J. reine angew. Math. 426 (1992), 107—116 Journal fiir die reine und
angewandte Mathematik

© Walter de Gruyter
Berlin - New York 1992

On some invariants for systems of
quadratic forms over the integers
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Introduction

Let K be throughout a number field with ring of integers R. This paper deals with
systems S = (M; b,, b,, ..., b,) consisting of a torsion-free finitely generated R-module M
and r nondegenerate (i.e. injective) symmetric homomorphisms b;: M - M* = Homg(M, R).
Two such systems S = (M;b,b,,...,b,) and S'=(M’; by, b, ..., b)) are said to be
equivalent if there is an R-isomorphism f: M — M’ such that f*b;f=b,for 1 <i<r.

There is a natural construction which associates in a functorial way to every system
S=(M;b,,b,,...,b)amodule V5 over the free algebra 4 on r — 1 generators over K (see
Section 1). We prove that there are only finitely many equivalence classes of systems S having
prescribed associated semi-simple 4-module ¥ and prescribed multivolume (Theorem 1.1).
This result is in some sense the best finiteness statement possible: elementary counterexam-
ples show that in general there are infinitely many classes of systems of given module and
multivolume if no semi-simplicity is assumed (Remark 1.4).

Section 2 is devoted to the particular case of pairs (i.e. r = 2). In addition to the
invariants of Section 1 we associate to a pair S an R-order Agin End, (¥5). We prove, under
some restrictive hypotheses, that the set of equivalence classes of pairs S with prescribed
multivolume, module V5 and order Ay, admits a transitive action of an abelian group related
to the Picard group of Ag (Theorem 2.1). This result leads to explicit class-number formulas
(Theorem 2.5) and implies in particular the formulas of Hardy and Williams [6] for pairs of
binary quadratic forms over Z (Example 2.7). We also give an explicit criterion for the
existence of pairs with given invariants (Theorem 2.6). Finally we develop genus theory for
pairs, that is we study pairs under local equivalence at all primes of K. We describe explicitly
the genera (Theorem 2.8) and show in particular that if the associated order A is maximal
then each genus contains exactly one equivalence class (Corollary 2.9).

The author thanks the Fonds National Suisse de la Recherche Scientifique for its support, and the Institut
des Hautes Ftudes Scientifiques for its hospitality during the writing of this paper.
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1. Finiteness

Let (M; b) be a symmetric form over R and write M = a e, + a,e, + - +a,e,,
where a,, ..., a, are nonzero R-ideals and e, ..., e, is a K-basis for KM. We recall that the
volume o(M; b) is defined by

o(M;b) = (a0, ...a,) det(b(e;, ¢)) .

The volume is of course independent of the choice of a decomposition for M as sum of
ideals (see [9], §82E). For a system S = (M;b,,...,b,) we denote by By the r-tuple
(0v(M; b)), ...,0(M;b,)). This invariant will be called throughout the multivolume of S.

Let A = K{T,, ..., T,_,} be the free algebra (non-commutative polynomials) in r — 1
generators 13, T,, ..., T,_,. We associate to S = (M; b,,...,b,) an 4-module Vj in the
following way: V5 = KM as vector spaces and

Twv=>b'b,,v for 1<iZ<r—1.

We leave to the reader to show that the isomorphism class of V5 as an 4-module depends
solely on the equivalence class of S (see also [10], Chapter 7, Example 11.8).

Let®B = (v,, ..., v,) be amultivolume and ¥ and 4-module. We denote by H(B, V) the
set of equivalence classes of systems S = (M; b, ..., b,) with By = B and V5 ~ V. We can
now state the main theorem in this section.

(1.1) Theorem. If V is semi-simple then H(B, V') is finite.

Proof. We first reduce Theorem 1.1 to the case when R = Z. Let £ € R be a generator
of Kasa (J-algebra. Lets: R — Z be any non-zero linear form (for instance the trace form).
The linear form s induces an isomorphism s, : Homg (¥, K) - Hom(V, @) that we use to
associate to a system S = (M; b,, b,, ..., b,) over Rasystem S = (M; b,, ..., b,, b, ,)over Z
as follows:

~

by==5.0b, for 1<i=sr,

5r+1 =80 (Bby).

Notice that this construction increases by one the number of forms in the system; this is the
trade-off for restricting the ground field down to @. It follows immediately from the
definition of § that the associated module Vzover Q{T, T, ..., T,} is given by Vg = KM as
@Q-vector spaces, and

6 Tv=b'b, v for 1Sis<r—1,
Tv=~¢v.

Thus End(V5) = End (V). In particular, if Vg is semi-simple then so is V5. Any Z-linear
equivalence § — §’ is automatically R-linear, for it must commute with ¢ by (1); and
therefore it induces an R-linear equivalence S — S’. Consequently it is sufficient to prove
Theorem 1.1 for R = Z.
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We shall now translate our finiteness statement into the language of linear algebraic
groups in order to apply the following ([2], Theorem 6.9).

(1.2) Theorem (Borel-Harish-Chandra). Let G be a reductive algebraic group defined
over Z and let W be a representation of G defined over Q. Let L = W (Q) be a Z-lattice

preserved by G(Z) and X = W (C) a closed orbit of G(C). Then X N L consists of finitely many
G (2)-orbits.

We take G = SL,and W = (Sym,)", where Sym, denotes the symmetric n X n-matrices.
The algebraic group G acts on Wby g (B,, ..., B) =(g'B,g, ..., g'B,g) and this action
is obviously defined over Q. Let deZ" with d,+0 for all i We define
Y;={(By,...,B)e W(C)|det(B) = +d;}. The group SL, acts also on M~! by simul-
taneous conjugation, and the algebraic map

f:Y > M, (C)y 7,
(B,B,,...,B,) — (B['B,,B['B,,...,B['B).
isclearly SL,(C)-equivariant. Let Z = M, (C)" ™! be a SL,(C)-orbit. We want to show that if
the module corresponding to Z is semi-simple then f ~!(Z) n Sym, (Z)" consists of a finite

number of SL,(Z)-orbits; and a fortiori, of a finite number of GL,(Z)-orbits. This is an
immediate consequence of Theorem 1.2 provided we know the two following facts:

(a) If the module correspnding to Z is semi-simple then Z is closed in M, (C)" ™.

(b) f~1(Z) consists of finitely many SL,(C)-orbits.

Itis known that an orbit Zin M, (C)"~ ! is closed if and only if the associated module is
semi-simple (see Kraft’s book [7], Kapitel II, 2.7, Satz 2). Hence (a) is settled.

Statement (b) is a relatively straightforward consequence of a general result in the
theory of hermitian categories ([10], Chapter 7, Corollary 11.4), which in our particular case
reads:

(1.3) Proposition. The systems of nondegenerate nXn symmetric matrices
S = (By,..., B,) over C are classified up to SL,(C)-equivalence by the determinants det (B;)
and the associated module structure Vg. O

(1.4) Remark. The semi-simplicity hypothesis in Theorem 1.1 is not superfluous as
shown by the following counterexample: Let m be a nonzero integer. We define

() (7))

Clearly B = Bg, and Vs, ~ V;,. Now, it is easy to see that the only automorphisms of the
first form over Z are
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(10 L (0 1)
“\o 1) F\1 o)

therefore S,, and S, cannot be equivalent for m + n.

(1.5) Remark. Other finiteness statements for systems of quadratic forms can be
found in [1], Theorem 4.1 and Theorem 4.2.

2. Pairs of forms

In this section we shall study pairs S = (M; b,, b,) of forms over R of arbitrary rank.
The invariant Vdefined in the previous section is now given by the conjugacy class of a single
automorphism ¢ = b 'b,. We shall denote by ¢ its characteristic polynomial.

It is convenient for our purposes in this section to merge the invariants Bgand gginto a
single invariant. We define

) @5 = v(R[T]1@p M; b, T—b,).
The invariant @ could be defined alternatively by
3 s =0(M; b)) os(T).

It follows immediately from (3) that v (M; b,) is the ““dominant coefficient” of @¢ and
from (2) that v(M; b,) is the “constant term” of &y.

The following hypotheses will be in force from now on:

H,: ¢4 has no multiple factors,

H,: &g is primitive, i.e. it is not divisible by any prime ideal of R.

Hypothesis H, is very natural in geometrical terms: it is known that H, is equivalent to
requiring that the intersection of the quadrics b, (x, x) = 0 and b, (x, x) = 0 in the projective
space P, _, is smooth of codimension 2 (see [3], Remark 1.13.1).

We will see later that hypothesis H, can be regarded to some extent as the analogue for
pairs of the primitivity hypothesis in Gauss’ theory of binary quadratic forms, for its role is
to guarantee the invertibility of certain ideals.

Let E = K[T]/(¢(T)) and let ¢ denote the class of T'in E. By virtue of hypothesis H,,

the underlying module ¥ = KM is semi-simple and free of rank one over E (¢ acting via
b 'b,). We attach now to S an order in E by

Ag={xeE|xMc M}.

Itis easy to verify that Agisaninvariantof S = (M; b,, b,), and that it must contain the order
R[v(M; b,)1].
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We shall now study for given @ and A the set H(®, A) of equivalence classes of pairs

S = (M; by, b,) such that &5 = & and A3 = 4. By Theorem 1.1 we know a priori that
H(®, A) is finite.

Let J(A) be the group of all invertible (i.e. locally free) ideals of A. Let G(A) be the
subgroup of J(4) x E* given by

GA)={I,x)|I*x = A} .
Let S = (M, b,, b,) e H(®, A) and let (I, x) € G(A). We define
“4) (I, x) - (M; by, b)) = (IM; by x, b, x) .

We shall now verify that S’ = (IM; b, x, b, x) is also in H(®, A). Let p be a prime of R and
choose a local generator o, € I,. From the definition (2) we have

¢S',p = Ngik (%)2 NE/K () ¢s,,,
= E/K(a;f x) (pS,p
= &g ..
Thus G(A) acts on H(®, A). Our main goal is to prove that the action (4) is transitive on

H(®, A). We shall need to assume that A is weakly self-dual. Following Froéhlich’s
terminology [5], we shall say that an order A is weakly self-dual if the dual module

A= {xeE|Tryx(xA) < R}
is locally free over A.

Frohlich ([5], Section 8, Theorem 10) showed that weak self-duality is equivalent to the
property that every A-module M with End, (M) = A islocally free. It is actually in the latter
form that we shall use this hypothesis. Examples of weakly self-dual orders are maximal
orders, or more generally, orders of odd index in the maximal order. Orders generated as
R-algebras by a single element are also examples (see [5], Section 8). Thus we shall assume
henceforth

H,: The order A is weakly self-dual.

We are now ready to state our main result in this section.

(2.1) Theorem. Assume H,, H,, and H;. Then G(A) acts transitively on H(®, A).
We need two technical statements in order to prove Theorem 2.1:

(2.2) Lemma. Let E/K be a semi-simple commutative algebra and let t e E*. Let ¢ (T)
be the minimal polynomial of t and I = O + t Og, where O is the maximal order of E. Then the
ideal Ngx(I) ™' @(T) is primitive in R[T].
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Proof. Tt is sufficient to prove the lemma locally. Assume that K is a local field. We
have two cases:

(a) If either ¢ or ¢! is in O the lemma is obvious.

(b) If neither t nor ¢~ ! is in O then there is a splitting E = E, X E, as K-algebras such
that ¢ = (¢, t,) with ¢, € O, and ¢, ' € Oy, (here we use that we are in the local case). Let
¢;(T) be the minimal polynomial of ¢ and let I, = O, .+ 10g (i=1,2). By (a) the
ideal Ng (1) Lo, (T) is pr1m1t1ve for i=1,2. So must be their product
Ne (D)™ & (T) = (Ng, (1) ™' 0 (1)) (N (1) () by Gauss Lemma. 0

The trace form  Trgx induces an isomorphism of  A-modules
Hom, (M, A) - Homy (M, R). Thus there exists a unique : M — Hom, (M, A) such that
by (x,y) = Trgx (B(x, »)) and b, (x, y) = - T (tﬂ (x, »)). Since both b, and b, take integral
values on M we must have f8 (M M) < Ant~ ' A. The following lemma shows that we have
in fact equality. To simplify our notation, we set J = A + ¢4 (and thus J = An¢t ' 4).

(2.3) Lemma. Assume H,, H, and H;. Then
In particular, the ideal J is locally free over A.

Proof. Let N< M be full R-lattices in V. We denote by (M : N) the product
P.P,...p,, where R/p; (1 <i<r) are the simple Jordan-Holder factors of the quotient
M/ N over R. The symbol (M : N)is obviously a generalization of the usual index and has the

same multiplicative properties.

From the sequence of injective maps

Trgx
M <t Hom,(M,J) & Hom,(M,A) ~ Homg(M,R)

we deduce
o(M; b,y) = (HomR(M’ R): 61(M))
= (Hom, (M, J): B(M))(Hom, (M, A) : Hom, (M, J))
%) =(J: p(M, M))(A:])
(6) =(J:B(M, M))(J: 4).

Notice that (5) uses that M is locally free, which needs hypothesis H, as already pointed out.
We shall finish the proof by showing that (J : A) = v(M; b,). On the one hand we have by (6)

™ (J:4) 20(M; by).
On the other hand, by multiplicativity of the index, we have

(J: A)(0gJ : Op) ™ = (Og: A)(0pJ: J) L.



Morales, Systems of quadratic forms over the integers 113

The right hand side of this identity is essentially the invariant introduced by Frohlich [5],
Section 5, Corollary 1, as a criterion for local freeness: the ideal (O : 4)(OgJ : J) ! is always

contained in R and is equal to Rif and only if J is locally free (see also [4], Corollary 35.12).
Hence, in particular,

® (J:A) S (0,7:0p).

Now, by the usual properties of the norm in maximal orders, we also have
(OgJ : Og) ™! = Ng/x(OgJ). And by Lemma 2.2 we have

(0xJ:0p)9(T) < R[T].
Thus, using hypothesis H, (primitivity), we have
® (OgJ:0p) co(M; by).
Finally, combining (8) and (9) we obtain
(J:4) s o(M; by)

asdesired. Thus (J : 4) = v(M;b,)and by (6) f(M, M) = J. It follows immediately from this
equality that J is locally free, since M is so. Frohlich’s Criterion [5], Section 5, Corollary 1,
could also have been easily applied to prove this fact. O

Proof of Theorem2.1. To avoid trivial considerations we shall assume that H(®, A)is
not empty. Let S = (M; b, b,) and S’ = (M'; b}, b}) be representatives of two classes in
H(®, A). With no loss of generality we can assume that M and M’ are A-lattices in a given
E-module V. By hypothesis H,, V is free of rank one over E. Therefore Endg (V) ~ E. By
definition we have 4 = Endz (M) E, therefore 4 = End(M). By weak self-duality, M is
projective as A-modules and so is of course M'. We must now show the existence of an
element (Z, x) in G(A) taking S to S’. Replacing if needed S by an equivalent pair we can
assume b; 'b, = by 'b,. The obvious candidate for (Z, x) is I = Hom, (M, M’), and
x=b; b}, = b;'b}. Since M is locally free we have IM = M’; thus we only need to show
that (I, x) belongs to G(A) i.e. satisfies the condition x/? = A. Let f: M x M — A and
B': M x M’ — A be such that Tryx () = b, and Tryx(8') = b;. Using Lemma 2.3 we have

B(M, M) =B'(M', M)
=xI?B(M, M).

Thus xI%2 = A as desired. O
Clearly the kernel of the action defined in (4) is given by
Go(A) = {(a™'4,a%)|ac E*}.

We shall see next that the quotient G (4)/ G, (4) has a very simple description in terms of the
Picard group of A. We recall that the Picard group of A is by definition
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Pic(4) = J(A)/{ad|a e E*}.
The following Proposition gives the structure of G(A4)/G,(A).

(2.4) Proposition. Let ,Pic(A) be the subgroup of Pic(A) of elements of order <2. The
group G(A)| G (A) is an elementary 2-group and is related to ,Pic(A) by the exact sequence

0 —— A*/A** —L 5 G(A)/Gy(A) SN ,Pic(4) — 0,
where A* is the group of units of A, the map j is given by j(u) = (A, u), and k(I, a) = I.

Proof. The proof of exactness is routine and is left as exercise. Observe that the
identity (I, a)? = (I, a®) = (a~ ' 4, a?) holds for (I,a) in G(A), which shows that the
quotient G(A4)/G,(A) is an elementary 2-group. O

An immediate consequence is the following class-number formula:

(2.5) Theorem. (With the same hypotheses and notation of Theorem 2.1). Let h(®, A)
denote the cardinality of the set H(®, A). If h(®, A) % 0 then we have

h(®, A) = [A*: 4*¥?]|,Pic(4)].

It seems natural to ask whether for given invariants (@, 4) there exists a pair having
these invariants, or in other words, whether 4 (®, A) #+ 0. This is answered by the following
theorem. As in Lemma 2.3 we set J = A4 + ¢ A.

(2.6) Theorem. Assume H,,H, andH,. There exists a pair with invariants (®, A) if and
only if J is locally free and J is a square class in the group Pic (A).

Proof. Suppose that there exists a pair (M; b,, b,) with the given invariants. Since M
is a locally free A-module of rank one we can write M = Iv, where Iis a locally free ideal in E.
Thus, by Lemma 2.3, we have

I*B(v,v) =7,
which proves that J is locally free and that J is a square in Pic (A).

Conversely, suppose that J = I? f for some f € E* and some locally free A-ideal I. Set
M =1,b,(x,y) = Trg g (Bxy), by(x, y) = Trgx(tfxy) and S = (M; b, b,). We must check
that & is primitive. On the one hand, by (6), we have @5 = (J : 4) ¢. On the other hand, since
Jis locally free, we have (J: 4) = Ngx(OgJ)”~ 1, According to Lemma 2.2, & is primitive as
desired. O ‘

A very interesting example of application of Theorems 2.5 and 2.6 is the case of pairs of
binary quadratic forms over Z. This case was studied in detail in a separate article [8] and
inspired the general theory contained in this paper. We shall only quote here without proofs
some of the computationally explicit results that can be obtained applying Theorems 2.5 and
2.6 in this case. We refer to [8] for details. There are some minor differences in our approach
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%n [8:! and the approach here: in [8] we fix the actual determinants 0, and §, whereas
in this paper we prescribe only the ideals they generate in Z. In [8] we consider

SL, (Z)-equivalence, while here we use GL, (Z)-equivalence. The results quoted below have
been adjusted to our present viewpoint.

(2.7) Example. Take R = Z and n = 2. We write
®=(6,T*+A4T+6,)Z[T],
where d,, J,, 4 are in Z. We shall assume H,, ie. 42—46,6,+0 and H,, ie.
ged (84, 85, 4) = 1. Notice that in the quadratic case H, is always satisfied. Under some

minor further technical restrictions on d,, 8,, 4 (see [8], Theorem 3.5) and assuming also for
simplicity that Oy does not contain a unit of norm —1, we have

) —0
h(D, A) = -1 L5,
( )=¢ nldé(A) {(”>+< n >}

nsquarefree

where ¢ = 1if disc(Op) > 0 and ¢ = 1/2 otherwise. As usual (—) denotes the Jacobi symbol.
Taking the sum over all possible A (recall that 4 2 Z[§, t]) we obtain a formula for the
number s (P) of classes of pairs of forms with invariant &.

11) h(®) = Y h(®, A)

Z[o1t1lc A O

=316+ G

where D = disc(Z [6,t]) = 4> — 46, ,. Theequality (11) is essentially the Hardy-Williams
class-number formula [6]. O

To complete our view of the problem we shall now study genus-equivalence of pairs of
forms. Two pairs are said to be in the same genus if they are locally equivalent at all primes.
All the invariants that we have defined are obviously genus invariants. In view of Theorem
2.1 it is natural to expect that there is a subgroup G®"(A) of the group G(A) that acts
transitively on the set of classes in a given genus. We define

(12) GEn(A) = {I,1) e G(A)|I, = &, 4, with &2 =1 for all p}.
We claim that G®"(A) has the required property.

(2.8) Theorem. Assume H,, H,, and H,. The action of G*"(A) on H (P, A) given by
(4) is transitive on the set of classes belonging to a given genus.

Proof. Let S=(M;b,,b,) and S’ = (M’; b3, b)) be representatives of classes in
H(®, A) in the same genus. According to Theorem 2.1 there exists (/, x) € G(A) such
hat M’ = IM and b] = b,x. By virtue of our hypothesis, for all primes p there exists
u, € E¥ such that u, M = M’ and b = b,u}. Thus x = u,”* and therefore x must be a global
square, say x = 2 with y € E*. Hence u, = ¢,y ', where &} = 1. Let J be the ideal whose



116 Morales, Systems of quadratic forms over the integers

local components are J, = ¢, 4,. With these notation we have (I, x) = (y~' 4, y*)(J, 1).
Since (y ~! 4, y?) acts trivially on the classes, this finishes the proof. O

(2.9) Corollary. Assume H, and H,. If A is maximal then each genus contains exactly
one class.

Proof. 1t follows immediately from the definition (12) that G®"(A) =1 if A4 is
maximal. O

Finally, we shall give a description of the image of G#"(A) in G(A4)/G,(A). For any
ring B we denote by u, (B) the set of elements x € B satisfying x* = 1.

(2.10) Proposition. There is an exact sequence
1w (E)[Tra(4) = [ 1o (E) —» G=M(A)[G=N(A) N Go(4) — 0,
P P

where the product is taken over all primes p dividing the index (O : A).

The proof of Proposition 2.10 is straightforward. 0O
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