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EQUIVARIANT WITT GROUPS 

BY 

JORGE F. MORALES 

ABSTRACT. This paper studies for a number field K and a finite group 
T the cokernel of the residue homomorphism W{KY) —+ 0 p W(k(p)T). 

Introduction. Let K be a number field and R the ring of integers of K. It is well 
known that the Witt groups of the ring R, the field K and the residue fields k(p) are 
related by an exact sequence 

(1) 0 — W(R) — W(K) i 0 f f ( t ( O ) ) — C(K)/C(K)2 — 0 
P 

where C(Â') is the ideal class group of K and p runs over all nonzero prime ideals 
of R (see [12] Chapter 6 and [5] Chapter 4). The nontrivial step in the proof of the 
exactness of this sequence is the identification of coker(3) with C(K)/C(K)2, which 
involves some version of quadratic reciprocity. 

In this paper we shall consider, for a fixed finite group T, the equivariant analogue 
of (1), namely the sequence of equivariant Witt groups 

(2) 0 -+ W(RT) -> W(KT) -^ 0 W(k(p)T) 
P 

which is seen easily to be exact (see [1] Chap I, Theorem 4.1). Alexander-Conner-
Hamrick ([1] Chapter I and IV) and Dress ([4] Section 4 Theorem 5) asked for a 
description of coker(3) in order to have a complete equivariant analogue of (1). To the 
author's knowledge, no general computation of coker(3) is known so far. This paper 
gives an answer in some important cases. Here is an outline of its contents . 

Section 1 contains the basic definitions. 
In Section 2 we consider the case where T is a finite abelian group and K is the 

field of the rational numbers. With these hypotheses the homomorphism d turns out 
to be surjective. 

In Section 3 we consider the case where T is a p-group (p odd). We show that 
in this case coker(3) is isomorphic to C(K)/C(K)2, as in the non-equivariant case. 
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208 J. F. MORALES [June 

It is in particular independent of T. As a subsidiary result we calculate the structure 
of W(RT). In Section 4 we propose a conceptual setting for describing coker(3) in 
general. 

1. Definitions. Here we recall the definitions and notations that will be used in the 
next sections. Let A be a ring equipped with an involution / and let L be a finitely 
generated left A-module. A hermitian form h on L is a function 

h : L x L —• A 

which is A-linear in the first variable and satisfies h(x,y)J = h(y,x). If in addition the 
adjoint map y \—> h( ,y) is an isomorphism from L to HOITIA(L7A) then h is called 
regular. 

A hermitian form (L, h) is said to be metabolic if there is a sub-A-module N C.L 
for which N = NL. 

The Witt group W(A,/) is an additive group defined by generators and relations as 
follows. It is generated by the isomorphism classes [L, h] of regular hermitian forms 
over r , with the relations 

(R\) [Luhx] + [L2,h2] = [Lx m L2.hr ffl h2] 

(R2) [L, h] = 0 if (L, /*) is metabolic, 

where ffl denotes the orthogonal sum. Let R be a Dedekind domain with field of 
fractions K. Let A be a semi-simple Â^-algebra with ^T-involution / , and A an /border 
of A preserved by / . A torsion hermitian form over A is a pair (T,h), where T is a 
finitely generated /^-torsion A-module, and h is a function 

h:TxT —• A/A 

which is A-linear in the first variable and satisfies h(x, y)J — h(y,x). If the adjoint 
map y i—» h( , y) is a bijection T —> HomA(r, A/A) then /z is called regular. 

A torsion hermitian form (T, /z) is metabolic if 7 admits a sub-A-module S which 
is self-orthogonal with respect to h. 

Similarly, the torsion Witt group WT(A,J) is the additive group generated by the 
isomorphism classes [T,h] of regular torsion hermitian forms with the relations (Rl) 
and (R2). 

The torsion Witt group WT(A,/) is (non-canonically) isomorphic to the direct sum 

0W(A/pA,/) 
P 

where p runs over all nonzero prime ideals of R (see [1] Chapter I Section 3). There 
is a canonical homomorphism d : W(A,J) —-* WT(AyJ) defined as follows. Let (V, h) 
be a regular hermitian form over A. Choose a A-lattice L C V such that h(L,L) C A. 
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Let l) be the dual lattice {x G V : h(x,L) Ç A}. The torsion module Û jL carries the 
regular hermitian form hi(x^y) — h(x,y) (mod A). It is easy to see that the Witt class 
of 0/L,hL) does not depend on the particular choice of the lattice L C V and that 
3(V,/j) = 0/Ljhi) is a homomorphism (see [1] Chapter I Section 4). 

The Witt groups W(A,J), W(A,J) and WT(A,J) are connected by a canonical 
exact sequence 

0 - • W(A,J) -^ W(A,J) -^ WT(A,J) 

where t is induced by tensor product with K over R and d is the homomorphism 
defined above (see [1] Chapter I). 

We shall mainly deal with the case where A is the group ring RT of a finite group T 
and / is the canonical involution 7 '—> 7 _ 1 for 7 E T. In this case, using the canonical 
isomorphism 

ttomR(L,R) —y HomRr(L,RA) 

we shall identify the set of hermitian forms on L with the set of T-equivariant sym
metric bilinear forms over L. 

By abuse of language, we shall use the abbreviated notation W(A) for the Witt 
group of A with respect to some fixed involution, whenever there is no danger of 
confusion. This abbreviated notation will be applied in particular to group rings, 
where no involution different from the canonical one will be considered. 

For the elementary properties of equivariant Witt groups we refer to [1]. For a 
general categorical setting we refer to [9] and [12]. 

2. The abelian case. Throughout this section T denotes a finite abelian group. 
Our aim is to prove that the canonical homomorphism 3 : W(QT) —+ WT(ZT) is 
surjective. 

LEMMA 2.1. Let p be a prime number and d — pv > 2. Let Qbe a primitive dth root 
of unity. Let p be the ramified prime ideal of Z[£ + £ - 1] (which lies above p). Then 
the canonical map 

z[c+r']x^(ztc+r1]/p)x=Fp
x 

is surjective. 

PROOF. Let m be a positive integer not divisible by p. We define 

_(C"-rm) 
u (c-c-') 

m-\ 

o) = cm+l E <2/-
(=0 
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It is not difficult to check that u is a unit (see [14] Lemma 8.1). Let !p be the 
prime ideal of Z[Q lying above p. Since ( = 1 (mod !j3), it follows from (3) that 
u = ra(mod p). D 

PROPOSITION 2.2. Let Qbe a primitive dth root of unity and q a prime ideal of Z[Q 
not dividing d and preserved by complex conjugation. 
a) if d is composite (i.e. d is not of the form pu or 2pv with p prime) then there exists 

a rank one hermitian form (L,h) over Z[Q such that l) jL ~ Z[Q/q. 
b) If d is not composite and d ^ 2 then there is a rank two skew-hermitian form (L, h) 

over T[Q such that D/L ~ Z[Q/q. 

PROOF. Since q is unramified and preserved by complex conjugation, it may be 
regarded as an ideal of Z[£+£ - 1] . By class field theory, the norm map C(Q(Q) —» 
C(Q(£+C-1) is surjective (see [14] Theorem 10.1): there exists an ideal a of Q(0 and 
A G Q(C + C_1) such that q = Acta. 
a) Define L = a and h(x,y) — Xxy. By construction we have 

L)/L = (Xà)~l/a 

- Z[C]/Aaâ 

= ZKl/q. 
b) Suppose d — pv. Let p be the prime ideal of Z[Q above p. It is well known (see 
[14] Lemma 1.4) that p is principal and generated by TT = £ — £ - 1 . Without loss 
of generality we can assume that a is contained in Z[Q and is relatively prime to 
p. It follows from the equality q = Acta that A is a p-unit. Moreover, by Lemma 
(2.1), we can assume A = 1 (mod p). Let h be the skew-hermitian form defined on 
V = Q(0 © Q(0 whose matrix with respect to the natural basis is 

/ / = ( ( A _ - 1 i ) 7 r" i D-
Let L — a 0 Z[(]; we claim that (L?/z) satisfies the conclusion of part b) of the 
proposition. We can see from the shape of the matrix H that h takes integral values 
on L if and only if (A — l)7r_1aâ Ç Z[Q. Since A = 1 (mod p) and a Ç Z[Q , we 
have ordp((A — l)7r-1aâ) > 0. For a prime r ^ p we have 

ordr((A — l)7r_1aâ) = ordr((A — l)ct5) 

> ordr(Actû + a5) 

= ordr(q + ctct) 

> 0 . 

Hence h{L,L) Ç Z[Q. By the construction of (L, h) we have 

ordr(det(Lr,/z)) = ordr(aûdet(//)) 

= ordr(oâA) 

A ^ f 1, if r = q 
= ordr(q) = 

I 0, otherwise. 
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Thus L)/L ~ l[Q/q as claimed. D 

THEOREM 2.3. Let T be a finite abelian group. Then the canonical homomorphism 

W(QT) - ^ WT(ZT) 

is surjective. 

PROOF. Let (T,/3) be a torsion form over ZT. We will show that the Witt class of 
(7\ f3) is in the image of d. The form (71, /?) is Witt-equivalent to an orthogonal sum 
of torsion forms whose underlying ZT-modules are simple. Thus we may assume that 
T is simple. Let k = Endzr(X) and q — char(&). The field k is a finite extension of 
¥q and T can be regarded as an absolutely simple ^r-module. Let \ : T —+ kx be the 
character of T and d = |im(x)|. If d <2, i.e. x(7) = ±1 , then the group T plays no 
role, and using the surjectivity of W(Q) —> WT(Z) (see [5] Chap. IV Theorem 2.1) 
we see that (7, j3) is in the image of d. Thus we may assume that d > 2. In this case 
since x ^ X_1 = X*» m e adjoint involution on k is not trivial. Let £ be a primitive 
Jth root of unity. The field k can be viewed as the quotient of Z [Q by a prime ideal 
q stable by complex conjugation, and the character \ : T —> £x can be lifted to a 
character T —> Q(QX, which will be denoted again \. Every Z[Q-module M becomes 
a Zr-module by defining 

7 . x = x(7)* for 7 G T and x G M. 

In particular, 7 is isomorphic to its endomorphism ring k viewed as a Zr-module. 
Let © be the different of the extension Q(£)/Q. It is known that X) is a principal 

ideal (it is in fact generated by Q>'d(Q) (see for instance [6] Chap. Ill, Section 2, 
Proposition 8). Moreover, a generator a of T) can be chosen such that 

f a , if J is composite 
a = 

I —a, otherwise 

(see also [2] Lemma 1.6). 
Let (L,h) be the hermitian (skew-hermitian if d not composite) form over Z[Q 

provided by Proposition (2.2). Let 

b.LxL—>Z 

(x,y)\—>TrQ(0/Q(ar1/*(x,;y)). 

By construction, b is a symmetric bilinear T-equivariant form, and by Proposition 
(2.2) we have 

l)/L - T 

as Zr— modules. Let bi be the form induced on T by b. It is left to show that bL ~ f5. 
Since T is simple, we have biix^y) = /3(ux,y), where u e kx and w = M. Since k is a 
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finite field and the adjoint involution on k is not trivial, there exists v G i x such that 
u = vv. Thus biix^y) — /?(VJC, vy)v that is b^ is isomorphic to (5 as required. • 

3. The case of a /?-group. We fix the following notation for this section. 

p an odd prime 
r a finite p-group 
K a number field 
R the ring of integers of K 
k(p) the residue field R/p (p is a nonzero prime ideal of R) 
A the group algebra KF 
A the integral group ring RT 
S the set of primes of K which divide p 
Wo(A) the kernel of the restriction map W(A) —* W(R) 
Wo(As), Wo(A), WoT(A) and WoT(As) are defined in an analogous manner as the 

kernels of the appropriate restriction maps. 

THEOREM 3.1. The localization map A—• As induces isomorphisms 

W0(A)^Wo(As) (4) 

W0T(A) -=U W0T(AS) (5) 

PROOF. We first prove that (5) is an isomorphism. Let (7, (5) be a torsion form in 
the kernel of (5). On the one hand, we know that every Witt class has a representative 
whose underlying module is semisimple (see [8] Lemma 1.2). Thus we may assume 
that T is semisimple. On the other hand, since (7\ /3) is in the kernel of (5), T can be 
written 

pes 

where Tp is a semisimple &(p)r-module. Since F is a /7-group and p divides p, we 
deduce that F acts trivially on Tp (see [3] Theorem 5.24). By hypothesis, (T,(3) is also 
in the kernel of the restriction map WT(A) —-> WT(R); thus T = 0. The surjectivity of 
(5) is obvious. The fact that (4) is an isomorphism follows now easily from (5) and 
the exact sequence (2). 

LEMMA 3.2. Let V be a simple GF-module. Then V is self-dual if and only if F acts 
trivially on V. 

PROOF. We proceed by induction on the cardinality of F. Let F —> Cp be a surjective 
homomorphism and let To denote its kernel. Let U Ç V be a simple sub-CTo-module 
of V. 

a) If U = V, by the induction hypothesis FQ acts trivially on V. Thus V can be 
regarded as a self-dual CCP -module. Its character \ is a homomorphism Cp -—> Cx 

which satisfies x = X* = X_1- Since /? is odd, we must have \ — 1. 
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b) If U ^ V we have V = Indfo(£/). Using again the fact that p is odd, we 
conclude that U must also be self-dual. By the induction hypothesis To acts trivially 
on U and therefore also on V. The same argument as in a) shows that T acts trivially 
on V. • 

PROPOSITION 3.3. Suppose that the group algebra A has a simple component B ^ K 
which is preserved by the canonical involution. Let E denote the center of B. Then E 
is a CM-field and the restriction to E of the involution on B coincides with complex 
conjugation. In particular K is a totally real field. 

PROOF. Let V be the simple A-module corresponding to B. Since B is preserved by 
the involution, V is self-dual. By a theorem of Schilling (see [10] Theorem 41.9), B 
is a matrix algebra over its center E. Thus E = End^V) and V can be regarded as an 
absolutely simple £T-module. For every ^-embedding E <—> C, the module V^^C is 
not self-dual by Lemma (3.2), i.e. the involution on C is not trivial. This shows both 
that E is a CM-field and that the involution on E is complex conjugation. Since K is 
fixed by the involution, K must be totally real. • 

THEOREM 3.4. Let V be a simple self-dual A-module. Then there exists a symmetric 
T-equivariant form b : V xV —• K and a As-lattice L such that L — Lb. 

PROOF. If r acts trivially on V the theorem is obvious. Thus we may assume that 
Vr ^ V. Let c be any symmetric nondegenerate T-equivariant form on V (since K 
is totally real such forms exist). Let M C V be a As-lattice. Let E = End^V) and 
a = HomAs(Af,AfJ) C E. We leave to the reader to check that aM = Af| (see [8] 
Theorem 2.7). Let F be the maximal real subfield of E. The S -ideal a of E is by 
construction stable by complex conjugation and contains no ramification. Thus it can 
be regarded as an S -ideal of F. Using the fact that the norm map NE/F :C(E)—>C(F) 
is surjective (see [14] Theorem 10.1), we conclude that there is an S -ideal b of E such 
that a = Xbb. Put L = bM.We have 

= (XbylaM 

= bM 

= L. D 

THEOREM 3.5. Let Ai (i = 1 . . . r) be simple components of A which are different from 
the trivial component K and are preserved by the canonical involution J. Let A; C A/ 
be the image of Ts in Ai. Let Et be the center of At and 0/ the center of A/. Then 
there is a commutative diagram 

0 — W0(AS) —> W0(A) — W0T(As) 

^ 4, 4, 

0 — 0 , W ( Q , - ) —» ®tW(Eh-) —» ©,WT(Q,-) 
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where the bottom row consists of hermitian Witt groups with respect to complex 
conjugation ~ and the vertical arrows are isomorphisms. 

PROOF. Let eQ,...,er be the indecomposable central idempotents of A fixed by the 
involution, where eo corresponds to the trivial component K. Let er+\,eJ

r+x,..., en, e
J
n 

be the remaining central indecomposable idempotents. Since p is invertible in Rs, the 
Rs -order As is maximal and we have 

As = e0As 0 • • • 0 erAs 0 (er+xAs 0 eJ
r+xAs) 0 • • • 0 (enAs 0 eJ

nAs). 

Thus, every form (M,Z?) over A$ decomposes canonically as an orthogonal sum 

M = e0M ffl • • • ffl erM ffl (er+\M 0 eJ
r+lM) ffl • • • ffl (enM 0 eJ

nM) 

where the factors e{M Ç&e\M are clearly hyperbolic. Thus we have canonical isomor
phisms 

r 

Wo(As)-=->0W(A/) 

and 
r 

W0T(As)^^WT(Al). 
1=1 

We use now the technique of transfer to the endomorphism ring (see [12] Chap. VII 
Section 4 and [9] for a general setting) to show that there is a commutative diagram 

0 —• W(Ai) —> W(Aj) —y WT(At) 

(6) Jo, Jo; Jo? 
0 — , W(On~) — W ( £ , 0 —- WT(QO 

where the vertical arrows are the (non-canonical) isomorphisms defined below. Let 
Vi the simple self-dual A-module corresponding to A/. Let bt be a form on Vi and 
L; C Vi a A5-lattice unimodulair with respect to b[ (such a pair exists by Theorem 
3.4). We define 

O/ iW^ / )—>W(Q, " ) 

(Af,«H-.(0J-(Af),0 /(^)). 

where 0/(M) = HomA5(L/,M) and 0/(/?)(/,g) is the composite homomorphism 

U-1-* M - ^ M* -^-> L* -^U L/ 

Note that 0/(M) carries a natural structure of right 0/-module. We define Ô  : 
VK(A/) —̂  W(£/, ~) in exactly the same manner. Finally, O" on torsion forms is defined 
as follows: 

Of :W7XA/)—>WT(Q,-) 

(r,/3)^(o;'(:o,o?(/3)). 
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where Of(T) = HomAs(LtlT). For/, g G 0,(7) we define Of (/?)(/, g) as the compos
ite homomorphism 

L.-L+TJ^t-L> HomA/(LM Ai I hi) = V*/L* ^ Vi/U 

(where we identify HomA/(L/, Vi/Li) with End^((V/)/EndA/(L/) = Ei/Oi). 
We leave to the reader to check that the formalism of transfer as described in [12] 

Chap. VII Section 4 works well in this situation and that the maps 0/,0- and Of give 
isomorphisms. Clearly the diagram (6) is commutative. 

COROLLARY 3.6 We keep the notations of Theorem 3.5. There is an isomorphism 

r 

(7) W(A) - ^ W(R) 0 0 W(On "). 

PROOF. Apply Theorem 3.1 and Theorem 3.5. D 

COROLLARY 3.7. Suppose in addition that p has only one prime divisor in K. Then 
the restriction homomorphism W(A) —• W(R) induces an isomorphism of torsion 
subgroups 

W(A)iOT — W(R\OT. 

PROOF. We see from the decomposition (7) that it is enough to show that W(0,~) 
is free. In effect, let (M,h) be in the kernel of the signature homomorphism a : 
W{0,~) —> Tm. In particular M has even rank over O. It is easy to see that for an 
inert prime q of Et, the rank map 

p :W((Q) q , - )—Z/2Z 

is an isomorphism. Thus (Mv, h) — 0 in W((0/)v,~) for every place (finite and infinite) 
v not dividing p. Now, since p has only one prime divisor, say p, it follows from 
Hilbert Reciprocity that (Mp,h) is also metabolic. Hence, by the Hasse Principle, 
(M,/z) is metabolic as well. • 

COROLLARY 3.8. Let K be a totally real field having only one dyadic prime and odd 
class number. Suppose in addition that K contains units with independent sign and 
that p has only one prime divisor in K. Then W(A) is a finitely generated free abelian 
group. 

PROOF. Our hypotheses imply that W(R) is torsion-free (see [5] Chap IV Corollary 
4.3). Hence, by Corollary 3.7, W(A) is torsion-free as well. • 
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REMARK. Corollary 3.8 was observed by Alexander-Conner-Hamrick for K = Q 
and T = Cpu (see [1] Chapter III). 

THEOREM 3.9. The canonical map d : H ô(A) —> WoT(A) is surjective. 

PROOF. By Theorem 3.5, it is sufficient to prove that 3 : W(£/,") —•» W7(0,-,~) 
is surjective. Let (7,/?) be a torsion form over 0/ whose underlying O-module 7 is 
simple. Then 7 ~ 0//q, where q is a prime S -ideal of E fixed by the involution. 
Since q is unramified, it can be seen as an ideal of the field 7/ fixed by the involution. 
By surjectivity of the norm map NE/F • C(E() —» C(7/), there exists an ideal a of 
E[ and A E F; such that q = Acta. Let /*(x,v) = Xxy. It is now easy to see that 
3(F/, h) — (7, /3) (see proof of Theorem 2.3) • 

COROLLARY 3.10. The cokernel ofd : W(A)—+ WT(A) is isomorphic to C(K)/C(K)2. 

PROOF. We know (see for instance [12] Chapter 6 theorem 6.11) that coker(9 : 
W(K) —• WT(R)) is isomorphic to C(K)/C(K)2. Corollary 3.10 follows inmmediately 
from this fact together with Theorem 3.9. 

4. A general approach. In this section K is a number field, R is the ring of integers 
of K, A is a semisimple AT-algebra with ^-involution and A an /border preserved by 
the involution on A. 

Let Go(A) be the Grothendieck group of the category of finitely generated A-
modules (for the definition and elementary properties we refer to [3] Chap. 5). Ac
cording to Theorem 38.42 in [3], we can also see Go (A) as the Grothendieck group 
of the subcategory of A-lattices. We shall take this viewpoint to define an action of 
the cyclic group C2 of order two on Go (A). In effect, let a be the generator of C2 and 
L a A-lattice. We define 

[Lf = [L*] 

where L* = HomA(L, A). The following lemma shows how C2 acts on torsion modules. 

LEMMA 4.1. Let 7 be a finitely generated torsion A-module. Then the following 
holds in Go (A): 

[7T = -if] 

where T — HoniA^A/A). 

PROOF. Take a presentation 0 —* L\ —» Lo —» T —> 0 of T, where L, (/ := 0,1) is a 
A-lattice. By definition of the action of Cj we have in Go(A) 

[Tf = ([!<,]-[/,,])" = [ L o f - [ L i f 

= [L$] - [L\] = -([LÎ] - [LSD 

= -[t] 
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where the last equality comes from the dual sequence 0 —-» LQ —> L* —> f —> 0. D 

PROPOSITION 4.2. 77H? map ip : WT(A) —> H1(C2,G0(A)) g/véTi fry Y>(7\/I) - [7] w 
a well-defined homomorphism and satisfies (fd = 0. 

PROOF. Let (T7 /i) be a torsion form. Since T is by definition self-dual, we have 
[T]a + [T] = - [ f ] + [7] = 0. Hence [T] is a 1-cocycle. Suppose now that [T,h] is 
metabolic, that is there exists a submodule S CT such that S-1 = S. The submodule 
S provides an exact sequence 0—+S—>7—>S—>0, which interpreted in Go (A) 
gives [T] = [S] + [S] = [S] — [S]a. Thus [T] is a 1-coboundary and ip is well defined. 

It is left to show that (fd = 0. By the definition of d we have (<pd)(V,h) = [L^/L] 
for some lattice LCV. Since L» ~ L* we have (<^3)(V,/i) = 0/L] = [L*] - [L] -
[ L r - [ L ] = 0in//1(C2 ,G0(A)). D 

EXAMPLE 4.3. Let A = R. Then Hl(C2l G0(A)) - C(K)/C(K)2 and Im(3) = ker(<^). 

PROOF. Since Go(R) is isomorphic to ^To(̂ ) for a Dedekind domain, we have 
Go(R) ~ Z 0 C(/0 (see [7] Corollary 1.11). Moreover, one sees easily that this iso
morphism can be chosen C2-equivariant (C2 acts trivially on Z and by [a]a = [a -1] 
on C(K)). Thus //1(C2,G0(A)) - C(K)/C(K)2 as claimed. The statement that 
Im(3) = ktr((f) follows from the exactness of (1) (see [12] Chapter 6 Theorem 6.11). 
D 

Propositions (4.2) and Example (4.3) suggest that it is not unreasonable to conjec-
d <f i 

ture that the sequence W(A) —» WT(A) —• // (C2, Go(A)) is exact . It can be checked 
directly that Im(y>) = 0 if A = ZA with A abelian and Im(<p) ~ C(K)/C(K)2 for 
A = /?r with r a p-group, as expected from Theorem 2.3 and Corollary 3.10. 
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