Chapter 1

Fourier Series

1.1 Harmonic Functions on the Disk

In this section we discuss one of the problems that motivated the beginning
of the theory of Fourier series and is close to Fourier’s original work. Let
A= (8/8:1;1)2 + -+ (9/0z,)?* be the Laplace operator on R™. It is one of
the most interesting differential operators on R”, in part because of the role
it plays in partial differential equations arising in physics:

e The heat equation: Au = a*u;. Here u(z,t) is a function of n + 1

variables, * € R" and ¢t € R, ¢ > 0, and the subscript ; denotes the
partial derivative with respect to t.

e The wave equation: a?Au = uy.
e The Schrodinger’s equation: 1Au = u,.

e The Helmholtz’s equation: —Au = Au.

Fourier analysis is one of the main tools used to deal with the solutions to
these equations; this will be discussed that later in this book. As a motivation
we start with the equation Au = 0 on the unit disc

D:i={ze€C||z|<1}={(a,y) eR*|2?+y* < 1}

such that u takes prescribed values on the boundary. Thus we would like to
solve the following Dirichlet’s problem:
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*u 0%

a5 t37=0 D 1.1.1.1

ox? + dy? ’ (z,y) € ( )
u(z,y,0) = flz,y) 2 +y*=1. (1.1.1.2)

Here f is a given L2-function on the boundary and we will assume that
u € C}(D)NC(D). That is u is twice continuously differentiable in D and
continuous on the closed domain D = {(z,y) | 2> + y* < 1}.

Definition 1.1.1. Let Q be an open subset of R". A function f:Q — C is
called harmonic on Q if Au = 0.

Notice that a harmonic function can be viewed as a time independent
solution to the heat equation. Let us rewrite (1.1.1.1) using polar-coordinates

r=rcos(f), y=rsin(d).

The Laplacian becomes

82+18+182_1 1% 1% +182

a2 T ror  r2er  r\or \ or r 90*
and u(r, ) is periodic in 6 with period 2, i.e., u(r,0 + 27) = u(r,0). The
Direchlet’s problem (1.1.1.1) and ( 1.1.1.2) is now

182u a au
ro T ar <TE> =0, u(1,0)=/(0). (1.1.1.3)

One approach to this problem is to use separation of variables, that is start
by looking for solutions of the form:

u(r,0) = F(r)G(0).
Then the Laplace equation (1.1.1.1) can be rewritten as:

1 dQG(G) rod dF( )
———(0) = — — | r—(r)) .
G(0) do* F(rydr \| dr
The left hand side is independent of r and the right hand side is independent
of 8. Hence there is a constant k such that
1 d*G rod ( dF
(0= — — | r— = k.
ORIy (r dr (T)>
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This gives two ordinary differential equations:

d*G
W(@) = kG(0)
rdii (ré—f(r)) =’ F"(r) +rF'(r) = —kF(r).

The general solution to these equations are:

(273} + 609 if k= 0,
Gr(0) = { e 4 b i 20 (1.1.1.4)
B Ao + Bolog(r) if k=0;
Fi(r) = { AV 4 BV i k£ (1.1.1.5)

where we have indicated the dependence of F' and GG on the constant £ by
the index k. The function G¢(#) has period 27 if and only if k = —n* < 0 or
k=0 and b= 0. The function F}, is defined on all of D if and only if By =0
for all k. The same conclusion holds if we only assume that u is L? on the
disk. We hence have Fj(r) = Agr”. Concluding we obtain solutions:

un(r,0) =1r" (aneme + bne_m€> , ne€Ny=10,1,2,...}

Writing b, = a_,, and noticing formally that sums of solutions are solutions,
we can tentatively write a solution as:

u(r,0) = i rirlg,, e (1.1.1.6)
u(l,0) = i ane™ = f(0). (1.1.1.7)

To make the step from this formal solution to an actual solution we still need
to resolve issues of the following type:

a) Is it possible to choose the constants «,, such that the given function
P g
can be written as f(0) = >.°2__ a,e™"?

n=—0oo

(b) If the answer to (1) is yes, how can we actually find the constants a,?
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(¢) In what sense (pointwise, in L?,...) does the series in 1.1.1.7 represent
the function f7

(d) Does the equation (1.1.1.6) then give a smooth function on the disk
such that lim,1_ u(r,0) = f(0)?

(e) Is the solution to our problem unique?

(f) Is every harmonic function in the disk given by a series as in 1.1.1.67

To look for an answer, we make few more formal calculations. Later we
will show that those calculations can be justified. First multiply f by e="™¢
and then integrate. We interchange the summation and integration and use

2 .
ko . 27 lf kZO
/0 ‘ da_{o if n#0

to obtain

27 2r 0
/ f(@)e ™ do = / > anem e do
0 0

27 )
— Z an/ e n=m)? g
n=—oo 0
= 2ma.,

then f(0) = 3, s ane™ holds in L*([0,27]). The constant function § +— 1
is in L*([0, 27], %) with norm one. Hence by the Holder’s inequality for
L?-functions one has

1 27
e < 5 [ 10 0 < 151, < 0.
0
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Note for r < R < 1,

ind
E a,ri"e

neZ

< Y lan] R

neZ

< L (zmzm)

21/,
1-R

Therefore the series defining u(r, #) converges uniformly on compact subsets
of D. The derivatives of this series can also be shown to converge uniformly
on compact subsets of D. Thus the series defines a smooth function on the
disk. To evaluate the limit lim,_;_ u(r, ), we rewrite u(r,§) as an integral

<

over [0,27]. This will be done by formally interchanging summation and
integration and using the following simple fact

0 ' o , i . 1 —r?
|n| ind _ AN AV 1 = )
n:z_:oo te ; (7“6 ) + ; <T€ ) 1 —2rcos() 4 r?
(1.1.1.8)
The function
1_ 2
P(r,0) = i 0<r<1,0eR (1.1.1.9)

1 =2 cos(f) + 12’

is called the Poisson kernel for the unit disk. We will point out some prop-
erties of the Poisson kernel in the following exercises. See figure 1.1 for the

graph of the Poisson kernel for » = 0.5 (blue), r = 0.7 (green), and r = 0.9
(red).

Inserting the definition of a, we get:

u(r,0) = Zanr|”|em€

neZ

= S [ e a

neZ

[T g el (-2
- 5| e 4

1 27
_ ﬁ/o F(&)P(r, 0 — &) d. (1.1.1.10)
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Figure 1.1: Poisson Kernels for r = .5, .7, .9

Hence u is given by convolving f with the Poisson kernel. This can be used
to show that if f is continuous, then u(r,0) — f(8) uniformly.

EXERCISE SET 1:

1. Prove equation (1.1.1.9): >°7 _ plrleinf = W-

2. Prove the following:
(a) P(r,0) >0 and - 027r P(r,0)dd =1 for all r > 0.

(b) The maximum of 8 — P(r,0) occurs at § = 0 and maxg P(r,0) = 1~
In particular P(r,0) — oo as r — 1.

-~

(¢) The function 6 — P(r,0) takes its minimum at § = 7. Evaluate P(r, ).

3. Suppose that f is 2m-periodic and piecewise continuous. Show that

1 2

lm = [ SO0 6)ds = f(6)
if f is continuous at 6.

4. Write u(x,y) = u(z) where z = x 4+ 1y. Suppose that f is continuous.
Show that u is holomorphic on D if and only if a, = 0 for all n < 0.
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1.2 Periodic Functions

Definition 1.2.1. A function f : R — C is periodic if there exists a L > 0
such that f(x + L) = f(x) for all x € R. The number L is called a period of

f.
Let Py be the set of periods of f. Then P; # (0 if and only if f is periodic.

Note Py need not have a smallest element for the characteristic function of
the irrationals has all positive rationals for periods.

If f is periodic, let Ly :=inf Py > 0. The next lemma states that P; — Py
is a subgroup of R invariant under multiplication by k € Z

Lemma 1.2.2. Let L and M be a periods of f. Then f(x+jL+EM) = f(x)
forall 5, k€ Z.

Proof. We have f(x — L) = f((x — L)+ L) = f(z). The other statements

follows by induction.
Lemma 1.2.3. Suppose that Ly is a period for f. Then Py = LyN.

Proof. Obviously LyN CP;. Let L € P;. Then we can choose n € N such
that

an <L < (n—l— 1)Lf

Hence 0 < L—nLy < Ly. f L—nL; >0, then Lemma 1.2.2 implies L —n Ly
is a smaller period than L; which is clearly untrue. Hence LN = P;. 1

Lemma 1.2.4. [f Ly =0 and f is continuous, then f is constant.

Proof. Fix z. Choose a sequence L, of periods converging to 0. Choose
integers k, so that k,L, < « < (k, +1)L,. Then k,L, — x. Hence
flknLy) — f(x). But f(k,L,) = f(0+Ek,L,) = f(0). Consequently, f(0) =

f(z) and f is a constant function.

The functions = + cos(maz), sin(kz), and ¢ = cos(nz) + isin(nz) all
have period 27. We will show in a certain sense that “each” 2m—periodic
function can be written as an infinite linear combination of €* and hence
also of cos(nz) and sin(nz). If f has period L > 0, then g(x) = f(Lx/2m)
has period 27. Hence f can be written as a linear combinations of functions

InT
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of form e2minz/L

Let

. We therefore restrict ourselves to functions of period 2.

T:={ze€C| |z|=1}

be the one-dimensional torus. Then T is a closed and bounded subset of C
and hence compact. Furthermore T is an abelian group under multiplication
and the map

RoxS T

is a surjective group homomorphism of (R, +) onto (T,-) with kernel 27Z.
The torus T has a natural topology as a subset of C.

Let z,w, zg,wo € T. Then |z| = |w| = |z0] = |wo| =1 and
2w — zowo| < |w|[z — 20| + |20 [w — wo| = [2 — 20| + | — wo|
and
‘2_1—20_1‘ =1z —Z,|=|2— 20 -

Hence it follows that both the multiplication and the inverse map are con-
tinuous maps in this topology. These are conditions defining a topological

group.

Lemma 1.2.5. The mapping £ : R — T is a continuous periodic open map-
ping from R onto T satisfying x(0 + ¢) = r(0)x(¢p) for all 0 and ¢ in R.
Moreover, every complex function f on R having period 2w has form f = Fok
for a unique function F' on T, and f is continuous iff ' is continuous.

Proof. Clearly k is continuous, onto, and has period 27. Let I = (a,b) be an
open interval. Then if b—a > 27, k() equals T and if b — a < 27, then (/)
is an ‘open arc’ in T and thus is open in T in the relative topology from C.
Since every open subset of R is a countable union of open intervals, we see
k(U) is open in T for any open subset U of R.

Let f be a function on R with period 2. Define F(e*) = f(z). F' is well
defined and is clearly the only function with Fox = f. Note f is continuous if
F is continuous. If f is continuous and U is open, then F'~(U) = (f~*(U))
is an open set in T, for x is an open mapping. Thus F is continuous. 1
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1.3 Integration on the Torus

Let X be a topological space. Denote the space of complex valued continuous
function on X by C(X). The last lemma can be used to integrate and
differentiate functions on T. Define a regular Borel measure g on T by

1

" or

u(E) = —m(x™(E) N [0,27))

where m is Lebesgue measure on R. Then g € L(T,u) iff go k € L0, 27]

and then
1 27 .
[otvaut) = 5= [ ateyda,
™ Jo

The measure p is left and right invariant; i.e.,
plaks) = p(La) = p(E)
for all Borel subsets £ of T and a € T.

The left and right invariance of the measure p implies

[ ot 2rdnter = [gtewautz) = [ ot aute)

for all ¢ € LY(T,u) and y € T. The measure is also invariant under the
inverse-mapping. Thus

[ot=dute) = [ otz dute.
Indeed,

1 27 ) 1 27 )
[otdute) = o [ ateyar= o [ gteny e

Denote the corresponding linear space of p-integrable complex valued
functions by LP(T). Recall the norm is given by

71, = ( [1scr du(2)>% .

This space is the same as the space of L? functions on [0, 27] or the space of
Lebesgue measurable functions on R that are 2m-periodic and p-integrable
over [0,27]. Let us recall the following two well known facts on integration.
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Theorem 1.3.1. Let 1 < p < oo.Then C(T) is dense in LP(T).

Theorem 1.3.2 (Holder Inequality). Let (X, A, 1) be a measure space.
Let p,q > 1 satisfy 1/p+1/g =1. Let f € LP(X) and g € LYX). Then
fg € LY(X) and

[faly < If1, 191, -

Lemma 1.3.3. Suppose [ € L*(T) satisfies [ f(2)g(z) du(z) = 0 for all
continuous functions g. Then f = 0.

Proof. Since C(T) is dense in L*(T), we can choose a sequence g, € C(T)
with |g, — f|]o = 0. Hence

/&fsnm(/iﬂf—%nﬁww/#%dﬁ)snmUMf—%b:o

Hence [ ffdu = |f|§ = 0, which implies that f =0 a.e. 1

Finally, by the Riesz—Fischer Theorem, we know the spaces L?(T') are
complete if equipped with norm f s |f],. In particular, L*(T') is a Hilbert
space with inner product

Uﬂbzéﬁ@%d@@)

The LP spaces become smaller with larger p.

Theorem 1.3.4. Let 1 < p < oo. Then LP(T) C LY(T) and |f[, < |f], for
all f € L7(T).

Proof. Let ¢ be such that 1/p 4+ 1/¢ = 1. Then the constant function z — 1
isin L4(T) as u(T) =1 < co. By Hélder’s-inequality, one has

/mlwsuumzuy

|
Definition 1.3.5. Let 1 < p < oo. Fora € T, define linear operators L(a)
and R(a) on LP(T) by

L(a)f(z) = [fla™'2)

Ra)f(z) = [(za).

Then L and R are called the left and right reqular representations of T on
LP(T).
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Suppose f is a complex valued function on T. Then f will be the function

defined by ]
fz)=f=7).

Lemma 1.3.6. The mappings a — L(a) and a — R(a) are homomorphisms
of T into the group of invertible linear isometries of LP(T). Moreover, f — f
is a linear isometry of LP(T) satisfying

(L(a)f) = R(a)f.

Proof. Note

L(ab)f(x) = f((ab)™" )Zf(b_la ')
= L(b)f(a™"2) = L(a)L(b) f(x).
and thus L(ab) = L(a)L(b) on LF. Clearly L(1) = I; and since L(a)L(a™") =
L(1) = L(a™')L(a), we have L(a)™' = L(a™!'). Thus a — L(a) is a group

homomorphism.

Suppose p = oo. Then |L(a)f|. = essup|f(az)| = essup|f(z)] = |f|oo-
For 1 < p < oo, we have

L= [ 1P duts) = [ dut:

and thus |L(a)f|, = |f|,-
Note

and if 1 < p < oo, then
k= / FED du(= /|f VP du(=) = .

One easily notes | f|o = | floo. Thus f — f is a linear isometry and it is onto

for (f)y=/.u

It is common to use A(a) for the representation L(a) and p(a) for the
representation R(a).
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Definition 1.3.7 (Convolution). Let f and g be in L*(T). The convolu-
tion f*xqg of f and g is defined by

[gla /f gly~'w) du(z).

Note (y,z) — f(y)g(y~'x) is a measurable function on T x T and

// |f()g(y™ )| du(x)du(y) = |f1; lgl, < oo

It follows that for almost all € T, the function y — f(y)g(y~'z) is inte-
grable and

15 g@ldnte) < [ [ 1ot o) duts) dute) = 171l

Hence f*g € L' isin L(T). As LP(T) and LY(T) are subspaces of L'(T)

with larger norms, one has

[f gl < |flixlgh < |flplgly

whenever f € L? and g € L1.
Lemma 1.3.8. Let f,g,h € L'(T). Then the following hold:

(a) fxg€LNT) and |f*gl, <[], 1g];-
(b) fxg=g=f.

(¢) [(gxh)=(f*g)xh.

(d) Ma)f*g=fxAa)g=Ma)(f*g)

Proof. Note (a) was proved just before we stated the lemma.
To see (b), note
Fro) = [ Fels) dutw)
= [ Fenat) ) dutw)
— [ ot duty)

- / o) F(y™'2) duly)
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where we have used invariance of integration under transformations y — zy

and y >y~ L.

For (c) we have
(Frgyehls) = [(F o) duty)

_ / / F2)gle 7Y dpe) duly)

/g h(y™"z) duly) dp(x)
- / It / o Lay)h((ay) ) duly) du(a)
/

= /f:z; h(y™'e™'2) du(y) du(z)

=/f g+ h(z~'2) du(z)

= [x*(g*xh)(z)

where the changes in the order of integration follow by Fubini’s theorem and
we have used the invariance of the measure dp under left translation by z=1.

For (d) note

Ma)f *gly) = / a) f(x)g(xy) du(x)

= Ma)([*g
= Ma)(g= [
= Ma)g=* [
= [*Xa)g

where we have used the commutativity of convolution.
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Proposition 1.3.9. Suppose 1 < p < ¢ < oo and Zl) + 5 =1. Then f*xg €
C(T) whenever f € LP(T) and g € LY(T).
Proof. Note if f € C(T)and g € LYT) and z, — z in T, then

Frgz) = g f(e) = / o) (21 %,) dp()

S / o(2) f(a~"2) dp(x)

= g*[f(z)
= frg(z)
as n — oo by the Lebesgue dominated convergence theorem. Indeed, z
g(z)f(27'2,) is dominated pointwise by |g||f|. which is in L*(T) and con-
verges pointwise to g(x)f(x~'2). Hence f x g € C(T)if f € C(T).
Now suppose f € LP(T) and ¢ > 0. Let z, — z. Since C(T) is dense
in LP(T), we know we can choose f; € C(T) satisfying |f — fo| < 55 |q -

Choose N so that |fo* g(2,) — fo* g(2)| < § for n > N. Then for n > N,

we have

[Fxg(en) = frg(2)] < I(F = fo) xg(zn)l + [fo % g(zn) — fox g(2)| + [(fo = f) * 9(2)]
< sHgtgec

since by Holder’s inequality
(7= feal < [ 1F = flge )l dul)

< |f = fololL(y)dl,
= |f_f0|p|g|q

< gl vy
< £

= 3

forally e T. n

EXERCISE SET 2:

1. Show if f is a function on T such that fok is a simple measurable function

on R, then
[ =0 [ e
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2. Show LP(T)C LYT) and ||f||, > || fl]l, for p > q.
3. For w € T define A\(w) : C(T) — C(T) by [Mw)f](2) = f(w™'z). Show

that A(w) is continuous with norm one.

4. Let 1 < p < oo. Let A(z)f(w) = f(z7'w) for f € LP(T). Show for each
f and each € > 0, there is a § > 0 such that |A(z)f — f|, < €if |z — 1] < 4.

5. For 1 <p<ygq,find f € LP(T) such that f ¢ LI(T).
6. Let h € L'(T).

(a) Let g € L*(T). Show that A(h)g := h * g is in L*(T). (Hint: Let
f € L*(T). Then fA(h)g is integrable and f — [ f(2)A(h)g(z) du(z)

is a continuous linear form on L*(T).

(b) Show that A(h) : L*(T) — L*(T)is a bounded linear map with |A(h)] <
[Al;

1.4 The Fourier Transform

The functions of the form

on R are called trigonometric polynomials. The trigonometric polynomials
are 2m-periodic and as functions on T they can simply be written as

The trigonometric polynomials form an algebra of continuous functions
on T which separate points, contain the constants, and are closed under
conjugation. By the Stone-Weierstrass Theorem, this algebra is dense in
C(T) under the |- | norm. Since C(T) is dense in every L?(T)except L>=(T),
one can show the algebra of trigonometric polynomials is dense in every
LP(T) where 1 < p < oo. We shall be interested in particular trigonometric
polynomials; namely the partial sums of Fourier series.
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Let ¢,(0) = ™. On T, this is the function » = 2. If f € L*(T), then
the Fourier transform f :7Z — C of f is defined by

/f 2" dp(z /f Wy emin g (1.4.1.1)

where [ is any interval in R having length 27. Note that f(n) = (f,en) for
f € L*(T). The corresponding Fourier series is

Y fnyent =% f(n)z

or

o0

Z (fv en)en

n=—0oo

Notice that

1 27 .
(€n,€m) = 2—/ =g =5, ,, . (1.4.1.2)
T Jo

Hence {e, | n € Z} is a orthonormal subset of L?(T).

Definition 1.4.1. Let g € C(T) andr € Ny. Then g is r-times continuously
differentiable if the continuous periodic function gok is r-times continuously

differentiable on R.

We denote the space of r-times continuously differentiable functions by
C"(T). The space of smooth functions C*(T) is N, C"(T); i.e., the space of
functions that are r-times continuously differentiable for all . Define the
first order differential operator D by

A1) = T2y = 2 pe).

X

Notice that Dz" = inz" for all n. Recall A(w)f(z) = f(w™!'2).

Lemma 1.4.2. Let f,g € LYT). Let p = EnM:—N ane, be a trigonometric
polynomial. Then the following hold:

(a) ‘f(n)‘ <|fl, for all n € Z.
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(b) Mw)f(n) = w™(n).

(¢) Then f¥(n) = f(—n).

(d) lim,_o f(n) =0 (Lebesque Lemma).

() Tvg=7-3

(f) f+p= Zn__ anf(n)en

(g) Assume that f € C"(T). Then D7 f(n) = (in)" f(n).

Proof. To see (a), note ‘f(n)‘ = Uf( 27" du(z ‘ < [1f(2)] du(z) = |f],
because |z| =1 for z € T. Thus (a) holds.
For (b), note

Nalf() = / () ()" du(2)

For (c) one has

To do (d), we first do the case where I' = f o ljg2r = Cxp,y with
0<a<b<2r. Then

. c orbo. .
= — Yo
foy = 5 [ e
C —inb —ina
= - [e —e ] — 0 n — 00.

2min
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It follows that the claim holds for any F' which is a step function on [0, 27).
But these define f’s which are dense in L'(T). Hence if f is in L'(T) and

e > 0, one can choose a step function Fy € L?[0,27) satisfying

@
|fO/<;—F0|1<§.

Setting fo(e'?) = Fy(0), we have

0l < 1F) = folm] + Lfo(m)|
< 1f = fol + o)
< 5+ o)
< €

for n large.
For (e), by left invariance of the measure g and Fubini’s Theorem, we
obtain:

Fra(n) = / £ g(2) = d(=)

= [ | st du<w>] - d(2)
= [ [ gt 27 duteydno
- [1w / 9() 2] ™" du(=)du(w)
= [t [ o) dut i)

= J(n)gn).
To do (f), we have by the definition of f(n) that:
Frp) = o [ ) dutw)
= Zan /f w" dﬂ )
= Z anf(n)en(z) )
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Finally for (g), note for r = 1 the statement follows immediately by
integration by parts:

— 1 2m . -1 [ od . A
Df(n) = 2—/0 (for)(0)e ™ do = g/o f(ele)@e_me df =inf(n)

s

Corollary 1.4.3. For f € LYT), f*e, = f(n)en. Moreover, e, * €, =
Omn€n-

A

Proof. Note e, is a trigonometric polynomial. Hence by (f), f*e, = f(n)e,.
Since

) = [ et dutz) = [ eIl dutz) = b

We see €, * €, = 0y €. 1

Lemma 1.4.4. Let g € C(T) and € > 0. Then there exists a trigonometric
polynomial p such that

Proof. T is a compact Hausdorff space, and the space A of all trigonometric
. M " . .
polynomials p(z) = > __\ a,z" form an algebra of continuous functions on
T which contain the constants and separate points. Moreover A is closed
under conjugation for z” = z7". By the Stone-Weierstrass Theorem for
continuous complex valued functions on a compact Hausdorff space, one has

for each f € C(T) and each € > 0, there is a p € A with |f — ple. < €.

Theorem 1.4.5 (Plancherel Theorem). The set of functions {e, | n € Z}
is an orthonormal basis for L*(T). In particular, if f is in L*(T), then

(a) f=>""__(f e.)e, in L*(T) and
(6) 11 =30 [(Fren)l

Proof. By equation 1.4.1.2, the set {e,}, ., is orthonormal. Let ¢ > 0 and
let f € L*(T). Choose g € C(T) such that |f — g|, < ¢/2. By Lemma 1.4.4
there is a trigonometric polynomial p such that
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Thus
g—pf = / 19(=) — p(=) diu(2)
S/w—p&dM@

< (¢/2)%.
Thus |g — p|, < €/2. It follows that

[f=pl <1f —gly+lg—ply <e.
Thus e, form a complete orthonormal basis and the theorem follows.

Let (* be the space of biinfinite complex sequences {a,, }°____ which satisfy
> Jan]* < co. This space is a Hilbert space with inner product

({an}. b}) = > anb

and norm

Han}l = /D laal®

One can give a direct proof of this fact; however, it follows easily from
measure theory. Namely, let v be counting measure on Z; thus every subset
of Z is measurable, and v(F) is the number of elements in . Then v is
a measure, every function is measurable and a function @ : Z — C is in

L*(Z,v) 1ff2| = [la(n)|*dv(n) < oco.

We now easﬂy reformulate the Plancherel Theorem:

Theorem 1.4.6. The Fourier transform F : L*(T) — (* is an isomorphism
of Hilbert spaces.

Proof. We have by the Plancherel Theorem that

So|on| =111 < oo

Hence Ff € (? and F is an isometry into /*. Let A = {a,} € (. Define a
sequence

n

falz) =) a.z" € LX(T).

i=—n
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Thus f, = E?:_n ane,. For m > n one has
|fn_fm|2: Z |a]4|2 :
But 3" |¢;|* < oo. Hence if € > 0 then we can find an N € N such that for

alln > N
Z la;|* < e.

n<|jl

But this obviously implies that {f,} is a Cauchy sequence in L*(T). Then
> aje; converges in L? to an L? function f and

N

f(n) = (f,en)

= ajlejren)

=a,.
Hence Ff = A and F is surjective. I
Let C°°(T) be the space of smooth function on T, i.e., C*(T) = N,enC"(T).

Define a vector space topology on C'*°(T) by the seminorms

on(f) = 1D"fl -

We leave it as an exercise to show that C'°°(T) with this topology is a lo-
cally convex complete topological vector space. This topology is called the
Schwartz topology on C'*°(T) and the space C*°(T) with this topology is de-
noted by D(T). To find the image of D(T) under the Fourier transform, let
S(Z) be the space of sequences a = {a,},; of complex numbers such that

for each k

pi(a) = sup(L + n])" |a,| < oo.

The p;, are seminorms. With these seminorms S(Z) becomes a locally convex
complete topological vector space. Sequences {a,} which satisfy p,(a) < oo
for all k are said to be rapidly decreasing. Notice that

Il

— =1, n—oo.
(1+nl)
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Hence there are positive constants C} such that for all n # 0,
Co(1+ ) |anl, < |0l an| < (14 [n])" |ax] -

The topology on S(Z) can therefore also be defined by the seminorms p),
where and

pila) i=sup |n|* |an| , k#0.

In these formulas, expression 0° is given value 1. This topology can also be
defined by using the seminorms

= > Inl"lan] -

Theorem 1.4.7. The Fourier transform f +— f is a topological isomorphism
of D(T) onto S(Z).

Proof. We have the Fourier transform of D* f is n — (in)* ( ) € 2. Thus
S |n?*| f(n)]? < oo for each k. Hence sup, [n2*f(n)[? is finite for all k.
Consequently sup,, |nkf( )| < oo for all k. Thus fe S(T).

Clearly f — f is linear. It is one-to-one, for f = 0 implies f = 0 in
L*(T), and thus f =0 in D(T).

We show this mapping is onto. Let {a,} € S(Z). For each k, define
ar(z) = S-(in)*a,z". We note this series converges uniformly for each k.

Indeed,

Z li*n*a,2"| < Z In*a,|
<D I (1 ) ay

n#0

< prgal@) Y In7%

< 0.

Thus each g, € C(T). Hence > (in)*a,e™ converges uniformly on R and
since
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converges uniformly to gr11(e'’) on R, we see gi(e'’) is differentiable and has
derivative giy1(€). Thus go € D(T) and D*gy = g;. Moreover, go = a, and
we see [ — f is onto.

To show f — f and f — f are continuous, it is sufficient to show they

are continuous at 0.
Now f + f is continuous at 0 iff f — p}.(f) are continuous at 0. But

P(f) = sup [n* f(n)]
<€

if |D*floe < ¢, for [g(n)| < |gh < |gloe. Hence f— f is continuous.
We finally show f — f is continuous at 0. Note

D" flo = Suplz in)"f(n)z"|

|2=1

<> It
< f(0 |+Zn ssup(L + [n])**2|f(n)]
n#0

< po(f )+ Py f Z 2

n#0

< €

it ool ) < 5 and pega() < £ (S ) -0

Corollary 1.4.8. Suppose f is a periodic C™ function on R having period
2w. Then the Fourier series Ef( Ye'"? converges uniformly to f and the
derivatives of these series converge uniformly to the derivatives of f.

EXERCISE SET 3:

1. Suppose o are seminorms on vector space X and p, are seminorms on
vector space Y. Give X and Y the topological vector space topologies defined
by these seminorms. Show a linear transformation 7': X — Y is continuous
iff p, o T"is continuous at 0 for each k.

(Hint: Recall a subset U of X will be open in the topology defined by
the seminorms oy, if for each p € U, there is an ¢ > 0 and finitely many
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Seminorms oy, , Oy, ... , 0k, o that if o, (¢—p) < efori=1,2,... ,n, then

qel.)
2. Show that f € L*([0,27],dxz) can be written in the form

flz) =ao+ Z a, cos(nx) + Z b, sin(na) .

Find an expression for a, and b,.

3. Let g be the function on the torus corresponding to f(6) = |0, 6 €
[—m, 7).

(a) Find g(n).
(b) Show that the Fourier series converges uniformly.

oo 1

4. Use the Fourier transform to evaluate the sum )~ =

5. Let f be the periodic function corresponding to x(_; o) — X[o,r)- Evaluate
f(n).

6. A function f on the torus is even if f(z) = f(z7!) and odd if f(z) =
—f(271). Suppose that f € C*(T). Show the following:

(a) If f is even, then f(e) = 3 f(n) cos(n);
(b) If f is odd, then f(e") = @Ef(n) sin(nd).

7. Let g € CY(T)and f € LY(T). Then fxg € C*(T)and D(f*g) = [+ Dg.

8. Let L > 0. Let f be a L-periodic function such that fOL |F(H)] dt < oo
Show that there are constants a,, € C such that in L*([0, L)) we have

o0

f(t) = Z a, e L

n=—oo
Find an expression for «a,,.

9. Show that the seminorms py, p}., and p} all define the same topology on
S(Z).
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10. Let T* := {z = (21,... ,2;) | z; € T} with the product topology. For
z,w € TF let zw = (zjwi,...,zpwg). For n = (ny,...,n;) € ZF, let
en(2z) = 27" -+ - z;*. Show the following:

(a) T*is a topological group, i.e., the map T* x T* > (z,w) — z7'w € T*
is continuous.

(b) ey : T* — T is a continuous homomorphism.

c) IF : T — T is a continuous homomorphism, then there exists a
X p )
n € Z* such that y = e,.

11. (Fourier series of T*) Let i = p x -+ x p be the product measure
on T*. For f € L*(T*), define f : Z* — C by

f(n):= (@) eon(=) duy

Show the following:

2

(@) 107 € T, then 11, =[Sz | )

(b) If f € L*(T*), then f = 3", cpe f(n) eq in L*(TH),

12. Show that there is no differentiable function f on T such that Df = 1.

13. (Differential equations on the torus) Let p(z) = 2F_,
polynomial. Define p(D) : C*(T) — C*(T) by

a,z" be a

k
p(D)f = Z a,D" [ .
n=0
Show that if g € C*°(T) is such that g(n) = 0 if p(in) = 0, then the differen-
tial equation p(D)f = ¢ has a solution.

14. (The Hilbert transform on the torus) Let f € L*(T). Show there
exists a unique g € L*(T) such that

g(n) = —isgn(n) f(n), Vnez.
Define Hf = g. Then H : L*(T) — L*(T) is linear. Prove the following:
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(a) |Hf|, =|fl, if and only if [ fdu = 0.
(b) If f € C*(T), then Hf € C>=(T).
(c) If f € C*=(T), then Hf(1)=—-2> 1f ¢’) sin(nd) do .

1.5 Aproximate Units

Lemma 1.5.1. Let f € LY(T) and g € L?(T) where 1 < p < co. Then
fxg € LP(T) and | f+gl, < |flilgl,- Moreover, if g € C(T), then fxg € C(T).

Proof We have already seen this is true ifp = 1. So we may assume p > 1. If

oo, [f# g(x)l < [1F(WIgly™" @) duly) < lgleo [ 1f ()] dply) = |1i]g]ec-
Supposel<p<ooandp—|—g—1Then

f»gwwzy/f*mwuwdmw
< [ [ 15wty 2)bto) duty) dut
< [t y/u o) dp(z) du(y)

g/uwnuwmmmmmw

=my/uwnmwﬂmq
— 1/ lglolh,.

This implies f * ¢ defines a bounded linear functional on L? and consequently
must be in LP. Moreover, the norm of this bounded linear functional is at
most |flgly. Thus f+g € L? and |f * gl, < |flalal,

Finally suppose ¢ € C(T) and z, — x as n — oco. Then g(y~'z,) —
g(y~tz) for all y and |f(y)g(yv ™ z.)| < [f(y)]|]9]co- Hence by the Lebesgue
dominated convergence theorem, [ f(y)g(y~'z,) du(y) = [ f(y)g(y~'2) du(x)
as n — 0o. Thus f * g is continuous function. 1

Definition 1.5.2. An approzimate unit in L'(T) will be a sequence ¢, of
nonnegative measurable functions satsifying

(a) [ ¢,dp =1 for each n
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(b) if U is a neighborhood of 1, then sup ¢y ¢, (x) = 0 asn — oo.

Proposition 1.5.3. Let ¢, be an approzimate unit in L*(T), and suppose
f e L wherel <p<oo. Then ¢, f — fin LP?(T). Moreover, if f € C(T),
then ¢, * f converges uniformly to f.

Proof. We note by the Hahn-Banach Theorem that there is always an h € L4
satisfying |h|, = 1 and (¢, * f — f,h) = |p, * f — f|,. Now by Holder’s

inequality,

(b f— fh)] < / / b F(y~'2) — F()] |h(2)| dinly) dp(z)

/ o / Ay ()] |h(2)] du () dp(y)

g/ﬁawuwv—fmmmmw-

Now if € > 0, we can choose a neighborhood U of 1 in T such that [A(y)f —

flp < 5ify € U. (See exercise 3 in exercise set 2.) But ¢, — 0 uniformly
off U. Hence for large n, fT_U o, (y) du(y) < 4|f| Thus for large n, we have

o f—f < [ o.m)@lf) /‘¢ Jdy < ¢

T-U

for any h with |h|, = 1. Consequently |¢, * f — f|, < € for large n.

Finally, suppose f € C(T). First choose a neighborhood U of 1 such
that |f(y~'z) — f(z )| < 5 whenever y € U, and then choose N such that
SUPper_u Pp(2) < e forn = N. Then if n > N, one has

6, £(0) = )| < [ Gl fee) = sl dy
<AU Il dus) + [ 605
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1.6 Convergence of the Fourier Series

We saw in a previous section that the Fourier transform converges in L? if
f is an L?-function. Also if f is smooth then the Fourier series converges
uniformly to f. The proof actually shows that f(z)=>_ f(n)z” uniformly if
fisin C*(T). But in general it does not hold that the Fourier series > a,,2"
converges to f(z). In this section we will deal with the question how to
recover the function from its Fourier series. We start by stating two negative
results; however, first we have a few preliminaries.
Define the partial Fourier sum sy(f) to be

sv(f) =Y fnen.

Note sy(f) = f* Dy where Dy = e_n +e_nt1+ - +envo1+en. Dy
is a trigonometric polynomial that is an idempotent under convolution. It is

called the Dirichlet kernel.
Lemma 1.6.1. Let N € N. Then the following hold:

SN2 —(N+1/2

(a) Dy(z) = 220200 i 2 41 and Dy(1) = 2N + 1.

(b) Dy(e) = SUTELD i £ 0 and Dy(1) = 2N + 1

(¢) Dx(z) = Dy (=),

(@) JD(=)du(z) = 1.

(¢) sx(f)(z) = [ + Dx(2) = Dy = f(2).
Proof. (a) We have

2N
Dyn(z) = 2N ZZ”
n=0

B 1 — ZQN—I—I
1—=z
ZN+1/2 . Z_(N+1/2)

/2 -1/2

Also Dy(1) =" 1 =2N+1.

n=
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(b) This follows immediately by using that sin(z) = (e® — ¢=¥)/21.
(c¢) This follows from (a).

(d) Using f.z"dp = 0for n # 0onehas [ Dy(z)du(z) = EnN:_N [ 2" du(z) =
J1du(z) =1

(e) This follows by (f) of Lemma 1.4.2.

|

25

20

151

101 [

% = 2 a1 o 1 2 3 4
Figure 1.2: Dirichlet Kernels for N = 1(blue), 5(green), 10(red)

Figure 1.2 shows the functions Dy become more and more localized
around z = 1 and then oscillates.

Lemma 1.6.2. There exists a dense Gs subset D C L' (T) such that the
Fourier series does not converges in L*(T) for f € D.

Proof. Define linear transformations Ay : L'(T) — L*(T) by Axf = Dy = f.
We note individually they are bounded for ||Ax|| < |Dn|;. They, however,
are not uniformly bounded.

Indeed, we work on L?[—m «w]. Set f) = ka[_%%]. Note each f has
length 1 in L'(T). Moreover,
; _ L 3 —in8® g4 _ i-me% _i i —in _E~ n
fk(n)_Qﬂ_/_%kﬂ'e d9_—2ine |—%_2in ("% —e )_nsm(k).
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Hence for fixed n, fk(n) — 1 as kK — oo. Thus An(fx) = fr * Dy =

Y feller = Yy e

Recall
DN(eié’) _
Now |Dn|1 = 5= 027r 7|Sins(i]nv(;—/12/)2)
27 1sin( N + 10
Dy = Isin(V + 5)01
27 o sin(50)

Y

Y

IN £ 1 AN+2 1 (2N+1)"Ykr
22y
m 1 k (2N+1)=Y(k—1)x
oN 4 1 N2
> + Z / |sint| (N + ) dt
AN+2
= — Z / sint dt
4N-|—2

AN+2

1 (2N+1)"Ykr
27 Z /(2N+1)—1(k—1)7r

k=1
AN+2

1 (2N+1)"tkr
2 ; /(2N+1)—1(k—1)7r

AN+2

1 (2N+1)"tkr
2m kz:: /(2N+1)_1(k—1)7r

1

2 1

k=1

= Dy as k£ — 0.

: 0
SIH2

do

in(N + 10
Ll(. 1+2) ‘ do
sin 5(9
in(N + 1)
o),
=0
2
sin(N + %)0
%(2]\[ + 1)~ Ykn

—Zk—>ooasN—>oo

sin((N + %)0) ‘

Vo — oo as N — oo. Indeed,

1 1
sin(N + 5)0‘ df (set t = (N + 5)0)

Hence the Ay are not uniformly bounded on the unit ball of L'(T). By

the Banach—Steinhaus Theorem (i.e., the principle of uniform boundedness),
there exists a dense G5 set D such that

N
sup | Y f(k
N =N

Jer|r = sup |An(f)|1 = oo for all f € D.
N
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Remark 1.6.3. We showed |[Dy|; > & 25:’2 . Thus [Dy|; > 2 In(4N +

3) > 7?—211(1 N. Thus the Dy’s are not bounded in L'(T). It is known that
Dyl = 5 1InN 4 O(1). This is the central reason they do not form an

approximate unit in L'(T).

The following shows convergence can be a problem even for continuous
functions. We state it without proof.

Lemma 1.6.4. Let {z},_, be a sequence in T. Then there exists a function
f € C(T) such that imy_eo |sn(f)(21)| = 00 for all k € Ny.

Lemma 1.6.5 (Lebesgue Lemma). Let g € L'[0,7]|. Then

/ g(x)sinax dr — 0
0

as a — 0.

Sketch. This is similar to the argument for (d) in Lemma 1.4.2. First check
it works for g(x) = X[e,a)- 1hen show it works for step functions and then for
any L' function.

Theorem 1.6.6. Suppose f(0) = F(e) is a 21 periodic function on R and
[ is integrable on [—m,w]. Let x be a point where f(x+) = limg_.4 f(0) and
fla=) = limg_y,— f(0) exist. If there exist a K >0, a § > 0, and an a > 0
with |f(z +1) — fla+)] < Kt* and |f(x —t) — f(a—)| < Kt* for 0 <t <4,
then Dy + F(e") = $(f(x+) + f(z—)) as N — oo; i.e., one has

ST e o S ) + Fa))

Proof. Note
Dy * F(e”) = /DN(Z)F(Z_lem) du(z)

1 g . .
=5/ Dy (e F(e'"D) dt
1 K

= — [ Dy(e")f(x —t)dt.

27 J_.
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Hence Dy * F'(e fo :zj—t)dt—l—%f Dy _”)f(:zj—t)dt
for Dy (e™) = DN( ) Changmg Varlables in the second integral gives
1 T :
Dy Fe) = 5= [ Dv(E)fte+ 00+ Sl =) .

Hence the result will follow if we show

= [ DN Gt )t ()
and

L7 pytet —tdt—>lf( —)

o |, n(e") f(x —1) A
as NV — oo.

We show the first, for the second follows the same argument. Note

= Jo Dn(e?)dt = fDN Jdu(z) = 5. Hence

; ” ()ﬂx+ﬂﬁ__fm+ /)DNZt (x+1) — flz+))dt
"sin((N + 3)t)
Pz W(ﬂ 1) = flat)) dt.

By the Lebesgue Lemma, this will converge to 0 as N — oo if the function

fla+1) = flat)

]
sin 2t

o(t) =

is integrable on [0,7]. Choose § > 0 so that |f(xz +t) — f(a+)| < Kt* and
sin 3¢ > ¢ for 0 <t < 4. Then

[f(@+1) = flzt)]

-1
sin 2t

fe+ 1) = fe)]

-1
sm2t

()] = X0,5) + Xp5.m(1)

The second of these two terms is clearly in L'[0, 7], and the first is less than
4Kt

~— which is integrable on [0, 7] since a > 0.

Corollary 1.6.7. Suppose f(0) is periodic with period 2m and fljo2- €
LY0,27). If f(a+) and f(xz—) exist and

ot — i TEED =G

t—04 t t—04 t
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exist, then

N—oo

lin 3 e = S + fam))

Proof. We can choose § > 0 so that M < |f'lzb)|+1if0 <t <é.
Hence there is a K such that |f(x +1) — f(aed)] < Kt for 0 <t <é. 1

Definition 1.6.8. A sequence {a,} _, is Cesdro summable to L if the
average 1/(N + 1) Ei\;o s of the partial sums Ei:o a, converges to L.
It is Abel summable to L if Y7 apr® exists for all 0 < r < 1 and
lim, 4y > a,r" = L.

To recover f € L'(T) from its Fourier transform one uses the average of
partial sums, i.e., Cesaro summability. Define

ox (D) = 57 Do),

=0

3

Let
1 N
Yn(z) = WZDN(Z)
Then
on(f) = f*Xn

Lemma 1.6.9. One has

N+1 sin(6/2)
particular we have X > 0.

. . 2 .
(CL) ZN(ezﬁ) — 1 |:51n((N+1)9/2):| Zf 629 7£ 1 and ZN(l) - N + 1. In

(b) (z) = B(=71).

(¢) 3N dp=1.
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Proof. (a) Using D,(z) = (z"*' — 27")/(2 — 1), we see that

N 1 N2, N-1
ZD”(Z) - - 1
— z—1 z—1 z7b—1
1
— e [ZN+2—2+Z_N—Z]
< N -N-
N (2—1)2<Z 242 1>
1

S(N+D/2 Z—(N-|—1)/2> 2

(21/2 _ 2—1/2)2 (
|:Z(N+1)/2 _ Z—(N-|—1)/2:| 2

1/2 _ .—1/2

Hence if z = €', one has
N . 2
ZN Z Dn 29 SIH((N + 1)0/2)
N—I—l — N—I—l sin(0/2)

The claim for z = 1 follows either by continuity or by

N
722n—l—1:N—|—1.
N+1<

(b) This follows by the fact that sin is odd.

(c) By lemma 1.6.1 we have

[ s =575 Y [ Duduts
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10

1 | \

A Lo
o= N SV | NN N =
-4 -3 -2 -1 0 1 2 3 4

Figure 1.3: Fejer Kernels for N = 1(blue), 5(green), 9(red)

Note that the integral of ¥ is concentrated more and more around z = 1
as N — oco. Figure 1.3 shows the graphs of the Fejer kernels ¥ for N =1,
N =5, and N =9.

Lemma 1.6.10. Let 0 < § < w. Then there exists a constant C = C(9)
independent of N such that ‘ZN(ew)‘ < NL-H ford < |0 < 7.
Proof. Choose C' > 0 such that |sin(0/2)] > 1/V/C for § < |0] < 7. As
|sin(N + 1)8/2] <1 it follows that

C
N+1°

Sy ()] <

Theorem 1.6.11 (Fejér). Let 1 < p < oo and f € LP(T). Then f« Xy is
a trigonometric polynomial and

|f* Xy —f],=0.

lim
N—co

If f € C(T), then

A

In particular the sequence ag := f(()), ay, = f(n)z” + f(=n)z
Cesdro summable to f(z).

" is uniformly
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Proof. By Lemmas 1.6.9 and 1.6.10, the Fejer kernels ¥ form an approxi-
mate unit in L'(T). Hence the statements follow from Proposition 1.5.3. §

1.7 The Poisson kernel

In Section 1.1, we showed that by separation of variables using polar coordi-
nates on the unit disc |z| < 1, Laplace’s equations Au = 0 produced solutions

of form N,

u(r,0) = Z anr™e™?.
n=—oo

We note if r = 1, the resulting function would be a Fourier series and should
represent the boundary condition u(r,1) = f(#). Hence we would hope

o0

Z ane™ = f(0)

n=—0oo

in some sense, i.e., pointwise, uniformly, in L?, etc.

Associated with this decomposition is the function P(r, ) where we take
all the a/,s in the function u(r,#) equal to one. As can be seen in the next
chapter, P(1,8) is the ‘Fourier series’ of the Dirac function § and conceivably
P(r,0) is close in some sense to ¢ for r near one. The function P(r,#) is called
the Poisson kernel. Hence

o0

P(r,0) = Z et

n=—0oo

This series converges uniformly on any subset S of [0, 1] X R for which sup{r :
(r,0) e S} < 1.

As seen in Section 1.1,

1 —r?

1 —2rcosf + r?

P(r,0) =

Define P.(¢') = P(r,e?) for 0 <r < 1.
Lemma 1.7.1. P, satisfy the following conditions.

(a) P.(z)>0 forall z€T.
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(b) [P(z)du(z) =1 for0<r <1,
(¢) if U is a neighborhood of 1 in T, then sup, g |Po(2)] — 0 as v — 1—.

Proof. Clearly we have (a) and since > rl*le, (e?) converges uniformly on T,
[ P(2)du(z) = Erlnl [ en(z)du(z) =1° [ eo(2)dz = 1. Thus (b) holds.

For (c), choose a > 0 with 1 — cosf < 1 if [§] < a. Then for any § with
0 < § < a, one has

1 —r? 1 —72

P(r.0)=
(r0) 1—2rcosf@+r2 1 —r4r2

if 6 <10 < m. Since 1::_27,2 — 0as r — 1—, (c) follows.

This lemma shows P,.(z) form an ‘approximate unit’ in L'(T) and the
argument in the proof of Proposition 1.5.3 shows the following are true:

(1) if fe LP(T)wherel <p<oo, Pxf— fin LP(T)asr — 1—.
(2) if f € C(T), then P, % f — f uniformly on T as r — 1—.
Theorem 1.7.2 (Poisson Theorem).

(a) Let f € LY(T), then the function

u(r,0) = i/P(r,e — @) f(e?) do

2T
is harmonic on the open disk |z| < 1.
(b) If f € LP(T) where 1 < p < oo, then

u(r,0) — f(e)in LP(T)as r — 1 —.

(c) If f € C(T), then

u(r,0) — f(e) uniformly on T as r — 1 — .

Proof. We note we already have (b) and (c). For (a), we need only note since
u(r,0) =5 f(n)r'”'em@, that |f(n)| < | f]1 for all n; and thus both the series
and the series for the r and # derivatives of any order converge uniformly on
any disk |r| < a where a < 1. 11
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EXERCISE SET 4:

1. Show that the sequence a,, = (—1)" is Abel and Cesaro summable to 1/2.

2. Show that if > a, converges to L, then {a,} is Abel and Cesaro summable
to L.

3. Let g > 61 > -+ > 0 be a decreasing sequence with limé, = 0. Define
ap := g and a,, 1= 6,1 — 0, for n > 1. Let g(z) := > a,z". Show that ¢ is
continuous, g * Dy converges uniformly to g, and g * Dy — g|_ < dn.

4. Let f be the function on T such that fo | (t) =1

N

(a) Evaluate f(n).
(b) Evaluate lim;_, > f(n)emt.

1.8 Applications

In this section we discuss some applications of the Fourier transform. The
first two are examples illustrating how one uses the Fourier transform to
solve differential equations, and the last is an example of its application to
geometry.

1.8.1 The Wave Equation

The general form of the wave equation is
Pu(x,t) = a’Ofu(z,t), u(x,0)= f(x), ul(z.0) = g(x). (1.8.1.1)

Here x € [0, L], f,g are functions on [0, L], and « > 0 is a constant. For
simplicity we will assume that L = 7. In the case where u(0,t) = u(m,t) =0
for all ¢t and f and ¢ are real valued, this equation describes the vibration
of a homogeneous string, fastened at both ends and starting at position
u(x,0) = f(x) with initial velocity u:(x,t) = g(«). The constant a = T'/p is
given by the tension T and the linear density p.

As we are motivated by the vibration of a string, let us assume that f, g €
C*((0,7)) and f(0) = f(7) = ¢g(0) = g(7) = 0. Let us look for a smooth

solution @ +— wu(x,t). First we extend u(-,?), f and ¢ to an odd function
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on [, 7] by f(—2) = —f(z), g(—2) = —gle), and u(—z,t) = —ufa,?).
Then f and g are continuous on [—m, 7] and smooth on (—m, 7). Taking the
Fourier transform in the a-variable and denoting it by w(n,t), and using that
all functions are real valued and odd, one has:

(—n,t) = * /7r u(0,1)sin(nd) do ;

27
7
T

>

u(n,t) =

=

2
I

>

/j f(8)sin(nd)do ;
! /7r g(0)sin(nd)do .

:g_r

(=n) = Gy

g(n) = g(—n)

Next we notice that differentiation in the ¢-variable commutes with taking
the Fourier transform in the z-variable. Thus for all n € Z:

_n2 ﬁ(”? t) = Cl2 ﬁtt(nv t) ’ ﬁ(nv 0) = f(n)v ﬁt(nv 0) = g(n) :
This is an ordinary second order initial value problem for the function ¢ —
t(n,t) with unique solution

n

u(n,t) = f(n) cos <—t> + ag(n)

a

sin <Et> ‘

a

n

Summing up we conclude

u(x,t) =20 i (f(n) cos <Et> + ag(n)

sin (%t)

a n

) sin (nx) . (1.8.1.2)

n=1

This solution also fulfills u(0,¢) = u(m,t) = 0 for all t € R. We notice that

this solution is periodic in ¢ with period 2wa.
If L # 7, we replace © — u(x,t) by v(z,t) :=u (%:1;) and similarly for f
and ¢g. Then the new Cauchy problem is:

v(x,t) = ajun(x,t), v(x,0) = fi(z), vix,0) = g ()

with fi(x) = f(Lx/7), ¢1(x) = g(La/7) and a; = ma/L. Using the above

result for v we have:

u(x,t) =20 i (f(n) cos (%t) + %Q(n)%) sin <%n:1;> .

n=1



40 Fourier Series

1.8.2 The Heat Equation

In this section we discuss the heat equation
a*u(z,t) = ui(x,t), wu(z,0)= f(z),0<a< L.

In the case where f is real valued, this is the differential equation describing
the heat flow in a homogeneous cylindrical rod of length L, whose lateral
surface is insulated from the surrounding medium and where the initial tem-
perature at the point @ € [0, L] is f(x). The constant @ in this case is given
by a* = K/cp where K is the thermal conductivity of the material from which
the rod is made, ¢ is the heat capacity, and p is the density. We will only
consider solutions that are fixed by the same constant at the endpoints x = 0
and x = L. We can then assume that «(0,t) = u(L,t) = 0 for all . As for
the wave equation, we will assume that L. = 7 and will accordingly extend
all functions depending on the variable x to odd functions on the interval
[—m,7]. Taking the Fourier transform in the z-variable we obtain:

A

—a*n*a(n,t) = adn,t), 0(n,0)= f(n).

Thus @(n,t) = f(n)e_“2”2t. Now using that f and u(-,?) are odd and real
valued we have:

u(x,t) = Z f(n)eim_“rz”% = Z f(n)e_”2“2t sin(na).
ne€L n=1

Similarly for general I > 0, one obtains
- A 2,22 2 nm
1 = 9 —n?mrla?t/L? _: < >
u(x,t) i 321 f(n)e sin { -2

where

nmwe

foy =57 [ e e

1.8.3 The Isoperimetric Problem

Let v : [0,27] — C be a continuous smooth simple and closed curve. Then
C = 7([0,2n]) defines a bounded domain Q(y) C C. Assume for simplicity
that the length of C' is one. Question: For which curve is the area a(Q(7))
is maximum?
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Theorem 1.8.1 (Hurwitz). We have a(Q(v)) < 1=

and only if Q() is a circle.

Proof. Let Q = Q(v). Set G(e¢) = v(0) = z(0) +1y(0). Then G is a smooth

function on the torus. Hence

4

and if z = €',

Y(0) = DG(z) =i Y nG(n)z".

n=—0oo

We may assume the curve is parameterized such that

O = 200+ /(0] = o

27
Then, by the Plancherel formula
1 2
) = |DG|2
- L [Tora
27 J,
= ) #ldm)?
Or
o] R 2 1
T Z n®|G(n)| = yp
s
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Now applying Stoke’s Theorem to the boundary of € and using a2’ +yy’ = 0
and the Plancherel Theorem, one obtains

o) =3 [ [adedy—yao
1

= - xdy — ydx
/.

= /0 L 0)y/(0) — y(0)e'(9) b
_ ;_@1 0% +(0)77(8) df
_ nioo nG(n)G(n)
_ Wn_ioo nGi(n)
It follows now that _
RLCUEED SRl

Next note that n(n — 1) > 0 for all n # 0,1. Hence

o0

1

—a@ =7 Y n(n-1IGH)f >0
and
= a(0) =0

if and only if @(n) =0for n#0or n # 1. But in that case

o~

G(e) = G(0) + G(1)e™™

which is a circle. 1



