HERMITIAN CLASS NUMBERS IN GROUP RINGS

JORGE MORALES

Introduction

Let G be a finite group and let X be a number field. Let u+ &7 denote the canonical
involution on the group ring K[G] (that is, the involution induced by inversion of the
elements in G). Two left O,[G]-ideals L and M in K[G] are said to be isometric if there
exists u in K[G] satisfying wiz = 1 and such that Lu = M. The ideals L and M are said
to be in the same genus if for each prime p of K there exists u, e K [G] satisfying
u,u, = 1 and such that L u, = M_. The number of distinct isometry classes in the
genus of L is called the hermitian class number of L and will be denoted by A(L). It
is well known that this number is finite (see, for instance, [7]). The main result in this
paper is an analytic formula for A(L) in the case where X is totally real, G is abelian
of odd order, and L is locally free (Theorem 1.16).

It is worthwhile to mention that the results in this paper can be applied to compute
the equivariant class number of the trace form restricted to the integers in an abelian
tame extension of odd degree E/K, assuming that X is a totally real field. Indeed, let
G be the Galois group of E/K. Using the existence of a normal basis of E over K
which is self-dual with respect to the trace form (see [1, 2]), we see that the ring of
integers of E is equivariantly isometric to an O,[G]-lattice in K[G]. Furthermore, this
lattice is locally free by tameness (see also [4]).

Except for the results on Tamagawa numbers, which will be used without proof,
this paper is self-contained. The reader interested in the general theory of Tamagawa
numbers should refer to Weil [12] and Ono [8, 9].

1. The class number formula
The following notation will be used throughout this paper.

a finite abelian group of odd order

a number field

the ring of integers of K

a prime ideal of XK

a place of K

the residue field O, /p

the v-adic completion of K

the ring of integers of K, (by definition O, = K, if v is an archimedean place)
the group ring over k (where k is any commutative ring)
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322 JORGE MORALES

R(G) the representation group of G over an algebraically closed field of
characteristic 0 (that is, the free abelian group on the set of absolutely
irreducible characters of G)

R (G) the subgroup of R(G) generated by the F-rational characters (F a field of
characteristic 0)

W_.(k) the group {xek[G]:xx = 1}

Ug(k) the group {xek[G):xX =1 and &(x) = 1}, where ¢ is the augmentation map

For any abelian group M equipped with an involution x+ x* we denote by M*
the subgroup {xeM:x* = x} and by M~ the subgroup {xe M:x* = —x}. This
notation will be applied in particular to the ring £[G] (equipped with the involution
induced by group inversion) and to the representation ring R(G) equipped with the
involution defined by a*(g) = a(g™") for a virtual character a in R(G).

Note that W, (k) is the automorphism group of the standard hermitian form
Ue(x,¥) = xy on the group ring k[G]. Regarded as a group scheme U, is the
connected component of the identity in W, (see [11] for the definitions).

PROPOSITION 1.1. Let L be an O, [G]-lattice in the group ring K[G). Then
(@) if L is locally free then the stability subgroup U (K), is equal to U, (O,),
(b) if the field K is totally real then U (Oy) = G.

Proof. (a) If L is locally free then L, is free for all primes p of K and therefore
End (L)) = Ox,[G]. Hence End (L) = O, [G]. The assertion (a) follows easily now
from this fact.

(b) Let u= ) ,u,ge O,[G] be such that wiz = 1. In particular we must have
Y., u2=1.In a totally real field, the latter relation implies that there is exactly one
g€ G such that u, is equal to +1 and the others are zero. Thus u = +g for some
geG. If, in addition, &(x) = 1 then u = g.

Let A, be the adele ring of K and let A} be the product [ |, O, , where v runs over
all places of K. With this notation we have the following.

PROPOSITION 1.2. Let L < K[G] be a locally free O, [G)-lattice. Then the group
U (AL UA(AR) U(K) acts freely and transitively on the set of classes in the genus of
L.

Proof. Observe that if u satisfies uiz = 1 then e(u) = +1 and e(w) u is in U (K).
Hence the classes with respect to the entire automorphism group are the same as the
classes with respect to the smaller group U.(K). So U;(Ay) acts transitively on the
set of classes in a fixed genus. The obvious local version of part (a) of Proposition 1.1
implies that the stability subgroup of the class of L is U (AY) U (K).

COROLLARY 1.3. For any locally free Oy [G]-lattice L in K[G] we have
h(L) = h(O4[G).

REMARK 1.4. The group U, (A,)/U(A%) U (K) can also be regarded as an
‘ideal class group’ in the following way. Let #'(O,[G]) be the group of O, [G]-ideals
a in K[G] satisfying aa = O,[G]. Let 2(0,[G]) be the subgroup of #(0,[G]) of
principal ideals aO.[G] with a@ = 1. Then U (A ,)/ U AR) Us(K) is canonically
isomorphic to the quotient #(O[G])/2P'(OL[G)).
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HERMITIAN CLASS NUMBERS IN GROUP RINGS 323

Henceforth we shall assume that K is totally real. Note in particular that under
this hypothesis U,(K,) is a compact group for the archimedean places v of K; thus
U (A%) is compact as well.

COROLLARY 1.5. Let h be the hermitian class number of O ,[G] and let u be any
Haar measure on U (Ay). Then

HU(A L)/ U(K))

h =G (U.(A2)

e))

Proof. By Proposition 1.1(b) we have U, (AR)N U, K)=G. Corollary 1.5
follows now from Proposition 1.2 and the exact sequence

0—— U(AR)/G—— Ug(AR)/Ug(K) — Ug(A L)/ U(AR) Ug(K)— 0.

Our goal is now to evaluate A using (1) and choosing for g the canonical
Tamagawa measure. We recall here its definition. Let w be a non-zero alternating m-
form on K[G]~, where m = dim (K[G]") = 3(|G|—1). The form w can be extended to
an invariant differential m-form on the group U.(K,) for all places v of K (note that
K,[G] is the Lie algebra of U,(K,)). The invariant measure induced by w on U,(X,)
will be denoted by |w|,. The Tamagawa measure u on U (A ,) is defined by

# = [Tlel, (2)

where v runs over all places of K. This product should be understood as follows: the
Tamagawa measure u is the unique invariant measure on U (A,) such that the
volume of the compact open subgroup U (Ag) is given by

wWULAR) =11 [ 3)

v Uc(OKu)

(We recall the convention O, = K, if v is an archimedean place.) It will become
apparent a posteriori that this product is conditionally convergent. Thus in our
particular case there is no need to introduce Ono’s ‘canonical correcting factors’ (see
[8]). It is clear from the product formula that xz does not depend on the particular
choice of the form w. We recall that the Tamagawa number of U, is, by definition,

(Ug) = m(Ug(A )/ Ug(K)) 4)
(see [12]).

The local measures |w|, do depend on the choice of w. In order to simplify the local
computations we normalize w in the following way:let G = {1, g,,27%, ..., 2.2} and
let u,=g,—g;* for i=1,...,m. We define w as the unique alternating m-form on
K[G]™ such that

w(ul’ u2a'--’um) = l (5)
With this agreement in mind, we define the local density of U, at v by
0, (Ug) = f |, (6)
UglOk )

To calculate 6,(U,;) at a finite prime p we need the following lemma.
12-2
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324 JORGE MORALES

LEMMA 1.6. For v =2ord (2)+ 1 we have
[(We(Ok/P"): Ue(Ok/p")] = 21215

Proof. There is an exact sequence

&
0—— Ug(O/p") — W (Ok/P") — p(Oy /p) — 0

where u,(0O,/p") ={x€O,/p':x* =1} and ¢ is the augmentation map. Hence
[Wo(Ok/pP"): Ug(Ok/p")] = |u(Oy/P")|l. On the one hand, from the exact sequence

2
0—— (0, /P) ——(Ok/P)* — (Ok/P)* — (O /P")*/(Ok/P")** — 0,

we obtain
[12(O /P = (O /P")* : (O /P")*’].

On the other hand, by Hensel’s Lemma, the reduction mod p’ induces an isomorphism
oy /0"‘2—>(0K/p )*/(Oy/p*)** for v > 20rd (2) + 1. We conclude the proof by using
the equallty [0‘ 0*2] = 2|2|;* (see, for instance, [6, Chapter II, §4]).

ProrosITION 1.7. For a finite prime p the following equality holds :

0,(Ug) = |Ug(k(p)ig™ (7
where g = N(p) and m = dim U, = (|G|—1)/2.

Proof. Let A and u be alternating forms of maximum degree on O, [G] and
O ,[G]* respectively, which take the value 1 on an O,-basis. Let ¢: O,[G] — O,[G]* be
the map defined by ¢(x) = x+ X. An easy calculation shows w A ¢*(x) = (unit) 24
(recall that w is chosen as in (5)). Let ®:0,, [G] = Oy [G]* be the algebraic map
®(x) = xx. Note that d®|, = ¢. Since ®7!(1) = W_(O, ) we obtain

f lw|, = |2, lim 20 S
Wa(oxo) V=00 (J- I#lp)
sl‘

where S, = 1 +p*0O, IG]*. Since @~ 1(S,) is the union of ¢ classes modulo p'O,, G,
where 1 = |[W_ (O, /p )|, we have

f A1, = (WO /p) gD,
o sy

On the other hand, by Lemma 1.6, we have |W_ (O,/p")| = 2I2|;'|U(O/p")| for
v = 2ord (2)+ 1. Hence

1 1 . WOk /9"
[ =3[ el = tim PO
UglOg ) WOk ) q

2 V-0

(8)
|U(Ok /P

mv

= lim

V=0
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HERMITIAN CLASS NUMBERS IN GROUP RINGS 325

The next step consists in showing that |U (O, /p")¢™™" is independent of v. Let
itk(p)[G]” = U (O,/p"*") be the map defined’ by i(x) =1+n'x, where n is a
uniformizing parameter for p. Let j: U (O,/p"*") = U,(O,/p") be the canonical
reduction. We shall see that the sequence

i J

0 ——k(P)[G]" —— Ux(Oy/p"*") — Us(Ok/p") — 0 ®
is exact. Indeed, one sees easily that 1 +7z'x belongs to U (O,/p**") if and only if
x+ X = 0(mod p). Hence Im (i) = Ker (j). Let ye O,[G] be such that yy = 1(mod p")
and &(y) = I(mod p*). Let z = (1 —yp)n~*and a = (1 —e&(y)) n~*. We check readily that
£(z) = 2a(mod p*). Thus there exists we O,[G] such that z = w+ w(mod p*). Set
x=y+n'wy™' in the localization O, [G]. A direct calculation shows that
xX = I(mod p'*!). By the construction of x we have j(x) = y. Therefore j is sur-
jective. From the exact sequence (9) we have

U0k /P g™ = U0k /PN g™ = ... = |Ux(k(p))lg™™.
Putting this together with (8) proves the proposition.

We shall now show that §,(U,;) depends only on the subgroup of G of elements
of order relatively prime to p. Let p be the characteristic of k(p) and let G, be the
Sylow p-subgroup of G.

PROPOSITION 1.8. With the notation above, we have
0,(Ug) = 5p(Uc/c,,)-

Proof. Since |G| is odd we can assume that p is different from 2. Let & = k(p) and
let x be the radical of k[G]. The exact sequence

| — M —k[G]* —k[G /G ]* — | (10)
induces an exact sequence
1 ‘_’Mﬁ_"Uc(k)'_’UG/c,(k)_’l an

where M~ = {ueM:uit = 1} (use p # 2 for the surjectivity of Ug(k) — Uc/c,(k))-
Clearly the map r — M given by x+ 1 + x is a bijection that preserves the involution.
Thus |M| = || and |M*| = |t*| (we recall that the superscript + denotes the points
fixed by the involution). Let H be the subgroup of G of elements of order relatively
prime to p. It is easy to see that the set B = {(g—1)h:ge G, \{1} and he H} is a basis
of r over k and that the canonical involution acting on B has no fixed points. Thus

dim, (r*) = dim(xr") = $dim,(r). (12)
On the other hand, since p is odd, the group M is the direct product of M* and M ~.
Using this fact together with (12) we have
|M~| = |M||M*|™

= e[ |x*|™!

= |r]V/2
= gla-on2
where ¢ = |k|, a = |G| and b = |G,|. Using (11) we obtain

|Us(k) g~ = |Uyg)q ()] g~V
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326 JORGE MORALES

We finish the proof by applying Proposition 1.7.

The following lemma shows how to calculate the number of rational points of an
algebraic torus over a finite field.

LEMMA 1.9. Let V be an algebraic torus over the finite field k and let X be the module

of algebraic characters of V, written additively. Let o be the Frobenius automorphism
in Q = Gal(k/k) and A the matrix of o acting on X. Then

[V(k)| = |det (g — A)|
where g = |k|.

Proof. Using the natural Q-isomorphism (see [9, Section 1.1])
V(k) = Hom (X, k*)
and taking the points fixed by 2, we obtain
V(k) = Homg(X, k*) = Hom (X/(q— o) X, k*).

The module X/(g—o)X is finite and its order is relatively prime to g. Thus
|[Hom (X/(g—0) X, k*)| = |X/(g—0) X| = |det (g/— A)|.

In order to apply the lemma above to the computation of the local densities, we
need to understand the Galois structure of the module of algebraic characters of
U.(K). We recall that R(G) denotes the representation ring of G. The subgroup of
R(G) of elements fixed by the canonical involution a+— a* is denoted by R*(G).
Similarly, the subgroup of R(G) of elements a satisfying «* = —a is denoted by R7(G).
Let K be the algebraic closure of K and let Q = Gal (K/K). We shall regard R(G) as
an Q-module, the group Q acting naturally on R7(G) by conjugation of characters.
The following proposition relates R(G) to the algebraic group Ug(K).

PROPOSITION 1.10. The group U (K) is an algebraic torus and its character group
is isomorphic to R (G) as an Q-module.

Proof. We first observe that there is an exact sequence of Q2-modules

0 —— R*(G) — R(G) i. R(G)—0

where ¢(a) = a—a* Thus R7(G) is isomorphic to R(G)/R*(G). For an irreducible
character y € G we denote by e, the corresponding indecomposable idempotent of the
algebra K[G]. Consider the map

Hom (R(G)/R*(G), K*) — Uq(K)
f— 2 fW)e,.

xeC

It is readily checked that this map is an isomorphism and is 2-equivariant. This shows
that U,(K) is an algebraic torus and that its character module is

R(G)/R*(G) = R7(G).

(The reader unfamiliar with duality theory for algebraic tori should see, for instance,
[8, Section 1.1].)
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HERMITIAN CLASS NUMBERS IN GROUP RINGS 327

Let E£/K be the extension obtained by adjoining to K the nth roots of 1, where n
is the order of G. The action of Q = Gal(K/K) on R (G) factors through the finite
abelian quotient I' = Gal (E/K). Let p be a prime ideal of K and let ¢} be a prime of
E lying above p. Let p be the characteristic of the residue field k(p).

LemMAa 1.11. Let I'y < I be the stability subgroup of B and let Ty < I'y be the
inertia subgroup. Let G, denote the Sylow p-subgroup of G. Then

R (G)™» = R(G,)"™*®, R (G/G,)
as T'-modules.

Proof. The canonical splitting G = G,xG/G, induces an isomorphism
R(G) = R(G,) ®; R(G/G,). Since T acts trivially on R(G/G,), we have, on the one
hand,

R(G)™ = R(G,)T*®; R(G/G,). (13)

On the other hand, a virtual character in R(G,)"* takes its values in the intersection

E™s N K(u,m), where p™ = |G,|. Since p is unramified in E”+ and is totally ramified in

K(u,m), the intersection £7¢N K(u,m) must be equal to K, which is totally real by
hypothesis. Therefore R(G )"+ is fixed by the canonical involution. Hence

R (G)"* = R(G,)"*®; R (G/G)). (14)

(Note that the actions of C, and 73 commute with each other.)

Let A:T - GL,(C) be a representation and let p be a prime ideal of K. We set

AP) =L T A(zay)

teTy

where o € I', represents the Frobenius automorphism of O./®B, and e is the order of
Ty. Let x be the character of 4. We recall that the L-function associated with 4 (or
with x) has the Euler product representation

L(s, x) = [[|det (I — A(P)N(p) ™)™ (15)

for Re(s) > 1. The product is taken over all primes p of K (see [6, Chapter XII,
§2)).

Henceforth we shall use the following notation: for a finite abelian group G we
denote the representation I' - GL (R7(G) ® ,C) by A,. The character of A4, will be
denoted by x..

LEMMA 1.12. With the notation above, we have
det(/—Ag(p)g™") = det(I— Ac/cp(p) g )»
where q = N(p) and n, = dim R, (G)).
Proof. From the proof of Lemma 1.11 we know that I' acts trivially on
R(G,)"™» = R, (G,). Thus

I_Ac(p) q_l = (I_Ac/cp(p) q—l) ® Inp

where ' is the n, x n, identity matrix. The lemma follows from this identity by
taking determinants.
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328 JORGE MORALES
CoOROLLARY 1.13. For every prime ideal p of K we have
5p(Uc)n” = |det (7—A;(P) g7 ).

Proof. The algebra k(p)[G/G,) is semisimple, thus the reduction mod p of Uc,c
is an algebraic torus. Its character module is R°(G/G,) by the same argument as in
Proposition 1.10. Applying Lemma 1.9 to Uc,cp yields

|Ug)q, (k(P)I = |det (gf — A ge (P))I-

Thus, by Proposition 1.7 (applied to G/G,) and Proposition 1.8, we have

59( Ug) = |det (I— Ac/c,(p) gl

Taking n,th powers on both sides of this equation and using Lemma 1.12, we obtain
the desired equality.

COROLLARY 1.14. The product
I—[ ép( UG) ’
P

as p runs over the prime ideals of K with N(p) in increasing order, is convergent and

[16,(Ue) = L, x)™* [l 8,(Ux)* ">

p divides |G|

(Recall that x is the character of R™(G) as a I'-module and n, = dim R,(G,).)

Proof. Since x, does not contain the trivial character, the function L(s, x.) is
holomorphic at s = 1. It is known (see [3, Section 109]) that the Euler product
decomposition (15) can be extended to s = |1 provided the primes are ordered by
increasing norm. (At s = 1 the product (15) does not converge absolutely.)

We finish by applying Corollary 1.13. Note that n, = 1 if p does not divide |G|.

Our next goal is to calculate the local densities at archimedean places. Let
G={l,g,8"% ...8mgmtand letu, =g, —g;' fori=1,....m

LEMMA 1.15. For every archimedean place v of K we have
0,(Ug) = |G|™"*(2m)™.

Proof. We fix an embedding K<, R. Let G ={l,x,xi% > Xmx2t}. Let
e,,...,e, be the idempotents of CG corresponding to the characters y,,..., x,,. Let
v, = +/—1(g,—e) for i = 1,...,m. With this notation, we have

u, = i (X;(gt)_Xj(gt-l))(\/ﬁ Yy-

i=1

Let M be the mxm matrix whose ij-entry is x,(g)—x,(g7'). An elementary
computation shows that M*M = lGII Hence |det (M)| = |G|™2. Let dy,,...,dy,, be
the dual basis of the basis v,,...,v,, of R[G]". The previous calculation shows

f ol = |GI-™2 f ldy, A ... Ady,. (16)
Ug(R) Ug(R)
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HERMITIAN CLASS NUMBERS IN GROUP RINGS 329

Observe that U (R) = S*x...x S§' and that the form dy, induces the canonical
measure on the circle S*. This observation and (16) prove the lemma.

We are now ready to prove our main result in this section.

THEOREM 1.16. Let h be the hermitian class number of O, [G]. Then

h= 2n(2ﬂ)—mr|G|(l+mrl2)L(l , XG) I"[ 5‘,( Uc)np—l (1 7)

p divides |G|

where m = (|G| —1)/2, r = [K: Q], n = dim R (G)—1 and n, = dim R,(G)).

Proof. Consider the decomposition of the group algebra
KIG]=K®E,®E,® - DE,.

Since K is totally real, the canonical involution on K[G] induces a non-trivial
involution on E, (in fact, it turns out to be complex conjugation; see [3, (5.37)]). Let
F, be the subfield of E, fixed by this involution. Let U, = Ker (Ng . ); we shall regard
U, as an algebraic group over F,. Clearly, U, has a decomposition

Us =11 Resg x(U)
=1

where Res; . is the ‘restriction of scalars’ functor (see [12, 1.3] for the definition). We
know that the Tamagawa number is multiplicative and invariant by restriction of
scalars (see [9, Section 2]). Thus ©(U.;) = [ [ ©(U,). On the other hand, since U, is the
special orthogonal group of a quadratic form in two variables, by the Siegel-
Tamagawa Theorem we have ©(U,) = 2 (see [12, Chapter 4]). Thus =(U;) = 2".
Starting out with (1) we substitute using (3), (4) and (6), and apply Corollary 1.14 and
Lemma 1.15.

2. Examples

In this section the ground field will be the field of rational numbers Q. For a
positive integer v we shall denote by Q(v) the cyclotomic field of vth roots of unity.
We recall that the relative class number of Q(v) is the ratio

__ class number of Q(v)
~ class number of Q(v)*

v

where Q(v)* is the maximal real subfield of Q(v) (see [10, Chapter 4]). In this section
we shall compare numerically using formula (17) the hermitian class number of Z[G]
to the relative class numbers of the cyclotomic components of Q[G] for G elementary
abelian and for G cyclic of order pgq.

The following two lemmas will be used to calculate the character yx, of
Theorem 1.16. We recall that a character modulo 4 (that is, a homomorphism
w:(Z/dZ)* — C*) is said to be odd if y(—1) = — 1. Otherwise, it is said to be even.
Let I', denote the group (Z/dZ)*. The cyclic group of order two acts on I'; by
y+> —y. This action induces a C,-module structure on the group ring Z[I",].

LEMMA 2.1. The character of Z[I" )] as a T ;~-module is equal to the sum of all odd
characters modulo d.
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330 JORGE MORALES

Proof. The canonical map I'y —» I',/{+ 1} induces an exact sequence of I,-
modules
0— 2T, —Z[T )] —>Z[T,/{x1}]—>0.
Hence
char (Z[I",]") = char (Z[I",]) —char (Z[T,/{ £ 1}])
=Xyv— X v
v

weven

> v

wodd

The sum of all odd characters mod 4 will be denoted by o,. With this notation we
have the following.

LEMMA 2.2. The character of R"(C,) as a I" ,-module is equal to

Y o,

d|n

Proof. For d|n let X, be the subset of C, of elements of order exactly equal to
d. Clearly I', acts freely and transitively on X,. Thus R(C,) = Z[C,] admits a splitting
as a I' ,-module
R(C,) = @ Z[T,].
dln
It is easy to see that this is also a splitting as C,-modules. (Recall that the involution
on Z[I',] considered here is induced by multiplication by —1 in I',, and not by group
inversion.) Hence
R~ (C,) = @ zZ[r,]".

din

We finish the proof by applying Lemma 2.1.

EXAMPLE 2.3. Let p be an odd prime number and G an elementary abelian p-
group of rank 7. Let 4 be the hermitian class number of Z[G]. With this notation, the

following formula holds:
h = (hp)"p*
where

n=

=D 1 ]
=1 and s=(p l)[ 3 =1 +t.

Proof. In the notation of Theorem 1.16, we have |G| =pf, m = (p*'—1)/2,
n=(p'—1)/(p—1),r=1and 6,(U;) = 1. The group G breaks up into (n+ 1) different
I"-orbits: one orbit reduced to the trivial character and n orbits each containing
p—1 elements. Thus the representation ring R(G) = Z[G] has a decomposition as
a I' -module:

RG)=ZDZT,]D - @ Z[T,]
where the factor Z[I',] is repeated » times. Hence

R(G)=Z[I,] & ---Z[I,].
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By applying Lemma 1.1, we obtain
X = no,,.

By the multiplicativity property of L-series (see [6, Chapter XII, §2]) we have
L(1,x;) = L(1,0,)". Rewriting formula (17) in this particular case gives

. ptp-1)/4
h=Fpp

(27) V72 L(l’op)] P

The expression within the square brackets turns out to be the formula for the relative
class number of the cyclotomic field Q(p) (see [10, Chapter 4]).

ExaMPLE 2.4. Let p and g be distinct odd prime numbers, let G = C,, and let A
be the hermitian class number of Z[G]. The following formula holds:

_ U (BT (F)) = h- h-

h qu P "¢ ""pe

Proof. By Lemma 2.2 we have x; = o,+0,+0,,. Thus, by the multiplicativity
property of L-series, we obtain L(1, x;) = L(1,0,) L(1,0,) L(1,0,,). In the notation of
Theorem 1.16 we have r =1, n =3, m = (pg—1)/2 and n, = n, = 2. Thus formula
(17) yields

h = 2°Q2n)~®eDIR(pg)PIL(1, x) 8 (Ue) 6,(Usg)
2p-pP-vi 2g- e~V
= [WL(I,Up) WL(],aq)

4pg - p'P~D@-Vidga-D -1/ |Uc (F)| \U. (F,)
x [ (2n)P D@0z L(1,0,,) quq .

We recall that by Propositions 1.7 and 1.8 we have
0,(Uc) = 6,(Uc) = U (F,) p~ ™",

We finish the proof by observing that the expressions within the square brackets are
the classical formulas for A7, A; and A, (see [10, Chapter 4]).
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