
Math 2057, Section 5
Test #1 is on Tuesday, Sept. 27. Material: Section 14.1–14.5,

everything except partial differential equations.

Material covered until Sept. 13–22

Section 14.4: Tangent Planes and Linear Approximations.

• For function of one variable: Recall that the tangent line at the point
(a, b) is given by y − b = f ′(a)(x − a).

• This can also be read as linear approximation

f(x) ∼ b + f ′(a)(x − a) .

• In two variables we need to replace line by plane. The equation of a
plane, containing the point (x0, y0, z0) in three dimensions is given by

A(x − x0) + B(y − y0) + C(z − z0) = 0 .

If C 6= 0 then we can solve for z − z0 and write

z − z0 = a(x − x0) + b(y − y0) .

Definition 0.1. Suppose the function f has continuous partial derivatives.
An equation of the tangent plane to the surface z = f(x, y) at the point
P (x0, y0, z0) is given by

z − z0 = fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0) .

The tangent plane at the point (x0, y0, f(x0, y0)) is close to the graph of the
function f(x, y) as long as (x, y) is close to (x0, y0).
We therefore call the function

(x, y) 7→ z0 + fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0)

the linear approximation to f(x, y).
The change in z is

∆z = z − z0 = f(x, y) − f(a, b) .

The differential is the change in the linear approximation and is given by

dz = ∂f/∂xdx + ∂f/∂y .
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Note also the definition of differentiable on p. 926 and the similar definition
for functions of more than two variables (p. 929).

Excersises from Section 14.4: 1–5, 11–19, 29–33 odd.
Section 14.5 The chain rule:

Recall first the chain rule in one variable: If y is a function of the variable
u and u is a function of x, then y(u) depends on x and the derivative with
respect to x is given by:

d
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·
du
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We can have similar situation in several variables.
Case 1 z depends on x and y, and x and y depend on the variable t. Then

z(x, y) = z(x(t), y(t))

depends only on the variable t. If z is differentiable then we get

∆z =
∂z

∂x
∆x +

∂z

∂y
∆y + ε1∆x + ε2∆y

where ε1, ε2 → 0 if ∆x, ∆y → 0. Now, inserting for ∆x and ∆y (if differen-
tiable) we get

∆x =
dx

dt
∆t + ε2∆t

and

∆y =
dy

dt
∆t + ε2∆t .

Dividing by ∆t and taking the limit ∆t → 0 we get

dz

dt
= lim

t→0

∆z

∆t
=
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∂x
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+

∂z

∂y
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.

Case 2 If z depends on x and y and x and y depend on two variables s and
t, z(x, y) = z(x(s, t), y(s, t)) depends on s and t and we have
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.

Case 3, the general case: If z depends on the variables x1, . . . , xn and each
of the variables xj depends on t1, . . . , tm. Then we have for each j = 1, . . . , m:

∂z

∂tj
=

n∑

k=1

∂z

∂xk

∂xk

∂tj
.

Implicit differentiation: The book list two forms of this.
Asssume that the function F is differentiable and that F (a, b) = 0 and
Fy(a, b) 6= 0. Then we can (in principle) solve the equation F (x, y) = 0
for y around x = a such that y(a) = b to define y as a function of x. Note,
that in most cases it is impossible to write an explict formula for the function
y. In this case the function y is differentiable and we have

dy

dx
= −

Fx

Fx
.

If F depends on three variables x, y, z and Fz 6= 0. Then we can (in principle)
solve for z (depending on x and y) and we get:

∂z

∂x
= −

Fx

Fz

∂z

∂y
= −

Fy

Fz
.

Excersises from Section 14. 5: 1–11, 19–25 odd and 27,31, and 43.
We did discuss Section 4.6, Directional Derivatives and the gradient vector
on Thursday, Sept. 22. We will discuss that material next time.


