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Maximal  hermit ian forms over  Z G  

JORGE F. MORALES 

O. Introduction 

Let G be a finite group and let V denote a representation of G over  the field 
of rational numbers.  It is a standard fact that V admits a symmetric nondegener- 
ate bilinear form B : V • V--~ Q invariant under G. Let B be such a form on V 
and let L be a full 7/G-lattice in V. We denote by L,~ the dual lattice of L with 
respect to B, that is 

L*n = {x ~ V :B(x, L) c 2_} 

A full ZG-lat t ice L is said to be integral with respect to B if the form B takes 
integral values on L, or equivalently, if L is contained in L~. We define the 
minimal'discriminant of (V, B) to be the positive integer 

dn(V)= min *" [Z=.Ll 
L 

where L runs over all full 2~G-lattices of V integral with respect to B. 
We define the absolute minimal discriminant of V to be the integer 

d(V) = min dr(V) 
B 

where B runs over  all symmetric nondegenerate  G-invariant bilinear forms on V. 
Clearly d(V) depends only on the representation V and is a measure of the extent 
to which V fails to admit a self-dual ZG-latt ice.  If V is a permutat ion 
representation,  obviously d(V) = 1. If V is an absolutely simple representation of 
G, it follows from a theorem of W. Feit (see [F] Thm. 3.2) that the prime divisors 

of d(V) divide IGI. 
In Section 1 we show that for a given form B, the set of lattices of V realizing 

the minimal discriminant dB(V) has a natural structure of a connected graph. In 

the case where V is absolutely simple, this graph is finite. 
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In Section 2 we consider the case where G is a p-group and V is a simple 
representation of G over Q. We show that in this case the absolute minimal 
discriminant d(V) is equal to p. We give a lower bound for the number of distinct 
(i.e. non equivariantly isometric) lattices realizing the minimal discriminant in 
terms of class numbers of cyclotomic fields. Under  slightly more restrictive 
hypothesis, we show that the lattices with minimal discriminant are (non 
canonically) in 1-1 correspondance with an ideal class group. We show that all 
the maximal lattices in V belong to the same genus if and only if the 
cohomological condition H~(G, L ) ~  ~-p is verified by some maximal lattice L. 
Finally, to illustrate this result, we define G to be the semidirect product of Cp by 
Cp x Cp and V to be the unique simple nonabelian representation of this group 
over Q. In this example V contains only one genus of maximal lattices for p = 3 
and at least (p + 1) genera for p -> 5. 

1. The graph of lattices with minimal discriminant 

In this section G will denote a finite group, V a representation of G over Q 
and B : V x V ~ Q a symmetric nondegenerate G-form on V. 

DEFINITION.  A full YG-lattice L in V, integral with respect to B, is 
maximal if it is not properly contained in any full 2~G-lattice integral with respect 

to B. 

(1.1) LEMMA.  The following properties are equivalent 

a) [L~: L] = dB(V) 
b) L is maximal 
c) The associated torsion form (L~/L, B) is anisotropic (i.e. does not admit 

any non zero totally isotropic subgroup preserved by G). 

Proof. Clearly a)z:~ b ) ~  c). To see that c)z~ a) we recall that the weak Witt 
class of (L~/L, B) as a torsion G-form is independent of the choice of L and has 
a unique anisotropic representative (see for instance [Sch] Chapter 5 and Chapter 
7 Section 5). Let M be an integral ZG-lattice with [MR : M] = dB(V). The torsion 
form (M~/M, B) is also anisotropic and lies in the same weak Witt class as 
(L~/L, B). By uniqueness of the anisotropic representative, they are actually 
isometric. In particular,, the underlying finite 77G-modules both have the same 

order. [] 



Maximal hermitian forms over gG 211 

(1.2) L E M M A .  Let L be a maximal integral ~_G-lattice. Then L*~/L is a 
semi-simple Z G-module. 

Proof. Let X c L~/L be the intersection of all maximal sub ZG-modutes  of 
L*B/L (i.e. the radical of L~/L). Let X 1 be the orthogonal complement  of X. 
Since L~/L is anisotropic, we have X n X l = {0} and therefore X + X -L = L*n/L. 
By Nakayama ' s  l emma we have X 1 = L*8/L and therefore X = {0}. [] 

(1.3) P R O P O S I T I O N .  Let La and L2 be maximal integral ~_G-lattices in 
(V, B). Then we have 

e(L,/L~ N L2) = e(L2/L~ n L2) 

where ((X) is the length of X as a ~_G-module, that is the length of a composition 
series for X (see [C-R]  w 

Proof. Let L~ n L 2 -- So ~ $1 ~ . �9 �9 ~ S, -- LI be a composition series. Dualiz- 
ing this series using the form B we obtain 

L~ + L ~ = S o ~ S t  ~ ' "  ~ S , = L I  

and intersecting with L2 we obtain 

L 2 -  * - S o A L 2 ~ S ~ O L 2 ~ ' "  ~S* ,OL2=L~OL2  

By the maximality of L~ we have L~' O L2 = L~ O L2. On the other hand, the 
quotient (S?NLz)/(S~+~AL2) is naturally embedded  in the simple module 
ST/S*,+t. Thus (S* n Le)/(S*+t n L2) is either 0 or a simple module. Hence,  

n = e(L~/L~ n L2) > e(L2/L1 n L2). 

By symmetry we conclude 

F(L~/L~ n L2) = e(L2/L, n L2) [] 

D E F I N I T I O N .  Let L~ and L2 be maximal ZG-lattices in (V, B). We define 

the distance between L~ and L2 by 

b (L , ,  L2): = ( (L , /L ,  n L2). 
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Observe that 6 is a symmetric function by Proposition 1.3. The lattices L~ and L2 
are said to be adjacent (or neighbors) if 6(LI, L2) = 1. The notion of neighbors 
(benachharte Formen) was introduced by M. Kneser (see [K]) for quadratic 
forms without a group action, and has proved to be a powerful tool for explicit 
constructions. 

The set Ftj(V) of all integral maximal YG-lattices in V has a natural graph 
structure. The vertices are the elements of Fn(V) and two vertices are joined by 
an edge if they represent adjacent lattices in the sense previously defined. 

(1.4) T H E O REM.  The graph Fn(V) is connected. 

Proof. Let L~ and L2 be two distinct maximal lattices. By induction, it is 
enough to show there exists a maximal lattice L such that 

6(L, L,) = 1 and 6(L, L2) < (9(Ll, L2) 

The lattices L 1 and L2 being distinct, the intersection L~ n L2 is contained in a 
proper sublattice M of L1, where L1/M is a simple 7/G-module. 

We define 

L : =  M * A L 2 + M  

where M* =M~.  Clearly L is integral. Let us now compute the index 
[L : M* n L2]. We have 

[L :M* O L2I = [ M : M  n M* n Lz] = [M:M n L21 

On the other hand 

[L2 :M* n Lz] = [M + L~' : L~] = [M: L~' n M] = [M:L2 N M] 

(the last equality uses L2 n M = L~' n M which is a consequence of the maximality 
of Lz). 

Thus we have [L:M*AL2]=[L2:M*AL2].  Consequently [ L * : L ] =  
[L~:L2] = dB(V). According to Lemma 1.1 the lattice L is maximal. 

Now 

LNL1 = M * A L 2 A L 1  + M =  LzAL1 + M =  M 

thus 

6(L, L1) = ~(L1/Ll n L) = e(Ll/M) = 1. 
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It is left tO show that 6(L, L2) < dJ(Lt, L2). We have 

L n L2= (M* n L2 + M) n L2 = M* N L2 

Hence 
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6(L, L2) = ( (L2/L n L2) = e(L2/M* n L~) r e((M + L~)/L2) 

= e(M/L~ n M) ~2=} e(M/L2 n M) 

where (1) uses the fact that a finite module and its character module have the 
same length and (2) uses the maximality of L2. 

On the other hand we have 

L1N L 2 c  M N L 2 c  M ~ LI. 

Hence, 

O(L,, L2) = e(L , /L ,  n L2) > s  N L2) = 6(L,  L2) [] 

(1.5) T H E O R E M .  If  V is an absolutely simple representation of  G, then the 
graph Ft,(V) is finite and connected. 

Proof. Recall that absolutely simple means E n G ; ( V ) = Q .  The lattices in 
F~(V) all have the same discriminant. It follows from this fact and Theorem 1. l in 

[M] that Ft,(V) has finitely many orbits under the action of the automorphism 
group of the G-form (V, B). It remains to show that each orbit is finite. In fact 
each orbit consists of precisely one lattice: since E n G ; ( V ) = Q ,  the only 
G-endomorphisms of V which additionally preserve the form B are 1 and - 1, and 
clearly they preserve any lattice. [] 

2. The  case where  G is a p - g r o u p  

In this section G will be a p-group, where p is an odd prime number, and V 
will be a faithful simple QG-module .  The endomorphism field End~;(V) will be 
denoted by E. 

(2.1) LEMMA.  The endomorphism field E is equal to a cyclotomic field Q(~), 
where ~ is a primitive pm-th root of  1. 
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Proof. From representation theory (see for instance [H] 14.7b) we know that 
the center Z(E) of E is equal to the field Q(X), where g is an absolutely 
irreducible factor of the character of V. Indeed Q(X) is contained in the 
cyclotomic field Q(r where pa is the exponent of G. Since E = Z(E) by 
Schilling's Theorem (see [R] Theorem 41.9), E is contained in Q(r 

On the other hand, since G is a p-group, its center Z(G) is nontriviai and 
since V is faithful, it maps non trivially into the multiplicative group of E, 
generating a cyclotomic subfield Q(r of E, where pb is the exponent of Z(G). 
The relative Galois group Gal (Q(~pa) /Q(~ph))  is cyclic of order pa-b. Thus all the 
intermediate subfields between Q(~po) and Q(~p~) are cyclotomic. So is, in 
particular, the field E. [] 

The QG-module V can be regarded as a vector space over its endomorphism 
ring E. Furthermore, V can be regarded as an absolutely simple EG-module. 

(2.2) LEMMA. Let L c V be a full 2VG-lattice and let OE be the maximal order 
of E. Then for every prime q 4= p we have 

Enda (L)q = (OE)q 

Proof. For q :/:p, the ring YqG is a maximal order (see [R] Theorem 41.1). 
Hence Endc, (Lq) is a maximal order as well (see [R] Chap. 21, Exercise 1). 
Therefore, using the canonical identification End(; (Lq) = Endc, (L)q, we get the 
equality (OE)q = End(; (L)q. [] 

Let B : V x V--> Q be a G-invariant symmetric form. It is easy to see that the 
adjoint involution on E = E n d c , ( V )  is actually complex conjugatation. Let 
h : V x V--> E be the unique hermitian form on V such that the following triangle 
commutes 

V ad(B) ) Hom~(V, Q) 

S,, o 

HomE(V, E) 

Clearly h is also G-invariant. Now let L be a full ZG-lattice in V on which B 
takes integral values. Suppose in addition that End(; (L) is equal to the maximal 
order Oe. Then the hermitian form h restricted to L takes values in the 
co-different D~]~ of E/Q. It is well known that De/Q is an odd power of the prime 
ideal lJ lyihg above p. The prime ideal p is generated by or= r  and 
therefore DE/• = (crY), .where v is an odd power. Let f denote the scaled form 
trVh, which is indeed skew-hermitian and takes integral values on L. 
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(2.3) LEMMA. Let L be a full OEG-lattice in V. Then we have 

a) L; = L~ 
b) L is integral maximal with respect to B if and only if it is integral maximal 

with respect to f 

Proof. The proof of Lemma 2.3 is straightforward from the definition of 

f. [] 

(2.4) PROPOSITION. Let L c V be a ~_G-lattice maximal with respect to B. 
Then ordp [L~" L] = 1. 

Proof. Since, by Lemma 1.1, all maximal lattices L have the same index 
[L*B:L], it will be enough, using Lemma 2.3, to prove Proposition 2.4 for a 
OEG-lattice L in V maximal with respect to f. 

Since V is absolutely simple as an EG-module,  its dimension over E divides 
IGI (see for instance [H] Theorem 12.6). It is in particular an odd number (we 
assumed p odd), consequently 

det ( f )  = det (f*) = det ( - f )  = - d e t  (f). 

It is easy to see that an element x e E with the property ~ = - x  has necessarily 
odd order at the prime ideal I9 of E which lies above p. This applies in particular 
to det (f).  

Hence 

ordp [L* : LI = ordp (X~,~ (det ( f ) )  = ordv (det ( f ) )  -~ 1(2) 

(where L* is the simplified notation for L~ or L;) .  
On the other hand, L being maximal, the torsion G-form (L~/Lp, B) is 

anisotropic and the underlying 7/G-module is semi-simple (see Lemma 1.2). Since 
G is a p-group, it acts trivially on semi-simple ZpG-modules (see [C-R] Theorem 
5.24). Therefore (L~/Lp, B) is nothing but an anisotropic quadratic space over 
[gp. Therefore ordp [L~:Lp]=dim~p (L~/Lp)<-2. But we already know that 
ordp [Lj :  Lp] is odd. Thus ordp [Lj :  Lp] = 1. [] 

(2.5) COROLLARY.  The discriminant of a full ~_G-lattice in V, integral with 
respect to B, is divisible by p. 

Our next goal is to prove the existence of G-forms on V which admit a full 
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7/G-lattice with discriminant exactly equal to p. This will prove that the number 
d (V)  defined in Section 1 is equal to p. 

The main ingredient in the existence theorem is the following result of Galois 
cohomology that was kindly communicated to me by P. Conner. 

(2.6) PROPOSITION. Let S be the set containing all the infinite primes of  E 
and the unique finite ramified prime ~. Let n be an S-ideal preserved by the 
involution on E. Then there exists ). ~ F: = {x ~ E : ~ = x } totally positive and an 
S-ideal 19 such that ct = ).NE/F(b). 

Proof. It is enough to prove the proposition for an inert prime ideal n, the 
decomposed case being trivial. 

Let ~r = Ne/F(FI), w h e r e / 7  is a generator of ~. The prime element ~r, being a 
norm, is totally positive. There is an element Z c F '  such that the Hilbert symbol 
(~., ~r)q = - 1  for ct = a or cl = (~r) and ()., :r)o = 1 otherwise (see for instance [O] 
Theorem 71.19). We claim that ~. has the required properties. By definition A is a 
norm locally at all primes except n and (~). It is in particular totally positive. The 
prime n being inert, we have the isomorphism (see IS] Chap. V, Prop. 3) 

ord. : H~ (E./F~), E'.) ~ ~/2~.  

By construction, A is not a norm in E, ,  therefore ord, (~.) ~ 1(2). Hence ~.-ln 
is locally a norm at all S-primes, i.e. ).-~n = Ne/F(b) for some S-ideal b. [] 

(2.7) T HE OREM.  Let R denote the ring Z[p-l] .  There exists a symmetric 
G-form B : V • V--~ ~ which admits a unimodular RG-lattice M. Furthermore, B 
can be chosen to be positive definite and is the only (up to equivariant isometry) 
positive definite G-form on V admitting a unimodular RG-lattice. 

Proof. Let S be the set of all ramified primes of E. The ring Os of S-integers 
of E is precisely the integral closure of R in E. The RG-lattices in V can be, by 
lemma 2.2, regarded as OsG-lattices. 

We observe first that any two RG-lattices M and N are ideal-equivalent, that 
is, there exists an S-ideal a of E such that aM = N. Notice that if such an ideal 
exists, it is uniquely determined by n =  HomR~ (M, N). Let us define n = 
HOmRc (M, N) and show aM = N. 

Since the order R G  is maximal (see [C] Theorem 41.1), M is projective as an 
RG-module,  that is the functor Homnc, (M, - )  is exact. By applying it to the 
exact sequence 

O---, o M - ,  N-~, N / nM-.> O 
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we obtain 

0-- ,  ct--~ ct--~ HomRc; (M, N/ctM)---,O 

where the map ~- - -~  is the identity. Therefore HomRc; (M, N / n M ) = 0 .  The 
projectivity of M implies immediately N/ctM = O. 

Let C : V x V--~ Q be a positive definite G-form on V and N any RG-latt ice in 
V. Let a be the S-ideal Homm;  (N, N~.). The ideal a is by construction preserved 
by the involution in E. By Proposition 2.6 there exists 3. e F" totally positive and 
an S-ideal t~ such that n = 3.[ffS. 

Let M = bN and B(x, y) = C()~x, y). We have 

M*~ = 3.-'M:, = 3.- ' (b)-IN~,  = 3 . - ' ( [ ~ ) - ~ t ~ N  = [,N = M 

Thus M is unimodular with respect to B. Since 3. has been chosen totally positive 
and C positive definite, the form B(x, y)  = C(3.x, y) is positive definite as well. 

Let us now prove the uniqueness of B. Let B'  be another  positive definite 
G-form on V which also admits a unimodular RG-lattice.  Since V is a simple 
representation there exists ~t e F" such that B'(x,  y ) =  B(~tx, y). Clearly ~t is 
totally positive and therefore it is a norm at all infinite primes. Let h : V x V---, E 
be the hermitian form canonically associated to B. The scaled form kth is indeed 
the hermitian form corresponding to B' .  Since h and ~th both admit unimodular 
OsG-lattices, det (h) and det ( ~ h ) =  plv:Eldet  (h) are both S-units modulo the 
norms. Since [ V : E ]  is odd, this implies that p is a S-unit modulo the norms. We 
can therefore assume that kt is a S-unit. 

We want now to show that ~ is a norm everywhere locally. If c~ is an inert 
prime of F, the units of F~ are all norms from E,~ (see IS] Proposition 3 and 
Corollary),  thus ~t is a norm at el. If  ct is a decomposed prime, everything is a 
norm from E, .  Thus ~t is a norm at all unramified primes and at the infinite 
primes. By Hilbert ' s  Reciprocity Theorem,  ~ is also a norm at the unique 
ramified finite prime. We conclude by Hasse 's  Norm Theorem that ~ is a global 
norm, that is, there exists o~ e E '  such that ~t = o~. Indeed B'(x,  y)  = B(~tx, y) = 
B(o~x, ay). [] 

D E F I N I T I O N .  Let C : V x V---~ Q be a G-form and B : V x V---~ Q a positive 
definite G-form. We know that C(x, y)  = B(3.x, y)  for  some 3. e F'. We define the 
G-signature sa( C) of  C as the signature of  3. (that is, the collection of  signs for  the 
various embeddings of  F in ~ ). Clearly this definition is independent of  the choice 
of B. 
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(2.8) T H E O R E M .  For a given signature s = (so) there exists a unique (up to 
equivariant isometry ) G-form C with sa( C) = s which admits an integral ~_G-lattice 
of  discriminant equal to p. 

Proof. Note that the element ). e F of Proposition 2.6 can be chosen with any 
prescribed signature. It follows from this observation and from the proof of 
Theorem 2.7 that there exists a unique (up to equivariant isometry) G-form C on 
V with s a ( C ) = s  which in addition admits a unimodular RG-lattice M. To 
construct a ZG-lattice L of discriminant p from M, we take a maximal 
ZpG-lattice N c Vp and define L =: N (q M. The lattice L constructed in this way 
will have discriminant p in virtue of Proposition 2.4. [] 

Our next goal is to describe (up to equivariant isometry) the 7/G-lattices in V 
integral with discriminant p for a given form B on V. 

Let I1(E) denote the group of ideals a of E satisfying aS = OE. Notice that 
such an ideal does not  contain any ramification. Let P~(E) denote the group of 
principal ideals (a) with a~ = 1. 

(2.9) T H E O R E M .  Let B:  V x V--~Q be a G-form on V which admits a 
2rG-lattice L c V with discriminant p. Then 

a) The group I I (E ) /P t (E)  acts freely on the set of  isomorphism classes of  
lattices in the genus of  L. 

b) I f  in addition E n d ~  (L) = OE then the action of I I (E) /PI (E)  on the set of 
isomorphism classes o f  lattices in the genus of L is transitive. 

Proof. a) Let L c V be a maximal integral ZG-lattice in V. As in the proof  of 
Theorem 2.7, we denote  by Os the ring of S-integers of E, where S is the finite 
set of ramified primes. We denote by Ls the tensor product L | Z i p -  ~], which is, 
by Lemma 2.2, an OsG-lattice. For a e l~(E)  we define r as the unique 
~G-lattice in V such that (aL)s = aLs and (r = Lp. To show that aL has 
discriminant p, it is enough to check that aLs is unimodular: 

(aLs)*B = ( f i ) - ' (Ls ) ;  = (O)- 'Ls = aLs 

Since a does not contain any ramification, a is generated at a given prime ,q by 
an element a e E~ satisfying ati = 1. Therefore  L and aL belong to the same 
genus. 

If L ~-oL, there exists ar e E" such that tr& = 1 and a~L = ctL. Thus aOs = 
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0~Os. On the other  hand, neither ~x nor a contain any ramification, therefore 
ct = c~Oe. Hence I~(E)/P~(E) acts freely on the classes. 

b) Assume now that E n d l c  ( L ) =  Oe and let L '  be another lattice in the 
genus of L. 

Observe first that Lp = L~: let a e Ep = E~ such that a t /=  1 and aL e = L'p. The 
isometry a is necessarily a p-unit, and, since Lp is preserved by Oe~, we must 
have aLp = Lp. 

On the other hand, from the proof of Theorem 2.7, we know that there exist 
r an S-ideal a such that aLs = L;.. But we also have Lp = Lp, therefore aL = L'. 

Thus I~(E) acts transitively on the genus of L. [] 

(2.10) C O R O L L A R Y .  a) The number of  classes in the genus of  L is divisible 
by the relative class number h(E)/h(F) of  E/F. 

b) If  in addition Endue, (L) = OE, then the number of classes in the genus of L 
is equal to the relative class number h(E)/h(F). 

Proof. I owe the following observation to P. Conner: let C(E) and C(F) 
denote the ideal class group of E and F respectively. Let NE/F : C ( E ) ~  C(F) be 
the norm map. We have an exact sequence 

0---~ f / ~  C(E)) ; , I~(E)/P~(E) ~,  KerNE/F 

H~(GaI(E/F), C(E))--~ 0 

where cp is induced by the restriction of the canonical projection I(E)---* C(E);  
the homomorphism i is defined by i[a] = [a] and the homomorphism j is defined 
by j[13]--[b[S-~], the brackets being interpreted as classes in the appropriate 
group. The verification of exactness is routine. On the other hand, the Herbrand 
quotient of a finite module is equal to 1 (see [S], Chap. VIII Proposition 8), this 
applies in particular to C(E). Hence,  by exactness, I~(E)/P~(E) and KerNE/F 
have the same order.  It is well known that NeIF:C(E)~  C(F) is surjective (see 
for instance [W] Theorem 10.1); therefore [II(E):P1(E)] = h(E)/h(F). Corollary 
2.10 follows immediately from Theorem 2.9 and this observation. [] 

Remark. The order of I~(E)/P~(E) was calculated with the help of the mass 
formula in [M] Corollary 3.10. E. Bayer carried out similar calculations for more 

general fields in [B1]. 
We want next to estimate the number of genera of maximal integral 

2~G-iattices contained in V. In order to prove our main result in this direction 
(Theorem 2.12), we need the following technical lemma: 



220 J O R G E  F, M O R A L E S  

(2.11) LEMMA. Let �9 be a generator of  Cp and T a lipCp-module of  
dimension 3 over lip such that Cp preserves a nondegenerate quadratic form on T. 
Then either T is Cp-trivial or T is isomorphic to lip[t]/(t - 1) 3, where the generator 
�9 ; o f  Cp acts by multiplication by t. 

Proof. By the classification of the lipCp-modules, we may assume that T C; has 
dimension at least 2 over lip (otherwise T would be indecomposable and therefore 
isomorphic to lip[t]/(t - 1)3). Since in this case T c cannot be totally isotropic, we 
choose an anisotropic vector x e T c;. Thus we have an orthogonal decomposition 

r = Gx • (%x) 

On the other hand, p does not divide the order of the orthogonal group of a 
quadratic form of rank2 over lip (see [C] 1.4). Therefore, the second factor 
(lipX) • is also Cp-trivial. [] 

(2.12) THEOREM.  The following conditions are equivalent: 

�9 a) All the maximal ZG-lattices L c V satisfy HI(G,  L) ~ lip 
b) There exists a maximal 27G-lattice L c V such that Hi (G,  L) ~- lip 
c) All  the maximal ~_G-lattices o f  V belong to the same equivariant genus 

Proof. a) => b) is obvious. 
b) => c). Let L c V be a maximal ZG-lattice satisfying condition b). Let L' be 

another maximal ZG-lattice. We know (proof of Theorem 2.7) that L and L'  are 
ideal-equivalent over the S-integers Os, that is, there is an S-ideal a such that 
aL's = Ls. It is easy to see that a must verify an = Os and to check that L'q -~ Lq 
for all q 4:p. It is then enough to prove that Lp is the only maximal 2~,G-lattice in 
vp. 

We have H~(G, L)  = ( V / L )  ~ from the cohomology exact sequence associated 
to O---~ L---~ V - *  V/L---~O. On the other hand, ( V / L )  c; = ( I cL*)* /L ,  where lc; is 
the augmentation ideal of 7/G. Thus L*/ IcL*  is canonically identified with the 
character group of Hi(G,  L),  which is by hypothesis isomorphic to lip. Therefore 
IcL* has index p in L*. 

By connectivity of the graph of lattices in Vp (Theorem 1.4 is clearly also valid 
t locally), we may assume 6(Lp, Lp) -< 1. With this hypothesis we have It, L ,  c L',*. 

Since I~L~ is contained in Lp and has index p in L*, we have Ic, L~ = Lp. 
Therefore LpcL'p*.  By maximality of L~, we conclude L p c L ' p  and by 
maximality of Lp we get the equality Lp = L'p. 

c) ~ b). Suppose that for all maximal 1G-lattices L we have [H~(G, L)[ _p2. 
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Let L be a maximal OEG-lattice. Then there exists a OEG-lattice M with 
Ic ;L*c  M c L and [M :L] = p .  We will show that M * / M  is a trivial 7/G-module. 
We have 

It, M* ~ l(;(Ic,,L*)* ~ L 

Therefore  the order  of ( M * / M )  G is at least p2. Let ~ be a generator of the image 
of Z ( G )  in E, which is a nontrivial root of 1. We have 

2 . lc;L c M .  pM* c (~ - 1)2M * c IGM c 

Therefore  T: -- M * / M  is a [Ft, G-module of dimension 3. It is well known from the 
order of the finite classic groups (see for instance [C] 1.4) that the p-subgroup of 
the orthogonal group of a quadratic form of rank 3 over Be, is cyclic of order p. 
Hence the action of G on T factors through a cyclic quotient of order p of G. 
According to Lemma 2.11, since dim~,,(T")->2 and T has a quadratic form 
preserved by G, T must be G-trivial. A quadratic space of dim 3 over ~p has 
(p + 1) isotropic sub-spaces of dimension 1, each one of them corresponding to a 
maximal lattice N with M c N ~ M*. They belong indeed to different genera. 

c) =} a). The cohomology H*(G, L) depends only on the local component Lp 
of L. It is therefore in particular an invariant of the genus of L. On the other 
hand, according to c)=}b) ,  we know that H~(G, L ) = ~ p  for some maximal 
YG-lattice L. [] 

(2.13) C O R O L L A R Y .  I f  G is cyclic, then V contains only one genus o f  
maximal Z G-lattices. 

Proof. In this case V has dimension 1 over E and a YG-lattice L in V can be 
identified with an ideal of E. Let ~ 6 E be the image in E of a generator of G. 
Clearly r is a root of 1 and generates E over Q. Then we have H~(G, L ) =  
L/ (~  - 1)L = 0-t,. We apply Theorem 2.12. [] 

(2.14) LEMMA. Let H be the group C~, x C~, with generators x and y. Let G 
be the semi-direct product G = C t, x ( Cp x Cp ) which admits a presentation 

G = ( x , y ,  t l x t ' = y  t' = t t ' = [ x , y ] = [ x ,  t ]=  1, [ t , y ] = x )  

Let E be the cyclotomic field Q(~p) and U be the representation of  H over Q 
defined by U = E as a Q-vector space and xu = ~pu and yu = u. Then the induced 
representation V = I n d , ( U )  is simple and is the only nonabelian simple repre- 
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sentation o f  G (by nonabelian representation we mean a representation on which 
the commutator subgroup [G, G] does not act trivially). 

Proof. By definition V has a decomposition 

V = U ~ t U ~  . .  �9 ~ t p - I u .  

It is easy to check that tiU and tJu a r e  nonisomorphic simple QH-modules  for 
i 4:j. Thus, by Frobenius Reciprocity, we obtain 

EndG (V) - HomH (U, V) m E 

Therefore  V is simple. By Wedderburn 's  Theorem,  the algebra Q G  "b • Mp(E) 

splits off the group algebra QG. It is easy to check from the presentation of G 
that G ~b ~ Cp • Cp. Thus both Q G  ab • Mp(E) and Q G  have dimension p3 over Q 

and therefore are equal. Hence V is the only nonabelian simple representation of 
G. It can also be checked that V is faithful. [] 

(2.15) PROPOSITION.  Let G and V as in Lemma 2.14 and let B : V • V---> Q 

be a G-invariant form.  Then V contains only one genus o f  maximal ~_G-lattices for 

p = 3 and V contains at least (p + 1) distinct genera o f  maximal ~_G-lattices for 

p>-5.  

Proof. Let U be the QH-module  defined in Lemma 2.14. Clearly the 
decomposition V = U ~) tU ~) �9 �9 �9 ~) tP-IU is orthogonal. Let L c U be a maximal 
7/H-lattice and M D Ind G (L) be a maximal ZG-lattice of V. By Theorem 2.12, it 
will be enough to prove that HI(G,  M) = D: n for p = 3 and H~(G, M)  = ~p �9 ~-p for 
p - 5 .  

Let  N = Ind G (L) and consider the following cohomology diagram associated 
to the chain N c M c M* ~ N* 

0 0 

1 l 
( N * / M )  r (N* /M) ' ;  

1 1 
0 , ( M / N )  G , H ' ( G ,  N)  , H ' (G,  M)  , H ' (G ,  M / N )  , H2(G, N)  

II 11 l l [ 
0 , ( N * / N )  c" , H ' ( G ,  N)  , H ' ( G ,  N*) , H ' ( G ,  N * / N )  , H2(G, N)  
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Note that by construction (N*/N)p ~ Indg (L*/L)p ~ Ind~ (~p) ~ ~pG/H ~- ~:cC,. 
Thus (M/N)~ = (N*/N)C~ = ~-p. On the other hand we have H~(G, N) ~ H~(H, L) 
(see IS] Chap. V Section 5). A straightforward computation shows H~(H, L) 
(~p - 1)-IL/L---- ~,. Similarly Hi(G, N*) ~ Hi(H, L*) ~- g:p. Thus we have a 

0 , H~(G, M) 

0 ' F,  

simplified diagram 

0 0 

1 1 
Y, ~F, 

1 1 
, H~(G, M/N) , H2(G, N) 

,l 
, H'(G, N*/N) , H2(G, N). 

We will show that/3 is surjective for p -> 5. It will follow from the diagram that 
a~ is also surjective. We consider the following inflation-restriction sequences (see 
[S] Chap. VII Section 6) 

0 , H'(G/H,  M/N) '"f, H'(G, M/N) ~" , H~(H, M*/N)';'" 

H'(G, N*/N) ~ ' ,  H'(H, N*/N) ~;/H 

To show that fl is surjective, it is enough to show that y is surjective. The 
subgroup H acts trivially on both Mp/N, and Np/Np, therefore 

H'(H, M/N)  ~ = Home./,  (H, M/N) 

H~(H, N*/N) c'/" = H o m c / ,  (H, N*/N). 

Let r be a generator of Cp ~ G/H. We have the following isomorphisms of 
~ v G / H-modules 

H ~ f f :u[ t ] / ( t  - 1) 2 

Mp/Np ~ ~p[tl/(t - 1) c~ 

N~/Np ~ ~v[tl/(t - 1) p, 

where the generator z acts by multiplication by t. 



224 JORGE F. MORALES 

Thus the equality 

Homo/H ( H, M / N)  = Hom~;/, ( H, N* / N) 

holds provided (p - 1 ) / 2  --- 2. Hence fl and tr are surjective for p---5 and 
H'(G,  L) ~ ~:p ~ [Fp. 

The case p = 3 requires a special consideration. We put H = ~ - 1  and 
consider the exact sequence 

0 ~ M ~ M .~ M / H M  ~ 0 

which induces a natural isomorphism ( M / H M )  ~; ~ ~ H~(G, M). We will com- 

pute the group ( M / H M )  c. 
By construction Np -~ 0 3  where the coordinates are permuted cyclically by r. 

Indeed Mp is the inverse image of (Np/Nv) c in Np. Therefore Mp is generated 
over OEp by the vectors 

(1, 1, 1); (o, H, 0); (0, O, H) 

The matrix of t in this basis is 

T =  0 -1  

1 -1  

It is elementary to check that the reduction modulo H of ( T -  1) has rank 2 
over D:3. Therefore 

H~(G, M) ~- ( M / H M )  c ~ Ker (T - 1) ~ a:3. [] 
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