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Vector Spaces over R

Definition. vector space over R is a set V' with operations of ~ Vector Spaces
addition + and scalar multiplication - satisfying the following Immediate results

. Examples
properties: R™ (columns)

= Al (Closure of addition) %Z (rows)
Forallu,v € V,u + visdefinedandu +v € V. VA
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= A2 (Commutativity for addition)
u+v=v-+uforalu,veV.



Vector Spaces over R

Definition. vector space over R is a set V' with operations of ~ Vector Spaces

addition + and scalar multiplication - satisfying the following Immediate results
. Examples
properties: R™ (columns)
= Al (Closure of addition) %Z (rows)
Forallu,v € V,u + visdefinedandu +v € V. VA

Exercises

= A2 (Commutativity for addition)
u+v=v-+uforalu,veV.

= A3 (Associativity for addition)
u+ (v+w)=(u+v)+wforalu,v,w e V.



Vector Spaces over R

Definition. vector space over R is a set V' with operations of ~ Vector Spaces
addition + and scalar multiplication - satisfying the following Immediate results

. Examples
properties: R™ (columns)

= Al (Closure of addition) %Z (rows)
Forallu,v € V,u + visdefinedandu +v € V. VA
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= A2 (Commutativity for addition)
u+v=v-+uforalu,veV.

= A3 (Associativity for addition)
u+ (v+w)=(u+v)+wforalu,v,w e V.
= A4 (Existence of additive identity)

There exists an element 6 such that u + 6 —  for all
ueV.



Vector Spaces over R

Definition. vector space over R is a set I with operations of
addition + and scalar multiplication - satisfying the following
properties:
= Al (Closure of addition)

Forallu,v € V,u + visdefinedandu +v € V.

= A2 (Commutativity for addition)
u+v=v-+uforalu,veV.

= A3 (Associativity for addition)
u+ (v+w)=(u+v)+wforalu,v,w e V.

= A4 (Existence of additive identity)
There exists an element 0 such that u -+ 0 = w for all
uelV.

= A5 (Existence of additive inverse)
For each u € V/, there exists an element -denoted by —u-
such that u 4 (—u) = 0.
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Definition. A vector space over R is a set I/ with operations Vector Spaces

of addition + and scalar multiplication - satisfying the Immediate results
: . Examples
following properties: R™ (columns)
= M1 (Closure for scalar multiplication) %Z (rows)
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= M2 (Multiplication by 1)
l-u=wuforalu e V.



Vector Spaces over R

Definition. A vector space over R is a set I/ with operations Vector Spaces

of addition + and scalar multiplication - satisfying the Immediate results
: . Examples
following properties: R™ (columns)
= M1 (Closure for scalar multiplication) %Z (rows)
For each number r and each u € V', r - u is defined and VA

Exercises

r-uecV.

= M2 (Multiplication by 1)
l-u=wuforalu e V.

= M3 (Associativity for multiplication)
r-(s-u)=(r-s)-uforr,s € Randallu € V.



Vector Spaces over R

Definition. A vector space over R is a set I/ with operations Vector Spaces

of addition + and scalar multiplication - satisfying the
following properties: e e
= M1 (Closure for scalar multiplication) R’ (rows)

For each number r and each u € V', r - u is defined and %A

r-u € V Exercises

= M2 (Multiplication by 1)
l-u=wuforalu e V.

= M3 (Associativity for multiplication)
r-(s-u)=(r-s)-uforr,s € Randallu € V.

= D1 (First distributive property)
r-(u+v)=r-u+r-vforalr € Randalu,v € V.



Vector Spaces over R

Definition. A vector space over R is a set I/ with operations Vector Spaces

of addition + and scalar multiplication - satisfying the
following properties: e e
= M1 (Closure for scalar multiplication) R’ (rows)

For each number r and each u € V', r - u is defined and %A

r-u € V Exercises

M2 (Multiplication by 1)
l-u=wuforalu e V.

M3 (Associativity for multiplication)
r-(s-u)=(r-s)-uforr,s € Randallu € V.

D1 (First distributive property)
r-(u+wv)=r-u+r-vforalr € Randallu,v € V.

D2 (Second distributive property)
(r+s)-u=r-u+s-uforalr,s € Randallu € V. _.oaoe
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Some immediate results

Remark. The zero element O is unique, i.e., if 01,09 € V are \é‘z‘;itr?i;ifﬁaces

such that
= = Examples
U + 01 =Uu-+ 02 — U, YueV R™ (columns)

- - R™ (rows)
then 0; = 0,. R4

VA
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Proof. We have 0; = 07 + 0y =

[
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Lemma. Letu € V,thenO - u 0.




Some immediate results

Remark. The zero element O is unique, i.e., if 01,09 € V are \é‘zﬁfﬁizifﬁaces

such that

= = Examples
U+ 01 = U+ 02 = Uu, YueV R™ (columns)

- - R™ (rows)
then 0; = 0s. @‘Z

S O" Exercises
p— 2

[

Proof. We have O_i:()_i—l—()_é: ;—l—
Lemma. Letu € V, then0-u = 0.
Proof.

u+0-v = 1-u+0-u

(1+0)-u
1-w

u



Some immediate results

Vector Spaces
Definition

Remark. The zero element 6 IS unique, i.e., If O_i, O; e V are

such that 3 3
Uu+0=u+0=uVuecV %Z E(r:(;)\:\lljsr;ns)

then O_i = O_é. %1%:44
Proof. We have O_i = O_i — (); — _é + _i - (); 0
Lemma. Letu € V, then0-u = 0.
Proof.
Thus O=u+(—u) = (0-u+u)+ (—u)

= 0-ut (ut (~w)

= 0 -u-+ 6

= 0-u O



Lemma. a) The element —w is unique. Vector Spaces

Definition
b) —u = (—1) - u.

Examples
R™ (columns)
R™ (rows)
RA
VA

Exercises




Lemma. a) The element —w is unique. Vector Spaces
Definition

b) —u=(-1)-w

Examples

R™ (columns)

Proof of part (b). R™ (rows)

A
+ (—=1) - u 4

Exercises

u+(—1)-u =

]
A~ =
}_\o
S + <
|
Z
S




Vector Spaces
Definition
Immediate results

R™ (columns)
Examples S
VA

Exercises




R™ as column vectors

Before examining the axioms in more detail, let us ~ Vector Spaces
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discuss two examples. Immediate results
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R™ as column vectors

Example. Let V' = R" ,considered as column vectors Vector Spaces

Definition
( L1 \ Immediate results
L2

Examples
"= n

R"™ = { : |x17332,...,33n ER} %A(rows)
: kA

\ ajn ) Exercises
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R™ as column vectors

Example. Let V' = R"™ .Then for Vector Spaces
Definition
Immediate results
Examples

L1 Y R™ (columns) |
U = ; U= : cR" and r e R: RA

T, Yn Exercises

Define

1+ Y1 TT1

T T Yo iy,




R™ as column vectors

Example. Let V' = R"™ .Then for Vector Spaces
Definition
Immediate results
Examples

L1 Y1
U = : LU = : eER” and r € R : RA

T n yn Exercises

Note that the zero vector and the additive inverse of u are
given by:
0 — X1




R™ as row vectors
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R™ as row vectors

Remark. R™ can be considered as the space of all row Vector Spaces

Definition
vectors. Immediate results

Examples
R™ (columns)

—
R" = {(x1,...,2,) | x1,..., 2, € R} T —
The addition and scalar multiplication is again given v

Exercises
coordinate wise

(X1, xn) + (Y1, Yn) = (1 + Y1, - oo, T + Yn)

re (X1, ) = (roy, .. rT,)




=  — [ _ . Vector Spaces

Exarr_l)ple._)lf ‘ (%’ 1,3),§=(-1,2,—2)andr 4 Definitor

find x + Yy andr - x. Immediate results
Examples
R™ (columns)
RA
VA
Exercises




Exarrlple._)lf T = (%, 1) 3)7 y_' — (—1, 2, —2) and r = —4 \[;(zc;itr?i:igrﬁ)aces
find x + Yy andr - x. Immediate results

_ Examples
Solution. R™ (columns)

f+y_) — (27173)+(_1727_2) %%:44

(2 _ 1) 1+ 2) 3 — 2) Exercises
(1,3,1)




Exarrlple._)lf T = (%, 1) 3)7 y_' — (—1, 2, —2) and r = —4 \[;(zc;itr?i:igrﬁ)aces
find x + Yy andr - x. Immediate results

_ Examples
Solution. R™ (columns)

f+g — (27173)+(_1727_2) %:44

(2 _ 1) 1+ 2) 3 — 2) Exercises
(1,3,1)

roZ=—4-(2,1,3) = (-8, —4,—12).



Remark. Vector Spaces
Definition

I diat It
(Ila .« o ,ﬂi'n) -+ (O, . ,O) — (I1 -+ O’ oo o T + O) Er:l(r{::;pllzseresu S
R™ (columns)
= (21,0, 20)
RA
So the additive identity is 0 = (0, ..., 0). VA

Exercises

Note also that

O-(xl,...,azn) — (Oazl,...,()a:n)

forall (x1,...,x,) € R™



Vector space of real-valued functions

Example. Let A be the interval [0, 1) and V' be the space of ~ Vector Spaces
efniaon
functions f . A — R,i.e., Immediate results

Examples
V = {f . [O’ ]_) SN R} R™ (columns)

R™ (rows)

=
Define addition and scalar multiplication by

(f‘|_g)(33) — f($)+g(x) xercises
(r-f)x) = rf(z)




Vector space of real-valued functions

Example. Let A be the interval [0, 1) and V' be the space of \[;ec;_to_:_Spaces
eriniton
functions f . A — R,i.e., Immediate results
Examples

V _ {f : [O, 1) SN R} R™ (columns)

R™ (rows)

Define addition and scalar multiplication by Ve

(f‘|_g)(33) — f($)+g(x) xercises
(r-f)x) = rf(z)

For instance, the function f(x) = x* is an element of V" and
So are
g(x) = = + 227, h(x) = cosz, k(z) =e"

We have (f + g)(z) = © + 22* + z*.



Vector space of real-valued functions

Example. Let A be the interval [0, 1) and V' be the space of ~ Vector Spaces
efniaon

functions f . A — R,i.e., Immediate results
Examples
_ . ; R™ (columns)
V = {f : [O? 1) R} R™ (rows)
Define addition and scalar multiplication by V4

Exercises

(F+9)@) = f@)+9)
r-He) = ri@

Remark.(a) The zero element is the function 0 which
associates to each x the number O:

0(z) = Oforallz € [0,1)




Vector space of real-valued functions

Example. Let A be the interval [0, 1) and V' be the space of ~ Vector Spaces

functions f . A — R,i.e., Immediate results
Examples
_ . ; R™ (columns)
V= {f : [O? 1) R} R™ (rows)
Define addition and scalar multiplication by V4

Exercises

(F+9)@) = f@)+9)
r-He) = ri@

Remark.(b) The additive inverse is the function

fiare—f(2)
Proof. (f + (—f))(z) = f(x) — f(x) =0forallxz. O



The vector space V4

Example. Instead of A = [O, 1) we can take any set A # 0. \[;ec;_to_:_Spaces
eriniton
and we can replace R by any vector space V. We set Immediate results
Examples

A __ . R™ (columns)
Ve = {f A — V} R™ (rows)
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and set
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The vector space V4

Example. Instead of A = [0, 1) we can take any set A # (), Vector Spaces
ernituon
and we can replace R by any vector space V. We set Immediate results
Examples
A __ . R™ (columns)
Ve = {f A — V} R™ (rows)
RA
and set

Exercises

multiplication in V' addition in V/




The vector space V4

Example. Instead of A = [O, 1) we can take any set A # 0. \[;ec;_to_:_Spaces
eriniton
and we can replace R by any vector space V. We set Immediate results
Examples

VA _ {f A V} R™ (columns)

R™ (rows)
RA
and set

(f+9)(z) = flz)+g(z)
(r-f)@) = rf(z)

Remark.(a) The zero element is the function which
associates to each x the vector O:

0:72+—0
Proof

(f+0)(z) = flz)+0(z)




Remark. Vector Spaces

(b) Here we prove that + is associative: E&EE% results
Proof. Let f,g,h € VA, Then ﬁg Efr:;::sr;ms)
(f +9)+hl@) = (f+9)(x)+h(x)
— (f(x) + g(x)) + h(x)
= f(x)+ (g(x) + h(x)) associativity in}/
= flz)+ (g +h)(=)
= [f+(g+h)l(x)




Exercises

Let V = R*. Evaluate the following: eolo e hates
Immediate results
a) (2,—1,3,1) + (3,—1,1,—1). II%Rxamples
™ (columns)
b) (2, 1, 5, —1) — (3, ]., 2, —2) RZ(rows)
R
c) 10 (2,0, —1,1). o

d) (1,-2,3,1) +10-(1,—1,0,1) — 3-(0,2,1, —2). -

e) 1 - (1,0,0,0) + 22 - (0,1,0,0) + x5 - (0,0,1,0) +
z4 - (0,0,0,1).
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Subspace of a vector space

In most applications we will be working with a Subspaces

. :
subset IV of a vector space V such that IV itself IS Examples
a vector space. Subspaces of R*

Subspaces of R3
Exercises




Subspace of a vector space

In most applications we will be working with a Subspaces

e
subset W of a vector space V such that IV itself iS  Examples
a vector space Subspaces of R?
' Subspaces of R3

Exercises

Question: Do we have to test all the axioms to find
out if IV Is a vector space?




Subspace of a vector space

In most applications we will be working with a SIBORERES
subset IV of a vector space V' such that WV itself is _Examples

a vector space. Subspaces of R”

Subspaces of R3
Exercises

Question: Do we have to test all the axioms to find
out if IV Is a vector space?

The answer is NO.




Subspace of a vector space

In most applications we will be working with a Subspaces

. :
subset IV of a vector space V' such that 1 itself IS Examples
a vector space. Subspaces of R*

Subspaces of R3
Exercises

Question: Do we have to test all the axioms to find
out if IV Is a vector space?

The answer is NO.

Theorem. Let W # () be a subset of a vector space V.
Then W, with the addition and scalar multiplication as V/, is a
vector space if and only if:

s ut+veWtraluveW oW+ W CW)
mr-u € Wiorallr € Randallu € W (or RW C W).



Subspace of a vector space

In most applications we will be working with a Subspaces

. :
subset IV of a vector space V' such that 1 itself IS Examples
a vector space. Subspaces of R*

Subspaces of R3
Exercises

Question: Do we have to test all the axioms to find
out if IV Is a vector space?

The answer is NO.

Theorem. Let W # () be a subset of a vector space V.
Then W, with the addition and scalar multiplication as V/, is a
vector space if and only if:

s ut+veWtraluveW oW+ W CW)
mr-u € Wiorallr € Randallu € W (or RW C W).

In this case we say that 1V Is a subspace of V.



Proof. Assume that W + W C W and RIW C V. Subspaces

:
To show that 11/ is a vector space we have to show that all the  Examples
. . 2
10 axioms hold for /. But that follows because the axioms gﬁgzz:zzz 2: %3
hold for V' and WV is a subset of V: Exercises

|:| OEENEN




Proof. Assume that W + W C W and RW C W.
To show that 11/ is a vector space we have to show that all the
10 axioms hold for 11/, But that follows because the axioms
hold for V" and IV is a subset of V:
= Al (Commutativity of addition)
Foru,v € W, we have u + v = v + u. This is because
u, v are also in V' and commutativity holds in V.

Subspaces

Examples
Subspaces of R?

Subspaces of R3
Exercises




Proof. Assume that W + W C W and RW C W.
To show that 11/ is a vector space we have to show that all the
10 axioms hold for 11/, But that follows because the axioms
hold for V' and W is a subset of V/:
= Al (Commutativity of addition)
Foru,v € W, we have u + v = v + w. This is because
u, v are also in V' and commutativity holds in V.

= A4 (Existence of additive identity)
Take any vector . € V. Then by assumption

0-u=0¢W.Hence ) € .

Subspaces

Examples
Subspaces of R?

Subspaces of R3
Exercises




Proof. Assume that W + W C W and RIW C V. Subspaces
To show that 1V is a vector space we have to show that all the
10 axioms hold for V. But that follows because the axioms g‘dgzgzz Z: ﬁz
hold for V" and IV is a subset of V: Exercises
= Al (Commutativity of addition)

Foru,v € W, we have u + v = v + w. This is because

u, v are also in V' and commutativity holds in V.

= A4 (Existence of additive identity)
Take any vector . € V. Then by assumption

0-u=0¢W.Hence ) € .

= A5 (Existence of additive inverse)
fu € Wthen —u=(=1)-uecW.

|:| oooOom



Proof. Assume that W + W C W and RIW C V. Subspaces
To show that 1V is a vector space we have to show that all the
10 axioms hold for V. But that follows because the axioms z‘dgzgzzgz Z: ﬁi
hold for V" and IV is a subset of V: Exercises
= Al (Commutativity of addition)

Foru,v € W, we have u + v = v + w. This is because

u, v are also in V' and commutativity holds in V.

= A4 (Existence of additive identity)
Take any vector . € V. Then by assumption

0-u=0¢W.Hence ) € .

= A5 (Existence of additive inverse)
fu € Wthen —u=(=1)-uecW.

= One can check that the other axioms follow in the same way.
[]



Examples

Usually the situation Is that we are given a vector Subspaces
. . Definition
space V and a subset of vectors W satisfying
onC c c 2
some conditions and we need to see if W is a Subspaces of R

Subspaces of R3

SUbSpace Of V Exercises




Examples

Usually the situation Is that we are given a vector Subspaces
. . Definition
space V' and a subset of vectors 1V satisfying
oC c c 2
some conditions and we need to see if W is a gzgzgzz: ﬁ?’
SUbSpace Of V Exercises

W = {v € V : some conditions on v}




Examples

Usually the situation Is that we are given a vector Subspaces
. . Definition
space V' and a subset of vectors 1V satisfying
oC c c 2
some conditions and we need to see if W is a Subspaces of R

Subspaces of R3

SUbSpace Of V Exercises

W = {v € V : some conditions on v}

We will then have to show that

u,veW U+ v

Satisfy the same conditions.
re R r-Uu




Lines through the origin as subspaces of R?

Exam ple. Subspaces
Definition
%

]R2 Examples
4%

’
{(33, y) |y — k:lj'} for a given k Subspaces of R3

Exercises
line through (0, 0) with slope k.




Lines through the origin as subspaces of R?

Example. Subspaces
Definition
L 2 Examples
Vo= R,
_ _ : Subspaces of R3
W = {(z,y)|ly = kx} for a given k Subspace

= line through (0, 0) with slope k.

To see that TV is in fact a subspace of R?:
Letu = (x1,9y1), v = (x2,y2) € W. Then y; = kx; and
Yo = kg




Lines through the origin as subspaces of R?

Example. Subspaces
Definition
L 2 Examples
Vo= R
_ _ : Subspaces of R3
W = {(z,y)|ly = kx} for a given k Subspace

= line through (0, 0) with slope k.

To see that TV is in fact a subspace of R?:

Letu = (x1,9y1), v = (x2,y2) € W. Then y; = kx; and
Yo = kg

and

U+ v

(21 + 22, y1 + Y2)
(1'1 =F J5) - ]CCCl = ]CCCQ)
(1 + @2, k(71 + 22)) €W



Lines through the origin as subspaces of R?

Example. Subspaces
Definition
L 2 Examples
Vo= R
_ _ : Subspaces of R3
W = {(z,y)|ly = kx} for a given k Subspace

= line through (0, 0) with slope k.

To see that 11/ is in fact a subspace of R?:

Letu = (x1,9y1), v = (x2,y2) € W. Then y; = kx; and
Y2 = ko

and

u+v = (14 T2, Y1 + Y2)

— (.Tl —+ J5) - ]CCCl -+ ]CCCQ)
= (%1 -+ G5y k($1 —+ $2)) - W

Similarly, 7 - u = (ray,ryr) = (roy, kraey) € W



Subspaces of R*

So what are the subspaces of R?? el sives
Examples

Subspaces of R

Subspaces of R3
Exercises




Subspaces of R*

So what are the subspaces of R?? el sives
1. {O} Examples

Subspaces of R3
Exercises




Subspaces of R*

So what are the subspaces of R?? el sives
1. {O} Examples
. . ubspaces of R
2. Lines. But only those that contain (0,0). Why?
Exercises



Subspaces of R*

So what are the subspaces of R?? el sives
1. {O} Examples

. . ubspaces of R
2. Lines. But only those that contain (0,0). Why?
3. R2 Exercises



Subspaces of R*

So what are the subspaces of R?? el sives
1. {O} Examples
. . ubspaces of R
2. Lines. But only those that contain (0,0). Why?
Exercises
3. R?

Remark (First test). If IV is a subspace, then 0 cW.
Thus: If 0 ¢ W, then W is not a subspace.



Subspaces of R*

So what are the subspaces of R?? Subspaces
1. {O} Examples
. . ubspaces of R
2. Lines. But only those that contain (0,0). Why?
Exercises
3. R?

Remark (First test). If IV is a subspace, then 0 cW.
Thus: If 0 ¢ W, then W is not a subspace.

This is why a line not passing through (0,0) can
not be a subspace of R>.



A subset of R“ that is not a subspace

Warning. We can not conclude from the fact that 0 e W, that ggﬁﬁﬁ%cnes

W is a subspace. Examples

Subspaces of R3
Exercises




A subset of R“ that is not a subspace

Warning. We can not conclude from the fact that 0 € W, that ~ 3ubspaces

Definition
W is a subspace. Examples
' : 2. Subspaces of R3
Example. Lets consider the following subset of R“:

Exercises

W = {(z,y)|z* —y* = 0}
Is W a subspace of R?? Why?




A subset of R“ that is not a subspace

Warning. We can not conclude from the fact that 0 € WV, that ggﬁﬁﬁ%cnes
W is a subspace. Examples

Subspaces of R3

: : 2.
Example. Lets consider the following subset of IR“: Exercises

W = {(z,y)|z* —y* = 0}
Is W a subspace of R?? Why?
The answer is NO.

We have (1,1) and (1,—1) € W but
(1,1) 4+ (1,—1) = (2,0) ¢ W.ie., W is not closed under
addition.



A subset of R“ that is not a subspace

Warning. We can not conclude from the fact that 0 € 1/, that ggﬁﬁﬁ%cnes

W is a subspace. Examples

_ : 2. Subspaces of R3
Example. Lets consider the following subset of IR“: Exercises

W = {(z,y)|z* —y* = 0}
Is W a subspace of R?? Why?

The answer i1s NO.

We have (1,1) and (1,—1) € W but
(1,1) 4+ (1,—1) = (2,0) ¢ W.ie., W is not closed under
addition.

Notice that (0,0) € W and W is closed under multiplication
by scalars.



Subspaces of R’

What are the subspaces of R>?

Subspaces
Definition
Examples
Subspaces of R?

Subspaces of R
Exercises




Subspaces of R’

What are the subspaces of R>?
1. {0} and R".

Subspaces
Definition
Examples
Subspaces of R?

Subspaces of R
Exercises




Subspaces of R’

What are the subspaces of R3? Sz
1. {O} and R3. Examples
3 . . Subspaces of R?
2. Planes: A plane W C R° is given by a normal
vector (a, b, c) and its distance from (0, 0,0) or Exercises

W = {(z,y,2)| az + by + ¢z = p)

condition on (x, y, z)




Subspaces of R’

What are the subspaces of R3? SulbeEs
1. {O} and Rg. Examples
.. Sub f R?
2. Planes: A plane W C R3 is given by a normal
vector (a, b, c) and its distance from (0, 0,0) or Exercises

W = {(z,y,2)| ax + by + cz = p}

condition on (x, y, z)

For I to be a subspace, (0,0,0) must be in W
by the first test. Thus

p=a-0+b6-0+¢c-0=0

or




Planes containing the origin

A plane containing (0,0, 0) is indeed a subspace of
RS,

Subspaces
Definition
Examples
Subspaces of R?

Subspaces of R
Exercises




Planes containing the origin

A plane containing (0,0, 0) is indeed a subspace of Subspaces
RS. Examples
Subspaces of R?

Proof. Let (x1, 41, 21) and (22, Y2, 22) € W. Then

Exercises

ary +by; +czy = 0
ary +bys +czg = 0




Planes containing the origin

A plane containing (0,0, 0) is indeed a subspace of  Subspaces

3 Definition

R . Examples
Subspaces of R?

Proof. Let (1,1, z1) and (22, Y2, z2) € W. Then

Exercises

ar; +by; +czy = 0
ary +bys +czg = 0

Then we have
CL(CI?l + 5132) + b(y1 + y2) + C(Zl + ZQ)

— SCL% + by; + Cle—FSCLIQ + byy + 0222

0 0
=0



Planes containing the origin

A plane containing (0,0, 0) is indeed a subspace of  Subspaces

3 Definition
R . Examples
Subspaces of R?
Proof. Let (1,1, z1) and (22, Y2, z2) € W. Then

Exercises

ar; +by; +czy = 0
ary +bys +czg = 0

Then we have
CL(CI?l + 5132) + b(y1 + y2) + C(Zl + ZQ)

— SCLZIH + by; + Cle—FSCL%Q + byy + 0222
0 0

=0

and a(rxy) + b(ry1) +c(rz;) = r(ary + by + ¢21)
— O [] oooo



Summary of subspaces of

Ri%

1. {0} and R".

2. Planes containing (0,0, 0).

Subspaces
Definition
Examples
Subspaces of R?

Subspaces of R
Exercises




Summary of subspaces of R’

1. {O} and RB. Subspaces
Definition

Examples

Subspaces of R?

3. Lines containing (0,0, 0). Exercises

(Intersection of two planes containing (0, 0,0))

2. Planes containing (0,0, 0).




Exercises

Determine whether the given subset of R” is a Subspaces
. erinituon
subspace or not (Explain): Examples
Subspaces of R?
= 2 = Subspaces of R3
a) W =1{(z,y) € RY| zy = 0}.

b) W = {(z,y,2) € R®| 3z + 2y* + z = 0}.
c) W= {(z,y,2) € R} 22 + 3y — z = 0}.
d) The set of all vectors (z1, x5, z3)

satisfying
2$3 — 1 — 10332




Exercises

Determine whether the given subset of R" is a Subspaces
efniaon

subspace or not (Explain): Examples

Subspaces of R?

e) The set of all vectors in R* satisfying the system  SuspacesofR%
- :
of linear equations

201 + 319 + 524 = 0

1+ 29 —3r3 = 0

f) The set of all points (z1, zs, 3, 74) € R*
satisfying

T+ 229 + 323 + 14 = —1



C(I)

CH(I)
cr(I)
Po(I)

Chapter 3 Indicator functions

XANB
X AU B (disjoint)
XAUB

Vector Spaces of Functions




Space of Continuous Functions

Let / C R be an interval. Spaces of Functions
oy |
CH(I)
cr(I)
PC(I)
Indicator functions

XANB
X AU B (disjoint)
XAUB



Space of Continuous Functions

Let / C R be an interval. Then I is of the form (for ~ Spaces of Functions

C (I
some a < b) gl?l)—
( {z €R|a<x<b}, anopen interval; g(](é))
I = {r e Rla <x<b}, aclosed interval; IXndicatorfunctions
— ANB
{37 - R a < x< b} X AuB (disjoint)
B XAUB
. {ZEER CL<ZC§b}.




Space of Continuous Functions

Let / C R be an interval. Then recall that the Spaces of Functions

space of all functions f : I — R Is a vector space. I)—

We will now list some important subspaces: cr(I)
pPC(I)
Indicator functions

XANB
X AuB (disjoint)
XAUB



Space of Continuous Functions

Let ] C R be an interval. Then recall that the Spaces of Funcions
space of all functions f : I — R is a vector space. 51?1)_
We will now list some important subspaces: C’“((I))

PC(I

Example (1). Let C'(]) be the space of continuous functions. ~ eeaeriuncions

If f and g are continuous, so are the functions f + ¢ and X AuB (disjoint)
i XAUB
rf (r € R). Hence C(I) is a vector space.



Space of Continuous Functions

Let ] C R be an interval. Then recall that the Spaces of Funcions
space of all functions f : I — R is a vector space. 51?1)_
We will now list some important subspaces: C’“((I))

PC(I

Example (1). Let C'(]) be the space of continuous functions. ~ eieariuncions

If f and g are continuous, so are the functions f + ¢ and X AuB (disjoint)
i XAUB
rf (r € R). Hence C(I) is a vector space.

Recall, that a function is continuous, Iif the graph has no gaps.
This can be formulated in different ways:



Space of Continuous Functions

Let ] C R be an interval. Then recall that the Spaces of Funcions
space of all functions f : I — R is a vector space. 51?1)_
We will now list some important subspaces: C?‘((I))

PC(I

Example (1). Let C'(]) be the space of continuous functions. ~ eieariuncions

If f and g are continuous, so are the functions f + ¢ and X AuB (disjoint)
i XAUB
rf (r € R). Hence C(I) is a vector space.

Recall, that a function is continuous, Iif the graph has no gaps.
This can be formulated in different ways:

a) Letzg € [ andlet e > 0. Then there exists a 0 > 0 such
thatforallxz € I N (zg — 9,29 + ) we have

[f(2) = fzo)] < e

This tells us that the value of f at nearby points is
arbitrarily close to the value of f at . Sooooom



Space of Continuous Functions

Let ] C R be an interval. Then recall that the Spaces of Funcions
space of all functions f : I — R is a vector space. 51?1)_
We will now list some important subspaces: C’“((I))

PC(I

Example (1). Let C'(]) be the space of continuous functions. ~ eieariuncions

If f and g are continuous, so are the functions f + ¢ and X AuB (disjoint)
i XAUB
rf (r € R). Hence C(I) is a vector space.

Recall, that a function is continuous, Iif the graph has no gaps.
This can be formulated in different ways:

b) A reformulation of (a) Is:

lim f(z) = f(2o)

T—xQ



Space of continuously differentiable functs.

Example (2). The space C'*(I). Here we assume that [ is 25?;)93 of Functions
OpeEn. (o520 ) I
cr(I)
PO(I)
Indicator functions

XANB
X AU B (disjoint)
XAUB




Space of continuously differentiable functs.

Example (2). The space C*(I). Here we assume that [ is g)g‘;)es aff P Bois
open. Recall that f is differentiable at x if Cr)
Cr(I)
. f(x) = f(=o . flwo+h)— flxo PO(T
lim ( ) ( ) = lim ( ) ( ) —. f/<x0) Indicgtc?rfunctions

X AU B (disjoint)
exists. XAUB




Space of continuously differentiable functs.

Example (2). The space C'*(I). Here we assume that [ is ?{J‘IC)GS of Functions
open. Recall that f is differentiable at x if Ty e
cr (1)
. f(x) = f(wo) .. flwo+h)—f(zo) PC(I)
lim = lim =: f'(29)  indicator functions
L—T0 L — Lo h—0 h XANB
X AU B (disjoint)
exists.If f/(xq) exists for all xq € I, then we say that f is XAUB
differentiable on /. In this case we get a new function on /
z — f'(z)

We say that f is continuously differentiable on [ if ' exists
and is continuous on /.




Space of continuously differentiable functs.

Example (2). The space C'*(I). Here we assume that [ is ?{J‘IC)GS of Functions
open. Recall that f is differentiable at x if Ty e
cr (1)
. f(x) = f(wo) .. flwo+h)—f(zo) PC(I)
lim = lim =: f'(29)  indicator functions
L0 L — o h—0 h XANB
X AU B (disjoint)
exists. We say that f is continuously differentiable on I if f’ XAUB

exists and is continuous on /. Recall that if f and g are
differentiable, then so are

f+gandrf (r € R)
moreover

(f+9)=f+4g; (rf) =rf



Space of continuously differentiable functs.

Example (2). The space C'*(I). Here we assume that [ is
open. Recall that f is differentiable at x if

lim f(z) — f(xo) ~ im f(xo +h) — f(wo)

z—xo T — X h—0 h

=: f'(20)

exists. We say that f is continuously differentiable on /[ if f’
exists and is continuous on /. Recall that if f and g are
differentiable, then so are

f+gandrf (r € R)
moreover

(f+9)=f+4g; (rf) =rf

As '+ ¢’ and r f’ are continuous by Example (1), it follows

that C'*(1) is a vector space.

Spaces of Functions

C(I)

(.

cr(I)
PC(I)
Indicator functions

XANB
X AU B (disjoint)
XAUB



A continuous but not differentiable function

Let f(x) = |z| for x € R. Then f is continuous on R gp(a;)es of Functions
but it IS not differentiable on R. O —
C"(I)
PC(I)
Indicator functions
XANB
XAuB (disjoint)
XAUB




A continuous but not differentiable function

Let f(x) = |z| for x € R. Then f is continuous on R %pé:\;)es of Functions

but it Is not differentiable on R. We show that /IS ey
not differentiable at xy, = 0. CT(I)
PC(I)
Indicator functions
XANB

X AU B (disjoint)
XAUB




A continuous but not differentiable function

Let f(x) = |z| for x € R. Then f is continuous on R gpgm;)es of Functions

but it_is not c_lifferentiable on R. We showthat /IS  reussms
not differentiable at xy, = 0. For A > 0 we have gc(é))
f(xO _|_ h) L f(xO) _ |h| L O _ ﬁ _ 1 Ianlélicr:jag)rfunctions
A h h X AUB (disjoint)
XAUB
hence

lim f(xo +h) — f(wo)

=1
h—0* h




A continuous but not differentiable function

Let f(x) = |z| for x € R. Then f is continuous on R
but it is not differentiable on R. We show that f is
not differentiable at xy, = 0. For A > 0 we have

flao+h) = f(zo) _ Bl=0 _h

h h EZl
hence
lim LT TR = f(Z0)
h—0+ h
But if h < 0, then
flzo+h) — f(zo) _ |h|_O:__h:_1

hence

h—0— h

Spaces of Functions
C(I)
-
c(I)

PC(I)

Indicator functions

XANB
X AU B (disjoint)
XAUB




A continuous but not differentiable function

Let f(x) = |z| for x € R. Then f is continuous on R Spaces of Functons
but it is not differentiable on R. We show that f is _

not differentiable at xy, = 0. CT(I)
TherEfore, Iﬁcﬁ:gg functions

XANB

im f(x() + h) o f(xO) %jig (disjoint)
h—0 h

does not exist. []




Space of r-times continuously diff. functs.

Example (3). The space C" (1) Spaces of Functions
. C(I)
Let [ = (a, b) be an open interval. and let ()
re N={1,2,3,---}. ()
PC()
Definition. The function f : / — R is said to be 'an;a:rfunctlons
r-times continuously differentiable if all the derivatives ijug (disjoint)
U

e f(r) exist and f(r) : I — R is continuous.

We denote by C" (1) the space of r-times continuously
differentiable functions on I. C" (1) is a subspace of C'(]).




Space of r-times continuously diff. functs.

Example (3). The space C" (1) Spaces of Functions
. C(I)
Let [ = (a, b) be an open interval. and let ()
re N={1,2,3,---}. ()
PC()
Definition. The function f : / — R is said to be 'an;asrfunctlons
r-times continuously differentiable if all the derivatives ijug (disjoint)
U

e f(r) exist and f(r) : I — R is continuous.

We denote by C" (1) the space of r-times continuously
differentiable functions on I. C" (1) is a subspace of C'(]).

We have

cri S e ¢ --- S CMI) S o).



C(I) # " Y(I)

We have seen that C*'(I) # C(I). Let us try to find gp?;)es of Functions
a function that is in C*(I) but not in C*(I). el

) |
PC(I)

Indicator functions
XANB

X AU B (disjoint)
XAUB




C(I) # " Y(I)

We have seen that C*'(I) # C(I). Let us try to find gpg)es of Functions
a function that is in C*(I) but not in C*(I). el

; _ [0 I
Assume 0 € I and let f(x) = x3. Then fis PC(I)

Indicator functions

differentiable and XANB
, X AuB (disjoint)
f’(l‘) _ %Jﬁ XAUB

which Is continuous.




C(I) # " Y(I)

We have seen that C*'(I) # C(I). Let us try to find gpé:\;)es of Functions
a function that is in C*(I) but not in C*(I). el

; _ [0 I
Assume 0 € I and let f(x) = x3. Then fis PC(I)

Indicator functions

differentiable and XANB
, X AuB (disjoint)
f’(l‘) _ gxg XAUB

which IS continuous.

If x # 0, then f’ is differentiable and

f!(z) = Fa~s



Butfor x =0 we have Spaces of Functions
2 c()
. f'(h)—=0 . 5hs 5 . G (I)
lim —lim—- — =1lim—- h 3 c () ]
h—0 h h—03 h h—0 3 PC(I)
Indicator functions
which does not exist. XANB

X AU B (disjoint)
XAUB




But for x = 0 we have

L f() =0 5hs . 5
h1£r(1) h h—03 h h—0 3

which does not exist.
Remark. One can show that the function

3r—1

fla) =
isin C"~'(R), but notin C"(R).

Spaces of Functions
C(I)

C(I)
)
PC(I)

Indicator functions

XANB
X AU B (disjoint)
XAUB




Butfor x =0 we have Spaces of Functions
C(I)

'(h) — 0 5 h3 5 CH(I)
lim f ( ) ] — =lim— h 3 o) |
h—0 h h—03 h h—0 3 PC(I)
] . Indicator functions
which does not exist. XAnB
X AuB (disjoint)
XAUB

Remark. One can show that the function

3r—1

fla) =
isin C"~'(R), but notin C"(R).

Thus, as stated before, we have

GO &GO G C).




Piecewise-continuous functions

Example (4). Piecewise-continuous functions Spaces of Functions
- . . C(1
Definition. Let [ = |a,b). Afunction f : [ — R is called Cg(})
piecewise-continuous if there exists finitely many points Cr(I)
P
— .. _ Indicator functions
a=xp < x1 < <x,=0 N
X AuB (disjoint)
such that f is continuous on each of the sub-intervals XAUB

<$i7$i+1) fOfi:O,l,'°' ,n—l.




Piecewise-continuous functions

Example (4). Piecewise-continuous functions

Definition. Let [ = |a,b). Afunction f : [ — R is called
piecewise-continuous if there exists finitely many points

a=x0< 11 <---<x,=0>

such that f is continuous on each of the sub-intervals
Cﬁuiﬁ¢+1)f0ri ::(),1,'°' s — 1.

Remark. If f and g are both piecewise-continuous, then
f+gandrf (r € R)
are piecewise-continuous.

Spaces of Functions
C(I)

C(I)

c"(I)
PC)
Indicator functions

XANB
X AU B (disjoint)
XAUB




Piecewise-continuous functions

Example (4). Piecewise-continuous functions Spaces of Functions
- . . C(1
Definition. Let [ = |a,b). Afunction f : [ — R is called Cg(})
piecewise-continuous if there exists finitely many points Cr(I)
P
— .. _ Indicator functions
a=xp < x1 < <x,=0 N
X AuB (disjoint)
such that f is continuous on each of the sub-intervals XAUB

(337;7331'4_1) fOfi:O,l,'°' ,n—l.

Remark. If f and g are both piecewise-continuous, then

f+gandrf (r € R)
are piecewise-continuous.

Hence the space of piecewise-continuous functions is a vector
space. Denote this vector space by PC([).



The indicator function x4

Important elements of PC'(1) are the indicator Spaces of Functions

functions y 4, where A C I a sub-interval. g%
cr (1)
PC(I)

XANB
X AU B (disjoint)
XAUB




The indicator function x4

Important elements of PC'(I) are the indicator Spaces of Functions
. : C(I)
functions y 4, where A C [ a sub-interval. cl(n)
: Cc (I
Let A C R be a set. Define p(,*((z))

Indicator functions
. ANB
1, fze A X

X AuB (disjoint

XA(x) — { O’ |fx ¢ A XAUB




The indicator function 4

Important elements of PC'(I) are the indicator Spaces of Functions
functions x4, where A C I a sub-interval. Cg(})
: Cc (I
Let A C R be a set. Define pc((z))
xa(z) = 1, fzeA NAn disjoiny
0, ifzdA rAuE
So the values of y 4 tell us whether z isin A or

not.
If x € A, then y4(z) =1and if z ¢ A, then

xa(z) = 0.




The indicator function 4

Important elements of PC'(I) are the indicator Spaces of Functions
. . C(I)
functions y 4, where A C I a sub-interval. cl(n)
: C" (I
Let A C R be a set. Define pc((z))
1, ifzeA A disioin
xa(z) = . g
0, ifz ¢ A
So the values of y 4 tell us whether z isin A or
not.
If x € A, then y4(z) =1and if z ¢ A, then
xa(x) = 0.

We will work a lot with indicator functions so let us
look at some of their properties.



Some properties of x4

Lemma. Let A, B C I. Then Spaces of Functions
c(I)
1
Xans () = Xa(@) x5(v) ORI
.PCKI)
Indicator functions

X AU B (disjoint)
XAUB




Some properties of x4

Lemma. Let A, B C I. Then Spaces of Functions
C(I)
1
Xang(z) = xa(z) x5(z) () grgg
Proof. We have to show that the two functions fjﬁg{; functions

r+— Xang(r) and z — xa(x)xp(x) Xup (disjoint
XAUB

take the same values at every point x € /. So lets evaluate
both functions:



Some properties of x4

Lemma. Let A, B C I. Then Spaces of Functions
C(I)
1
Xang(z) = xa(z) x5(z) () grgg
Proof. We have to show that the two functions fjﬁg{; functions

r+— Xang(r) and z — xa(x)xp(x) Xup (disjoint
XAUB

take the same values at every point x € /. So lets evaluate
both functions:

fx € Aand x € B, thatisx € AN B, then
Xang(x) = 1 and,



Some properties of x4

Lemma. Let A, B C I. Then Spaces of Functions
C(I)
1
XanB(T) = xa(z) xB() (%) g,ﬁg

. PCO(I
Proof. We have to show that the two functions .ndicﬁm?r functions

r+— Xang(r) and z — xa(x)xp(x) Xup (disjoint
XAUB

take the same values at every point x € /. So lets evaluate
both functions:

fx € Aand x € B, thatisx € AN B, then
Xang(x) = 1 and,

since xya(x) = 1 and yp(x) = 1, we also have
xa(z)xs(r) = 1.
Thus, the left and the right hand sides of () agree.



Some properties of x4

Lemma. Let A, B C I. Then Spaces of Functions
C(I)
1
Xang(z) = xa(z) x5(z) () grgg
Proof. We have to show that the two functions fjﬁg{; functions

r+— Xang(r) and z — xa(x)xp(x) Xup (disjoint
XAUB

take the same values at every point x € /. So lets evaluate
both functions:

On the other hand, if ¢ A N B, then there are two
possibilities:



Some properties of x4

Lemma. Let A, B C I. Then Spaces of Functions
C(I)
1
XanB(T) = xa(z) xB() (%) grgg

. PCO(I
Proof. We have to show that the two functions .ndicﬁm?r functions

r+— Xang(r) and z — xa(x)xp(x) Xup (disjoint
XAUB

take the same values at every point x € /. So lets evaluate
both functions:

On the other hand, if ¢ A N B, then there are two
possibilities:
= x ¢ Athen ya(z) =0,s0 xa(x)xs(z) =0.



Some properties of x4

Lemma. Let A, B C I. Then Spaces of Functions
C(I)
1
XanB(T) = xa(z) xB() (%) g,ﬁg

. PCO(I
Proof. We have to show that the two functions .ndicﬁm?r functions

r+— Xang(r) and z — xa(x)xp(x) Xup (disjoint
XAUB

take the same values at every point x € /. So lets evaluate
both functions:

On the other hand, if ¢ A N B, then there are two
possibilities:

= x ¢ Athen ya(z) =0,s0 xa(x)xs(z) =0.

= x ¢ Bthen xg(z) =0,s0 xa(x)xs(z) =0.

It follows that

0 = Xxans(2) = xa(z)xs(z) O



Some properties of x4

What about x 4,57 Can we express it in terms of %p?;)es of Functions
XA1 XB? Cl(I)
Cr(I)
PC(I)
Indicator functions
XANB

XAUB




Some properties of x4

What about x 4,57 Can we express it in terms of gp?;)es of Functions
XA1 XB’) Cl(I)
If A and B are disjoint, thatis AN B = () then CT((I))
PC(I
:XAUB(x):::XA(ZO'+fXB(x)- Indicator functions

XANB
X AU B (disjoint)

XAUB




Some properties of x4

What about x 4,57 Can we express it in terms of gp(a;)es of Functions
XA1 XB’) Cl(I)

If A and B are disjoint, thatis A N B = () then gc((fl))

:XAUB(x)::;XA(Q»-+ﬁXB(x)_ Indicator functions

XANB
:
Let us prove this: XAUB

 Ifz ¢ AUB,thenx ¢ Aand z ¢ B. Thus the
LHS (left hand side) and the RHS (right hand
side) are both zero.




Some properties of x4

What about x 4,57 Can we express it in terms of gp(a;)es of Functions
XA1 XB’) Cl(I)
If A and B are disjoint, thatis A N B = () then gc((fl))

:XAUB(x)::;XA(Q»-+ﬁXB(x)_ Indicator functions

XANB
:
Let us prove this: XAUB

 Ifz ¢ AUB,thenx ¢ Aand z ¢ B. Thus the
LHS (left hand side) and the RHS (right hand
side) are both zero.

s If 2 € AU B then either




Some properties of x4

What about x 4,57 Can we express it in terms of st(a;)es of Functions
XA1 XB’) Cl(I)
If A and B are disjoint, thatis A N B = () then gC((II))

:XAUB<x)::;XA(lﬁ'+fXB<$). Indicator functions

XANB
:
Let us prove this: XAUB

 Ifz ¢ AUB,thenx ¢ Aand z ¢ B. Thus the
LHS (left hand side) and the RHS (right hand
side) are both zero.

s If 2 € AU B then either

0 x 1S In A but not in B. In this case
Xaup(z) =1and xa(z) + xp(z) =14+0=1



Some properties of x4

What about x 4,57 Can we express it in terms of SCpF;)es of Functions
XA1 XB’) Cl(I)
If A and B are disjoint, thatis A N B = () then gc((fl))

Indicator functions

XauB(z) = xa(x) + xB(2). s
:
Let us prove this: XAUB

 Ifz ¢ AUB,thenx ¢ Aand z ¢ B. Thus the
LHS (left hand side) and the RHS (right hand
side) are both zero.

s If 2 € AU B then either

0z 1S In A but not In B. In this case
Xaug(xr) =1and ya(z) + xg(z) =1+0=1
or
0z IS In B but not in A. In this case

Xaug(z) =1and x4(z)+ xg(r) =0+1=1 [] ocoooos



Some properties of x4

Th us we have’ ?(a;)es of Functions
If AN B =0, then xaur(x) = xa(z) + x5(z). cl(n)
Cr(I)
PC(I)
Indicator functions

XANB
X Au B (disjoint)

[
AA ».




Some properties of x4

Thus we have’ ?(a;)es of Functions
If AN B =0, then xaug(x) = xa(z) + x5(2). cl(1)
. cr(I)
Now, what if A N B # ()? POII)
Indicator functions

XANB
X Au B (disjoint)

[
AA ».




Some properties of x4

Thus we have’ ?(a;)es of Functions
If AN B = @, then XAuB(JJ) — XA(CU) + XB(CU)- CY(I)
. cr(I)
Now, what if A N B # ()? POII)
Indicator functions
Lemma. Xxaup(T) = xa(x) + XB(T) — XanB(T). igﬂg (disjoint)

[
AA ».



Some properties of x4

Thus we have’ ?(a;)es of Functions
If AN B =0, then xaug(x) = xa(z) + x5(2). (D
: cr(I)
Now, what if A N B # ()? POID)
ndicator functions
Lemma. Xaup(z) = xa() + xB(Z) — xanB(T). igﬂg (disjoint)
Proof. S
= If x ¢ AU B, then both of the LHS and the RHS take the
value 0.



Some properties of x4

Thus we have’ ?&c)es of Functions
If AN B =0, then xaug(x) = xa(z) + x5(2). (D
: (1)
Now, what if AN B # (? POID)
ndicator functions
Lemma. XauB(T) = Xa(®) + x5(2) — Xans(2). §j§§ (disjoint)
Proof. i
= If x ¢ AU B, then both of the LHS and the RHS take the
value 0.

m If x € AU B, then we have the following possibilities:



Some properties of x4

Thus we have’ ?(alc)es of Functions
If AN B =0, then xaug(x) = xa(z) + x5(2). (D
: (1)
Now, what if AN B # (? POID)
ndicator functions
Lemma. XauB(T) = Xa(®) + x5(2) — Xans(2). iﬁjﬂg (disjoint)
Proof. i
= If x ¢ AU B, then both of the LHS and the RHS take the
value 0.

m If x € AU B, then we have the following possibilities:
1. Ifx € A, x ¢ B, then

xaus(z) =1
xa(@) +x5(x) —xanB=1+0-0=1



Some properties of x4

Thus we have’ 25)(8.[0)68 of Functions
If AN B =0, then xaug(x) = xa(z) + x5(2). (D
: (1)
Now, what if AN B # (? POID)
ndicator functions
Lemma. XauB(T) = Xa(®) + x5(2) — Xans(2). iﬁjﬂg (disjoint)
Proof. i
= If x ¢ AU B, then both of the LHS and the RHS take the
value 0.

m If x € AU B, then we have the following possibilities:
1. Ifx € A, x ¢ B, then

xaus(z) =1
xa(x) + xB(x) — xanp=1+0-0=1
2. Similarly for the case x € B, = ¢ A: LHS equals the
RHS.



Some properties of x4

Thus we have,
If AN B =0, then xaug(x) = xa(z) + x5(2).

Now, what if AN B # ()?

Lemma. xaur(z) = xa(x) + xB(x) — xanB(T).

Proof.

= If x ¢ AU B, then both of the LHS and the RHS take the
value 0.

m If x € AU B, then we have the following possibilities:
3. Ifx € AN B, then
xaus(z) =1
xa(x) +x5(x) —xXanp=1+1-1=1

Spaces of Functions

c(I)

CH(I)

cr(I)

PC(I)

Indicator functions

XANB
X Au B (disjoint)

[
AA ».




Some properties of x4

Thus we have’ ?(f;llc)es of Functions
If AN B =0, then xaug(x) = xa(z) + x5(2). (D
: (1)
Now, what if AN B # (? POID)
ndicator functions
Lemma. XauB(T) = Xa(®) + x5(2) — Xans(2). ﬁSﬁ (disjoint)
Proof. i
= If x ¢ AU B, then both of the LHS and the RHS take the
value 0.

m If x € AU B, then we have the following possibilities:
3. Ifx € AN B, then
xaus(z) =1
xa(x) +x5(x) —xXanp=1+1-1=1

As we have checked all possibilities, we have shown that the
statement in the lemma is correct ]
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