
Math 2057, Section 5
Material covered until Oct. 20

There is a test on Thursday, October 27. Material: Sections 14.6 - 15.2. There will be no question
from section 15.1 except possibly a problem involving the average value, that we be discussed on
Tuesday, Oct. 25.

Section 14. 6: Directional Derivatives and the Gradient Vector.

A direction is given by a vector u with |u| = 1. That is, the vector has length one. The directional
derivative of a function in the direction of u measure the rate of change in that direction.At a given
point x it is denoted by Dvf(x) and given by

Duf(x) = lim
t→0

f(x + tu) − f(x)

t
if the limit exists. If f is differentiable at the point x = (x, y) and u = (a, b) =< cos(θ), sin(θ) >,
then we have by the chain rule:

Duf(x, y) =
∂f

∂x
a +

∂f

∂y
b =

∂f

∂x
cos(θ) +

∂f

∂y
sin(θ) .

The vector

∇f(x, y) =<
∂f

∂x
,
∂f

∂y
>

is called the gradient. We can then write

Duf(x, y) = ∇f(x, y) · u .

From this we get the following information:

(1) Denote the angle between ∇f and u by θ, then

Duf = |∇f | cos θ .

(2) The maximal rate of change is in the direction of ∇f and the rate of change in that direction
is |∇f |.

(3) The minimal rate of change is in the direction of −∇f and the rate of change in that
direction is −|∇f |.

(4) The rate of change in the direction orthogonal to ∇f is zero.

Similar statements holds for functions of three or more variables.

Important:

(1) Make sure that the vector that you are using has length one. If necessary, you might have
to divide by the length of the given vector to normalize the directional vector.

(2) Make sure you know how to find the directional vector if you are given a point P (a, b) and
asked to find the directional derivative at P in the direction to another point Q(c, d). You
find the vector u =< c, d > − < a, b >, and then take v = 1

|u| u.

If the surface S is given by the equation F (x, y, z) = 0 where F is a differentiable function of three
variables such that ∇F (x, y, z) is not the zero vector, then the equation of the tangent plane at a
point x0 = (x0, y0, z0) is given by

Fx(x0)(x − x0) + Fy(x0)(y − y0) + Fz(x0)(z − z0) = 0 .
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If all the partial derivatives of F are non-zero, then the symmetricequation for the tangent plane
is

x − x0

Fx(x0)
=

y − y0

Fy(x0)
=

z − z0

Fz(x0)

Exercises from Section 14.6: 1, 5–25 odd, 29, 31, 39–43 odd

Section 14. 7: Maximum and Minimum Values.

Make sure you understand the difference between absolute maximum/minimum and local maxi-
mum/minimum . Recall also the definition of saddle point and critical point. A critical point is
where either one of the partial derivatives does not exists or ∇f is the zero vector 0.
The test for local max/min is given by the following:

(1) Find the critical points. Thus, find the points where at least one of the partial derivatives
does not exists. Solve the equations fx = fy = 0 (or in 3-dimensions fx = fy = fz = 0).

(2) Then use the second derivative test: Suppose the partial derivatives of f are continuous
around the point (a, b) and suppose that fx(a, b) = fy(a, b) = 0. Let

D = fxx(a, b)fyy(a, b) − fxy(a, b)2

= det

(

fxx(a, b) fxy(a, b)
fyx(a, b) fyy(a, b)

)

.

(a) If D > 0 and fxx(a, b) > 0, then f(a, b) is a local minimum.
(b) If D > 0 and fxx(a, b) < 0, then f(a, b) is a local maximum.
(b) If D < 0 then (a, b) is a saddle point.

If D is a closed bounded set in R
n and f is a continuous function on D, then f attains an absolute

value and a minimum value in D.
The question is then: How do we find those values?
Answer:

1) In the interior of D we find all the critical points as above.
2) We evaluate the function at the critical points.
3) We find the extreme values of f on the boundary (how to do that is discussed in the next section).
4) The largest of the numbers in (2) and (3) is the maximum value, and the smallest is the minimum
value.

It is a common mistake only to find the critical points and not answer the actual question: What
is the maximum and what is the minimum? So don’t forget step 4!

Exercises from Section 14.7: 1–17 odd, 27–33 odd, 37, 41, 45

Section 14.8 Lagrange Multipliers

In step 3 in the last section the problem was to find the extreme values of f on the boundary of D.
Often the boundary is given by an equation of the form g(x, y) = 0. Let us assume that gy 6= 0.



Then we can solve this equation for y = y(x) as a function of x. Then we have a function of one
variable h(x) = f(x, y(x)). If f(x, y(x)) is an extreme value, we get by using the chain rule:

0 = h′(x)

= fx(x, y(x)) + fy(x, y(x))y′(x)

= fx(x, y(x)) − fy(x, y(x))
gx(x, y)

gy(x, y)

or, by multiplying through by gy(x, y):

∇f(x, y)· < gy(x, y),−gx(x, y) >= 0 .

Thus ∇f(x, y) is orthogonal to the vector < gy(x, y),−gx(x, y) >, or ∇f(x, y) and ∇g(x, y) are
parallel. Thus, there exists a number λ such that

∇f(x, y) = λ∇g(x, y) .

Note, that in the end, we we need not to know the function y(x)!

Method of Lagrange Multipliers: Let f be a function of two or more variables. To find the maximum
and minimum values of f(x) subject to the constrain g(x) = k [assuming that these extreme values
exists and ∇g 6= 0 where g(x) = k];

(1) Find all values of x and λ such that

∇f(x) = λ∇g(x)

g(x) = k .

(2) Evaluate f at all those points. The largest value is the maximum value, the smallest value
is the minimum.

If we have two constrains g(x) = k and h(x) = c, then, at the points where f takes the extreme
values, we have that the vector ∇f(x) is in the plane spanned by ∇g(x) and ∇h(x). Therefore,
there exists numbers λ and µ such that

(1) ∇f(x) = λ∇g(x) + µ∇h(x) .

Method of Lagrange Multipliers, with two constrains: Let f be a function of two or more variables.
To find the maximum and minimum values of f(x) subject to the constrain g(x) = k and g() = c

[assuming that these extreme values exists and ∇g 6= 0 6= ∇h where g(x) = k and h() = c];

(1) Find all values of x, λ and µ that solve the equation (1) and such that g(x) = k and
h(x) = c.

(2) Evaluate f at all those points. The largest value is the maximum value, the smallest value
is the minimum.

Exercises from Section 14.8: 1, 5–17 odd, 27–33 odd, 39 and 45

Section 15.1: Double integrals over Rectangles

We discussed shortly this section. Read it and understand the definition of the double integral.
You should understand the basic idea behind the double integral. You will also need to know how



we find the average value, p. 986. The average value of a function d of two variables defined on a
rectangle R is

fave =
1

A

∫∫

R

f(x, y) dA

where A is the area of R.

Section 15.2 Iterated Integrals.

To evaluate the double integral of a continuous function over a rectangle

R = [a, b] × [c, d] = {(x, y) | a ≤ x ≤ b, c ≤ y ≤ d}

we use Fubini’s Theorem:
Fubini’s Theorem:If f is continuous on the rectangle R = [a, b] × [c, d], then

∫∫

R

f(x, y) dA =

∫ b

a

[
∫ d

c

f(x, y) dy

]

dx

=

∫ d

c

[
∫ b

a

f(x, y) dx

]

dy dx

Exercises from Section 14.8: 1, 5–17 odd, 27–33 odd, 39 and 45

Problems from section 15.2: 1-29 every second odd numbered problem.


