\mathbb{F}_p[T]/(T^2))$ can be written in the form $X = X_0 + TX_1$, where $X_i \in M_r(\mathbb{F}_p)$. The homomorphism $j: GL_r(\mathbb{F}_p[T]/(T^2)) \to GL_r(\mathbb{F}_p)$ given by $j(X) = X_0$ sends $U(O_F/\mathfrak{p})$ onto the symplectic group $\operatorname{Sp}_r(\mathbb{F}_p)$. The kernel of the restriction of j to $U(O_F/\mathfrak{p})$ can be identified with the subspace $\{X_1 \in M_r(\mathbb{F}_p): X_1^r S = SX_1\}$, which has dimension r(r-1)/2 over \mathbb{F}_p . Hence $|U(O_F/\mathfrak{p})| = |\operatorname{Sp}_r(\mathbb{F}_p)| p^{r(r-1)/2}$ and the equality (4) follows from the formula for the order of the symplectic group over a finite field ($\chi(\mathfrak{p}) = 0$ if \mathfrak{p} is ramified).

3.4. COROLLARY.

$$\prod_{p \text{ finite}} \delta_p(M, b) = \prod_{\substack{2 \le k \le r \\ k \text{ even}}} \zeta_F(k)^{-1} \prod_{\substack{1 \le k \le r \\ k \text{ odd}}} L(k, \chi; E/F)^{-1}$$

Proof. $\delta_p(M, b) = |G(\mathbb{Z}/p^{v}\mathbb{Z})| p^{-v \dim G} = \prod_{\mathfrak{p} \models p} |U(O_F/\mathfrak{p}^{ev})| N(\mathfrak{p})^{-ev \dim U}$ for *v* large enough. Now apply Corollary 3.2 and Proposition 3.3. Now we have to compute the density at infinity $\delta_{\infty}(M, b)$. The calculations for this are rather long and tedious but elementary. We shall only sketch the main steps, stating them as lemmas without proof. We refer to [Mo] for details. ∎

3.5. LEMMA. We define a real scalar product \langle , \rangle on the algebra $\mathscr{E}(\mathbb{R})$ by $\langle \sigma, \tau \rangle = \operatorname{Trace}_{\mathbb{R}}(\bar{\sigma}\tau)$, where $\operatorname{Trace}_{\mathbb{R}}(\sigma)$ means the trace of σ as an \mathbb{R} -linear endomorphism of $V \otimes_{\mathbb{Q}} \mathbb{R}$. The subspace $\mathscr{E}^+(\mathbb{R})$ is provided with the restriction of \langle , \rangle . We denote by vol (resp. vol⁺) the Lebesgue measure given by \langle , \rangle on $\mathscr{E}(\mathbb{R})$ (resp. on $\mathscr{E}^+(\mathbb{R})$).

With these notations we have:

- (i) $\operatorname{vol}(\mathscr{E}(\mathbb{R})/\mathscr{E}(\mathbb{Z})) = \Delta_E^{r^{2/2}},$
- (ii) $\operatorname{vol}^+(\mathscr{E}^+(\mathbb{R})/\mathscr{E}^+(\mathbb{Z})) = 2^{r^2[F:\mathcal{Q}]/2} \Delta_F^{r^2/2} N(\mathscr{D}_{E/F})^{r(r+1)/4},$

where Δ_E (resp. Δ_F) is the absolute discriminant of E (resp. F) and $\mathcal{D}_{E/F}$ is the different of E/F.

3.6. LEMMA. The scalar product on $\mathscr{E}(\mathbb{R})$ induces a Riemannian metric on $G(\mathbb{R})$, which is actually invariant by left (or right) translations in $G(\mathbb{R})$. Let vol be the aasociated invariant measure on $G(\mathbb{R})$. We have:

vol
$$G(\mathbb{R}) = (\text{vol } U_r)^{[F:Q]}$$
,

where Ur is the standard unitary group in $M_r(\mathbb{C})$ and vol U_r is the volume of U_r with respect to the Riemannian metric on U_r given by the scalar product $\langle X, Y \rangle = \operatorname{Tr}_{\mathbb{C}/\mathbb{R}}(\operatorname{Tr}(X^*Y))$ on $M_r(\mathbb{C})$.

Hint. $G(\mathbb{R})$ can be identified in a natural way with the product $(U_r)^{\lceil F:Q\rceil}$. We need only verify that this identification is metric-preserving.

3.7. LEMMA. vol $U_r = 2^{r^2/2}$ vol S^1 vol $S^3 \cdots$ vol S^{2r-1} (here vol S^k is the volume of S^k with respect to the standard scalar product of \mathbb{R}^{k+1}).

Hint. Consider the fibration $U_{r-1} \rightarrow U_r \rightarrow S^{2r-1}$ and proceed by induction on r.

3.8. **PROPOSITION.** The value of $\delta_{\infty}(M, b)$ is

$$N(\mathcal{D}_{E/F})^{r(r+1)/4} (\mathcal{\Delta}_{F}/\mathcal{\Delta}_{E})^{r^{2}/2} \prod_{k=1}^{r} \left[\frac{2\pi^{k}}{(k-1)!} \right]^{[F:Q]}$$

Proof. Let ω be the gauge-form on G given by Proposition 2.7. We have

$$\operatorname{vol} = \frac{\operatorname{vol}(\mathscr{E}(\mathbb{R})/\mathscr{E}(\mathbb{Z}))}{\operatorname{vol}^+(\mathscr{E}^+(\mathbb{R})/\mathscr{E}^+(\mathbb{Z}))} \cdot |\omega|_{\infty}.$$

Hence the proposition follows from Lemmas 3.5, 3.6, and 3.7, together with the fact that vol $S^{2k-1} = 2\pi^k/(k-1)!$.

3.9. THEOREM. The following mass formula holds:

$$\sum_{i=1}^{h} \frac{1}{w_i} = 2N(\mathscr{D}_{E/F})^{-r(r+1)/4} (\varDelta_E/\varDelta_F)^{r^2/2} \prod_{k=1}^{r} (2\pi^k/(k-1)!)^{-[F:Q]}$$
$$\prod_{\substack{2 \le k \le r \\ k \text{ even}}} \zeta_F(k) \prod_{\substack{1 \le k \le r \\ k \text{ odd}}} L(k, \chi; E/F).$$

Proof. We apply Theorem 2.12, Corollary 3.4, and Proposition 3.8. In this case G is connected and $\tau(G) = 2$. The number n in theorem 2.12 is equal to 1 because, Γ being abelian, $\mathbb{Q}\Gamma$ cannot have any quaternion component.

3.10. COROLLARY. If V is simple (i.e., r = 1), the class number h of (M, b) is given by

$$h = h_E/h_F$$

where h_E (resp. h_F) is the ideal class number of E (resp. F).

Proof. In this case $G = \text{Ker } N_{E/F}$ and hence $w_1 = \cdots = w_h = w = \text{number}$ of roots of 1 in *E*. The rank of *M* over O_E is odd (in fact equal to 1); hence E/F has no ramified finite primes. Therefore $\mathcal{D}_{E/F} = (1)$. The mass formula of Theorem 3.9 becomes

$$h/w = = 2(\Delta_E/\Delta_F)^{1/2}(2\pi)^{-[F:Q]}L(1,\chi;E/F).$$

This formula happens to be the classical relation for the relative class number of cyclotomic fields (see, e.g., [Wa]). ■

Remark. Corollary 3.10 can also be obtained without using the mass formula, by direct considerations and some class field theory, as in E. Bayer's paper (see [B]).

JORGE F. MORALES

References

- [B] E. BAYER, Unimodular hermitian and skew-hermitian forms, J. Algebra 74 (1982), 341-373.
- [B-M] E. BAYER AND F. MICHEL, Finitude du nombre des classes d'isomorphisme des structures isométriques entières, Comm. Math. Helv. 54 (1979), 378-396.
- [Be] M. BENARD, Quaternion constituents of group algebras, *Proc. Amer. Math. Soc.* 30 (1971).
- [Bo-HC] A. BOREL AND HARISH-CHANDRA, Arithmetic subgroups of algebraic groups, Ann. of Math. 75 (1962).
- [K] M. KNESER, Lectures on Galois Cohomology of Classical Groups," Tata Institute Lecture Notes, Vol. 47, 1969.
- [Kr] H. KRAFT, Geometrische Methoden in der Invariantentheorie, Lecture notes, Bonn 1977–1978.
- [L] E. LANDAU, "Handbuch des Lehre der Verteilung der Primzahlen I," Teubner, Leipzig/Berlin, 1909.
- [M] J. G. M. MARS, The Tamagawa number of ${}^{2}A_{n}$, Ann. of Math. 89 (1969).
- [Mo] J. MORALES, "Formule de masse pour les structures isométriques entières," Ph. D. thesis, Université de Genève, 1983.
- [O1] T. ONO, On the relative theory of Tamagawa numbers, Ann. of Math. 82 (1965).
- [O2] T. ONO, On Tamagawa numbers, in "AMS Proc. of Symposia in Pure Math.," Vol. IX, Amer. Math. Soc., Providence, R. I., 1966.
- [Q] H. G. QUEBBEMANN, Ein Endlichkeitssatz f
 ür Klassenzahlen invarianter Formen, Comm. Math. Helv. 55 (1980).
- [Q-S-S] H. G. QUEBBEMAN, W. SCHRLAU, AND M. SCHULTE, Quadratic and hermitian forms in additive and abelian categories, J. Algebra 59 (1979), 264–289.
- [R] I. REINER, "Maximal Orders", Academic Press, London/Nex York 1975.
- [Se] J.-P. SERRE, "Linear Representations of Finite Groups," Graduate Texts in Math., Springer-Verlag, Berlin/New York, 1977.
- [Wa] L. C. WASHINGTON, "Introduction to Cyclotomic Fields" Graduate Texts in Math., Springer-Verlag, Berlin/New York, 1982.
- [W] A. WEIL, "Adeles and Algebraic Groups," new ed., Birkhäuser-Verlag, 1982.