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Let N/K be a tamely ramified abelian extension of odd degree and let G =
Gal(N/K). This paper studies the equivariant isometry class of the trace form 7
restricted to the square root of the inverse different A, 4. The failure of 4, , to
admit an orthonormal normal basis is measured by an invariant p ., in the unitary
class group UCI(O4 G). This paper shows that for Kummer extensions of odd prime
degree, there are Stickelberger-like conditions that determine when a class in
UCI( O G) can be realized as the p-invariant of some tame G-extension. ¢ 1995

Academic Press, Inc.

1. INTRODUCTION

Let K be a number field and let N/K be an abelian extension of odd
degree with Galois group G. It follows from Hilbert’s formula [ 16, Chap.
IV, Proposition 4] that the different ©,,, has even order at all finite places
of N. Thus D, admits a square root and we denote by A4, , the ideal
D47 Tt is easy to verify that A is preserved by G and is self-dual with
respect to the trace form fy(x, »)=Tryx(xy) (this property actually
characterizes 4 4 uniquely among the fractional ideals of N ). In this paper
we shall be concerned with the study of the pair (A .ty ) as a G-equiv-
ariant symmetric bilinear form over Oy.

Let ¢, be the standard symmetric bilinear form on the group algebra KG,
that is, the form for which the group elements form an orthonormal basis
over K. Clearly this form is G-invariant. A pair (L, b) consisting of an
OxG-lattice L and a G-invariant symmetric bilinear form b: L x L — O, 1s
said to belong to the principal genus if (L, b) and (O, G, t,;) are everywhere
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locally 1sometric as G-forms. We show that there is a natural one-to-one
correspondence between the G-isometry classes of forms in the principal
genus and the elements of the unitary class group UCI(O,G) (see next
section ).

A sufficient condition for (A, x. 1) to be in the principal genus is that
N/K be tamely ramified. Hence, when N/K is tame, the form (A, fyx)
defines a class p . in the unitary class group UCI{O,G). We define the
subset of realizable classes of UCI{O,G) by

RU(OG)={pnx: N/K tame G-extension}.

The main result of this paper is that for Kummer extensions of prime
odd order the subset RU(O4G) is actually a subgroup and is characterized
by a hermitian version of the Stickelberger relations. More precisely, let 4
be the automorphism group of G and let ScZA4 be the hermitian
Stickelberger ideal (see Section 3 for the definition). Let Cl(O4G) be the
locally free class group of O G. Our main result is that there is a natural
homomorphism

S & ClOLG)— UCHOG),
ZA
whose image is exactly RU(O4G). In particular, RU(O4G) is a subgroup,
which is not obvious « priori.

Note the analogy of the above result with McCulloh’s characterization of
the subset R(Q,G)={cl{O,): N/K tame G-extension} of the locally free
class group Cl{O4G). In [12] McCulloh showed the inequality R(O . G) =
Cl"(0O,G)’, where J <= Z A4 is the classical Stickelberger ideal and C1”( O G)
is the kernel of the homomorphism Cl(O,G)— Cl(Oy) induced by the
augmentation map. Our computations in Section 3 are largely inspired by
McCulloh’s methods.

2. THE UNITARY CLASS GROUP

Let ¥ denote the set of O G-lattices L of KG such that (L, ¢;) is in the
principal genus, i.e., such that (L, ;) is everywhere locally G-isometric to
the unit form (O G, t;).

The following theorem characterizes .Z.

(2.1} THEOREM. Let L < KG be an Oy G-lattice. Then L is in 27 if and
only if LL* = 0,G.

Proof. Suppose that L is in 2. Then for all primes p the localization
L, admits a generator w, with v, uf=1. Thus L LY =u uX0, ,G=04,G
for all primes p.
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Conversely, suppose that LL*=0,G. Then L is invertible as a frac-
tional O G-ideal, therefore projective over O G, and hence locally free.
Write L, =u,0k,G for all primes p. The following computation shows
that L is self-dual with respect to r,;:

1N L) S Okt (N 1,8) S Ok, forall gedG
< 1(u¥x,g)S0f, forall geG
S u¥ve g, G

<suufyeu, 0, G=L,

=xel,

(note that w,u¥ is a unit of O,G). Thus L is self-dual. By [8, Corollary

ptp

2.4], we may conclude that L belongs to .. ||

(2.2) COROLLARY. ¥ is a group with respect to mudtiplication.
Proof. Follows immediately from the condition LL*=0,G. |

Let KG'" be the subgroup of KG~ of units satisfying ur* = 1. Note that
KG'" is the automorphism group of the G-form (KG, ¢.,). The group KG'"'
acts on % by multiplication and its orbits are precisely the isometry classes
in the principal genus.

(2.3) DerINITION.  The unitary class group UCH Oy, G) is defined by the
exact sequence

KG'"' -5 ¥ 5 UCKOLG)— 0,
where (1) =10 G.

It follows from the considerations above that UCK O,G) classifies the
G-isometry classes of lattices in .. It is known from general results (see,
for instance, [ 14, Theorem 1.1]) that UCI(OG) is a finite group. The
canonical projection ¥ — UCI{O,G) will be denoted by ucl.

Remark. Using an equivariant version of the weak Hasse principle we
can see that actually every G-form (M, b) in the principal genus can be
embedded isometrically and equivariantly into (KG, ) and hence is
G-isometric to some form (L, ?;) with L in . Therefore UCI(OG)
classifies in fact «// the forms in the principal genus.

Now let N/K be a tame G-extension. Choose an equivariant isometry
(N, tyx) = (KG, t;) (this is possible by Bayer and Lenstra [1]). Then
J{A i) is self-dual with respect to ¢, and, by tameness, is locally free over
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O, G. These conditions ensure that f(A4,) is in ¥ (see [8, Corollary
2.4]). Thus we can define

Pax=ucll f1A ).

Since f'is unique up to multiplication by an element of KG'", the definition
of p\ s is independent of the choice of f.
The realizable subset RU(OG) of UCK O G) is by definition

RU{OG)={pnys: N/Kis a tame G-extension}.

It follows from the results in [6; 8, Theorem 4.1] that for K=10, the
realizable subset RU(ZG) 1s reduced to the identity. It follows from exam-
ples contained in [2] that this need not be the case for general K. In the
next section we shall investigate the nature of RU(O.G) for G of odd
prime order / and K containing the /th roots of unity.

Remark. In [8], we associated to every tame G-extension N/K a
canonical lattice M., in Ox[G] such that (M., t.) is locally every-
where G-isometric to (O, ty ). From [8, Theorem 3.3], the invariant
P x also measures the failure of (O, ty.4) to be globally equivariantly
isometric to (M. ., ;)

3. KUMMER EXTENSIONS OF PRIME DEGREE

Throughout this section we let / denote an odd prime number and G the
cyclic group of order /. We shall also assume that the ground field K con-
tains the /th roots of unity. Our first goal is to calculate for a G-extension
N/K the invariant p , iIn UCH{O4G). Letting N=K(\/;1) for a suitable
ae K. we shall express p .. In terms of the p-valuations of a.

The following notation will be in the force henceforth.

o, the p-adic completion of O,..
0,,, the semi-localization of Oy at /, i.e.,
the ring {x€ K | ord,(x) =0 for all p | /}.

N

the group of ideals of X relatively prime to /.

I the ideal generated in Oy by (£ — 1), where £ i1s a primitive /th
root of unity.

G the character group of G.

ZG*  the subgroup of the group ring ZG of elements fixed
by the canonincal involution y— y*.

e the idempotent in KG corresponding to the character y e G.

4 the automorphism group of G.
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,  the automorphism of G given by 4,(gl=g’
(r#0 (mod /)).

t((r) the unique integer with #(r}=r (mod /)

and (1(r)| < (- 1)/2.

K the algebraic closure of K.

In order to determine p,  we will use a particular presentation of the
unitary class group. Let g: ZG/ZG* — 3 be a homomorphism. We attach
to g a lattice L(g) in KG by prescribing its local components:

0,G if pll
.80 Ope, i pyl

Note that L(g) L(g)* = O,G, since g(7) g(x*)=1. Hence L(q) represents a
class L (g) in UCI(O4G).

L(Q)p={

(3.1) THEOREM. The above construction yields a presentation

0,,G'"" - Hom(ZG/ZG* . 3) L5 UCH0,G) - 0, (1)

where O;,G'" is the subgroup of elements u in O,,G™ satisfying w* = 1.

Proof. Let ue O,,G'" and write =3, u, e, The map ¢ is defined by
Hu)y)=u,O. It is obvious from the definition of L that Im(:) = Ker{L, ).
Thus we shall only check the surjectivity of L,. The image of L, in
UCI( O G) consists precisely in the ideal classes that admit a representative
J such that O,,J=0,,,G. Starting out with an ideal / in KG with I1* =
O G, we shall show that there exists #e KG with wu* =1 and such that
J =ul fulfills the condition O,,J=0,,,G.

Since the ring O, G is semi-local the ideal /0, is principal. Let e KG
be a generator for /0,,, and let b = aa*. Since //*0,,,=b0,,,G=0,,,C, the
element h must be a unit in the ring O,,,G. We shall show that there exists
a unit ¢ in O,,G such that h=cc* Let ¢: KG— K be the augmentation
map. Since &(b)=«(a)? is a unit in O, replacing ¢ by ae(a) ™' we may
assume that &(a) = 1.

Since / is odd, it is enough to show that A’ can be written in the form
b'=cc* for some unit ¢ of O,,,G. Using the well-known congruence -'=
&(z) (mod !) for e O,G, we have b'=1 (mod /). Let ¢, € KG be the idem-
potent corresponding to the trivial character of G and choose an idempo-
tent ¢ € KG such that ¢, + ¢+ ¢* =1 and ee* =0 (recall that K contains the
{th roots of unity and therefore KG is split over K). Let ¢ =¢,+ ble + *.
Clearly cc* =b". Write b'= 1+ I, with w in O, ,G. With this notation we
have ¢ =1+ lew, which shows that ¢ is in O,,;,G, as required.
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Write /=2k +1 and let u=a 'b *c. By the construction of ¢ we have
uu* = 1. Thus the ideal J=ul is in the same class as [ and, since b and ¢
are units of O,,G, we have JO;,=ua0,;,G=0,,,G, as desired. |

Let N/K be a tame (G-extension and choose a primitive element x e N
such that ¢ =2’ is in K and satisfies a =1 (mod I’} (this is always possible
by tameness; see [12, Proposition 3.1.1]). Let y e G be the character
defined by y(g)=a%/a

(3.2) PROPOSITION. Let §: G — 3 bhe the map defined at the character
2 =" by the condition

lord, (f(y") &M <(I—1)/2  for all primes p. {2)
Then | induces a homomorphism ZG/ZG* — T and Ly (F)=pyix.

Proof. Let r: K®, N — KG be the canonical homomorphism given by
y®1)=Y,.cxv%¢ " It is very easy to verify that r is KG-equivalent
and that it transforms the trace form f,, on K® N into the canonical
standard form ¢, on KG. For an element ye N and a character y € G we
denote by (3| x) the resolvent of y with respect to y, that is,

(rix)= 3 x*(g)»*

zels

Clearly we have

Hl®@y)=3 (ylxe,.
xeG
where ¢, is the idempotent correspondent to the character y. The resolvent
{ ¥ | x) has the property

(v =x(e)dy|x-

In particular, ” "( y | ") is invariant under G for all integers r, that is, it
lies in the ground field K. Thus we can write

(A 1Y) =T )2 )

for some ideal {(y") of K. Since r is an isometry, r{Oy® Ay k) is a
locally free self-dual lattice in NG and by Theorem 2.2 it must satisfy the
equality O ® Ay x) HON®@ AN )*=0,G. This in turn implies
(Ay o |0 ) Ayk | 6*) = (1), By (3) we have f(y') fy*") = (1).

Let p be a prime of K above /. Since N/K is tame, the prime p is
unramified and therefore Oy ® Ay ), =H{OL® Oy), =1r(0Oy)}, G. Hence
(O)(Avg | Y1), =(0y),. Since o was chosen relatively prime to /, we
must have f(x},=(1). Hence f(y) is relatively prime to /.
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On the other hand, for a prime p not dividing / we have

l'( 1 ®A/‘\'sl\')u = Z (AN'I\‘ I X)p (),(

yaas

- Z f(wr)pa”r]‘)lll"

rmod/

Thus, letting =3, «""¢ ., we have

f{1®A,)=Li(f)un

This shows that { is a representative of the class of p . (observe that u " 'r

gives a G-isometry between A, and L({)).

We shall now show that | satisfies the inequality (2} (and therefore it is
determined by this condition). On the one hand, since A, 4 is an O y-ideal
and is stable by G, we have (A .« | 7) Oy S A\ ,x. On the other hand, by
self-duality, (A y x| y WAy | x*¥) Oy=0x. Thus

Ay S Ak | 1) Oy S Apk (4)
for all XEG. Let *B be a prime of N. Taking ‘B-valuations in (4), we have
—ordy(Ayk)Zordy(Ay s | 1) Ox) Zordy( Ay ) (5)

Using (3) we obtain the inequalities
—ordy( Ay ) Zordy (F(y")) + 1(r) ordy () 2 ord (A 44 ). (6)

For B unramified over K we have ordy(dy.)=0 and
ord,(a) =/ordy(x). Thus

Ford (f(y" )) +t{r)yord (a)=0.

This proves (2) for unramified p (observe that ord,(«)=0 (mod /) in this
case).

For ‘B ramified over K we have ordy(Ayi)=—(/—1)/2, ord (a)=
ordy(a), and ordy(f(¥"))=/ord (f(y")). Replacing these values in (6)
shows (2) also in this case. |

We shall now characterize the classes produced by the construction
above. The automorphism group 4 acts in an obvious way on the groups
appearing in (1) and it i1s not difficult to see that (1) is actually a presen-
tation of UCH{OxG) as d-modules. We define the hermitian Stickelberger
element ¢ in ZA4 by

i 12
o= Y v N
r= -({- 1)2
r# 0
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Note the resemblance of ¢ with the classical Stickelberger element
/=1
0=73 rs, '
r=1

(see [11, 12]). Note also that ¢ and 0 are related by the congruence ¢ =0
(mod /).
Similarly, we define the hermitiun Stickelberger ideal by

S:%ZAmZA.

Some technical statements are needed to prove our main result in this
section.

(3.3) LemMA.  Let q: G — 3 be the map defined by
1 if r-ord,(a)=1(mod/),

0 otherwise.

ord, (gly")) =
Then
g'ﬂ(wrjzf(lﬁzjlaur)_ (7)
Proof. By direct computation,

ord, (g”(y' ) = ¥ (s)ord,(g(y" "))

sely

=t(r-ord,(a))
=(t{r-ord {a))—tiryord, (a))+ (r)ord, (a)
=ord,(fty") a""). 1

Let T = Z4 be the subgroup generated by /and d, —r (1 <r</—1). It
can be easily verified that T 1s a Z4-ideal.

(3.4) LEMMA. Let | and g be as above. Then
Ly(f)=Ly(g™") (8)

for all 1€ T.

Proof. It is sufficient to prove (8) for the generators of 7. For a =/, this
follows from {7). Nox let x =43, —s. Applying « to (7), we have

S](f)l{ l//r ) — f/x( lﬁ' ) ultm) .\Hr).
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gdwu‘l( wr ) — far( lpr ) a1 Hrs) sty

(observe that t(rs)—st(ry=0 (mod /)). Since ¢ =1 (mod /), the function
Y a9 Jies in the kernel of L, for all 1 <s</—1. Thus L, ({)*=
Lytg™"). 1

(3.5) LEMMA. The ideal T < ZA satisfies the equalities

(1) [Z4:T]=1.
(2) ¢ZA+T=24.
(3) S=(¢/nT.

Proof. Let ¢:4—F/ be the character given by ¢(d,)=r(mod /). By
definition 7 is the kernel of the induced ring homomorphism ¢: Z4 — F,. In
particular 7 has index / in ZA. By direct computation, we see that
c(p)= —1. Hence ¢pZA+ T =74, as required. This proves (1) and (2). By
direct computation we see ¢(d, —r) =0 (mod /), thus §7T <= IS. Conversely,
ISSpZANT=¢T by (2). 1

We are now ready to state and prove our main theorem. Recall that
RU(OG) denotes the subset of UCL(O G) of realizable classes.

{3.6) THEOREM. Let S=(¢/l1)\ ZA~ZA. Then the map

wS®,,ClHOLG)—UCHOLG)
y@cl{I)—ucl(”)

is well-defined and its image is RU(Og, G). In particular, RU(OG) is a
subgroup of UCH{OG).

Proof. Let I be a locally free lattice in KG and y e S. We shall see that
I’ defines a class in the unitary class group. Let o=d_, (ie., the
automorphism of G given by group inversion). It is easy to see from the
definition of ¢ that (1 +¢) §S=0, hence, for y€ S, we have

])‘(1}‘)*[}'1I+rt)
=0,G.
Similarly, for ue KG* we have

w () =1. (9)
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This shows that the class of £ in UCH( O, G) depends solely on the class of
I in Cl(O,G). Therefore the correspondence (y, )+ I” induces a well-
defined map

v S®,, ClO,G) - UCHOLG).

which is clearly a Z4-homomorphism.

We shall show now that the realizable classes lie in the image of v. Let
N/K be a tame G-extension and let f: ZG/ZG* — 3 be the homomorphism
associated with N by Proposition 3.2. By Lemma 3.4 we have for all ae T
the following equality in UCl( O GY:

Ly(7) = La(g"")
=v(cl(L(g)) ® pa /).
In particular, we have for all ae T
Lyf)y=1 (mod Im(v}),
and also,
Ly =vc(LFH®¢)
=1 (mod Im(v)).
Thus, by Lemma 3.5, part (2),
Ly(f)=1 (mod Im(v)),

that 1s, the realizable classes are contained in the image of v.

We shall now show that Im(v) is contained in RU(OxG). Since 7 has
index / in Z4 (Lemma 3.5, part (1)) and |4] =1—1 is not divisible by /, the
ideal T is locally free as a Z4-module. By the Chinese Remainder Theorem,
we may choose a single ffe 7 such that

T®Z,=pZ,4

for all primes p dividing |Cl(O.G)|. By Lemma 3.5, part (3), we have
S=1(¢/l) T and therefore all the elements of Cl{ O+ G)®,, S can be written
in the form

cl(L{gH ®(¢f/1), (10)

with g: ZG — 3.
Let / represent a class in Im(v). By (10} we may assume

I=L(g""")
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for some ge Hom(ZG, 3). For each character y€ G we choose a prime
ideal b ) in the ray class of g”(7) modulo V. Since there are infinitely many
such primes, we may assume that the bh(y) are all distinct. Thus we have

fu =h?, (11
where f = g*'e Hom(Z2G/ZG ', 3) and 1e Hom(ZG, K™ ) has the property
uy)=1 (mod l') for all yeG.

Let ¥ € G be a fixed generator and define v: G— K * by
l‘“//r):”n/)m, urnl(ljj) (]2)

for r#0 and ¢{(l)=1. Note that ¢, —t(r})=0 (mod{)} and that
) ey * =1 by (9). Letting « = u” () we can write (12) in the form

(Y =l @,
and by substituting in (1) we obtain

(ehiy ) o =b "), (13)
Now, by construction of /# we have

. 1) if by )=pwithsm=r(mod/)
. P y - 4
ord, (h"(y")) {0 otherwise. (4

This shows that « is not an /th power in K (otherwise, by (13),
ordv(h“’(L//" }} would be always divisible by /).

Let x:\ﬂ and let N=K(a). Let G act on N by a*=y(g)a. Since a=1
(mod '), the extension N/K is tame (see [12, Proposition 3.1.1]). From
(14) we obtain the inequality |ord, (h*(y"))] <(/—1)/2. By (13) and
Proposition 3.2 we conclude that L, ()= p. .. Note that since v satisfies
the condition () =1 (mod /), we have

Y vx)e,€0,G".

75(;‘

Thus L,(r)=1 and therefore L,(f)=pss. |
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