Math 2057, Section 5

Test #1 is on Tuesday, Sept. 27. Material: Section 14.1–14.5, everything except partial differential equations.

Material covered until Sept. 13–22

Section 14.4: Tangent Planes and Linear Approximations.

- For function of one variable: Recall that the tangent line at the point \((a, b)\) is given by \(y - b = f'(a)(x - a)\).
- This can also be read as linear approximation
 \[f(x) \sim b + f'(a)(x - a). \]
- In two variables we need to replace line by plane. The equation of a plane, containing the point \((x_0, y_0, z_0)\) in three dimensions is given by

 \[A(x - x_0) + B(y - y_0) + C(z - z_0) = 0. \]

 If \(C \neq 0\) then we can solve for \(z - z_0\) and write
 \[z - z_0 = a(x - x_0) + b(y - y_0). \]

Definition 0.1. Suppose the function \(f\) has continuous partial derivatives. An equation of the tangent plane to the surface \(z = f(x, y)\) at the point \(P(x_0, y_0, z_0)\) is given by

 \[z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0). \]

The tangent plane at the point \((x_0, y_0, f(x_0, y_0))\) is close to the graph of the function \(f(x, y)\) as long as \((x, y)\) is close to \((x_0, y_0)\).

We therefore call the function

\[(x, y) \mapsto z_0 + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) \]

the linear approximation to \(f(x, y)\).

The change in \(z\) is

\[\Delta z = z - z_0 = f(x, y) - f(a, b). \]

The differential is the change in the linear approximation and is given by

\[dz = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy. \]
Note also the definition of differentiable on p. 926 and the similar definition for functions of more than two variables (p. 929).

Exercises from Section 14.4: 1–5, 11–19, 29–33 odd.

Section 14.5 The chain rule:

Recall first the chain rule in one variable: If \(y \) is a function of the variable \(u \) and \(u \) is a function of \(x \), then \(y(u) \) depends on \(x \) and the derivative with respect to \(x \) is given by:

\[
\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}
\]

or

\[
\begin{align*}
x & \rightarrow \frac{du}{dx} \rightarrow u \\
& \rightarrow \frac{dy}{du} \rightarrow y
\end{align*}
\]

We can have similar situation in several variables.

Case 1 \(z \) depends on \(x \) and \(y \), and \(x \) and \(y \) depend on the variable \(t \). Then

\[
z(x, y) = z(x(t), y(t))
\]

depends only on the variable \(t \). If \(z \) is differentiable then we get

\[
\Delta z = \frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y
\]

where \(\epsilon_1, \epsilon_2 \to 0 \) if \(\Delta x, \Delta y \to 0 \). Now, inserting for \(\Delta x \) and \(\Delta y \) (if differentiable) we get

\[
\Delta x = \frac{dx}{dt} \Delta t + \epsilon_2 \Delta t
\]

and

\[
\Delta y = \frac{dy}{dt} \Delta t + \epsilon_2 \Delta t.
\]

Dividing by \(\Delta t \) and taking the limit \(\Delta t \to 0 \) we get

\[
\frac{dz}{dt} = \lim_{t \to 0} \frac{\Delta z}{\Delta t} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}.
\]

Case 2 If \(z \) depends on \(x \) and \(y \) and \(x \) and \(y \) depend on two variables \(s \) and \(t \), \(z(x, y) = z(x(s, t), y(s, t)) \) depends on \(s \) and \(t \) and we have
\[\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}, \]
\[\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}. \]

Case 3, the general case: If \(z \) depends on the variables \(x_1, \ldots, x_n \) and each of the variables \(x_j \) depends on \(t_1, \ldots, t_m \). Then we have for each \(j = 1, \ldots, m \):
\[\frac{\partial z}{\partial t_j} = \sum_{k=1}^{n} \frac{\partial z}{\partial x_k} \frac{\partial x_k}{\partial t_j}. \]

Implicit differentiation: The book lists two forms of this. Assume that the function \(F \) is differentiable and that \(F(a, b) = 0 \) and \(F_y(a, b) \neq 0 \). Then we can (in principle) solve the equation \(F(x, y) = 0 \) for \(y \) around \(x = a \) such that \(y(a) = b \) to define \(y \) as a function of \(x \). Note, that in most cases it is impossible to write an explicit formula for the function \(y \). In this case the function \(y \) is differentiable and we have
\[\frac{dy}{dx} = -\frac{F_x}{F_y}. \]

If \(F \) depends on three variables \(x, y, z \) and \(F_z \neq 0 \). Then we can (in principle) solve for \(z \) (depending on \(x \) and \(y \)) and we get:
\[\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \]
\[\frac{\partial z}{\partial y} = -\frac{F_y}{F_z}. \]

Exercises from Section 14.5: 1–11, 19–25 odd and 27, 31, and 43.
We did discuss Section 4.6, Directional Derivatives and the gradient vector on Thursday, Sept. 22. We will discuss that material next time.