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Contents

Chapter 1. Fourier Series 3

§1. Harmonic Functions on the Disk 3

§2. Periodic Functions 8

§3. Integration on the Torus 10

§4. The Fourier Transform 16

§5. Approximate Units 27

§6. Convergence of the Fourier Series 29

§7. The Poisson Kernel 36

§8. Applications 39

Chapter 2. Function Spaces on Rn 45

§1. Locally Convex Topological Vector Spaces 45

§2. The Space Rn 56

§3. Integral Operators 61

§4. Compact Operators 74

§5. The Schwartz Space 82

§6. Topologies on Spaces of Smooth Compactly Supported Functions 92

§7. Convolution on Rn 99

§8. Regularization and Approximate Identity 106

Chapter 3. The Fourier Transform on Rn 117

§1. The Fourier Transform on L1pRnq 117

§2. The Fourier Transform on SpRnq 124

§3. Inversion for L1 Functions 130

§4. The Fourier Transform on L2pRnq and its Spectral Decomposition 136

Chapter 4. Further Topics and Applications 151

§1. Holomorphic Functions on Cn 151

§2. The Paley-Wiener Theorem 158

§3. Applications: The wave equation 169

iii



iv Contents

§4. Distributions 172

§5. Differentiation of Distributions 182

§6. The Fourier Transform of Tempered Distributions 189

§7. Convolution of Distributions 194

§8. The Sobolev Lemma 205

§9. Schwartz Bases and Spaces of Rapidly Decreasing Sequences 209

§10. Heisenberg Uncertainty Principle 217

§11. The Windowed Fourier Transform 222

§12. The Continuous Wavelet Transform 227

§13. Shannon Sampling Theorem 234

§14. The Poisson Summation Formula 241

Chapter 5. Topological Groups 247

§1. Topological Groups 247

§2. Group Actions 252

§3. Homogeneous Spaces 254

§4. Separation in Topological Groups 257

§5. Examples 264

Chapter 6. Basic Representation Theory 285

§1. Invariant Integrals and Measures 285

§2. Representations for Groups and Algebras 309

§3. Representations on Hilbert Spaces–Unitary Representations 310

§4. Orthogonal Sums of Representations 313

§5. The Spectral Theorem, Intertwining Operators, and Schur’s Lemma 315

§6. Tensor Products of Representations 325

§7. Cyclic Representations 333

§8. The Duals of Rn, Tn, and Zn 336

§9. Continuity of Representations of Banach � Algebras 338

§10. Representations of CpXq 339

§11. Regular and Quasi-regular Representations 341

§12. The Involutive Banach Algebra MpGq 353

§13. The Banach Algebra L1pGq 362

§14. The Representations of L1pGq 366

§15. Invariant Subspaces of the Regular Representation of Rn 372

§16. Central Functions 376

§17. Induced Representations 381

§18. Square Integrable Representations and Wavelets 403

Chapter 7. The Heisenberg Group 429

§1. Group Structure 430

§2. Vector Fields and the Lie Algebra of Hn 431

§3. Quantum Mechanics and Representations of Hn 437

§4. The Orthogonality Relations 441

§5. The Wigner and Weyl Transforms 446

§6. Twisted Convolution on L1pRn � Rnq 451



v

§7. Twisted Convolution on L2pRn � Rnq 454

§8. The Unitary Dual 457

§9. The Plancherel Measure 464

Chapter 8. Compact Groups 473

§1. Representations of Compact Groups 473

§2. Unitary Dual 477

§3. Matrix Coefficients 478

§4. Orthogonality Relations 478

§5. Frobenius Reciprocity 489

§6. Trace Class Operators between Hilbert Spaces 496

§7. The One Dimensional Case 503

§8. Primary Projections–General Case 511

§9. Spherical Functions and Gelfand Pairs 519

§10. Compact Abelian Groups 532

§11. Finite Groups 538

Bibliography 547

Index 551



vi Contents



1

Introduction

We hope in this text to introduce the student to harmonic analysis and
then set up the framework to allow a transition from classical Fourier analy-
sis to the realm of noncommutative harmonic analysis. Indeed, readers may
approach the text from several perspectives. For those students wanting to
know basic Fourier analysis of periodic functions, Chapter 1 suffices as a
firm introduction. If one is interested in the Fourier integral, then Chapter
2 provides one with more than sufficient background to handle the material
in Chapter 3 on the Fourier integral and in Chapter 4 on extensions and
applications of the Fourier integral. These first four chapters provide the
essentials of standard Fourier analysis.

In Chapter 5 we begin by developing the groundwork on which noncom-
mutative harmonic analysis rests. There we cover topological groups and
homogeneous spaces from a general and abstract perspective. The chap-
ter gives important examples coming from classical matrix groups and their
homogeneous spaces. After this material one can begin Chapter 6 on rep-
resentation theory. This material is the framework from which to attack
harmonic analysis on more general spaces. Here the Haar measure is pre-
sented along with basic representation theory and how function theory on
homogeneous spaces give rise to important representations. Understand-
ing the decomposition of these representations is equivalent to decomposing
functions and their generalizations into simple pieces or harmonics.

In Chapter 7 we apply the tools of Fourier analysis and representation
theory to the extremely important Heisenberg group. This group which en-
codes the commutation relations of quantum mechanics and the uncertainty
principle offers a superb example of the large step one must take when deal-
ing with the noncommutative side of harmonic analysis. Indeed, one must
step exclusively into the realm of infinite dimensional representation theory.
The advantage of this group, however, is how close it is to classical Fourier
space and for this reason the tools of Fourier analysis developed in Chapters
3 and 4 are used so successfully.

Finally, Chapter 8 deals with the harmonic analysis associated with com-
pact groups. In this case compactness affords the complete reducibility of
representations into finite dimensional representations. Moreover compact-
ness simplifies much of the representation theory. We introduce special
traces to obtain projections giving the decompositions of homogeneous rep-
resentations. One need only read Chapter 6 to peruse this chapter. However,
the suggestive interplay between Chapters 7 and Chapters 8 is enlightening,
and thus the authors feel much would be gained if the reader did these as a
pair.
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A substantial part of the material can be approached by well grounded
undergraduates. The entire text should fit the needs of an introductory
graduate course. The authors welcome feedback on errors and presentation
as well as suggestions on problems and additions to material.



Chapter 1

Fourier Series

1. Harmonic Functions on the Disk

In this section we discuss one of the problems that motivated the beginning
of the theory of Fourier series and is close to Fourier’s original work. Let
∆ � pB{Bx1q2 � � � � � pB{Bxnq2 be the Laplace operator on Rn. It is one of
the most interesting differential operators on Rn, in part because of the role
it plays in partial differential equations arising in physics:

 The heat equation: ∆u � a2ut. Here upx, tq is a function of n�1
variables, x P Rn and t P R, t ¡ 0, and the subscript t denotes the
partial derivative with respect to t.

 The wave equation: a2∆u � utt.

 Schrödinger’s equation: 1
i ∆u � ut.

 Helmholtz’s equation: �∆u � λu.

Fourier analysis is one of the main tools used to deal with the solutions
to these equations; these are discussed later in the book. As motivation we
start with the equation ∆u � 0 on the unit disc

D :� tz P C | |z|   1u �  px, yq P R2 | x2 � y2   1
(

where u takes prescribed values on the boundary. Thus we would like to
solve the following Dirichlet problem:

B2u

Bx2
� B2u

By2
� 0, px, yq P D(1.1)

upx, yq � fpx, yq x2 � y2 � 1 .(1.2)

3
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Here f is a continuous function on the boundary and we will assume that
u P C2pDq X CpD̄q. That is u is twice continuously differentiable in D and
continuous on the closed domain D̄ �  px, yq | x2 � y2 ¤ 1

(
.

Definition 1.1. Let Ω be an open subset of Rn. A function f : Ω Ñ C is
harmonic on Ω if ∆u � 0.

Notice that a harmonic function can be viewed as a time independent
solution to the heat equation. Let us rewrite (1.1) using polar-coordinates

x � r cospθq , y � r sinpθq .
The Laplacian becomes

B2

Br2
� 1

r

B
Br �

1
r2

B2

Bθ2
� 1

r

� B
Br

�
r
B
Br



� 1

r

B2

Bθ2



and upr, θq is periodic in θ with period 2π, i.e., upr, θ � 2πq � upr, θq. The
Dirichlet’s problem (1.1) and ( 1.2) is now

(1.3)
1
r

B2u

Bθ2
� B
Br

�
r
B u

Br


� 0 , up1, θq � fpθq .

One approach to this problem is to use separation of variables, that is begin
by finding solutions of the form:

upr, θq � F prqGpθq.
Then Laplace’s equation (1.1) can be rewritten as:

1
Gpθq

d2G

dθ2
pθq � � r

F prq
d

dr

�
r
dF

dr
prq



.

The left hand side is independent of r and the right hand side is independent
of θ. Hence there is a constant k such that

1
Gpθq

d2G

dθ2
pθq � � r

F prq
d

dr

�
r
dF

dr
prq



� k.

This gives two ordinary differential equations:

d2G

dθ2
pθq � kGpθq and

r
d

dr

�
r
dF

dr
prq



� r2F 2prq � rF 1prq � �kF prq .

The general solution to these equations are:

Gkpθq �
"

a0 � b0θ if k � 0;
ake

?
kθ � bke

�?kθ if k �� 0
(1.4)

Fkprq �
"

A0 �B0 logprq if k � 0;
Akr

?�k �Bkr
�?�k if k �� 0

(1.5)
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where we have indicated the dependence of F and G on the constant k by
the index k. The function Gkpθq has period 2π if and only if k � �n2   0
or k � 0 and b0 � 0. The function Fk is defined on all of D if and only if
Bk � 0 for all k. on the disk. We hence have Fkprq � Akr

n. Concluding we
obtain solutions:

unpr, θq � rn
�
aneinθ � bne�inθ

	
, n P N0 � t0, 1, 2, . . .u

Writing bn � a�n and noticing formally that sums of solutions are solutions,
we can tentatively write a solution as:

upr, θq � 8̧

n��8
anr|n|einθ(1.6)

up1, θq � 8̧

n��8
aneinθ � fpθq .(1.7)

To make the step from this formal solution to an actual solution one still
needs to resolve the following issues:

(a) Is it possible to choose the constants an such that the given function
f can be written as fpθq � °8

n��8 aneinθ?

(b) If the answer to (a) is yes, how can we actually find the constants
an?

(c) In what sense (pointwise, in Lp, ...) does the series in 1.7 represent
the function f?

(d) Does the equation (1.6) then give a smooth function on the disk
such that limrÑ1� upr, θq � fpθq?

(e) Is the solution to our problem unique?

(f) Is every harmonic function in the disk given by a series as in 1.6?

To look for an answer, we continue our formal calculations. Later we
show these calculations can be justified. First multiply f by e�imθ and then
integrate. We interchange the summation and integration and use» 2π

0
eikθ dθ �

"
2π if k � 0
0 if n �� 0
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to obtain » 2π

0
fpθqe�imθ dθ �

» 2π

0

8̧

n��8
aneinθe�imθ dθ

� 8̧

n��8
an

» 2π

0
eipn�mqθ dθ

� 2πam .

One of our first results on Fourier series states that if one defines am by

am � 1
2π

» 2π

0
fpθqe�imθ dθ,

then fpθq � °
nPZ aneinθ holds in L2pr0, 2πsq. The constant function θ ÞÑ 1

is in L2pr0, 2πs, dθ
2π q with norm one. By Hölder’s inequality for L2-functions

one has

|f |1 � 1
2π

» 2π

0
|fpθq| dθ ¤ |f |2|1|2 � |f |2.

Consequently

|an| ¤ 1
2π

» 2π

0
|fpθq| dθ ¤ |f |2   8 .

Note for 0   r ¤ R   1,�����
ņPZ

anr|n|einθ

����� ¤
ņPZ
|an|R|n|

¤ |f |1
� 8̧

n�1

Rn � 8̧

n�0

Rn

�
¤ 2 |f |2

1�R
.

Therefore the series defining upr, θq converges uniformly on compact subsets
of D. The derivatives of this series can also be shown to converge uniformly
on compact subsets of D. Thus the series defines a smooth function on the
disk. To evaluate the limit limrÑ1� upr, θq, we rewrite upr, θq as an integral
over r0, 2πs. This will be done by formally interchanging summation and
integration and using the following simple fact

(1.8)
8̧

n��8
r|n|einθ � 8̧

n�0

�
reiθ

	n� 8̧

n�0

�
re�iθ

	n� 1 � 1� r2

1� 2r cospθq � r2
.

The function

(1.9) P pr, θq :� 1� r2

1� 2r cospθq � r2
, 0 ¤ r   1, θ P R
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is called the Poisson kernel for the unit disk. We will point out some prop-
erties of the Poisson kernel in the following exercises. See figure 1 for the
graph of the Poisson kernel for r � 0.5 (blue), r � 0.7 (green), and r � 0.9
(red).
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8

10
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16

18

20
Poisson Kernel for r=.5, .7, .9

Figure 1. Poisson Kernels for r � .5, .7, .9

Inserting the definition of an and formally interchanging summation and
integration, we see:

upr, θq �
ņPZ

anr|n|einθ

�
ņPZ

r|n|einθ 1
2π

» 2π

0
fpφqe�inφ dφ

� 1
2π

» 2π

0
fpφq

ņPZ
r|n|einpθ�φq dφ

� 1
2π

» 2π

0
fpφqP pr, θ � φq dφ .(1.10)

Hence u is given by convolving f with the Poisson kernel. This can be used
to show that if f is continuous, then upr, θq Ñ fpθq uniformly.

Exercise Set 1.1

1. Prove equation (1.9):
°8

n��8 r|n|einθ � 1�r2

1�2r cospθq�r2 .

2. Prove the following:

(a) P pr, θq ¥ 0 and 1
2π

³2π
0 P pr, θq dθ � 1 for all r ¥ 0.
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(b) The maximum of θ ÞÑ P pr, θq occurs at θ � 0 and maxθ P pr, θq �
1�r
1�r . In particular P pr, 0q Ñ 8 as r Ñ 1�.

(c) The function θ ÞÑ P pr, θq takes its minimum at θ � π. Evaluate
P pr, πq.

3. Suppose that f is 2π-periodic and piecewise continuous. Show that

lim
rÑ1�

1
2π

» 2π

0
fpφqP pr, θ � φq dφ � fpθq

if f is continuous at θ.

4. Write upx, yq � upzq where z � x � iy. Suppose that f is continuous.
Show that u is holomorphic on D if and only if an � 0 for all n   0.

2. Periodic Functions

Definition 1.2. A function f : R Ñ C is periodic if there exists a number
L ¡ 0 such that fpx � Lq � fpxq for all x P R. The number L is called a
period of f .

Let Pf be the set of periods of f . Then Pf �� H if and only if f is
periodic. Note Pf need not have a smallest element for the characteristic
function of the irrationals has all positive rationals for periods.

If f is periodic, let Lf :� inf Pf ¥ 0. The next lemma states that Pf�Pf

is an additive subgroup of R.

Lemma 1.3. Let L and M be periods of f . Then fpx� jL� kMq � fpxq
for all j, k P Z.

Proof. We have fpx� Lq � fppx� Lq � Lq � fpxq. The other statements
follow by induction. ¤

Lemma 1.4. Suppose Lf ¡ 0. Then Lf is a period for f and then Pf �
LfN.

Proof. If Lf is not a period and Lf ¡ 0, we can choose periods M and L
with Lf  M   L   2Lf . Thus 0   L�M   Lf . By Lemma 1.3, L�M is
a period strictly less than Lf . This is a contradiction. Thus Lf is a period.

Now LfN �Pf . Let L P Pf . Then we can choose n P N such that

nLf ¤ L   pn� 1qLf .

Hence 0 ¤ L�nLf   Lf . If L�nLf ¡ 0, then Lemma 1.3 implies L�nLf

is a smaller period than Lf which is clearly untrue. Hence LfN � Pf . ¤

Lemma 1.5. If Lf � 0 and f is continuous, then f is constant.
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Proof. Fix x. Choose a sequence Ln of periods converging to 0. Choose
integers kn so that knLn ¤ x   pkn � 1qLn. Then knLn Ñ x. Hence
fpknLnq Ñ fpxq. But fpknLnq � fp0 � knLnq � fp0q. Consequently,
fp0q � fpxq and f is a constant function. ¤

The functions x ÞÑ cosp2πmxq, sinp2πkxq, and e2πinx � cosp2πnxq �
i sinp2πnxq all have period 1. We will show in a certain sense that “each”
periodic function with period 1 can be written as an infinite linear combi-
nation of e2πinx and hence also of cosp2πnxq and sinp2πnxq. If f has period
L ¡ 0, then gpxq � fpLxq has period 1. Hence f can be written as a linear
combinations of functions of form e2πinx{L. We therefore restrict ourselves
to functions of period 1. Let

T :� tz P C | |z| � 1u
be the one-dimensional torus. Then T is a closed and bounded subset of C
and hence is compact. Furthermore T is an abelian group under multiplica-
tion and the map

R Q x
κÞÑ e2πix P T

is a surjective group homomorphism of pR,�q onto pT, �q with kernel Z. The
torus T has a natural topology as a subset of C.

Let z, w, z0, w0 P T. Then |z| � |w| � |z0| � |w0| � 1 and

|zw � z0w0| ¤ |w| |z � z0| � |z0| |w � w0| � |z � z0| � |w � w0|
and ��z�1 � z�1

0

�� � |z̄ � z̄o| � |z � z0| .
Hence it follows that both the multiplication and the inverse map are con-
tinuous maps in this topology. These are conditions defining a topological
group.

Lemma 1.6. The mapping κ : RÑ T is a continuous periodic open mapping
from R onto T satisfying κpθ�φq � κpθqκpφq for all θ and φ in R. Moreover,
every complex function f on R having period 1 has form f � F � κ for a
unique function F on T, and f is continuous iff F is continuous.

Proof. Clearly κ is continuous, onto, and has period 1. Let I � pa, bq be an
open interval. Then if b � a ¡ 1, κpIq equals T and if b � a ¤ 1, then κpIq
is an ‘open arc’ in T and thus is open in T in the relative topology from C.
Since every open subset of R is a countable union of open intervals, we see
κpUq is open in T for any open subset U of R.

Let f be a function on R with period 1. Define F pe2πixq � fpxq. F
is well defined and is clearly the only function with F � κ � f . Note f
is continuous if F is continuous. If f is continuous and U is open, then



10 Fourier Series

F�1pUq � κpf�1pUqq is an open set in T, for κ is an open mapping. Thus
F is continuous. ¤

3. Integration on the Torus

Let X be a topological space. Denote the space of complex valued continuous
functions on X by CpXq. The last lemma can be used to integrate and
differentiate functions on T. Define a Borel measure µ on T by

µpEq � mpκ�1pEq X r0, 1qq
where m is Lebesgue measure on R. Then g P L1pT, µq iff g � κ P L1r0, 1s
and then »

gpzq dµpzq �
» 1

0
gpe2πixq dmpxq.

Note by a change in variables, one also has»
gpzq dµpzq � 1

2π

» 2π

0
gpeiθq dθ.

The measure µ is left and right invariant; i.e.,

µpaEq � µpEaq � µpEq
for all Borel subsets E of T and a P T.

The left and right invariance of the measure µ implies»
gpy�1zq dµpzq �

»
gpzyq dµpzq �

»
gpzq dµpzq

for all g P L1pT, µq and y P T. The measure is also invariant under the
inverse-mapping. Thus»

gpz�1q dµpzq �
»

gpzq dµpzq .
Indeed, »

gpz�1q dµpzq �
» 1

0
gpe�2πixq dx �

» 1

0
gpe2πixq dx.

Denote the linear space of p-integrable complex valued functions by
LppTq. Recall the norm is given by

|f |p �
�»

|fpzq|p dµpzq

 1

p

.

This space is the same as the space of Lp functions on r0, 1s or the space
of Lebesgue measurable functions on R that are periodic with period 1 and
p-integrable over r0, 1s. Let us recall the following two well known facts on
integration.

Theorem 1.7. Let 1 ¤ p   8. Then CpTq is dense in LppTq.
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Theorem 1.8 (Hölder Inequality). Let pX,A, µq be a measure space. Let
p, q ¥ 1 satisfy 1{p � 1{q � 1. Let f P LppXq and g P LqpXq. Then
fg P L1pXq and

|fg|1 ¤ |f |p |g|q .

Lemma 1.9. Suppose f P L2pTq satisfies
³
fpzqgpzq dµpzq � 0 for all con-

tinuous functions g. Then f � 0.

Proof. Since CpTq is dense in L2pTq, we can choose a sequence gn P CpTq
with |gn � f |2 Ñ 0. Hence»

ff̄ ¤ lim
�»

|fpf̄ � ḡnq| dµ� |
»

fḡn dµ|


¤ lim |f |2|f � gn|2 � 0.

Hence
³
ff̄ dµ � |f |22 � 0, which implies that f � 0 a.e. ¤

Finally, by the Riesz–Fischer Theorem, we know the spaces LppT q are
complete if equipped with norm f ÞÑ |f |p. In particular, L2pT q is a Hilbert
space with inner product

pf, gq2 �
»
T

fpzqḡpzq dµpzq.
Theorem 1.10. Let 1 ¤ p ¤ 8. Then LppTq � L1pTq and |f |1 ¤ |f |p for
all f P LppTq.
Proof. Let q be such that 1{p�1{q � 1. Then the constant function z ÞÑ 1
is in LqpTq as µpTq � 1   8. By Hölder’s-inequality, one has»

|f | 1 dµ ¤ |f |p |1|q � |f |p .

¤

Definition 1.11. Let 1 ¤ p ¤ 8. For a P T, define linear operators λpaq
and ρpaq on LppT q by

λpaqfpzq � fpa�1zq
ρpaqfpzq � fpzaq.

Then λ and ρ are called the left and right regular representations of T on
LppT q.

Suppose f is a complex valued function on T. Then f̌ will be the function
defined by

f̌pzq � fpz�1q.
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Lemma 1.12. The mappings a ÞÑ λpaq and a ÞÑ ρpaq are homomorphisms
of T into the group of invertible linear isometries of LppTq. Moreover, f ÞÑ f̌
is a linear isometry of LppTq satisfying

pλpaqfqˇ� ρpaqf̌ .

Proof. Note

λpabqfpxq � fppabq�1xq � fpb�1a�1xq
� λpbqfpa�1xq � λpaqλpbqfpxq.

and thus λpabq � λpaqλpbq on Lp. Clearly λp1q � I; and since λpaqλpa�1q �
λp1q � λpa�1qλpaq, we have λpaq�1 � λpa�1q. Thus a ÞÑ λpaq is a group
homomorphism.

Suppose p � 8. Then |λpaqf |8 � ess sup|fpazq| � ess sup|fpzq| � |f |8.
For 1 ¤ p   8, we have

|λpaqf |pp �
»
|fpa�1zq|p dµpzq �

»
|fpzq|p dµpzq

and thus |λpaqf |p � |f |p.
Note

pλpaqfqˇpzq � λpaqfpz�1q
� fpa�1z�1q
� f̌pzaq
� ρpaqf̌pzq

and if 1 ¤ p   8, then

|f̌ |pp �
»
|fpz�1q|p dµpzq �

»
|fpzq|p dµpzq � |f |pp.

One easily checks |f̌ |8 � |f |8. Thus f ÞÑ f̌ is a linear isometry and it is
onto for pf̌ q̌ � f . ¤

Definition 1.13 (Convolution). Let f and g be in L1pTq. The convolution
f � g of f and g is defined by

f � gpxq �
»
T

fpyqgpy�1xq dµpyq.



Integration on the Torus 13

Note py, xq ÞÑ fpyqgpy�1xq is a measurable function on T � T and by
Fubini’s Theorem,» »

|fpyqgpy�1xq| dµpyq dµpxq �
» » ��fpyqgpy�1xq�� dµpxq dµpyq

�
» »

|fpyqgpxq| dµpxq dµpyq
� |f |1 |g|1   8 .

It follows that for almost all x P T, the function y ÞÑ fpyqgpy�1xq is inte-
grable and »

|f � gpxq| dµpxq �
» ����» fpyqgpy�1xq dµpyq

���� dµpxq
¤
» »

|fpyqgpy�1xq| dµpyq dµpxq
� |f |1 |g|1.

As LppTq and LqpTq are subspaces of L1pTq with larger norms, one has

|f � g|1 ¤ |f |1|g|1 ¤ |f |p|g|q
whenever f P Lp and g P Lq.

Lemma 1.14. Let f, g, h P L1pTq. Then the following hold:

(a) f � g P L1pTq and |f � g|1 ¤ |f |1 |g|1.
(b) f � g � g � f .

(c) f � pg � hq � pf � gq � h.

(d) rλpaqf s � g � f � rλpaqgs � λpaqpf � gq
Proof. Note (a) was proved just before we stated the lemma.

To see (b), note

f � gpzq �
»

fpyqgpy�1zq dµpyq
�

»
fpzyqgppzyq�1zq dµpyq

�
»

gpy�1qfpyzq dµpyq
�

»
gpyqfpy�1zq dµpyq

where we have used invariance of integration under transformations y ÞÑ zy
and y ÞÑ y�1.
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For (c) we have

pf � gq � hpzq �
»
pf � gqpyqhpy�1zq dµpyq

�
» »

fpxqgpx�1yqhpy�1zq dµpxq dµpyq
�

»
fpxq

»
gpx�1yqhpy�1zq dµpyq dµpxq

�
»

fpxq
»

gpx�1xyqhppxyq�1zq dµpyq dµpxq
�

»
fpxq

»
gpyqhpy�1x�1zq dµpyq dµpxq

�
»

fpxq pg � hqpx�1zq dµpxq
� f � pg � hqpzq

where the changes in the order of integration follow by Fubini’s theorem and
we have used the invariance of the measure dµ under left translation by x�1.

For (d) note

rλpaqf s � gpyq �
»
rλpaqf spxqgpx�1yq dµpxq

�
»

fpa�1xqgpx�1yq dµpxq
�

»
fpa�1axqgppaxq�1yq dµpxq

�
»

fpxqgpx�1a�1yq dµpxq
� f � gpa�1yq
� λpaqpf � gqpyq
� λpaqpg � fqpyq
� rλpaqgs � fpyq
� f � rλpaqgspyq

where we have used the commutativity of convolution. ¤

Proposition 1.15. Suppose 1 ¤ p ¤ q ¤ 8 and 1
p � 1

q � 1. Then f � g P
CpTq whenever f P LppTq and g P LqpTq.
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Proof. Note if f P CpTq and g P LqpTq and zn Ñ z in T, then

f � gpznq � g � fpznq �
»

gpxqfpx�1znq dµpxq
Ñ

»
gpxqfpx�1zq dµpxq

� g � fpzq
� f � gpzq

as n Ñ 8 by the Lebesgue dominated convergence theorem. Indeed, x ÞÑ
gpxqfpx�1znq is dominated pointwise by |g| |f |8 which is in L1pTq and con-
verges pointwise to gpxqfpx�1zq. Hence f � g P CpTq if f P CpTq.

Now suppose f P LppTq and ε ¡ 0. Let zn Ñ z. Since CpTq is dense
in LppTq, we know we can choose f0 P CpTq satisfying |f � f0|p ¤ ε

3p|g|q�1q .
Choose N so that |f0 � gpznq � f0 � gpzq|   ε

3 for n ¥ N . Then for n ¥ N ,
we have

|f � gpznq � f � gpzq| ¤ |pf � f0q � gpznq| � |f0 � gpznq � f0 � gpzq| � |pf0 � fq � gpzq|
  ε

3
� ε

3
� ε

3
� ε

since by Hölder’s inequality

|pf � f0q � gpyq| ¤
»
|pf � f0qpxqgpx�1yq| dµpxq

¤ |f � f0|p|λpyqǧ|q
� |f � f0|p|g|q
¤ ε

3p|g|q � 1q � |g|q
¤ ε

3
for all y P T. ¤

Exercise Set 1.2

1. Show if f is a function on T such that f � κ is a simple measurable
function on R, then »

fpzq dµpzq �
» 1

0
fpe2πixq dx.

2. Show LppTq � LqpTq and |f |p ¥ |f |q for p ¥ q.

3. Consider CpTq with norm | � |8. For w P T, define λpwqfpzq � fpw�1zq
for f P CpTq.

(a) Show λpwq is a linear isometry for each w.

(b) Show λ is a homomorphism of T into the isometry group of CpTq.
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(c) Show λ is not continuous from T into the Banach space of bounded
linear operators on CpTq.

(d) Show for each f P CpTq, the mapping w ÞÑ λpwqf is continuous
from T into CpTq

4. Let 1 ¤ p   8. Let λpzqfpwq � fpz�1wq for f P LppTq. Show for each
f and each ε ¡ 0, there is a δ ¡ 0 such that |λpzqf � f |p   ε if |z � 1|   δ.

5. For 1 ¤ p   q, find f P LppTq such that f R LqpTq.
6. Let h P L1pTq.

(a) Let g P L2pTq. Show that λphqg :� h � g is in L2pTq. (Hint: Let
f P L2pTq. Then fλphqg is integrable and f ÞÑ ³

fpzqλphqgpzq dµpzq
is a continuous linear form on L2pTq.)

(b) Show that λphq : L2pTq Ñ L2pTq is a bounded linear map with
|λphq| ¤ |h|1.

4. The Fourier Transform

The functions of the form

ppθq � M̧

n��N

ane2πinθ

on R are called trigonometric polynomials. The trigonometric polynomials
are periodic with period 1 and as functions on T they can simply be written
as

ppzq � M̧

n��N

anzn.

The trigonometric polynomials form an algebra of continuous functions
on T which separate points, contain the constants, and are closed under
conjugation. By the Stone–Weierstrass Theorem, this algebra is dense in
CpTq under the | � |8 norm. Since CpTq is dense in every LppTq except
L8pTq, one can show the algebra of trigonometric polynomials is dense in
every LppTq where 1 ¤ p   8. We shall be interested in those trigonometric
polynomials which are the partial sums of Fourier series.

Let enpe2πiθq � e2πinθ. Thus this is the function z ÞÑ zn on T. If
f P L1pTq, then the Fourier transform f̂ : ZÑ C of f is defined by

(1.11) f̂pnq :�
»

fpzqz�n dµpzq �
»

I
fpe2πixq e�2πinxdx
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where I is any interval in R having length 1. By the change of variables
θ � 2πx, we also have

(1.12) f̂pnq :�
»

fpzqz�n dµpzq � 1
2π

»
J

fpeiθq e�inθdθ

over any interval J of length 2π.
Note that f̂pnq � pf, enq when f P L2pTq. The Fourier series corre-

sponding to f is ¸
f̂pnq e2πinθ �¸

f̂pnqzn

or 8̧

n��8
pf, enqen.

Notice that

(1.13) pen, emq �
» 1

0
e2πipn�mqθ dθ � δn,m .

Hence ten | n P Zu is a orthonormal subset of L2pTq.
Definition 1.16. Let g P CpTq and r P N0. Then g is r-times continuously
differentiable if the continuous periodic function g�κ is r-times continuously
differentiable on R.

We denote the space of r-times continuously differentiable functions by
CrpTq. The space C8pTq of smooth functions is XrC

rpTq; i.e., the space of
functions that are r-times continuously differentiable for all r. The derivative
operator D on C1pTq is defined by

rDf spe2πixq � pf � κq1pxq � d

dx
fpe2πixq .

Notice that Dzn � 2πinzn for all n. Recall λpwqfpzq � fpw�1zq.
Lemma 1.17. Let f, g P L1pTq. Let p � °M

n��N anen be a trigonometric
polynomial. Then the following hold:

(a)
���f̂pnq��� ¤ |f |1 for all n P Z.

(b) {λpwqfpnq � w�n pfpnq.
(c) Then xf_pnq � f̂p�nq.
(d) limnÑ8 f̂pnq � 0 (Lebesgue Lemma).

(e) zf � g � pf � pg.

(f) f � p � °M
n��N anf̂pnqen.

(g) Assume that f P CrpTq. Then yDrfpnq � p2πinqr f̂pnq .
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Proof. For (a) note
���f̂pnq��� � ��³ fpzqz�n dµpzq�� ¤ ³ |fpzq| dµpzq � |f |1 be-

cause |z| � 1 for z P T.
For (b) one has {λpwqfpnq �

»
λpwqfpzqz�n dµpzq

�
»

fpw�1zqz�n dµpzq
�

»
fpzqrwzs�n dµpzq

� w�n

»
fpzqz�n dµpzq

� w�nf̂pnq.
To see (c) one has xf_pnq �

»
fpz�1qz�n dµpzq

�
»

fpzqzn dµpzq
� f̂p�nq .

To do (d), we first do the case where F � f � κ|r0,1q � Cχra,bs with
0 ¤ a   b   1. Then

f̂pnq � C

» b

a
e�2πinθ dθ

� Ci

2πn

�
e�2πinb � e�2πina

�Ñ 0 n Ñ8 .

It follows that the claim holds for any F which is a step function on r0, 1q.
But these define f ’s which are dense in L1pTq. Hence if f is in L1pTq and
ε ¡ 0, one can choose a step function F0 P L2r0, 1q satisfying

|f � κ� F0|1   ε

2
.

Setting f0pe2πiθq � F0pθq, we have

|f̂pnq| ¤ |f̂pnq � f̂0pnq| � |f̂0pnq|
¤ |f � f0|1 � |f̂0pnq|
  ε

2
� |f̂0pnq|

  ε

for large n.
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For (e), by left invariance of the measure µ and Fubini’s Theorem, we
obtain: zf � gpnq �

»
f � gpzq z�n dµpzq

�
» �»

fpwqgpw�1zq dµpwq
�

z�n dµpzq
�

» »
fpwqgpw�1zqz�n dµpzqdµpwq

�
»

fpwq
»

gpzq rwzs�n dµpzqdµpwq
�

»
fpwqw�n

»
gpzqz�n dµpzqdµpwq

� pfpnqpgpnq .
To do (f), we have by the definition of f̂pnq that:

f � ppzq � ¸
an

»
fpwqpw�1zqn dµpwq

� ¸
anzn

»
fpwqw�n dµpwq

� ¸
anf̂pnqenpzq .

Finally for (g), note for r � 1 the statement follows by integration by
parts:yDfpnq �

» 1

0
pf � κq1pθq e�2πinθ dθ � �

» 1

0
fpe2πiθq d

dθ
e�2πinθ dθ � 2πinf̂pnq.

Repeat this argument for general r. ¤

Corollary 1.18. For f P L1pTq, f � en � f̂pnqen. Moreover, em � en �
δm,nen.

Proof. Note en is a trigonometric polynomial. Hence by (f), f�en � f̂pnqen.
Since

êmpnq �
»

empzqz�n dµpzq �
»

empzqenpzq dµpzq � δm,n,

we see em � en � δm,nen. ¤

Lemma 1.19. Let g P CpTq and ε ¡ 0. Then there exists a trigonometric
polynomial p such that

|g � p|8   ε .
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Proof. T is a compact Hausdorff space, and the space A of all trigonometric
polynomials ppzq � °M

n��N anzn form an algebra of continuous functions on
T which contain the constants and separate points. Moreover A is closed
under conjugation for zn � z�n. By the Stone–Weierstrass Theorem for
continuous complex valued functions on a compact Hausdorff space, one has
for each f P CpTq and each ε ¡ 0, there is a p P A with |f � p|8   ε. ¤

Theorem 1.20 (Plancherel Theorem). The set of functions ten | n P Zu is
an orthonormal basis for L2pTq. In particular, if f is in L2pTq, then

(a) f � °8
n��8pf, enqen in L2pTq and

(b) |f |2 � °8
n��8 |pf, enq|2.

Proof. By equation 1.13, the set tenunPZ is orthonormal. Let ε ¡ 0 and let
f P L2pTq. Choose g P CpTq such that |f � g|2   ε{2. By Lemma 1.19 there
is a trigonometric polynomial p such that

|g � p|8   ε{2 .

Thus

|g � p|22 �
»
|gpzq � ppzq|2 dµpzq

¤
»
|g � p|28 dµpzq

  pε{2q2 .

Thus |g � p|2   ε{2. It follows that

|f � p|2 ¤ |f � g|2 � |g � p|2   ε .

Thus en form a complete orthonormal basis and the theorem follows. ¤

Let `2 be the space of bi-infinite complex sequences tanu8n��8 which
satisfy

° |an|2   8. This space is a Hilbert space with inner product

ptanu, tbnuq �¸
anb̄n

and norm

|tanu| �
b¸ |an|2.

One can give a direct proof of this fact; however, it follows easily from
measure theory. Namely, let ν be counting measure on Z; thus every subset
of Z is measurable, and νpEq is the number of elements in E. Then ν is
a measure, every function is measurable, and a function a : Z Ñ C is in
L2pZ, νq iff

° |apnq|2 � ³ |apnq|2 dνpnq   8.
We now easily reformulate the Plancherel Theorem:
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Theorem 1.21. The Fourier transform F : L2pTq Ñ `2 is an isomorphism
of Hilbert spaces.

Proof. We have by the Plancherel Theorem that¸���f̂pnq���2 � |f |2   8 .

Hence Ff P `2 and F is an isometry into `2. Let A � tanu P `2. Define a
sequence

fnpzq �
ņ

j��n

anzn P L2pTq.
Thus fn � °n

j��n anen. For m ¥ n one has

|fn � fm|2 � ¸
n |j|¤m

|aj |2 .

But
° |aj |2   8. Hence if ε ¡ 0, we can find an N P N such that for all

n ¥ N

ņ¤|j|
|aj |2   ε.

But this then implies that tfnu is a Cauchy sequence in L2pTq. Thus
°

ajej

converges in L2 to an L2 function f and

f̂pnq � pf, enq
�¸

ajpej , enq
� an .

Hence Ff � A and F is surjective. ¤

Let C8pTq be the space of smooth function on T; i.e., C8pTq � XrPNCrpTq.
Define a vector space topology on C8pTq by the seminorms

σkpfq :� ���Dkf
���8 .

We leave it as an exercise to show that C8pTq with this topology is a locally
convex complete topological vector space. (Basic concepts in locally convex
topological vector spaces are covered in Section 1 in the next chapter.) This
topology is called the Schwartz topology on C8pTq and the space C8pTq
with this topology is denoted by DpTq. To find the image of DpTq under
the Fourier transform, let SpZq be the space of sequences a � tanunPZ of
complex numbers such that for each k

ρkpaq :� sup
n
p1� |n|qk |an|   8 .
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The ρk are seminorms. With these seminorms SpZq becomes a locally convex
complete topological vector space. Sequences tanu which satisfy ρkpaq   8
for all k are said to be rapidly decreasing. Notice that

|n|k
p1� |n|qk Ñ 1 as nÑ8 .

Hence there are positive constants Ck such that for all n �� 0 ,

Ckp1� |n|qk |an| ¤ |n|k |an| ¤ p1� |n|qk |ak| .
The topology on SpZq can therefore also be defined by the seminorms ρ1k
where

ρ1kpaq :� sup |n|k |an| , k �� 0 .

In these formulas, expression 00 is given value 1. This topology can also be
defined by using the seminorms

ρ2kpaq �¸ |n|k |an| .
Theorem 1.22. The Fourier transform f ÞÑ f̂ is a topological isomorphism
of DpTq onto SpZq.
Proof. We have the Fourier transform of Dkf is n ÞÑ p2πinqkf̂pnq P `2.
Thus p2piqk ° |n|2k|f̂pnq|2   8 for each k. Hence supn |n2kf̂pnq|2 is finite
for all k. Consequently supn |nkf̂pnq|   8 for all k. Thus f̂ P SpTq.

Clearly f ÞÑ f̂ is linear. It is one-to-one, for f̂ � 0 implies f � 0 in
L2pTq, and thus f � 0 in DpTq.

We show this mapping is onto. Let tanu P SpZq. For each k, define
gkpzq � °

np2πinqkanzn. We note this series converges uniformly for each
k. Indeed, ¸ |p2πqkiknkanzn| � p2πqk ¸ |nkan|

¤ p2πqk
ņ�0

|n�2p1� |n|k�2q|an|
¤ p2πqkρk�2paq¸ |n�2|
  8.

Thus each gk P CpTq. Hence
°

np2πinqkane2πinθ converges uniformly on R
and since

Dp Ņ

n��N

p2πinqkane2πinθq � Ņ

n��N

p2πinqk�1aneinθ

converges uniformly to gk�1pe2πiθq on R, we see gkpe2πiθq is differentiable
and has derivative gk�1pe2πiθq. Thus g0 P DpTq and Dkg0 � gk. Moreover,
ĝ0 � a, and we see f ÞÑ f̂ is onto.
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To show f ÞÑ f̂ and f̂ ÞÑ f are continuous, it is sufficient to show they
are continuous at 0.

Now f ÞÑ f̂ is continuous at 0 iff f ÞÑ ρ1kpf̂q are continuous at 0. But

ρ1kpf̂q � sup |nkf̂pnq|
� 1
p2πqk |zDkf |8

  ε

if |Dkf |8   p2πqkε, for |ĝpnq| ¤ |g|1 ¤ |g|8. Hence f ÞÑ f̂ is continuous.

We finally show f̂ ÞÑ f is continuous at 0. Note

|Dkf |8 � sup
|z|�1

|
ņ

p2πinqkf̂pnqzn|
¤ p2πqk ¸ |nkf̂pnq|
¤ p2πqk|f̂p0q| � p2πqk

ņ�0

n�2 � supp1� |n|qk�2|f̂pnq|

¤ p2πqk
�
ρ0pf̂q � ρk�2pf̂q �

ņ�0

1
n2

�
  ε

if ρ0pf̂q   ε
2p2πqk and ρk�2pf̂q   ε

2p2πqK
�°

n�0
1
n2

��1. ¤

Corollary 1.23. Suppose f is a periodic C8 function on R having period
1. Then the Fourier series

°
f̂pnqe2πinθ converges uniformly to f and the

derivatives of these series converge uniformly to the derivatives of f .

Corollary 1.24. Suppose f P L2pTq and
°

n�0 |f̂pnq|2n2k�2   8. Then
f P CkpTq and the series

ņ

p2πinqkf̂pnqzn

converges uniformly to Dkfpzq.
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Proof. We show the series
°

np2πinqrf̂pnqzn converges uniformly for each
0 ¤ r ¤ k. Indeed, note by the Cauchy-Schwarz inequality,¸ |2πin|r|f̂pnq| ¤ p2πqr

ņ�0

|f̂pnqnr�1| 1
n

¤ p2πqr
�

ņ�0

|f̂pnq|2n2r�2

� 1
2
�

ņ�0

1
n2

� 1
2

¤ p2πqr
�

ņ�0

|f̂pnq|2n2k�2

� 1
2
�

ņ�0

1
n2

� 1
2

  8.

Thus
°p2πinqrf̂pnqzn converges uniformly for each r ¤ k. Setting grpzq to

be this sum, we have each gr P CpTq; and since

Dp M̧

n��N

p2πinqrf̂pnqe2πinθq � M̧

n��N

p2πinqr�1f̂pnqe2πinθ,

we see Dgr � gr�1 for r � 1 ¤ k. But g0 � f . Hence f P CkpTq and
Dkf � gk. ¤

Corollary 1.25. Suppose f P Ck�1pTq. Then for each r ¤ k, the Fourier
series

°p2πinqrf̂pnqe2πinθ converges uniformly to Drfpe2πiθq.
Proof. We know pDk�1f q̂pnq � p2πinqk�1f̂pnq. Thus

°
n n2k�2|f̂pnq|2   8

for Dk�1f P L2pTq. Hence
°

n2r�2|f̂pnq|2   8 for any r ¤ k. ¤

Exercise Set 1.3

1. Suppose σk are seminorms on vector space X and ρk are seminorms
on vector space Y . Give X and Y the topological vector space topologies
defined by these seminorms. Show a linear transformation T : X Ñ Y is
continuous iff ρk � T is continuous at 0 for each k.

(Hint: Recall a subset U of X will be open in the topology defined by
the seminorms σk if for each p P U , there is an ε ¡ 0 and finitely many
seminorms σk1 , σk2 , . . . , σkn so that if σkipq� pq   ε for i � 1, 2, . . . , n, then
q P U .)

2. Show that f P L2pr0, 2πs, dxq can be written in the form

fpxq � a0 �
8̧

n�1

an cospnxq � 8̧

n�1

bn sinpnxq .
Find an expression for an and bn.
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3. Let g be the function on the torus given by gpeiθq � |θ| for θ P r�π, πq.
(a) Find ĝpnq.
(b) Show that the Fourier series converges uniformly.

4. Use the Fourier transform to evaluate the sum
°8

n�1
1
n2 .

5. Suppose f P L2r0, 1s has Fourier series

fpxq �
ņ

cne2πinx.

Show » x

0
fptq dt � i

8̧

n��8
cn

1� e2πinx

n

for 0 ¤ x ¤ 1.

6. Let f be the periodic function with period 1 corresponding to χr� 1
2
,0q �

χr0, 1
2
q. Evaluate f̂pnq.

7. Let f be a C8 function of compact support on R. Define F by

F pxq �
ņPZ

fpx� nq.
(a) Show F is a C8 function of period 1.

(b) Show

ņ

fpnq �
ņ

F̂ pnq.
8. A function f on the torus is even if fpzq � fpz�1q and odd if fpzq �
�fpz�1q. Suppose that f P C2pTq. Show the following:

(a) If f is even, then fpe2πiθq � °
f̂pnq cosp2πnθq;

(b) If f is odd, then fpe2πiθq � i
°

f̂pnq sinp2πnθq.
9. Let g P C1pTq and f P L1pTq. Then f �g P C1pTq and Dpf �gq � f �Dg.

10. Let L ¡ 0. Let f be a L-periodic function such that
³L
0 |fptq|2 dt   8.

Show that there are constants an P C such that in L2pr0, Lqq we have

fptq � 8̧

n��8
ane2πint{L .

Find an expression for an.

11. Show that the seminorms ρk, ρ1k, and ρ2k all define the same topology
on SpZq.
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12. Let Tk :� tz � pz1, . . . , zkq | zj P Tu with the product topology. For
z,w P Tk, let zw � pz1w1, . . . , zkwkq. For n � pn1, . . . , nkq P Zk, let
enpzq � zn1

1 � � � znk
k . Show the following:

(a) Tk is a topological group, i.e., the map Tk � Tk Q pz,wq ÞÑ z�1w P
Tk is continuous.

(b) en : Tk Ñ T is a continuous homomorphism.

(c) If χ : Tk Ñ T is a continuous homomorphism, then there exists a
n P Zk such that χ � en.

13. Let µk � µ � � � � � µ be the product measure on Tk. For f P L1pTkq,
define f̂ : Zk Ñ C by

f̂pnq :�
»
Tk

fpzq e�npzq dµk .

Show the following:

(a) If f P L2pTkq, then |f |2 �
c°

nPZk

���f̂pnq���2.
(b) If f P L2pTkq, then f � °

nPZk f̂pnq en in L2pTkq.
14. Generalize Corollary 1.23 to Rk. Namely let f be a C8 function on
Rk satisfying fpx � nq � fpxq for all x P Rk and n P Zk. Define f̂pnq �³
r0,1sk fpxqe�2πix�n dx. Show the series

°
nPZk f̂pnqe2πin�x and its derivatives

converge uniformly to f and f ’s derivatives on Rk.

15. Show if f P C8pRkq and fpx�nq � fpxq for all n P Zn, then f̂ : Zk Ñ C
is rapidly decreasing; i.e.,

sup
nPZk

|ppnqf̂pnq|
is finite for every polynomial p. Use this to show the absolute uniform
convergence of the series

°
n f̂pnqDαpe2πix�nq for each α P Nn

0 .

16. Show that there is no differentiable function f on T such that Df � 1.

17. Let ppzq � °k
n�0 anzn be a polynomial. Define ppDq : C8pTq Ñ C8pTq

by

ppDqf � ķ

n�0

anDnf .

Show that if g P C8pTq is such that ĝpnq � 0 if pp2πinq � 0, then the
differential equation ppDqf � g has a solution.

18. Let f P L2pTq. Show there exists a unique g P L2pTq such that

ĝpnq � �i sgnpnq f̂pnq , @n P Z .

Define Hf � g. Then H : L2pTq Ñ L2pTq is linear. Prove the following:
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(a) |Hf |2 � |f |2 if and only if
³
f dµ � 0.

(b) If f P C8pTq, then Hf P C8pTq.
(c) If f P C8pTq, then Hfp1q � � 1

π

°8
n�1

³2π
0 fpeiθq sinpnθq dθ .

5. Approximate Units

Lemma 1.26. Let f P L1pTq and g P LppTq where 1 ¤ p ¤ 8. Then
f �g P LppTq and |f �g|p ¤ |f |1|g|p. Moreover, if g P CpTq, then f �g P CpTq.
Proof. We have already seen this is true if p � 1. So we may assume p ¡ 1.
If p � 8, |f �gpxq| ¤ ³ |fpyq| |gpy�1xq| dµpyq ¤ |g|8 ³ |fpyq| dµpyq � |f |1|g|8.
Suppose 1   p   8 and 1

p � 1
q � 1. Then

|xf � g, hy| �
����» f � gpxqhpxq dµpxq

����
¤
» »

|fpyqgpy�1xqhpxq| dµpyq dµpxq
¤
»
|fpyq|

»
|λpyqgpxqhpxq| dµpxq dµpyq

¤
»
|fpyq| |λpyqg|p|h|q dµpyq

� |g|p
»
|fpyq| dµpyq |h|q

� |f |1|g|p|h|q.
This implies f �g defines a bounded linear functional on Lq and consequently
must be in Lp. Moreover, the norm of this bounded linear functional is at
most |f |1|g|p. Thus f � g P Lp and |f � g|p ¤ |f |1|g|p.

Finally suppose g P CpTq and xn Ñ x as n Ñ 8. Then gpy�1xnq Ñ
gpy�1xq for all y and |fpyqgpy�1xnq| ¤ |fpyq| |g|8. Hence by the Lebesgue
dominated convergence theorem,

³
fpyqgpy�1xnq dµpyq Ñ ³

fpyqgpy�1xq dµpxq
as nÑ8. Thus f � g is continuous function. ¤

Definition 1.27. An approximate unit in L1pTq will be a sequence φn of
nonnegative measurable functions satisfying

(a)
³
φn dµ � 1 for each n

(b) if U is a neighborhood of 1, then supxRU φnpxq Ñ 0 as nÑ8.

Proposition 1.28. Let φn be an approximate unit in L1pTq, and suppose
f P Lp where 1 ¤ p   8. Then φn �f Ñ f in LppTq. Moreover, if f P CpTq,
then φn � f converges uniformly to f .
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Proof. We note by the Hahn–Banach Theorem that there is always an
h P Lq satisfying |h|q � 1 and xφn � f � f, hy � |φn � f � f |p. Now by
Hölder’s inequality,

|xφn � f � f, hy| ¤
» »

φnpyq|fpy�1xq � fpxq| |hpxq| dµpyq dµpxq
�
»

φnpyq
»
|λpyqfpxq � fpxq| |hpxq| dµpxq dµpyq

¤
»

φnpyq |λpyqf � f |p|h|q dµpyq.
Now if ε ¡ 0, we can choose a neighborhood U of 1 in T such that |λpyqf �
f |p   ε

2 if y P U . (See Exercise 1.2.4.) But φn Ñ 0 uniformly off U . Hence
for large n,

³
T�U φnpyq dµpyq   ε

4|f |p . Thus for large n, we have

|xφn � f � f, hy| ¤
»
T�U

φnpyqp2|f |pq dµpyq �
»

U

ε

2
φnpyq dy   ε

for any h with |h|q � 1. Consequently |φn � f � f |p   ε for large n.
Finally, suppose f P CpTq. First choose a neighborhood U of 1 such

that |fpy�1xq � fpxq|   ε
2 whenever y P U , and then choose N such that

supxPT�U φnpxq   ε
4|f |8 for n ¥ N . Then if n ¥ N , one has

|φn � fpxq � fpxq| ¤
»

φnpyq|fpy�1xq � fpxq| dy

 
»
T�U

2φnpyq|f |8 dµpyq �
»

U
φnpyq ε2 dµpyq

¤ ε

2
� ε

2
� ε.

¤

Lemma 1.29. Let f P L1pTq and g P C8pTq. Then f � g P C8pTq. More-
over,

Dkpf � gq � f �Dkg.

Proof. We have |f̂ |8 ¤ |f |1 and |ĝ|8 ¤ |g|1. Using the seminorms ρ2k and
Theorem 1.22, we know

°
n |n|k|ĝpnq|   8 for all k. By (e) of Lemma 1.17,zf � gpnq � f̂pnqĝpnq. But¸ |f̂pnqĝpnq|2n2k�2 ¤ |f |21|g|1 ¸ |ĝpnq|n2k�2   8.
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Thus by Corollary 1.24, f � g P CkpTq for all k. Moreover,

FpDkpf � gqqpnq � p2πinqkFpf � gqpnq
� p2πinqkf̂pnqĝpnq
� f̂pnqFpDkgqpnq
� Fpf �Dkgqpnq.

Since F is one-to-one on L2pTq,
Dkpf � gq � f �Dkg.

¤

This result also follows from Exercise 1.3.9.

6. Convergence of the Fourier Series

We saw in a previous section that the Fourier transform converges in L2 if
f is an L2-function. Also if f is in C2pTq, then the Fourier series converges
uniformly to f . But in general it does not hold that the Fourier series

°
anzn

converges to fpzq. In this section we will deal with the question of how to
recover a function from its Fourier series. We start by stating two negative
results; however, first we have a few preliminaries.

Define the partial Fourier sum sN pfq to be

sN pfq �
Ņ

n��N

f̂pnqen .

Note sN pfq � f �DN where DN � e�N � e�N�1� � � �� eN�1� eN . DN

is a trigonometric polynomial that is an idempotent under convolution. It
is called the Dirichlet kernel.

Lemma 1.30. Let N P N. Then the following hold:

(a) DN pzq � zN�1{2�z�pN�1{2q
z1{2�z�1{2 if z �� 1 and DN p1q � 2N � 1.

(b) DN pe2πixq � sinpp2N�1qπxq
sinpπxq if x R Z and DN p1q � 2N � 1.

(c) DN pzq � DN pz�1q.
(d)

³
TDN pzq dµpzq � 1.

(e) sN pfqpzq � f �DN pzq � DN � fpzq.
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Proof. (a) We have

DN pzq � z�N
2Ņ

n�0

zn

� z�N 1� z2N�1

1� z

� zN�1{2 � z�pN�1{2q
z1{2 � z�1{2 .

Also DN p1q � °N
n��N 1 � 2N � 1.

(b) This follows immediately by using that sinpψq � peiψ � e�iψq{2i.

(c) This follows from (a).

(d) Using
³
T zn dµ � 0 for n �� 0 one has

³
TDN pzq dµpzq � °N

n��N

³
zn dµpzq �³

1 dµpzq � 1.

(e) This follows by (f) of Lemma 1.17.
¤
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Dirichlet Kernels for N=1, 5, 10

Figure 2. Dirichlet Kernels for N � 1(blue), 5(green), 10(red)

Figure 1.2 shows the functions DN become more and more localized
around z � 1 and then oscillates.

Lemma 1.31. There exists a dense Gδ subset D � L1pTq such that the
Fourier series does not converges in L1pTq for f P D.



Convergence of the Fourier Series 31

Proof. Define linear transformations ΛN : L1pTq Ñ L1pTq by ΛNf �
DN � f . We note individually they are bounded for ||ΛN || ¤ |DN |1. They,
however, are not uniformly bounded.

Define fk on T by fkpeiθq � πkχr� 1
k
, 1
k
spθq. Note each fk has length 1 in

L1pTq. Moreover,

f̂kpnq � 1

2π

» 1
k

� 1
k

kπe�inθ dθ � � k

2in
e�inθ| 1k� 1

k

� k

2in

�
ei n

k � e�i n
k

	 � k

n
sinpn

k
q.

Hence for fixed n, f̂kpnq Ñ 1 as k Ñ 8. Thus ΛN pfkq � fk � DN �°N
l��N f̂kplqel Ñ °N

l��N el � DN as k Ñ8.
Recall

DN pe2πixq � sinpπp2N � 1qxq
sinpπxq .

Now |DN |1 � ³1
0
| sinpπp2N�1qxq|

sinpπxq dxÑ8 as N Ñ8. Indeed,

|DN |1 �
» 1

0

����sin pπp2N � 1qxq
sinpπxq

���� dx

� 4N�2

ķ�1

» k{p4N�2q
pk�1q{p4N�2q

����sin pπp2N � 1qxq
sinpπxq

���� dx

¡ 4N�2

ķ�1

» k{p4N�2q
pk�1q{p4N�2q

����sin pπp2N � 1qxq
πx

���� dx

¡ 1
π

4N�2

ķ�1

» k{p4N�2q
pk�1q{p4N�2q

����sin pπp2N � 1qxq
k{p4N � 2q

���� dx

� p4N � 2q
π

4N�2

ķ�1

1
k

» k{p4N�2q
pk�1q{p4N�2q

|sin pπp2N � 1qxq| dx

� 2
π2

4N�2

ķ�1

1
k

» kπ{2
pk�1qπ{2

|sin t| dt (where t � πp2N � 1qxq

� 2
π2

4N�2

ķ�1

1
k

» π{2
0

sin t dt

� 2
π2

4N�2

ķ�1

1
k
Ñ 0 asN Ñ 0.

Hence the ΛN are not uniformly bounded on the unit ball of L1pTq. By the
Banach–Steinhaus Theorem (i.e., the principle of uniform boundedness),
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there exists a dense Gδ set D such that

sup
N
| Ņ

k��N

f̂pkqek|1 � sup
N
|ΛN pfq|1 � 8 for all f P D.

¤

Remark. We showed |DN |1 ¥ 2
π2

°4N�2
k�1

1
k . Thus |DN |1 ¥ 2

π2 lnp4N �
3q ¥ 2

π2 ln N . Thus the DN ’s are not bounded in L1pTq. It is known that
|DN |1 � 4

π2 ln N � Op1q. This is the central reason they do not form an
approximate unit in L1pTq.

The following shows convergence can be a problem even for continuous
functions. We state it without proof.

Lemma 1.32. Let tzku8k�0 be a sequence in T. Then there exists a function
f P CpTq such that limNÑ8 |sN pfqpzkq| � 8 for all k.

Remark 1.33. One of the most intriguing and long standing problems in
analysis was when and where the Fourier series of a continuous function on
T converges. In 1873 P. Dubois Reymond gave an example of a continuous
function whose Fourier series fails to converge at a point.

In 1922 A. N. Kolmogorov gave an example of an integrable function
whose Fourier series converges at no point.

This is clearly related to Lemma 1.31 in that the Fourier series of a
function f P L1pTq need not converge pointwise almost everywhere, for if it
did it would converge in L1pTq.

In 1966, L. Carleson showed there is a.e. pointwise convergence for every
L2 function. This was later extended by Hunt to the Fourier series of any
function in LppTq where p ¡ 1.

Lemma 1.34 (Lebesgue Lemma). Suppose T ¡ 0 and g is in L1r0, T s.
Then » T

0
gpxq sin ax dxÑ 0

as a Ñ8.

Sketch. This is similar to the argument for (d) in Lemma 1.17. First check
it works for gpxq � χrc,ds. Then show it works for step functions and then
for any L1 function. ¤

Theorem 1.35. Suppose fptq � F pe2πitq is a periodic function on R with
period 1 and f is integrable on r0, 1s. Let x be a point where fpx�q �
limtÑx� fptq and fpx�q � limtÑx� fptq exist. If there exist K ¡ 0, δ ¡ 0,
and α ¡ 0 with |fpx� tq � fpx�q| ¤ Ktα and |fpx� tq � fpx�q| ¤ Ktα for
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0   t   δ, then DN � F pe2πixq Ñ 1
2pfpx�q � fpx�qq as N Ñ 8; i.e., one

has
Ņ

k��N

f̂pkqe2πikx Ñ 1
2
pfpx�q � fpx�qq.

Proof. Note

DN � F pe2πixq �
»

DN pzqF pz�1e2πixq dµpzq
�
» 1{2
�1{2

DN pe2πitqF pe2πipx�tqq dt

�
» 1{2
�1{2

DN pe2πitqfpx� tq dt.

Hence DN �F pe2πixq � ³1{2
0 DN pe2πitqfpx� tq dt� ³0�1{2 DN pe�2πitqfpx�

tq dt for DN pe�2πitq � DN pe2πitq. Changing variables in the second integral
gives

DN � F pe2πixq �
» 1{2
0

DN pe2πitqpfpx� tq � fpx� tqq dt.

Hence the result will follow if we show» 1{2
0

DN pe2πitqfpx� tq dtÑ 1
2
fpx�q

and » 1{2
0

DN pe2πitqfpx� tq dtÑ 1
2
fpx�q

as N Ñ8.
We show the first, for the second follows by the same argument. Note³1{2

0 DN pe2πitq dt � 1
2

³
DN pzq dµpzq � 1

2 . Hence» 1{2
0

DN pe2πitqfpx� tq dt� 1

2
fpx�q �

» 1{2
0

DN pe2πitqpfpx� tq � fpx�qq dt

�
» 1{2
0

sinpπp2N � 1qtq
sinpπtq pfpx� tq � fpx�qq dt.

By the Lebesgue Lemma, this will converge to 0 as N Ñ8 if the function

ψptq � fpx� tq � fpx�q
sinπt

is integrable on r0, 1{2s. Choose δ ¡ 0 so that |fpx� tq� fpx�q|   Ktα and
sinπt ¡ πt

2 for 0   t   δ. Then

|ψptq| � χp0,δq |fpx� tq � fpx�q|
sinπt

� χrδ,1{2sptq |fpx� tq � fpx�q|
sinπt

.

The second of these two terms is clearly in L1r0, 1{2s, and the first is less
than 2Ktα

πt which is integrable on r0, 1{2s since α ¡ 0. ¤
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Corollary 1.36. Suppose fptq is periodic with period 1 and f |r0,1s P L1r0, 1s.
If fpx�q and fpx�q exist and

f 1px�q � lim
tÑ0�

fpx� tq � fpx�q
t

and f 1px�q � lim
tÑ0�

fpx� tq � fpx�q
t

exist, then

lim
NÑ8

Ņ

k��N

f̂pkqe2πikx � 1
2
pfpx�q � fpx�qq.

Proof. We can choose δ ¡ 0 so that |fpx�tq�fpx�q|
t   |f 1px�q|�1 if 0   t   δ.

Hence there is a K such that |fpx� tq � fpx�q|   Kt for 0   t   δ. ¤

Definition 1.37. A sequence tanu8n�0 is Cesáro summable to L if the
average 1{pN � 1q°N

k�0 sk of the partial sums sk � °k
n�0 an converges to

L. It is Abel summable to L if
°8

n�0 akr
k exists for all 0 ¤ r   1 and

limrÑ1�
°

anrn � L.

To recover f P L1pTq from its Fourier transform one uses the average of
partial sums, i.e., Cesáro summability. Define

σN pfqpzq � 1
N � 1

Ņ

n�0

snpfqpzq .

Let

ΣN pzq � 1
N � 1

Ņ

n�0

DN pzq.

Then

σN pfq � f � ΣN .

Lemma 1.38. One has

(a) ΣN pe2πixq � 1
N�1

�
sinppN�1qπxq

sinpπxq
�2

if e2πix �� 1 and ΣN p1q � N � 1.
In particular we have ΣN ¥ 0.

(b) Σpzq � Σpz�1q.
(c)

³
TΣN dµ � 1.
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Proof. (a) Using Dnpzq � pzn�1 � z�nq{pz � 1q, we see that

Ņ

n�0

Dnpzq � 1
z � 1

�
zN�2 � z

z � 1
� z�N�1 � 1

z�1 � 1

�
� 1

pz � 1q2
�
zN�2 � z � z�N � z

�
� z

pz � 1q2
�
zN�1 � 2� z�N�1

�
� 1

pz1{2 � z�1{2q2
�
zpN�1q{2 � z�pN�1q{2	2

�
�

zpN�1q{2 � z�pN�1q{2
z1{2 � z�1{2

�2

.

Hence if z � e2πix, one has

ΣN pe2πixq � 1
N � 1

Ņ

n�0

Dnpe2πixq � 1
N � 1

�
sinppN � 1qπxq

sinpπxq
�2

.

The claim for z � 1 follows either by continuity or by

1
N � 1

Ņ

n�0

p2n� 1q � N � 1 .

(b) This follows immediately from (a).

(c) By lemma 1.30 we have»
ΣN pzq dµpzq � 1

N � 1

Ņ

n�0

»
Dnpzq dµpzq

� 1
N � 1

Ņ

n�0

1

� 1

¤

Note that the integral of ΣN is concentrated more and more around
z � 1 as N Ñ 8. Figure 1.3 shows the graphs of the Fejer kernels ΣN for
N � 1, N � 5, and N � 9.

Lemma 1.39. Let 0   δ   1
2 . Then there exists a constant C � Cpδq

independent of N such that
��ΣN pe2πixq�� ¤ C

N�1 for δ ¤ |θ| ¤ 1{2.
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Figure 3. Fejer Kernels for N � 1(blue), 5(green), 9(red)

Proof. Choose C ¡ 0 such that |sinpπxq| ¥ 1{?C for δ   |x| ¤ 1
2 . As

|sinppN � 1qπxq| ¤ 1 it follows that��ΣN pe2πixq�� ¤ C

N � 1
.

¤
Theorem 1.40 (Fejér). Let 1 ¤ p   8 and f P LppTq. Then f � ΣN is a
trigonometric polynomial and

lim
NÑ8 |f � ΣN � f |p � 0 .

If f P CpTq, then
lim

NÑ8 |f � ΣN � f |8 � 0 .

Thus for continuous f , the sequence a0 :� f̂p0q, an :� f̂pnqzn � f̂p�nqz�n

for n ¡ 0 is uniformly Cesáro summable to fpzq.
Proof. By Lemmas 1.38 and 1.39, the Fejer kernels ΣN form an approxi-
mate unit in L1pTq. Hence the statements follow from Proposition 1.28. ¤

7. The Poisson Kernel

In Section 1, we showed that by separation of variables using polar coordi-
nates on the unit disc |z| ¤ 1, Laplace’s equation ∆u � 0 produced solutions
of form

upr, θq � 8̧

n��8
anr|n|einθ.
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We note if r � 1, the resulting function would be a Fourier series and should
represent the boundary condition upr, 1q � fpθq. Hence we would hope

8̧

n��8
aneinθ � fpθq

in some sense, i.e., pointwise, uniformly, in L2, etc.
Associated with this decomposition is the function P pr, θq where we take

all the a1ns in the function upr, θq equal to one. As can be seen in the next
chapter, P p1, θq is the Fourier series” of the Dirac function δ and conceivably
P pr, θq is close in some sense to δ for r near one. The function P pr, θq is
called the Poisson kernel. Hence

P pr, θq � 8̧

n��8
r|n|einθ.

This series converges uniformly on any subset S of r0, 1s � R for which
suptr : pr, θq P Su   1.

As seen in Section 1,

P pr, θq � 1� r2

1� 2r cos θ � r2
.

Define Prpeiθq � P pr, eiθq for 0 ¤ r   1.

Lemma 1.41. Pr satisfy the following conditions.

(a) Prpzq ¥ 0 for all z P T.
(b)

³
Prpzq dµpzq � 1 for 0 ¤ r   1.

(c) if U is a neighborhood of 1 in T, then supzRU |Prpzq| Ñ 0 as r Ñ 1�.

Proof. Clearly we have (a) and since
°

r|n|enpeiθq converges uniformly on
T,

³
Prpzq dµpzq � °

r|n| ³ enpzq dµpzq � r0
³
e0pzq dz � 1. Thus (b) holds.

For (c), choose a ¡ 0 with 1� cos θ   1
2 if |θ|   a. Then for any δ with

0   δ   a, one has

P pr, θq � 1� r2

1� 2r cos θ � r2
¤ 1� r2

1� r � r2

if δ ¤ |θ|   π. Since 1�r2

1�r�r2 Ñ 0 as r Ñ 1�, (c) follows. ¤

This lemma shows Prpzq form an ‘approximate unit’ in L1pTq and the
argument in the proof of Proposition 1.28 shows the following are true:

(1) if f P LppTq where 1 ¤ p   8, Pr � f Ñ f in LppTq as r Ñ 1�.
(2) if f P CpTq, then Pr � f Ñ f uniformly on T as r Ñ 1�.

Theorem 1.42 (Poisson Theorem).
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(a) Let f P L1pTq, then the function

upr, θq � 1
2π

» 2π

0
P pr, θ � φqfpeiφq dφ

is harmonic on the open disk |z|   1.

(b) If f P LppTq where 1 ¤ p   8, then

upr, θq Ñ fpeiθq in LppTq as r Ñ 1� .

(c) If f P CpTq, then

upr, θq Ñ fpeiθq uniformly on T as r Ñ 1� .

Proof. We note we already have (b) and (c). For (a), we need only note
since upr, θq � °

f̂pnqr|n|einθ, that |f̂pnq| ¤ |f |1 for all n; and thus both
the series and the series for the r and θ derivatives of any order converge
uniformly on any disk |r|   a where a   1. ¤

Exercise Set 1.4

1. Show that the sequence an � p�1qn is Abel and Cesáro summable to
1{2.

2. Show that if
°

an converges to L, then tanu is Abel and Cesáro sum-
mable to L. (Hint: To show

°
ak is Abel summable, use Abel’s summation

formula
°n

k�1 akbk � p°n
k�1 akqbn �°n�1

k�1p°k
l�1 alqpbk � bk�1q to show the

series
°

akr
k converges uniformly for 0 ¤ r ¤ 1.)

3. Show if the series
°

an is Cesáro summable, then limnÑ8 an
n � 0.

4. Show the series
°8

n�0p�1qn pn�kq!
n! nk is Abel summable and find its sum.

(Hint: Consider rk
�

d
dr

�k p1� rq�1 expressed as a series.)

5. Let δ0 ¥ δ1 ¥ � � � ¥ 0 be a decreasing sequence with lim δn � 0. Define
a0 :� δ0 and an :� δn�1 � δn for n ¥ 1. Let gpzq :� °

anzn . Show that g is
continuous, g �DN converges uniformly to g, and |g �DN � g|8 ¤ δN .

6. Suppose f P L1pTq. Show if f̂pnq � 0 for all n, then fpzq � 0 a.e. z.

7. Let F be the function on T defined by F peiθq � θ for �π ¤ θ   π.

(a) Evaluate F̂ pnq.
(b) Show the series

°
F̂ pnqeinπ diverges.

(c) Show for each N ,
°N

k��N F̂ pnqeinπ � 0.

(d) Define f by fpxq � F pe2πixq. Show f satisfies the conditions of
Theorem 1.35 at x � 1

2 .
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8. Show the series
°8

n�1
sin nx

n converges pointwise everywhere and deter-
mine its limit. Does this series converge uniformly? (Hint: Consider the
odd function of period 2π equal to π � x on the interval 0   x ¤ π.)

9. Show

π

4
� 8̧

k�0

sinp2k � 1qx
2k � 1

for 0   x   π.

10. Suppose upx� iyq is harmonic on a nonempty open subset U of C; i.e.,
u is C2 on this set and uxx � uyy � 0.

(a) Show if u � 0 on a circle |z � z0| � a contained inside U , then
u � 0 inside the circle. (Hint: Use the divergence theorem (Stoke’s
Theorem) on this disk and its boundary applied to the vector field
u∇u.)

(b) Show if z0 P U and the circle |z � z0| � a is contained in U , then

upz0 � reiθq � 1
2π

» 2π

0
P pr

a
, θ � φqupz0 � aeiφq dφ.

(Hint: Consider Theorem 1.42.)

(c) Conclude

upz0q � 1
2π

» 2π

0
upz0 � aeiφq dφ � 1

2πa

¾
|z�z0|�a

upzq |dz|.

(d) (Maximum Principle) Use (c) to show u cannot assume a local
maximum or minimum inside U .

8. Applications

In this section we discuss some applications of the Fourier transform. The
first two are examples illustrating how one uses the Fourier transform to
solve differential equations, and the last is an example of its application to
geometry.

Before starting we remark that Fourier series can be used to analyze
functions on any finite interval. Indeed if I is an interval of positive length
L and f is a complex valued function on I, then F pe2πix{Lq � fpxq for x P I
defines a function on T and thus may have a Fourier series

fpxq � F pe2πix{Lq �¸
f̂pnqe2πinx{L
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where

f̂pnq :� F̂ pnq
�
» 1

0
F peitqe�2πint dt

� 1
L

»
I
F pe2πix{Lqe�2πinx{L dx

� 1
L

»
I
fpxqe�2πinx{L dx.

In this situation, the Fourier transform of Df satisfiesyDfpnq � 2πin

L
f̂pnq

and in this respect becomes simplest when L � 2π.

8.1. The Wave Equation. The general form of the wave equation is

(1.14) a2B2
xupx, tq � B2

t upx, tq , upx, 0q � fpxq , utpx, 0q � gpxq .
Here x P r0, Ls, f, g are functions on r0, Ls, and a ¡ 0 is a constant. In the
case where up0, tq � upL, tq � 0 for all t and f and g are real valued, this
equation describes the vibration of a homogeneous string, fastened at both
ends and starting at position upx, 0q � fpxq with initial velocity utpx, 0q �
gpxq. The constant a2 � T {ρ is given by the tension T and the linear density
ρ.

As we are motivated by the vibration of a string, let us assume that f and
g are continuous on r0, Ls, fp0q � fpLq � gp0q � gpLq � 0, and f and g are
C2 on p0, Lq. Let us look for a smooth solution x ÞÑ upx, tq. First we extend
f and g and up � , tq to be odd functions on r�L,Ls by fp�xq � �fpxq,
gp�xq � �gpxq, and up�x, tq � �upx, tq. Then f and g are continuous
on r�L,Ls and have continuous derivatives on p�L,Lq. Taking the Fourier
transform in the x-variable and denoting it by ûpn, tq, and using that all
functions are real valued and odd, one has:

ûpn, tq � ûp�n, tq � �i

L

» L

0
upx, tq sinpπnx{Lq dx ;

f̂pnq � f̂p�nq � �i

L

» L

0
fpxq sinpπnx{Lq dx ;

ĝpnq � ĝp�nq � �i

L

» L

0
gpxq sinpπnx{Lq dx .

Next notice that differentiation in the t-variable commutes with taking the
Fourier transform in the x-variable. Thus for all n P Z:

�π2a2

L2
n2 ûpn, tq � ûttpn, tq , ûpn, 0q � f̂pnq, ûtpn, 0q � ĝpnq .
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This is an ordinary second order linear initial value problem for the function
t ÞÑ ûpn, tq with unique solution

ûpn, tq � f̂pnq cos
�

πnat

L



� L

πna
ĝpnq sin

�
πnat

L



.

Summing up we conclude
(1.15)

upx, tq � 2i
8̧

n�1

�
f̂pnq cos

�
πnat

L



� L

πna
ĝpnq sin

�
πnat

L


�
sin

�πnx

L

	
.

This solution satisfies up0, tq � upπ, tq � 0 for all t P R. We note this
solution is periodic in t with period L

a .

8.2. The Heat Equation. In this section we discuss the heat equation

a2B2
xupx, tq � utpx, tq , upx, 0q � fpxq , 0 ¤ x ¤ L .

In the case where f is real valued, this is the differential equation describing
the heat flow in a homogeneous cylindrical rod of length L, whose lateral
surface is insulated from the surrounding medium and where the initial
temperature at the point x P r0, Ls is fpxq. The constant a in this case is
given by a2 � K{cρ where K is the thermal conductivity of the material
from which the rod is made, c is the heat capacity, and ρ is the density.
We will only consider solutions that are fixed by the same constant at the
endpoints x � 0 and x � L. We can then assume that up0, tq � upL, tq � 0
for all t. In this case, we will assume that L � π and will accordingly extend
all functions depending on the variable x to odd functions on the interval
r�π, πs. Taking the Fourier transform in the x-variable we obtain:

�a2n2ûpn, tq � ûtpn, tq , ûpn, 0q � f̂pnq .
Thus ûpn, tq � f̂pnqe�a2n2t . Now using that f and up�, tq are odd and real
valued we have:

upx, tq �
ņPZ

f̂pnqeinx�a2n2t � 2i
8̧

n�1

f̂pnqe�n2a2t sinpnxq .
One can do general L by using Fourier transform on r�L, Ls as for the

wave equation or making appropriate changes in variables to return to the
case when L � π. One obtains

upx, tq � 2i
8̧

n�1

f̂pnqe�n2π2a2t{L2
sin

�nπ

L
x
	

where

f̂pnq � � i

L

» L

0
fpxq sin�nπ

L
x
	

dx.
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8.3. The Isoperimetric Problem. Let γ : r0, 2πs Ñ C be a continuous
smooth simple and closed curve. Then C :� γpr0, 2πsq defines a bounded
domain Ωpγq � C. Assume for simplicity that the length of C is one.
Question: For which curve is the area apΩpγqq maximum?

Theorem 1.43 (Hurwitz). We have apΩpγqq ¤ 1
4π and apΩpγqq � 1

4π if and
only if Ωpγq is a circle.

Proof. Let Ω � Ωpγq. Set Gpeiθq � γpθq � xpθq � iypθq. Then G is a
smooth function on the torus. Hence

Gpzq � 8̧

n��8
pGpnqzn

and if z � eiθ,

γ1pθq � DGpzq � i
8̧

n��8
n pGpnqzn .

We may assume the parametrization satisfies

|γ1pθq|2 � x1pθq2 � y1pθq2 � 1
2π

.

Then, by the Plancherel formula

1
4π2

� |DG|22
� 1

2π

» 2π

0
|γ1pθq|2 dt

� 8̧

n��8
n2| pGpnq|2 .

Or

π
8̧

n��8
n2

��� pGpnq���2 � 1
4π

.
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Now applying Stoke’s Theorem to the boundary of Ω and using xx1�yy1 � 0
and the Plancherel Theorem, one obtains

apDpγqq � 1
2

» »
Ω

dpx dy � y dxq
� 1

2

»
BΩ

xdy � ydx

� 1
2

» 2π

0

�
xpθqy1pθq � ypθqx1pθq� dθ

� �1
2i

» 2π

0
γpθqγ1pθq dθ

� π
8̧

n��8
n pGpnq pGpnq

� π
8̧

n��8
n| pGpnq|2 .

It follows now that
1
4π
� apDpγqq � π

8̧

n��8
npn� 1q| pGpnq|2 .

Next note that npn� 1q ¡ 0 for all n � 0, 1. Hence

1
4π
� apΩq � π

8̧

n��8
npn� 1q| pGpnq|2 ¥ 0

and
1
4π
� apΩq � 0

if and only if pGpnq � 0 for n �� 0 or n �� 1. But in that case

Gpeiθq � pGp0q � pGp1qe�iθ

which is a circle. ¤





Chapter 2

Function Spaces on Rn

Functions play a pivotal role in Fourier analysis and noncommutative har-
monic analysis. Those with particularly nice properties form linear spaces
which can be studied in the abstract. These function spaces, their integrable
and differential properties, and their topological structure allow one to sys-
tematize how differential and integral operators can be analyzed. Those
spaces particularly adapted to a linear integral transform or a partial dif-
ferential operator provide the best starting point in inverting, solving, or
diagonalizing these transformations. Several of the spaces described in this
chapter are particularly suited for the Fourier transform on Rn. This trans-
form, to be introduced in the next chapter, may arguably be the most im-
portant transform in mathematics. To deal with the varieties of spaces we
shall encounter, we shall reexamine and present afresh many topics dealing
with general concepts in topology and analysis. To many readers this may
be unnecessary. However, we hope the detail will make a ready source for
students who need further experience with these topics. The chapter will
emphasize the broad aspects of the theory more than the fine detail.

1. Locally Convex Topological Vector Spaces

In this chapter function spaces play a prominent role. These function spaces
may be Banach spaces, Hilbert spaces, or topological vector spaces. How-
ever, whenever we consider function spaces, the topologies important for
them will either by defined by a norm or a family of seminorms. Spaces
whose topologies are defined by seminorms are locally convex. In this sec-
tion the abstract structure of such spaces are developed. In the following
discussion, vector spaces are assumed to be complex. The same results hold
if the vector spaces are real. The arguments work identically in both cases.

45
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A subset C of a vector space X is convex if λx�p1�λqy P C whenever
x, y P C and 0 ¤ λ ¤ 1.

Definition 2.1. A locally convex vector space topology on X is a
topology on X having the following properties:

 px, yq ÞÑ x� y is continuous from X �X into X

 pλ, xq ÞÑ λx is continuous from C�X into X

 for each point x in an open subset G of X, there is a convex open
set U with x P U � G.

If the last condition is removed, X is said to be a topological vector
space. The space X is said to be separated if for each x � 0 in X, there
is a open neighborhood U of 0 with x R U . Exercise 2.1.1 shows this is
equivalent to X being Hausdorff.

Definition 2.2. A nonempty subset U of a vector space X is balanced if
αU � U for any scalar α with |α| ¤ 1. It is saturating if for each x P X
there is a λ � 0 with x P λU .

Remark 2.3. If N is a neighborhood of 0 in a topological vector space X,
then N saturates. Indeed, by continuity of scalar multiplication, if x P X,
we can find a nonzero λ near 0 such that λx P N . Thus x P 1

λN .

A seminorm on a vector space X is a mapping x ÞÑ ||x|| satisfying

 ||x|| ¥ 0 for all x

 ||αx|| � |α| ||x|| for scalars α and x P X

 ||x� y|| ¤ ||x|| � ||y|| for x, y in X.

Note by Exercise 2.1.2, if || � || is a seminorm, then the set U � tx | ||x||   1u
is convex, balanced, and saturating.

Lemma 2.4. Let U be a balanced, convex, and saturating subset of X.
Define || � || by

||x|| � inftλ | λ ¡ 0, x P λUu.
Then || � || is a seminorm on X.

Proof. Note there is a λ ¡ 0 with λx P U , for U is saturating and balanced.
Thus ||x||   8 for all x P X. Note λ0 P U for all λ ¡ 0 implies ||0|| � 0.



Locally Convex Topological Vector Spaces 47

Also for α � 0 since |α|
α U � U ,

||αx|| � inf
λ¡0
tλ | αx P λUu

� inftλ | |α| α

|α|x P λUu
� inftλ | x P λ

|α|
|α|
α

Uu
� inftλ | x P λ

|α|Uu
� inft|α|λ | x P λUu
� |α| ||x||.

Let ε ¡ 0. Then ||x|| � ε is not a lower bound for tλ | λ ¡ 0, x P λUu
and thus there is a λ1 ¡ 0 with with λ1   ||x|| � ε and x P λ1U . Similarly,
there is a λ2 ¡ 0 with λ2   ||y|| � ε and y P λ2U . Now since U is convex,
we see

λ1

λ1 � λ2
� 1
λ1

x� λ2

λ1 � λ2
� 1
λ2

y P U.

Hence 1
λ1�λ2

px � yq P U . Thus ||x � y|| ¤ λ1 � λ2   ||x|| � ||y|| � 2ε. This
implies ||x� y|| ¤ ||x|| � ||y||. ¤

Definition 2.5. Let U be a subset of X. A point x P U is internal to U if
for each y P X, there is a δy ¡ 0 such that x� αy P U whenever |α|   δy.

Lemma 2.6. Suppose U is a balanced, saturating, convex set and each point
in U is internal. Let || � || be the seminorm defined by

||x|| � inf
λ¡0, xPλU

λ.

Then U � tx | ||x||   1u.
Proof. If x P U , then x � αx P U for |α|   δx. Hence there is an α ¡ 0
with p1� αqx P U , and we see ||x|| ¤ 1

1�α   1.

If ||x||   1, then there is a 0 ¤ λ   1 with x P λU . Thus x P λU � U . ¤

Lemma 2.7. Let G be a neighborhood of 0 in a locally convex topological
vector space. Then there exists a balanced, convex, open set U contained in
G.

Proof. Since pα, xq ÞÑ αx is continuous and X is locally convex, there is a
convex open set V containing 0 and a δ ¡ 0 with αV � G whenever |α| ¤ δ.
Hence αδV � G whenever |α| � 1. Replace V by δV and set W � X|α|�1αV .
Note W is an intersection of convex sets and thus is convex. To see W is
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balanced, first note λW � W if |λ| � 1. Thus if β � 0 and |β| ¤ 1, then
since W is convex and 0 PW , we have

βw � |β|p β

|β|wq � |β|p
β

|β|wq � p1� |β|q0 P W.

We now have W is a convex balanced set. Note its interior contains 0.
Indeed, choose an open neighborhood N of 0 and a δ1 ¡ 0 such that λN � V
if |λ| � δ1. Then αpδ1Nq � V if |α| � 1. Set O � Y|α|�1pαδ1Nq. Note O is
open and contains 0 and is a subset of V . Since αO � O if |α| � 1, we see
O �W . Thus 0 is an interior point of W .

Hence W is a balanced convex subset of G containing 0 as an interior
point. Exercises 2.1.4 and 2.1.5 imply W � is open, convex, and balanced. ¤

Lemma 2.8. Let X be a locally convex topological vector space. Then there
is a collection Uα of open, balanced, convex sets which form a neighborhood
subbase at 0; i.e., for each open subset V of X containing 0, there is a finite
subset F of α1s such that

XαPF Uα � V.

Proof. Take the collection of all open balanced convex subsets of X. By
Lemma 2.7, these sets form a neighborhood base at 0. ¤

Proposition 2.9. Let X be a locally convex topological vector space. Sup-
pose Uα, α P A, is a collection of open balanced convex sets satisfying if V is
an open set containing 0, then there is a finite subset F of A and an δ ¡ 0
such that δpXαPF Uαq � V . Then:

(a) The seminorms || � ||α defined by ||x||α � inftλ | x P λUαu are
continuous on X.

(b) A subset V of X is open if and only if for each x P V there is a finite
subset F of A and an δ ¡ 0 with x�ty | ||y||α   δ for α P F u � V .
This is equivalent to x� δpXαPF Uαq � V .

Moreover, the space X is separated if and only if Xδ¡0, αPAδUα � t0u.
Proof. (a) We show || � ||α is continuous. Note ||x � x0||α   1 if and only
if x � x0 P Uα. Thus ||x � x0||α   δ if and only if x � x0 P δUα. Thus
||x� x0||α   δ if x P x0 � δUα. So these seminorms are continuous.

(b) Note since Uα � ty | ||y||   1u, the sets δpXF Uαq and ty | ||y||α  
δ for α P F u are equal. Suppose V is open and x P V . Then V � x is an
open set about 0 and thus contains δpXF Uαq for some finite set F and some
δ ¡ 0. Thus x� δpXF Uαq � V . The converse follows for if for each x P V ,
there is an F and an δ ¡ 0 such that x � δpXF Uαq � V , then each x in V
is interior, and thus V is open.
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X is separated if and only if for each x � 0, there is an open neighbor-
hood V of 0 with x R V if and only if for each x � 0 there is a δ ¡ 0 and a
finite set F of α’s such that x R δXαPF Uα if and only if Xδ¡0,αδUα � t0u. ¤

Theorem 2.10. If X is a vector space and Uα, α P A, is a family of convex
balanced saturating sets each having only internal points, then there is a
locally convex vector space topology on X such that the sets δUα where δ ¡ 0
and α P A form a neighborhood subbase at 0.

Proof. Let || � ||α be the seminorm defined by Uα and define a set V to be
open if for each x P V there is an δ ¡ 0 and a finite subset F of α’s with
x � XαPF ty | ||y||α   δu � V . The collection of open sets is clearly closed
under unions and finite intersections. Hence we have a topology. Moreover,
the sets x � XF ty | ||y||α   δu are convex. They are open for if x � y0

is in the set U � x � XF ty | ||y||α   δu and δ � infF tδ � ||y0||αu, then
x� y0 �XF ty | ||y||α   δu � U

To see summation is continuous note px � XF ty | ||y||α   δ
2uq � px1 �XF ty | ||y||α   δ

2uq � x� x1 �XF ty | ||y||α   δu.
The continuity of scalar multiplication is a consequence of

||λx� λ0x0||α ¤ ||λx� λx0||α � ||λx0 � λ0x0||α
¤ |λ| ||x� x0||α � |λ� λ0| ||x0||α
  p|λ0| � 1q δ

2p|λ0| � 1q �
δ

2p||x0||α � 1q ||x0||α
  δ

if |λ� λ0|   mint δ
2p||x0||α�1q , 1u and ||x� x0||α   δ

2p|λ0|�1q . ¤

Definition 2.11. Let X be a locally convex topological vector space. A
sequence txnu8n�1 is Cauchy if for each neighborhood U of 0, there is an N
such that xm � xn P U for all m,n ¥ N . This sequence converges to x if
for each neighborhood U of x, there is an N such that xn P U for all n ¥ N .

Lemma 2.12. Suppose the locally convex topology on X is defined using the
family of seminorms || � ||α where α P A. Let txnu8n�1 be a sequence in X.

(a) This sequence is Cauchy if and only if for each α and each ε ¡ 0,
there is an N such that

||xm � xn||α   ε

for m,n ¥ N .
(b) This sequence converges to x if and only if for each α and each

ε ¡ 0, there is an N such that

||xn � x||α   ε
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for n ¥ N .

Proof. Suppose xn is Cauchy. Let U � ty | ||y||α   εu. There is an N such
that xm � xn P U for m,n ¥ N . So ||xm � xn||α   ε for m,n ¥ N .

For the converse, if U is a neighborhood of 0, then there is a finite set
F � A and an ε ¡ 0 so that XαPF ty | ||y||α   εu � U . For each α P F ,
choose Nα so that ||xm�xn||α   ε if m, n ¥ Nα. Set N � maxtNα | α P F u.
Then xm � xn P U for m,n ¥ N .

The argument for (b) is essentially the same. ¤

A locally convex topological vector space is complete if every Cauchy
sequence has a limit; i.e., if txnu8n�1 is Cauchy, then there exists an x such
that xn Ñ x as n Ñ 8. A Fréchet space is a locally convex topological
vector space which is metrizable and complete. Note by Exercise 2.1.10
that a locally convex vector space topology is metrizable if and only if it
is Hausdorff and its topology is defined by countably many seminorms. A
subset E is said to be bounded if for each open neighborhood V of 0, there
is a r ¡ 0 such that E � rV .

Definition 2.13. Let X be a vector space and let Xi be a collection of
linear subspaces each having a locally convex topology. Assume YXi � X.
The strongest locally convex topology on X satisfying the relative topology of
X on Xi is weaker than the topology on Xi for each i is called the inductive
limit topology on X.

Lemma 2.14. The inductive limit topology on X � YXi exists.

Proof. Let Ti be the locally convex topology on Xi. Consider the collection
C of all locally convex topologies T on X with T |Xi � tGXXi | G P T u � Ti

for all i. Define a subset U of X to be open if and only if for each x P U ,
there are subsets V1, V2, . . . , Vn with Vk P YT PCT and x P XVk � U . This
defines a locally convex topology on X which contains all the topologies in
the collection C. Moreover, U XXi P Ti for each i. Indeed, if x P U XXi,
then x P Xk�n

k�1 pVk XXiq � U XXi and thus x is Ti interior to U XXi. ¤
Proposition 2.15. Let X � YXi have the inductive limit topology. Then
a linear transformation T : X Ñ Y where Y is a locally convex topological
vector space is continuous if and only if T |Xi is continuous for each i.

Proof. Suppose T |Xi is continuous for each i. Let T � tT�1pUq | U open in Y u.
This is a locally convex topology on X. Moreover, the relative topology of T
on Xi consists of the sets T�1pUqXXi which are open in Xi by assumption.
Thus T is a subset of the inductive limit topology. Thus T is continuous.

Conversely, suppose T : X Ñ Y is continuous. Since the inclusion map
Xi Ñ X is continuous, we see T |Xi is continuous for each i. ¤
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A family Xi of linear subspaces of X is said to be directed if for each
i1 and i2, there is an i3 with Xi1 YXi2 � Xi3 .

Proposition 2.16. Let X be a vector space. Suppose Xi form a directed
collection of linear locally convex topological vector subspaces whose union is
X. Give X the inductive limit topology from the linear subspaces Xi. Then
there is a one-to-one correspondence between all balanced convex sets U in
X satisfying U X Xi is open in Xi for all i and all continuous seminorms
on X. This correspondence is given by

U ÞÑ || � ||U
where

||x||U � inftλ ¡ 0 | x P λUu.
In particular, a seminorm ||�|| on X is continuous if and only if its restriction
to each space Xi is continuous.

Proof. Let U be a balanced convex subset of X with UXXi open for each i.
Let x P U . Then x P UXXi1 for some i1. If y P X, there is an i2 with y P Xi2 .
Since the family of subspaces Xi is directed, there is an i with both x and
y in Xi. Now U XXi is open and thus x is interior. Exercise 2.1.3 shows x
is internal in the set U XXi as a subset of Xi. Hence there is a δy ¡ 0 so
that x� λy P U for |λ|   δy. Hence every point in U is internal. Next note
if z P X, then z P Xi for some i. Since U XXi is open in Xi, it is saturating
in Xi. Thus there is a nonzero λ with z P λU . Hence U is saturating in X.
By Lemma 2.4, || � ||U is a seminorm on X. The topology defined on X by
the seminorm || � ||U is locally convex. Moreover, its restriction to each Xi

defines a locally convex topology on Xi weaker than the given topology on
Xi. Since the inductive limit topology on X is the strongest such topology,
the seminorm || � ||U is continuous in the inductive limit topology. The
mapping is one-to-one for by Lemma 2.6, U � tx | ||x||U   1u. Now let
|| � || be a continuous seminorm on X. Then U � tx | ||x||   1u is open,
balanced, and convex in X. Thus U XXi is open in each Xi. It follows that
|| � ||U � || � ||.

The last statement follows from the from || � || � || � ||U where U � tx |
||x||   1u and U XXi is open in Xi for all i if || � || is continuous on X. ¤
Corollary 2.17. Let Xi be a directed family of locally convex topological
subspaces of X whose union X. Then a convex balanced set U is open in X
if and only if U XXi is open in Xi for all i.

Proof. Let U be a balanced convex set. The mappings Xi ãÑ X are con-
tinuous. Thus if U is open in the inductive limit topology, U XXi is open
for each i. Conversely, if U XXi is open for each i, the seminorm defined by

||x|| � inftλ | λ ¡ 0 andx P λUu
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is continuous in the inductive limit topology. Thus the unit ball W � tx |
||x||U   1u is open in the inductive limit topology. Note W � U for if x PW ,
then x P λU for some λ with 0   λ   1. Thus x � λx� p1� λq0 P U . But
U �W for if x P U , then x P U XXi for some i. Since this set is open in Xi,
1
λx P U for some λ P p0, 1q. Hence ||x||U ¤ λ   1 and we see U �W . ¤

We conclude by presenting the following two basic principles for func-
tional analysis on locally convex vector spaces.

Theorem 2.18 (Uniform Boundedness Principle). Let X be a Fréchet space
and let Y be a locally convex topological vector space. Suppose Tn is a
sequence of continuous linear transformations from X into Y such that
Tnx converges for each x in X. Then the linear transformation Tx �
limnÑ8 Tnx is a continuous linear transformation of X into Y .

Proof. Let | � | be a continuous seminorm on Y . It suffices to show the
function x ÞÑ |Tx| is continuous at 0. Let Fm,n � tx | |Tnx| ¤ mu. Set
Fm � X8n�1Fm,n. Then Fm is a closed subset of X. Moreover, since for each
x the sequence Tnx converges, we see |Tnx| is bounded. Hence X � YmFm.
Since X is complete, the Baire Category Theorem implies Fm has interior
for some m. Thus there is a nonempty open subset V of X such that for
x P V , |Tnx| ¤ m for all n. Fix p P V and choose an open neighborhood U
of 0 with U �p � V . Then for x P U , |Tnx| � |Tnpx�pq�Tnp| ¤ m�|Tnp|.
Taking M � m � |Tp| and letting n Ñ 8, we find |Tx| ¤ M for x P U .
Thus when ε ¡ 0, we have |Tx|   ε for x P ε

M�1U . ¤

Theorem 2.19 (Open Mapping). Let X and Y be Fréchet spaces. Every
continuous linear transformation T of X onto Y is an open mapping.

Proof. Using Exercise 2.1.11, there are complete metrics σ and ρ on X and
Y satisfying σpx, x1q � σpx � x1, 0q and ρpy, y1q � ρpy � y1, 0q for x, x1 P X
and y, y1 P Y . Set Dn � tx | σpx, 0q   1

2n u. Note since Y8k�1kDn�1 �
X, one has YkT pDn�1q � Y . Since Y is complete, the Baire Category
Theorem implies T pDn�1q has interior. For ε ¡ 0, let Bεpyq be the ball
ty1 | ρpy, y1q   εu. We can choose εn ¡ 0 and pn P T pDn�1q such that
Bεnpynq � T pDn�1q. Then Bεnp0q � Bεnpynq � yn � T pDn�1q � T pDn�1q �
T pDn�1q � T pDn�1q. But if x, x1 P Dn�1, then x�x1 P Dn for ρpx�x1, 0q �
ρpx, x1q ¤ ρpx, 0q � ρp0, x1q   1

2n�1 � 1
2n�1 � 1

2n . Hence for each n, there is
an εn ¡ 0 such that Bεnp0q � T pDnq. We may assume εn Ñ 0 as n Ñ 8.
Set ε � ε1. Let y P Bεp0q. Since Bεp0q � T pD1q, we can choose x1 P D1

with ρpy � Tx1, 0q � ρpy, Tx1q   ε2. Thus we can find x2 P D2 so that
ρpy � Tx1 � Tx2, 0q � ρpy � Tx1, Tx2q   ε3. Repeating we find a sequence
txku8k�1 satisfying xk P Dk for each k and ρpy � °n

k�1 Txn, 0q   εn�1 for
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all n. Note x1n � x1 � x2 � � � � � xn is Cauchy in X. Indeed, if n   m,
σpx1n, x1mq � σp0, x1m � x1nq � σp0, xn�1 � xn�2 � � � � � xmq. Thus

σpx1n, x1mq ¤ σp0, xn�1q � σpxn�1, xn�1 � xn�2 � � � � � xmq
� σp0, xn�1q � σp0, xn�2 � xn�3 � � � � � xmq
¤ σp0, xn�1q � σp0, xn�2q � σpxn�2, xn�2 � xn�3 � � � � � xmq
� σp0, xn�1q � σp0, xn�2q � σp0, xn�3 � � � � � xmq
¤ � � �
� m̧

k�n�1

σp0, xkq

  m̧

k�n�1

1
2k
  1

2n
.

Since X is complete, there is an x with x1n Ñ x. Note the above argument
shows

ρp0, x1nq ¤ ρp0, x1q � ρp0, x2q � � � � � ρp0, xnq   1
2
� 1

22
� � � � � 1

2n

for all n. Thus ρp0, xq   1. Moreover, Tx � y for T is continuous and
ρpy, Tx1nq � ρpy � Tx1n, 0q   εn. Hence T pD1q � Bεp0q.

Now let U be a nonempty open subset of X and suppose u P U . Choose
r ¡ 0 such that rD1 � u � U . Thus rT pD1q � T puq � T prD1 � uq � T pUq.
Thus rBεp0q � T puq � T pUq. Hence each T puq is an interior point in T pUq.
Consequently, T pUq is an open subset of Y . ¤

Exercise Set 2.1

1. Show a topological vector space X is separated if and only if it is Haus-
dorff.

2. Let || � || be a seminorm on a vector space X. Show U � tx | ||x||   1u
is balanced, saturating, and convex and each point in U is internal.

3. Let X be a topological vector space. Show every interior point of a
subset U of X is internal.

4. Let X be a topological vector space. Show the interior of any balanced
subset of X containing the zero vector as an interior point is balanced.

5. Let X be a topological vector space. Show the interior of any convex set
is convex.

6. Give an example of an internal point of a subset of a normed space X
which is not interior.
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7. Let W be a convex, saturating, and balanced set in a vector space X
with corresponding seminorm || � || where

||x|| � inftλ ¡ 0 | x P λW u.
Show tx | ||x||   1u equals the set of internal points in W . In particular, the
set of internal points of W has only internal points and is convex, saturating,
and balanced.

8. Show there is a unique Hausdorff vector space topology on Rn. (Hint:
Show all compact sets in the standard topology are compact and hence
closed in any other topology. Then show if V is open and contains the zero
vector and αV � tx | ||x|| � 1u where |α| ¤ δ, then V is bounded.)

9. Let X be a locally convex topological vector space. Let F be the family
of all continuous seminorms on X. Show the topology on X is the locally
convex vector space topology on X defined by using all the seminorms in F .

10. Let X be a locally convex topological vector space.

(a) Show t
1�t ¤ r

1�r � s
1�s whenever r, s, t ¥ 0 and t ¤ r � s.

(b) Suppose the locally convex topology on X is defined by a countable
family t|| � ||i | i P Nu of seminorms. Define d on X �X by

dpx, yq � 8̧

i�1

1
2i

� ||x� y||i
1� ||x� y||i



.

Show d is a pseudometric on X; i.e., dpx, xq � 0, dpx, yq � dpy, xq,
and dpx, zq ¤ dpx, yq � dpy, zq for all x, y and z in X.

(c) Show the topology on X defined by the pseudometric d is the topol-
ogy on X.

(d) Show X is metrizable if and only if X is Hausdorff and the locally
convex topology on X can be defined by countably many semi-
norms.

11. Show if X is a Fréchet space, there is a complete metric ρ on X satis-
fying ρpx, yq � ρpx� y, 0q for all x, y P X.

12. Let X � Cr0, 1s be the vector space of real valued continuous functions
on the closed interval r0, 1s. For each x P r0, 1s, define ||f ||x � |fpxq|.

(a) Show the family of seminorms || � ||x define a locally convex vector
space topology on X.

(b) Show this topology is not metrizable; i.e., show there is no metric
whose topology defines the same topology as the seminorms || � ||x.

(c) Show the space is not complete.
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(d) Find a completion for X; i.e., a complete locally convex topological
vector space Y such that X is a linear subspace of Y , X has the
relative topology of Y , and X is dense in Y .

13. Let X be a locally convex topological vector space whose topology is
defined by the seminorms || � ||α for α P A.

(a) Show a subset E of X is bounded if and only if for each α P A,
there is a Bα ¥ 0 such that

||x||α ¤ Bα for x P E.

(b) Show every compact subset of X is closed and bounded.

(c) Give an example of an X which has a closed bounded subset which
is not compact.

(d) Show a subset E of X is bounded if and only if for each continuous
seminorm | � | on X there is a constant M ¥ 0 such that

|x| ¤ M for all x P E.

14. Show every Cauchy sequence in a locally convex topological vector
space is bounded.

15. Let X be a locally convex topological vector space. Show the closure
of any bounded subset of X is bounded.

16. Let X and Y be locally convex topological vector spaces. Suppose T is
a continuous linear transformation from X into Y . Show if B is a bounded
subset of X, then T pBq is a bounded subset of Y .

17. Let V be a complex locally convex topological Hausdorff topological
space. Let V � be the dual space of V . Thus V � is the vector space whose
elements are the continuous complex valued linear functionals on V . The
topology on V defined by the seminorms | � |f where |v|f � |fpvq| for f P
V � is called the weak topology on V while the topology on V � defined by
seminorms | � |v on V � where |f |v � |fpvq| for f P V � and v P V is called the
weak-� topology on V �.

(a) Show V � is Hausdorff.

(b) Assume V is a Hilbert space. Show the conjugate linear isomor-
phism of V onto V � given by w ÞÑ fw where fwpvq � pv, wq is a
homeomorphism of V with the weak topology onto V � with the
weak-� topology.

18. Let X be a vector space and suppose Xi for i P I form a directed family
of locally convex topological vector subspaces of X whose union is X. Give
X the inductive limit topology. Show the relative inductive limit topology
on each Xi is the topology on Xi for all i if and only if there is a family | � |α,



56 Function Spaces on Rn

α P A of seminorms on X such that the restrictions of these seminorms to
each Xi define the topology on Xi. An example is DpΩq and the seminorms

||φ||α � max
xPsupp φ

|Dαφpxq| for α P Nn
0 .

19. Let Xn be an increasing sequence of locally convex topological vector
subspaces of a vector space X whose union is X. Let X have the inductive
limit topology. Suppose M is a vector subspace of X. Give M the inductive
limit topology of the relative topologies of Xi on Xi XM .

(a) Show the relative topology of X on M is weaker than the topology
on M .

(b) Give an example where the relative topology is strictly weaker.

2. The Space Rn

The space Rn is an inner product space, the inner product being defined by

px | yq � x � y � ņ

j�1

xjyj .

The corresponding norm on Rn is given by |x| �b°
x2

j . This norm defines
a locally convex vector space topology on Rn. Exercise 2.1.8 shows this is
the only Hausdorff vector space topology on Rn. In particular, a subset U
in Rn is open if and only if for each x P U , there is an R ¡ 0 such that the
ball BRpxq � x� ty | |y|   Ru � ty | |y � x|   Ru � U . The space Rn has
the Heine-Borel Property; that is a subset is compact if and only if it is
a closed bounded set.

Differentiable Functions. Let Ω � Rn be open and nonempty. A function
F � pf1, f2, . . . , fmq : Ω Ñ Rm is differentiable at x P Ω if there exists a
linear map D : Rn Ñ Rm and an R ¡ 0 with BRpxq � Ω satisfying

F pyq � F pxq �Dpy � xq � op|y � x|q.
for y P BRpxq. If F is differentiable at x, then the partial derivatives
Difjpxq � BBxi

fjpxq all exist and the linear transformation D is given by

Dpa1, . . . , anq �
�

ņ

i�1

aiDif1pxq,
ņ

i�1

aiDif2pxq, . . . ,
m̧

i�1

aiDifmpxq
�

.

Thus if F 1pxq is the Jacobian matrix

F 1pxq �
�����

D1f1pxq D1f2pxq � � � D1fmpxq
D2f2pxq D2f2pxq � � � D2fmpxq

...
...

...
Dnf1pxq Dnf2pxq � � � Dnfmpxq

����,
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then D is the linear transformation defined by

Dpa1, a2, . . . , anq � pa1, a2, . . . , anqF 1pxq.
The function F is differentiable on Ω if F is differentiable at every point in
Ω. It is continuously differentiable on Ω if it is differentiable at each point in
Ω and the function x ÞÑ F 1pxq is continuous; i.e., the functions x ÞÑ Difjpxq
are continuous on Ω for i � 1, 2, . . . , n and j � 1, 2, . . . , m. Conversely, it
is known that if the partial derivatives Difj exist and are continuous on Ω,
then F is continuously differentiable on Ω; see Exercise 2.2.5.

For each finite sequence α � pα1, α2, . . . , αnq of nonnegative integers,
Dα will denote the partial differential operator

� BBx1

	α1
� BBx2

	α2 � � �� BBxn

	αn

.
The order |α| of α or the differential operator Dα is given by |α| � °

αi. If
α and β are multiindices, then β ¤ α will mean that βi ¤ αi for i � 1, . . . , n.
Set β! to be

±pβi!q and for β ¤ α, define�
α

β



:� n¹

i�1

�
αi

βi



� n¹

i�1

αi!
βi!pαi � βiq! .

A real or complex valued function f defined on an open set Ω � Rn is
said to be Ck or k-times continuously differentiable on Ω if Dαfpxq exists
and is continuous on Ω for each multiindex α with |α| ¤ k. The function f
on Ω is said to be smooth if f is Ck for all k. The vector space consisting of
all Ck functions on Ω is denoted by CkpΩq while the collection of all smooth
functions is the vector space C8pΩq.

A function F � pf1, f2, . . . , fmq from an open set Ω in Rn into Rm is Ck

if each of the functions fi is Ck. An invertible function F : Rn Ñ Rn is said
to be a Ck diffeomorphism if F and F�1 are Ck. A Ck diffeomorphism
between two nonempty open subsets Ω1 and Ω2 of Rn is an invertible func-
tion F : Ω1 Ñ Ω2 such that F is Ck on Ω1 and F�1 is Ck on Ω2. If k � 8,
then F is said to be a diffeomorphism.

The support of a function f on Ω is the relatively closed subset suppf
of Ω defined by

suppf � tx | fpxq � 0u X Ω.

Ck
c pΩq is used to denote the vector space of Ck functions on Ω with com-

pact support. This is a subspace of the space Ck
b pΩq of uniformly bounded

functions in CkpΩq. The product rule holds in these spaces and extends
to higher orders. The following simple lemma is used to prove the general
Leibniz product rule.

Lemma 2.20. Let β ¤ α and assume that βi ¥ 1. Then�
α

β � εi



�
�

α

β



�
�

α� εi

β
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where εi is the multiindex with ith entry 1 and all others zero.

Proof. Clearly one assume that n � 1. Then�
α

β � 1



�
�

α

β



� α!

pβ � 1q!pα� 1� βq! �
α!

β!pα� βq!
� α!β � α!pα� 1� βq

β!pα� 1� βq!
�

�
α� 1

β



.

¤

Lemma 2.21 (Leibniz’s Rule). Let f, g P CkpΩq and |α| ¤ k. Then

Dαpfgq �
β̧¤α

�
α

β



DβfDα�βg .

Proof. We prove this by induction on |α|. If |α| � 1 then Dα � Bi for some
i and the claim reduces to the usual Leibniz’s rule. If |α| ¡ 1 then we can
find αi ¡ 1. Let α1 :� α�εi. Then Dα � BiDα1 . The claim follows now from
the induction hypothesis, the usual Leibniz’s rule, and Lemma 2.20. ¤

Integration on Rn. Let dx or sometimes dλn or dλ denote the usual
Lebesgue measure on the Lebesgue measurable subsets of Rn. Thus»

f dλ �
»
Rn

fpx1, . . . , xnq dx1 � � � dxn

for f P CcpRnq. The corresponding Lp-spaces will be denoted by LppRnq,
the Lp-norm being given by |f |p � �³ |fpxq|p dx

� 1
p for 1 ¤ p   8. Recall

L8pRnq is the space of essentially bounded measurable functions identified
when they are equal almost everywhere with norm defined by

|f |8 � inftM ¡ 0 | λtx | |fpxq| ¡Mu � 0u.
Note that functions in Lp are zero if and only if they are equal to zero almost
everywhere. Each space Lp is a Banach space and if 1 ¤ p   8 and q is
determined by 1{p� 1{q � 1, then the dual of LppRnq is the space LqpRnq.
In particular L2pRnq is a Hilbert space with inner product

pf | gq �
»

fpxqgpxq dx .

We shall use the following change of coordinates formula.

Theorem 2.22 (Change of coordinates). Let F : Ω1 Ñ Ω2 be a C1 dif-
feomorphism between open subsets of Rn. Then a measurable function f is
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Lebesgue integrable on Ω2 if and only if x ÞÑ fpF pxqq | detF 1pxq| is Lebesgue
integrable on Ω1 and then»

Ω1

fpF pxqq |det F 1pxq| dx �
»
Ω2

fpyq dy.

Let T be an n� n matrix. The linear transformation F pxq � xT is C8
and satisfies F 1pxq � T . F is invertible if and only if detT � 0.

Corollary 2.23. Let T be an invertible n� n matrix. Then

|detpT q|
»

fpxT q dλpxq �
»

f dλ

for all f P L1pRnq.
Polar coordinates. Let Sn�1 � S1 � tx | |x| � 1u � Rn. Define a map
Ψ : R� � Sn�1 Ñ Rnzt0u by

Ψpr, sq :� rs.

Then Ψ is a homeomorphism with inverse

Φpxq �
�
|x| , x

|x|



.

The pair pr, sq in R� � Sn�1 with rs � x are called polar coordinates of the
point x.

Lebesgue measure λ on Rn satisfies λpaEq � anλpEq for any positive
constant a. This property allows one to polarly decompose Lebesgue mea-
sure. First, define a Borel measure σ on Sn�1 by

σpW q � nλtrs | s P W, 0   r ¤ 1u � nλpψpp0, 1s �W qq.
Note σpSn�1q is nλpB1q where B1 is the ball of radius 1 and thus is n
times the volume of the ball of radius 1. One can show this is the usual
hypersurface area of the sphere Sn�1; see Exercise 2.2.9.

Lemma 2.24. Let 0   r1   r2   8 and W � Sn�1 be Borel measurable.
Then λpψppr1, r2s �W qq � σpW q ³r2

r1
rn�1 dr.
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Proof.

λpψppr1, r2s �W qq � rn
2 λpψppr1

r2
, 1s �W qq

� rn
2 λpψpp0, 1s �W q � ψpp0,

r1

r2
s �W qq

� rn
2 λpψpp0, 1s �W qq � rn

2 λpψpp0,
r1

r2
s �W qq

� 1
n

rn
2 σpW q � rn

1 λpr2

r1
ψpp0,

r1

r2
s �W qq

� 1
n

rn
2 σpW q � 1

n
rn
1 σpW q

� rn
2 � rn

1

n
σpW q

� σpW q
» r2

r1

rn�1 dr.

¤
Proposition 2.25.

λpEq �
» 8
0

»
Sn�1

rn�1χEprsq dσpsq dr

for each measurable subset E of Rn.

Proof. Define a measure λ1 on Rn by

λ1pEq �
» 8
0

»
Sn�1

rn�1χEprsq dσpsq dr.

Note by Lemma 2.24, λ1pψppr1, r2s�W qqq � λpψppr1, r2s�W q. This implies
λ1 and λ agree on all open sets of form ψppr1, r2q �W q where r1   r2 and
W is open in Sn�1. But these sets are a basis for the open sets in Rnzt0u.
Thus λ1 and λ agree on the σ-algebra generated by the open sets in Rnzt0u.
Since λ is the completion of λ on the Borel sets, we see λ1 and λ agree on
the Lebesgue measurable sets. ¤
Corollary 2.26. A f is Lebesgue integrable on Rn if and only if pr, uq ÞÑ
rn�1fpruq is integrable relative to the product measure λ1|r0,8q � σ. More-
over, »

fpxq dλnpxq �
» 8
0

»
rn�1fpruq dσpuq dr.

Remark 2.27. A consequence of this corollary is that
³
|x|¥1 |x|�s ds is finite

if and only if
³8
1 rn�1�s dr   8 which happens if and only if n� 1� s   �1

or n   s. In particular the function p1 � |x|2q�s is integrable if and only if
n   2s or s ¡ n

2 . Indeed,

2�s|x|�s � p|x|2 � |x|2q�s ¤ p1� |x|2q�s ¤ |x|�2s



Integral Operators 61

for |x| ¥ 1 and s ¥ 0. The functions p1 � |x|2qm will be used in defining
seminorms on spaces of functions on Rn.

3. Integral Operators

Integral operators on Rn are a central feature of Fourier analysis. Formally,
an integral operator has form

Tfpxq �
»

Y
Kpx, yqfpyq dy.

The function Kpx, yq is called the kernel of the integral operator. We first
present two general results, the first dealing with sufficient conditions for
an integral operator to be bounded between Lp spaces; the second dealing
with Lp integrals on product spaces. Then we turn our attention to Hilbert-
Schmidt and trace class operators. Our applications of these will be on
Rn.

Let K : X�Y Ñ C be measurable. For x P X and y P Y , let Kx : Y Ñ C
and Ky : X Ñ C be defined by Kxptq � Kpx, tq and Kypsq � Kps, yq.
Lemma 2.28. Let pX,A, µq and pY,B, νq be σ-finite measure spaces. Sup-
pose K : X � Y Ñ C is A � B-measurable and assume that there exists a
C ¡ 0 such that |Kx|1 , |Ky|1 ¤ C for almost all x and y. Let 1 ¤ p ¤ 8
and f P LppX, µq. Then

Tfpxq �
»

Kpx, yqfpyq dνpyq
exists for almost all x P X. Furthermore Tf P LppX,µq, T : LppY, νq Ñ
LppX, µq is linear, and |T | ¤ C.

Proof. For p � 8, one has»
|Kpx, yq| |fpyq| dνpyq ¤ |f |8

»
|Kpx, yq| dνpyq

� |f |8|Kx|1
¤ C|f |8 for a.e. x.

Now for 1 ¤ p   8, note» »
|Kpx, yq| |fpyq|p dνpyq dµpxq �

»
|fpyq|p

»
|Kpx, yq| dµpxq dνpyq

�
»
|fpyq|p|Ky|1 dνpyq

¤ C|f |pp   8
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for f P LppY, νq. This implies the result for p � 1 and for 1   p   8 shows
|Kx| 1p f is in LppY, νq for µ a.e. x. Now take q where 1   q   8 to be the
conjugate exponent to p; i.e., 1

p � 1
q � 1. Then

|Tf |pp �
»

X

����»
Y

Kpx, yq fpyq dνpyq
����p dµpxq

¤
»

X

�»
Y
|Kpx, yq| |fpyq| dνpyq

�p

dµpxq
�
»

X

�»
Y
|Kxpyq|1{q |Kxpyq|1{p |fpyq| dνpyq

�p

dµpxq(2.1)

Now for µ a.e. x, |Kx|1{q is in LqpY, νq with norm ¤ C1{q and |Kx|1{pf is in
LppY, νq. Hence by Hölder’s inequality»

Y
|Kxpyq|1{q |Kxpyq|1{p |fpyq| dνpyq ¤ C1{q

�»
Y
|Kpx, yq| |fpyq|p dνpyq


1{p
.

Hence by (2.1),

|Tf |pp ¤ Cp{q
»

X

»
Y
|Kpx, yq| |fpyq|p dνpyqdµpxq

� Cp{q
»

Y
|fpyq|p

»
X
|Kpx, yq| dµpxq dνpyq

¤ Cp{q�1 |f |pp .

Hence |T | ¤ pCp{q�1q1{p � C. ¤

Lemma 2.29. Let pX,A, µq and pY,B, νq be σ-finite measure spaces. Let
f : X � Y Ñ C be A� B-measurable, and let 1 ¤ p   8. Then�»

X

�»
Y
|fpx, yq| dνpyq


p

dµpxq

1{p ¤

»
Y

�»
X
|fpx, yq|p dµpxq


1{p
dνpyq .

Proof. Clearly, we may assume f ¥ 0. For p � 1, the result is a consequence
of Tonelli’s Theorem. Thus suppose p ¡ 1 and 1

p � 1
q � 1. Define F pxq �³

fpx, yq dνpyq. If F P LppX,µq, then

|F |p � sup
|g|q�1

|
»

F pxqḡpxq dµpxq|.
Now F pxq ¥ 0 for all x implies | ³ F pxqḡpxq dµpxq| ¤ ³

F pxq|gpxq| dµpxq.
Consequently,

|F |p � sup
|g|q�1, g¥0

»
F pxqgpxq dµpxq.
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But if g ¥ 0 and |g|q � 1, then»
F pxqgpxq dµpxq �

» »
fpx, yqgpxq dνpyq dµpxq

�
» »

fpx, yqgpxq dµpxq dνpyq

¤
» �»

fpx, yqp dµpxq

 1

p
�»

gpxqq dµpxq

 1

q

dνpyq

�
» �»

fpx, yqp dµpxq

 1

p

dνpyq.
Consequently,�» �»

fpx, yq dνpyq

p

dµpxq

 1

p ¤
» �»

fpx, yqp dµpxq

 1

p

dνpyq
and the result follows.

Hence we may suppose
³
F pxqp dµpxq � 8. Let E8 � tx | F pxq � 8u.

If µpE8q ¡ 0, then there is a subset E � E8 with 0   µpEq   8. Set
g � 1

µpEq 1q χE . Then |g|q � 1 and the argument above shows

8 �
»

F pxqgpxq dµpxq ¤
» �»

fpx, yqp dµpxq

 1

p

dνpyq
and again the result holds. We may therefore assume F pxq   8 for all
x. Take an increasing sequence Wn of subsets of X with X � YWn and
µpWnq   8. Set En � tx PWn | F pxq   nu.

Then FχEn P LppX, µq and if g ¥ 0 and |g|q � 1, then»
F pxqχEnpxqgpxq dµpxq �

» »
fpx, yqχEnpxqgpxq dνpyq dµpxq

�
» »

χEnpxqfpx, yqgpxq dµpxq dνpyq

¤
» �»

En

fpx, yqp dµpxq

 1

p
�»

gpxqq dµpxq

 1

q

dνpyq

�
» �»

En

fpx, yqp dµpxq

 1

p

dνpyq.
Consequently, |FχEn |p ¤ ³ �³

fpx, yqp dµpxq� 1
p dνpyq. Letting n Ñ 8, one

has �» �»
fpx, yq dνpyq


p

dµpxq

 1

p ¤
» �»

fpx, yqp dµpxq

 1

p

dνpyq.
¤
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Hilbert-Schmidt and Trace Class Operators. Integral operators which
have square integrable kernels are called Hilbert-Schmidt. They can be
defined in terms of their behavior on an orthonormal basis.

Lemma 2.30. Let T be a bounded linear transformation from a Hilbert space
H into a Hilbert space K. Let teαuαPA and te1αuαPA be two orthonormal bases
of H. Then

α̧,β

||Teα||2 �
α̧

||Te1α||2.

Proof. Let tfβuβPB be an orthonormal basis of K. Then by Parseval’s
equality, ¸ ||Teα||2 �

α̧ β̧

|pTeα, fβq|2

�
β̧ α̧

|peα, T �fβq|2

�¸ ||T �fβ||2.
This shows the sum is independent of orthonormal basis. ¤

Definition 2.31. A bounded linear transformation T from a Hilbert space
H into a Hilbert space K is said to be Hilbert-Schmidt if

α̧

||Teα||2   8
for any orthonormal basis teαuαPA of H. The Hilbert-Schmidt norm of T is
defined by

||T ||2 �
�

α̧

||Teα||2
� 1

2

.

The proof of Lemma 2.30 shows if the bounded linear operator T is
Hilbert-Schmidt, then its adjoint T � is also Hilbert-Schmidt and

(2.2) ||T ||2 � ||T �||2.
Moreover, note if v is any unit vector, it is a member of an orthonormal

basis and thus ||T ||2 ¥ ||Tv||. Consequently,

(2.3) ||T ||2 ¥ ||T ||.
We let BpH,Kq denote the Banach space of bounded linear operators

from H into K with operator norm and we let B2pH,Kq denote the vector
space of Hilbert-Schmidt operators from H to K with Hilbert-Schmidt norm
|| � ||2. Set BpHq � BpH,Hq and BpKq � BpK,Kq.
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Proposition 2.32. B2pH,Kq is a Hilbert space with inner product

pR, Sq2 �¸pReα, Seαq
where teαu is an orthonormal basis of H. Moreover, AR, RB P B2pH,Kq if
R P BpH,Kq, A P BpKq, B P BpHq, and then

||AR||2 ¤ ||A|| ||R||2, ||RB||2 ¤ ||R||2||B||.
Proof. We first note pR, Sq2 is defined for¸ |pReα, Seαq| ¤¸ ||Reα|| ||Seα||

¤ �¸ ||Reα||2
	 1

2
�¸ ||Seα||2

	 1
2

� ||R||2||S||2.
To see this is well defined, note if tfβu is an orthonormal basis of K, then¸pReα, Seαq �

α̧,β,γ

ppReα, fβqfβ, pSeα, fγqfγq
�

β̧,γ,α

pReα, fβqpfγ , Seαqpfβ, fγq
�

β̧,α

pReα, fβqpfβ, Seαq
�

β̧,α

pS�fβ, eαqpeα, R�fβq
�

β̧

pS�fβ,
α̧

pR�fβ, eαqeαq
�

β̧

pS�fβ, R�fβq
where the rearrangements are allowed for

α̧,β

|pReα, fβqpSeα, fβq| ¤
α̧ β̧

|pReα, fβq| |pSeα, fβq|

¤
α̧

��
β̧

|pReα, fβq|2
�1

2
��

β̧

|pSeα, fβq|2
�1

2

�
α̧

||Reα|| ||Seα||

¤ �¸ ||Reα||2
	 1

2
�¸ ||Seα||2

	 1
2

  8
by Parseval’s identity and the Cauchy-Schwarz inequality.
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We thus have a complex inner product. We show it is complete. Let Tn

be a Cauchy sequence in B2pH,Kq. Then by inequality 2.3, Tn is Cauchy
in BpH,Kq. Hence there is a T P BpH,Kq with Tn Ñ T in operator norm.
Since Cauchy sequences are bounded, there is an M ¡ 0 with

α̧

||Tneα||2 ¤M2 for all n.

Taking a limit gives T P B2pH,Kq. Let ε ¡ 0. Choose N so that m,n ¥ N
implies

α̧

||Tmeα � Tneα||2 ¤ ε2.

Letting nÑ8 gives ||Tm�T ||2 ¤ ε for m ¥ N . Thus B2pH,Kq is complete.
Now let A P BpKq and R P B2pH,Kq. Since

||AR||22 �
α̧

||AReα||2 ¤ ||A||2
α̧

||Reα||2

we see ||AR||2 ¤ ||A|| ||R||2.
The second part follows for

||RB||2 � ||pRBq�||2 � ||B�R�||2 ¤ ||B�|| ||R�||2 � ||B|| ||R||2.
¤

Corollary 2.33. Let R, S P B2pH,Kq. Then S�, R� P B2pK,Hq and

pS�, R�q2 � pR, Sq2.
Theorem 2.34. Let pX, µq and pY, νq be σ-finite measure spaces. Then the
mapping K ÞÑ TK where

TKfpxq �
»

Kpx, yqfpyq dνpyq
defines a linear one-to-one onto correspondence between the space L2pX �
Y, µ � νq and the space of Hilbert-Schmidt operators from L2pY, νq into
L2pX, µq. Moreover, ||TK ||2 � |K|2.
Proof. Note

³
X

³
Y |Kpx, yq|2 dνpyq dµpxq   8. By Fubini’s Theorem, for

almost every x, Kxpyq � Kpx, yq is in L2pY q. Thus y ÞÑ Kpx, yqfpyq is in
L1pY q for almost every x. This implies TKfpxq is defined almost everywhere.
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Moreover, the Cauchy-Schwarz inequality implies

|Kf |22 �
» ����» Kpx, yqfpyq dνpyq

����2 dµpxq
¤
» »

|Kpx, yq|2 dνpyq
»
|fpyq|2 dνpyq dµpxq

� |f |22
»

X

»
Y
|Kpx, yq|2 dνpyq dµpxq

� |K|22 |f |22.

Thus TK is a bounded linear operator. Finally note if eα P L2pY, νq is an
orthonormal basis, then

α̧

|TKeα|22 �
α̧

»
X

����»
Y

Kpx, yqeαpyq dνpyq
����2 dµpxq

�
»

X α̧

|pKx, ēαq|2 dµpxq
�
»

X

»
Y
|Kxpyq|2 dνpyq dµpxq

�
»

X�Y
|Kpx, yq|2 dpµ� νqpx, yq

� |K|2.

Conversely, suppose T is Hilbert-Schmidt. Let eαpyq be an orthonormal
basis of L2pY, νq and fβpxq be an orthonormal basis of L2pX, µq. Then by
Exercise 2.2.18, the functions fβ � ēα defined by

fβ � eαpx, yq � fβpxqeαpyq
form an orthonormal basis of L2pX�Y, µ�νq. Define Kpx, yq � °pTeα, fβqfβ�
ēα. Then

|K|22 �
α̧ β̧

|pTeα, fβq|2

�¸ ||Teα||2
� ||T ||22.
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To check K works, it suffices to check it on a complete orthonormal basis.
Note »

Kpx, yqeα1pyq dνpyq �
»

α̧,β

pTeα, fβqfβ � ēαpx, yqeα1pyq dνpyq

�
»

α̧,β

pTeα, fβqfβpxq ēαpyqeα1pyq dνpyq
�

β̧

pTeα1 , fβqfβpxq
� Teα1 .

¤

In particular the space of Hilbert-Schmidt operators on L2pRnq is a
Hilbert space isomorphic to L2pRn � Rnq.
Definition 2.35. A rank one operator on a Hilbert space K into a Hilbert
space H is an operator having form v b w̄ where v P H, w P K where both
are nonzero and

v b w̄puq � pu,wqv for u P H.

A finite rank operator is a bounded linear transformation of H into K having
finite dimensional range.

One can easily verify the following facts about rank one operators. See
Exercise 2.2.19.

(2.4) ||v b w̄|| � ||v|| ||w|| � ||v b w̄||2

(2.5) pv b w̄q� � w b v̄

(2.6) Apv b w̄qB� � Av bBw for A, B P BpHq
Furthermore, note if f and g are in L2pRnq, then ḡ P L2 and f b g is the

operator defined by

(2.7) f b gphq � f b ¯̄gphq � ph, ḡqf � p
»

hpyq gpyq dyqf.

Hence f b g has kernel Kpx, yq � fpxqgpyq. This kernel is usually denoted
by pf b gqpx, yq. In particular

||f b g||2 � |f |2|g|2
in both the operator sense and the L2 sense.
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Proposition 2.36. Suppose tviu8i�1 and twiu8i�1 are sequences of vectors in
H with

° ||vi||2   8 and
° ||wi||2   8. Then

°8
i�1 vi b w̄i is a bounded

operator on H with ||°8
i�1 vi b w̄i|| ¤ �°8

i�1 ||vi||2�1{2 �°8
i�1 ||wi||2�1{2

. Its
adjoint is

°8
i�1 wi b v̄i.

Proof. Let v P H. Then using the Cauchy–Schwarz inequality for both H
and l2, one has¸ ||vi b w̄ipvq|| �¸ |xv, wiy| ||vi||

¤¸ ||v|| ||wi|| ||vi||
¤ ||v||�¸ ||wi||2

	1{2 �¸ ||vi||2
	q1{2.

To check the adjoint, note

p¸pvi b w̄iqv, wq �¸pv, wiqpvi, wq
�¸pv, pw, viqwiq
� pv,

¸pw, viqwiq
� pv,

¸pwi b v̄iqwq.

Thus p°pvi b w̄iqq� � °pwi b v̄iq. ¤

Definition 2.37. A bounded operator T on a Hilbert space H is said to be
trace class if it has form

°
vi b w̄i where

° ||vi||2   8 and
° ||wi||2   8.

Definition 2.38. Let T be a trace class operator. Write T in form T �°
vib w̄i where

° ||vi||2   8 and
° ||wi||2   8. Define TrpT q � °pvi, wiq.

Proposition 2.39. Let T be a trace class operator and let teαu be any or-
thonormal basis of H. Then TrpT q � °pTeα, eαq where this series converges
absolutely. In particular TrpT q is well defined.

Proof. Note
° |pvi, wiq| ¤ ° |vi| |wi| ¤ �° |vi|2�1{2 �° |wi|2�1{2   8. Thus

the series defining TrpT q is absolutely convergent.
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Now T peαq � °peα, wiqvi and thus pTeα, eαq � °
ipeα, wiqpvi, eαq. Hence

Parseval’s equality gives

i̧,α

|peα, wiq| |pvi, eαq| ¤
�

i̧,α

|peα, wiq|2
�1{2 �

i̧,α

|peα, viq|2
�1{2

�
�

i̧ α̧

|peα, wiq|2
�1{2 �

i̧ α̧

|peα, viq|2
�1{2

�
�

i̧

||wi||2
�1{2 �

i̧

||vi||2
�1{2

  8.

Thus we may rearrange the following summation:

α̧

pTeα, eαq �
i̧ α̧

peα, wiqpvi, eαq
�

i̧

p
α̧

pvi, eαqeα, wiq
�

i̧

pvi, wiq.

Also note

α̧

|pTeα, eαq| �
α̧

|
i̧

pwi, eαqpvi, eαq|   8
¤

Proposition 2.40. A bounded linear operator T on a Hilbert space H is
trace class if and only if T � RS where R and S are Hilbert-Schmidt oper-
ators on H. Moreover,

TrpRSq � pR,S�q2 � pS, R�q2 � TrpSRq.
We thus see R P BpHq is Hilbert-Schmidt if and only if RR� (or R�R)

is trace class and then ||R||2 �a
TrpRR�q �a

TrpR�Rq
Proof. Assume T is trace class. Then T � °

vi b w̄i where
° ||vi||2   8

and
° ||wi||2   8. We may assume the dimension of H is infinite; (the finite

dimensional case is easier, or just extendH so that it is infinite dimensional.)
Let teiu be an orthonormal set. Define R � °

vi b ēi and S � °
ej b w̄j .

By Exercise 2.2.15, R and S are Hilbert-Schmidt and S� � °
wjb ēj . Since

pvi b ēiq � pej b w̄jqpxq � px,wjqpej , eiqvi � δi,jpx,wjqvi � δi,jpvi b wiqpxq,
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we see

RS �
i̧ j̧

pvi b ēiqpej b w̄jq
�

i̧

vi b w̄i

� T.

Also by taking an orthonormal basis teαu containing the vectors ei, we see

pR, S�q2 �
α̧

pReα, S�eαq
�

i̧

pRei, S
�eiq

�
i̧

pvi, wiq
� TrpRSq.

Since pR,S�q2 � pS, R�q2, we can conclude pR, S�q2 � TrpSRq.
Conversely, let T � RS where R and S are Hilbert-Schmidt. Again

using Exercise 2.2.15 we may write R and S in forms R � °
vi b ēi and

S � °
ej b w̄j where

° ||vi||2   8 and
° ||wj ||2   8. As seen above

RS � °
vi b w̄i. Thus RS is trace class. ¤

Corollary 2.41. Let T be a trace class operator on H. If A P BpHq, then
both AT and TA are trace class and

TrpAT q � TrpTAq.
Proof. We know T � RS where R and S are Hilbert-Schmidt operators.
Thus by Proposition 2.32, AR and SA are Hilbert-Schmidt. Consequently,
AT � pARqS and TA � RpSAq are trace class operators and

TrpAT q � TrppARqSq
� TrpSpARqq
� TrppSAqRq
� TrpRSAq
� TrpTAq.

¤

Proposition 2.42. Let H and K be Hilbert spaces. Let B2pH,Kq be the
space of Hilbert-Schmidt operators from H to K. Let v, v1 P H and w, w1 P K
and suppose tfβ | β P Bu is an orthonormal basis of H and teα | α P Au is
an orthonormal basis in K. Then:

(a) pw b v̄, w1 b v̄q2 � pw,w1qKpv1, vqH
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(b) teα b f̄β | α P A, β P Bu is an orthonormal basis of B2pH,Kq.
(c) A bounded linear operator T from H into K is Hilbert-Schmidt if

and only if T �T is trace class on H if and only if TT � is trace class
on K.

(d) Let R, S P B2pH,Kq. Then S�R is trace class on H, RS� is trace
class on K, and

pR, Sq2 � TrpS�Rq � TrpRS�q.
Proof. For (a), we know

pw b v̄, w1 b v̄1q2 �
β̧

ppw b v̄qpfβq, pw1 b v̄1qpfβqqK
�

β̧

ppfβ, vqHw, pfβ, v1qHw1qK
� pw,w1qK

β̧

pv1, fβqHpfβ, vqH
� pw,w1qKp¸pv1, fβqHfβ, vqH
� pw,w1qKpv1, vqH.

That the eα b f̄β form an orthonormal set follows from (a). We show it is
complete. Let T be a Hilbert-Schmidt operator orthogonal to all eα b f̄β.
Thus pT, eα b f̄βq2 � °

β1pTfβ1 , eα b f̄βpfβ1qqK � 0 for all α and β. Thus
pTfβ, eαq � 0 for all α and β. This implies Tfβ � 0 for all β and thus T � 0.
Hence (b) holds.

For (c) and (d), we again use Exercise 2.2.15. If R and S are Hilbert-
Schmidt from H into K, we know R � °

Rfβ b f̄β and S � °
Sfβ b f̄β

where
° ||Rfβ||2   8 and

° ||Sfβ||2   8. An easy computation shows
S� � °

fβ b Sfβ and from this it follows that

RS� �¸
Rfβ b Sfβ.

But then since
° ||Rfβ||2   8 and

° ||Sfβ||2   8, we see RS� is trace class
on K. Similarly using that R� and S� are Hilbert-Schmidt, we also have
S�R � S�pR�q� is trace class on H. From Corollary 2.33 we then see

pR,Sq2 �¸pRfβ, Sfβq �¸pS�Rfβ, fβq � TrpS�Rq and

pR, Sq2 � pS�, R�q2 �
α̧

pS�eα, R�eαq �¸pRS�eα, eαq � TrpRS�q.
In particular, if T P B2pH,Kq, then T �T is trace class on H and TT � is
trace class on K. Thus we have (d) and the forward implication of (c).
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For the converse of (c), assume TT � is trace class on K. Thus by Propo-
sition 2.39, 8 ¡ TrpTT �q � °pTT �fβ, fβq � ° ||T �fβ||2. So T � is Hilbert-
Schmidt. Thus T � pT �q� is Hilbert-Schmidt. Similarly T �T trace class
implies T is Hilbert-Schmidt. ¤

Because of the formal behavior of the tensors v b w̄, we will denote the
Hilbert space B2pH,Kq by K bH, i.e.,

(2.8) B2pH,Kq � K bH.

We will introduce the conjugate Hilbert space when we discuss representa-
tions and this notation will become even more appropriate.

In the following discussion, we will restrict ourselves to the case where
H � L2pRnq where here we are using Lebesgue measure. The following can
easily be extended to the case where H � L2pX, µq where X is a locally
compact Hausdorff space and µ is a regular Borel measure on X. We also
remark that by Theorem 2.34, the Hilbert space of Hilbert-Schmidt opera-
tors on L2pRnq is norm isometric to the Hilbert space L2pRn � Rnq. This
mapping preserves inner products. Thus

pR,Sq2 �
¼

Rn�Rn

Rpx, yqSpx, yq dx dy

where Rpx, yq and Spx, yq are the kernels defining the operators R and S.
Note if T is a trace class operator on L2pRnq, then we know T has an

L2 kernel for it is Hilbert-Schmidt. (It is a product of two Hilbert-Schmidt
operators.)

Lemma 2.43. Let E be a measurable set in Rn, and let Y be a complete
separable metric space. Suppose λpEq   8 and f : E Ñ Y is Borel measur-
able. Then if ε ¡ 0, there is a compact subset K of E with λpEq�λpKq   ε
such that f |K is continuous.

Proof. We may assume E is compact. Let y1, y2, . . . be a countable dense
subset of Y . For each x, choose the first k with ρpfpxq, ykq   1

n . Define
fnpxq � yk. Note fn is measurable and ρpfnpxq, fpxqq   1

n for all x. Set
En,k � f�1

n pykq. For each n, the sets En,k are pairwise disjoint and have
union E. Moreover, for each n, there is a compact subset Kn of E on
which fn has finitely many values, fn is continuous, and mpE �Knq   ε

2n .
Indeed, choose compact sets Kn,k � En,k with λpEn,k�Kn,kq   ε

2n�k . Then
λpE � YkKn,kq   ε

2n . Hence there is a l such that λpE � Yl
k�1Kn,kq   ε

2n .
Take Kn � Yl

k�1Kn,k. Note K � XKn satisfies λpE �Kq   ε and fn Ñ f
uniformly on K. Since each fn is continuous on K, f is continuous on K. ¤
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Theorem 2.44. Let T be a trace class operator on L2pRnq with L2 kernel
Kpx, yq. If K is continuous at almost every point px, xq on the diagonal,
then x ÞÑ Kpx, xq is L1 and TrpT q � ³

Kpx, xq dx.

Proof. Let T be trace class and suppose the kernel K for T is continuous
on the diagonal. Now T � RS where R and S are in L2pRn � Rnq; here we
are using R and S to stand both for the Hilbert-Schmidt operators and their
kernels. Now by Exercise 2.2.16, RS has kernel px, yq ÞÑ ³

Rpx, zqSpz, yq dz.
Hence Kpx, yq � ³

Rpx, zqSpz, yq dz a.e. px, yq. Note for a.e. x, the functions
z ÞÑ Rxpzq � Rpx, zq is L2. Also Syp�q P L2 for a.e. y. Here Sypzq �
Spz, yq. The functions x ÞÑ Rx and y ÞÑ Sy are Borel measurable into
L2 on conull measurable sets. Take a cube E in Rn. An application of
Lemma 2.43 shows for any ε ¡ 0, there is a measurable compact F in E
with mpE � F q   ε such that y ÞÑ Sy and x ÞÑ Rx are continuous on F .
Thus px, yq ÞÑ ³

Rpx, zqSpz, yq dz is continuous on F �F and equals Kpx, yq
a.e. on F � F . Hence for a.e. x in F , Kpx, yq � ³

Rpx, zqSpz, yq dz for a.e.
y P F . But by Exercise 2.2.30, the set of x’s in F for which there is an
δ ¡ 0 such that λpBδpxq X F q � 0 has measure 0. Hence, by continuity
Kpx, xq � ³

Rpx, zqSpz, xq dz at almost every point x in F . Since ε ¡ 0 was
arbitrary and E was any cube, Kpx, xq � ³

Rpx, zqSpz, xq dz a.e. x.
By Proposition 2.40, we know

TrpT q � pR,S�q2
�
»

Rpx, yqS�px, yq dx dy

�
» »

Rpx, yqSpy, xq dy dx

�
»

Kpx, xq dx.

¤

4. Compact Operators

The trace class and Hilbert-Schmidt operators are a subfamily of a larger
class of well behaved operators. They are the class of compact linear oper-
ators.

Definition 2.45. A compact linear operator on a Hilbert space H is a linear
transformation T of H such that for any bounded sequence tvnu8n�1 of vectors
in H, the sequence tTvnu8n�1 has a convergent subsequence in H.

We first note compact operators are bounded for if T is unbounded one
can find a sequence vn of unit vectors such that ||Tvn|| diverge to 8. Thus
no subsequence of tTvnu could converge.
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Theorem 2.46. The norm limit of any sequence Tn of compact linear op-
erators is compact.

Proof. Let T � lim Tn. Let un be a sequence of unit vectors. We do Cantor
diagonalization. Let vpn, 1q be a subsequence of un such that T1vpn, 1q
converges. Suppose subsequence vpn, kq for k � 1, . . . ,m have been defined
so that Tkpvpn, kqq converges as n Ñ 8 and tvpn, kqu8n�1 is a subsequence
of tvpn, k � 1qu8n�1. Let tvpn, k � 1qu8n�1 be a subsequence of tvpn, kqu8n�1

such that Tk�1pvpn, k � 1qq converges as n Ñ 8. Set wpnq � vpn, nq. Then
Tkwpnq converges as nÑ8 for each k.

Let ε ¡ 0. Pick K with ||TK �T ||   ε
3 . Choose N such that ||TKwpkq�

TKwplq||   ε
3 when k, l ¥ N . Then

||Twpkq � Twplq|| ¤ ||pT � TKqwpkq|| � ||TKwpkq � TKwplq|| � ||pTK � T qwplq||
  ε

3
||wpkq|| � ε

3
� ε

3
||wplq||

� ε.

Thus the sequence tT pwpkqqu is Cauchy. ¤

Proposition 2.47. Let T and S be compact linear operators. Then:

(a) T � S is a compact linear operator;

(b) if A is a bounded linear operator, AT and TA are compact linear
operators;

(c) Let Hpλq � tv | Tv � λvu. Then dimHpλq   8 when λ � 0.

Proof.

[(a)] Let vn be bounded. Since T and S are compact, we can find a
subsequence wn of vn such that Twn converges and then a subsequence un

of wn such that Sun converges. Consequently pT � Squn converges. Thus
T1 � T2 is compact.

[(b)] Let vn be bounded. Then Avn is bounded. Thus there is a sub-
sequence wn of vn such that TAwn converges. Thus TA is compact. One
can also find a subsequence un of vn so that Tun converges. Since A is
continuous, ATun converges. Thus AT is compact.

[(c)] If Hpλq is infinite dimensional, it contains an infinite orthonormal
sequence tunu. Since ||Tun � Tum|| � ||λun � λum|| � λ

?
2 for n � m, no

subsequence of Tun could converge. Thus dimHpλq   8 for all λ � 0. ¤

Proposition 2.48. Finite rank operators are compact.

Proof. Let T be a finite rank operator. Then TH is a finite dimensional
vector space. Consequently, if un is a bounded sequence, then Tun is a
bounded sequence in a finite dimensional vector space. Thus Tun must have



76 Function Spaces on Rn

a convergent sequences. (Recall finite dimensional vector spaces have only
one Hausdorff vector space topology and in these topologies every bounded
sequence has a convergent subsequence.) ¤

Corollary 2.49. Every Hilbert-Schmidt operator from H to H is compact.

Proof. Assume T is Hilbert-Schmidt. Let eα be an orthonormal basis. Let
ε ¡ 0. Choose a finite set F such that

°
αRF ||Teα||2   ε2.

Let P be the orthogonal projection of H onto the linear span of the
vectors eα where α P F . Clearly TP has finite rank and thus is compact.
Moreover, if v P H, we have v � °pv, eαqeα, and thus

||Tv � TPv||2 � ||
α̧RF
pv, eαqTeα||2

¤
�

α̧RF
|pv, eαq| ||Teα||

�2

¤
α̧RF

|pv, eαq|2
α̧RF

||Teα||2

¤ ε2||v||2.
Consequently, ||T�TP || ¤ ε. Hence T is a norm limit of compact operators.

¤

Lemma 2.50. Let T be a compact self adjoint linear operator. Then the
eigenspaces are pairwise orthogonal and 0 is the only possible accumulation
point of the nonzero eigenvalues of T .

Proof. First note if Tu � λu and Tv � µv where λ � µ and u and v are
nonzero vectors, then:

λpu, vq � pTu, vq � pu, Tvq � pu, µvq � µ̄pu, vq.
Hence if pu, vq � 0, then λ � µ̄. But µpv, vq � pTv, vq � pv, Tvq �
pv, µvq � µ̄pv, vq. So µ � µ̄. Consequently, pu, vq � 0 implies λ � µ.
So the eigenspaces are pairwise orthogonal.

Assume µ � lim λn where µ � 0 and the λn are distinct eigenvalues.
Choose a unit vector un with Tun � λnun. Then, by taking a subsequence,
we may assume Tun Ñ y. Thus λnun Ñ y. But since λn Ñ µ � 0, un Ñ 1

µy.
But then pun, un�1q and pun, unq have the same limit. Since pun, un�1q � 0
and pun, unq � 1, this is impossible. ¤

Theorem 2.51 (Spectral Theorem for Compact Operators). Let T be a
compact self adjoint linear operator on a Hilbert space H. Then there is
an orthonormal set tenu in H and corresponding real numbers λn such that
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T � °
λnenb ēn where ||T || � |λ1| and |λn�1| ¥ |λn| ¡ 0. Moreover, if this

collection is infinite, then limλn � 0.

Proof. Set λ � ||T ||. We show λ or �λ is an eigenvalue of T . Choose xk

of norm 1 with ||Txk|| Ñ ||T ||. Using the compactness of T and taking a
subsequence, we may assume Txk Ñ y where ||y|| � ||T ||. Note using the
Cauchy-Schwarz inequality that:

||T ||4 � lim ||Txk||4
� limpTxk, Txkq2
� limpT 2xk, xkq2
¤ lim ||T 2xk||2||xk||2
� lim ||T pTxkq||2
� ||T pyq||2
¤ ||T ||2||y||2
� ||T ||4.

Consequently, ||T pyq||2 � ||T ||2||y||2 � ||T ||4. Thus:

||T ||4 � pTy, Tyq � pT 2y, yq ¤ ||T 2y|| ||y|| ¤ ||T ||2||y||2 � ||T ||4.
So ||T 2y|| � ||T ||3 and pT 2y, yq � ||T 2y|| ||y||. Since one has equality in the
Cauchy-Schwarz inequality only when T 2y and y are linearly dependent, we
see

T 2y � µy for some µ ¡ 0.

But ||T 2y|| � ||T ||3 gives µ||y|| � ||T ||3 or µ � ||T ||2. Hence T 2y � λ2y.
Thus pT � λIqpT � λIqy � 0. If pT � λIqy � 0, then ||T || is an eigenvalue
of T ; otherwise pT � λIqy � 0 and �||T || is an eigenvalue of T .

For each nonzero eigenvalue λ of T , let Hpλq be the corresponding space
of eigenvectors. Note T leaves invariant the subspace H0 of H consisting
of those vectors perpendicular to all the subspaces Hpλq. Indeed, if v P H0

and w P Hpλq, then pTv, wq � pv, Twq � pv, λwq � λpv, wq � 0. Moreover,
T0 � T |H0 is still compact and self adjoint. Consequently, if T0 is not zero,
T0 would have a nonzero eigenvector with nonzero eigenvalue. But clearly
every eigenvector v0 of T0 with nonzero eigenvalue would be an eigenvector
for T and thus would be in some Hpλq. Consequently, pv0, v0q � 0 which is
impossible. Thus T � 0 on H0.

Since T � � T , the eigenvalues are all real. Lemma 2.50 implies the
nonzero ones form either a finite set or infinite set with 0 as its only accu-
mulation point. In either case we may enumerate the eigenvalues into either
a finite or an infinite sequence µ1, µ2, . . . , µn, . . . with with |µn�1| ¥ |µn| and
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converging to 0 in the infinite case. Since the spaces Hpµkq are finite di-
mensional, we can find for each k an orthonormal basis ek,1, ek,2, . . . , ek,nk

of
Hpµkq. List the vectors under order ek,l ¤ em,n if k   m or k � m and l ¤ n.
One obtains a sequence en. Define λn � µk if en � ek,l for some l. Then the
set en is an orthonormal set, Ten � λnen and ||T || � |λ1| ¥ |λ2| ¥ � � � with
|λn| ¡ 0 for all n and having limit 0 if this sequence is infinite.

Now let v P H. Set v0 � v � °pv, enqen. Note pv0, enq � 0 for all n.
Thus v0 P HpλqK for all λ � 0. Consequently, v0 P H0. As seen above,
T pv0q � T0pv0q � 0. Thus

Tv � T p¸pv, enqenq �¸pv, enqTen �¸pv, enqλnen �
ņ

λnen b ēnpvq.
¤

Theorem 2.52 (Structure Theorem for Compact Operators). A linear op-
erator T on H is compact if and only if there exist a sequence (perhaps finite)
of pairs pei, fiq of vectors and a decreasing sequence tλiu of positive numbers
such that the vectors teiu are orthonormal, the vectors tfju are orthonormal,
limλi � 0 when the sequence is infinite, and

T �¸
λipei b f̄iq.

Moreover, ||T || � λ1.

Proof. Assume T is compact. We know P � T �T is positive and compact.
Thus we have an orthonormal sequence fn of vectors and a decreasing se-
quence λ2

n of eigenvalues for P such that λ2
1 � ||P || and P � °

λ2
nfn b f̄n.

Define en � 1
λn

Tfn. Note:

pem, enq � p 1
λm

Tfm,
1
λn

Tfnq
� 1

λmλn
pT �Tfm, fnq

� 1
λmλn

pPfm, fnq
� λ2

m

λmλn
pfm, fnq

� δm,n.

So the sequence tenu is orthonormal.
Note P is zero on the vectors perpendicular to the eigenvectors fn. Thus

T �T is zero on these vectors. But T �Tv � 0 if and only if Tv � 0 for
pTv, Tvq � pT �Tv, vq. Hence T pv �°pv, fnqfnq � 0. Consequently,
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Tv �¸pv, fnqTfn

�¸pv, fnqλnen

�¸
λnpen b f̄nqv.

Now assume T has form
°

λnpenb f̄nqv. Note Tf1 � λ1e1 implies ||T || ¥
λ1. Now

||Tv||2 �¸
λ2

n|pv, fnq|
¤ λ2

1

¸ |pv, fnq|2
¤ λ2

1||v||2
by Bessel’s inequality. So ||T || � λ1.

Consequently if T � °
λnpen b f̄nq and TN � °N

k�1 λkpen b f̄nq, then
||T � TN || � λN�1 Ñ 0 as N Ñ8.

But TN is compact for TN has finite rank. By Theorem 2.46, T is
compact. ¤

Exercise Set 2.2

1. Let Ω be an open subset of Rn and let F � pf1, f2, . . . , fmq be a function
from Ω into Rm. Suppose F is differentiable at a point x in Ω. Show the
partial derivatives Difjpxq exist and the linear transformation D is defined
by

Dpa1, a2, . . . , anq � p
ņ

i�1

aiDif1pxq,
ņ

i�1

aiDif2pxq, . . . ,
ņ

i�1

aiDifmpxqq.
2. Let F : Ω Ñ Rm be a function on an open subset Ω of Rn. Show F is
continuous at each point where it is differentiable.

3. Give an example of a function f : R2 Ñ R where D1fp0, 0q and D2fp0, 0q
exist but f is not differentiable.

4. Show that F � pf1, f2, . . . , fmq mapping an open set Ω � Rn into Rm is
differentiable at a point x in Ω if and only if each fi is differentiable at x.

5. Let Ω be a nonempty open subset of Rn. Assume f : Ω Ñ R is a function
such that the partial derivatives Dif exist and are continuous on Ω. Show
f is continuously differentiable on Ω.

6. Let α P Nn
0 and suppose f1, f2, . . . , fm are C8 functions on Rn. Show

Dαpf1f2 � � � fmq � ¸
β1�β2����βm¤α

�
α

β1, β2, � � � , βm



Dβ1f1D

β2f2 � � �Dβmfm
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where �
α

β1, β2, � � � , βm



� α!

β1!β2! � � �βm!
.

7. In Rn, one has coordinates

x1 �r cos θ1

x2 �r sin θ1 cos θ2

x3 �r sin θ1 sin θ2 cos θ3

� � �
xn�1 �r sin θ1 sin θ2 � � � sin θn�2 cos θn�1

xn �r sin θ1 sin θ2 � � � sin θn�2 sin θn�1

where 0 ¤ θj ¤ π for j � 1, � � � , n� 2 and 0 ¤ θn�1 ¤ 2π. Show in terms of
these coordinates, one has

dx1dx2 � � � dxn � rn�1 sinn�2 θ1 sinn�3 θ2 � � � sin θn�2drdθ1 � � � dθn�1.

8. Let Bn � tx P Rn | |x| ¤ 1u. Show

λnpBnq � πn{2
Γpn{2� 1q .

(Hint: Give an inductive argument and use the Beta function Bpr, sq �³1
0 tr�1p1� tqs�1 dt � ΓprqΓpsq

Γpr�sq .)

9. Show that σpSn�1q is the usual surface measure of Sn�1; i.e.,

σpSn�1q � lim
hÑ0�

1
h

λpp1� hqBn �Bnqq.
10. Show the measure σ is invariant under rotations.

11. Let α ¡ 0 and 1 ¤ p   8. Show that the Chebyshev’s inequality

λn ptx P Rn | |fpxq| ¡ αuq ¤
� |f |p

α


p

holds.

12. Show Corollary 2.26 follows from Proposition 2.25.

13. Let H be a Hilbert space and T P BpHq. Then kerpT �q � T pHqK.

14. Let T P BpH,Kq where H and K are Hilbert spaces. Show H � kerT `
T �pKq is an orthogonal decomposition of H.

15. Suppose teαuαPA is an orthonormal basis of H and wα for α P A are
vectors in a Hilbert space K. Show if

°
αPA ||wα||2   8, the sums T �°

α wαbēα and S � °
eαbw̄α converge in operator norm and define Hilbert-

Schmidt operators T and S with T � � S and Teα � wα for all α P A. In
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particular, T is a Hilbert-Schmidt operator if and only if T � °
Teα b ēα

where
° ||Teα||2K   8.

16. Let K and L be Hilbert-Schmidt operators on L2pRnq with L2 kernels
R and S. Show

³
Rpx, zqSpz, yq dz is an L2 kernel for KL.

17. Let pX,µq and pY, νq be σ-finite measure spaces. Suppose T is a
Hilbert-Schmidt operator from L2pY, νq into L2pX,µq with kernel K. Show
T � is Hilbert-Schmidt and has kernel K� where K�px, yq � Kpy, xq.
18. Let pX, µq and pY, νq be σ-finite measure spaces. Let eαp�q, α P A and
fβp�q, β P B be complete orthonormal bases of L2pXq and L2pY q, respec-
tively. Show the functions eα � fβ defined by eα � fβpx, yq � eαpxqfβpyq
form a complete orthonormal basis of L2pX � Y, µ� νq.
19. Let v and w be vectors in a Hilbert space H and let A and B be
bounded linear operators on H. Show:

(a) ||v b w̄|| � ||v|| ||w|| � ||v b w̄||2
(b) pv b w̄q� � w b v̄

(c) Apv b w̄qB� � Av bBw.

20. Recall if f, h P L2pRnq, then f � h is the rank one operator given by

pf b hqpgqpxq �
�»

gpyqhpyq dy

�
fpxq.

Let thju be an orthonormal basis. Show T is a Hilbert-Schmidt on L2pRnq
if and only if T � °

j,k λj,khj b hk where
° |λj,k|2   8.

21. Show T is a Hilbert-Schmidt operator on L2pRnq if and only if T has
form T � °

fj b hj where fj , hj P L2pRnq, the sequence thju8j�1 is orthog-
onal, and

° ||fj ||2||hj ||2   8. In this case ||T ||22 � ° ||fj ||2||hj ||2.
22. Find a bounded linear transformation T that cannot be written in form°

vi b w̄i where this series converges in the norm topology.

23. Let H be a Hilbert space and let BpHq be the Banach space of bounded
linear operators on H. For each v P H, define a seminorm | � |v on BpHq by

|A|v � ||Av||H.

The locally convex vector space topology defined on BpHq by the seminorms
| � |v is called the strong operator topology on BpHq.

(a) Show the strong operator topology on BpHq is weaker than the norm
topology on BpHq.
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(b) Show if T is a bounded linear operator on H and teαuαPA is a
complete orthonormal basis, then

T �
α̧

Teα b ēα

in the strong operator topology.

24. Show the set of trace class operators forms a linear subspace of BpHq.
25. Show T � is trace class if T is trace class and TrpT �q � TrpT q.
26. Give another proof of Theorem 2.46 by showing that if Tn is compact
and converges in norm to T , then the closure of the set tTv | ||v|| � 1u is
totally bounded. (Recall a subset of a metric space is compact if and only
if it is complete and totally bounded.)

27. Let H be a Hilbert space. Show the adjoint of any finite rank operator
on H is a finite rank operator.

28. Let H be a Hilbert space. Show the finite rank operators on H form a
norm dense subspace of the space of compact operators.

29. Let T be a bounded linear operator on a Hilbert space H. Show:

(a) The operator T is a Hilbert-Schmidt operator if and only if T has
form

T �¸
λi,jei b f̄j

where
° |λi,j |2   8 and the sequences teiu and tfju are orthonor-

mal.

(b) The operator T is a trace class operator if and only if T has form

T �¸
λi,jei b f̄j

where
° |λi,j |   8 and the sequences teiu and tfiu are orthonormal.

30. Let F be a measurable subset of Rn. Let E be the set of x in F such
that there is a δ ¡ 0 with λpBδpxq X F q � 0. Show that E has measure 0.
(Hint: Take a countable base for the topology of Rn.)

5. The Schwartz Space

Two important vector spaces of functions on Rn are the space C8c pRnq of
C8 complex valued functions with compact support and the space of C8
complex valued functions on Rn which along with their derivatives van-
ish rapidly at 8. When these spaces are topologized with their ‘Schwartz
topologies’, they are known as Schwartz spaces. In order to see the vector
space C8c pRnq is not trivial, one can use the following Lemma.
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Lemma 2.53. Let 0   r   R. There exists a smooth nonnegative function
ϕ on Rn with such that 0 ¤ ϕpxq ¤ 1, ϕpxq � 1 if and only if |x| ¤ r, and
ϕpxq � 0 if and only if |x| ¥ R.

Proof. Exercise 2.3.1 shows the function fptq � 0 if t ¤ 0 and fptq � e�1{t
if t ¡ 0 is C8 on R. Define gptq � fpR2 � tqfpt � r2q. Then g is C8,
g ¥ 0, and gptq � 0 zero if and only if t ¤ r2 or t ¥ R2. Next define G by
Gptq :� ³8

t gpsq ds{ ³8�8 gpsq ds. Then G is smooth, non-negative, Gptq � 0
if and only if t ¥ R2, and Gptq � 1 if and only if t ¤ r2. The function
ϕpxq :� Gp|x|2q satisfies the conditions in the Lemma. ¤

Corollary 2.54. Suppose K � U where K is a compact subset of Rn and
U is open. Then there is a φ P C8c pRnq such that 0 ¤ φ ¤ 1, φpxq � 1 for
x P K, and suppφ � U .

Proof. For each p P U choose rppq ¡ 0 such that if |x � p| ¤ 2rppq, then
x P U . Since K is compact, we can find a finite sequence p1, p2, . . . , pm such
that if rk � rppkq, then

K � m¤
k�1

tx | |x� pk|   rku.

Now for each k, choose a C8 function φk such that 0 ¤ φk ¤ 1, φkpxq � 0
if |x� pk| ¥ 2rk, and φkpxq � 1 if |x� pk| ¤ rk. Set

φpxq � 1� p1� φ1qp1� φ2q � � � p1� φkq.
Clearly 0 ¤ φ ¤ 1 and φ P C8. Also if |x � pk|   rk, φpxq � 1 and we
see φ � 1 on K. Furthermore, if x is not in the compact subset Ym

k�1tx ||x�pk| ¤ 2rku of U , then φpxq � 0 and we see φ has compact support inside
U . ¤

The space of rapidly decreasing smooth functions on Rn consists of the
smooth complex valued functions f on Rn satisfying

sup
xPRn

p1� |x|2qN |Dαfpxq|   8
for all N P N0 and α P Nn

0 . Moreover, this space with seminorms | � |N,α

given by

|f |N,α � sup
xPRn

p1� |x|2qN |Dαfpxq|
is the Schwartz space of rapidly decreasing smooth functions on Rn and is
denoted by both SpRnq and Sn. It contains C8c pRnq as a vector subspace.
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We note many other norms and seminorms are continuous in this topology.
Indeed,

|f |pp �
»
|fpxq|p dx

�
»
|fpxq|pp1� |x|2qNpp1� |x|2q�Np dx

¤ |f |pN,0

»
p1� |x|2q�Np dx

¤ Cp
N,p|f |pN,0

where in view of Remark 2.27 one has Cp
N,p � ³p1� |x|2q�Np dx   8 when

Np ¡ n
2 . Hence

(2.9) |f |p ¤ CN,p|f |N,0

and we see convergence in SpRnq implies convergence in every Lp space.

Proposition 2.55. The space C8c pRnq is dense in SpRnq. Moreover, it is
dense in LppRnq for 1 ¤ p   8.

Proof. By Lemma 2.53, there is a function φ P C8c pRnq with 0 ¤ φ ¤ 1,
φpxq � 1 if |x| ¤ 1 and φpxq � 0 if |x| ¥ 2.

For each β P Nn
0 , let Mβ � maxxPRn |Dβφpxq|. Set φkpxq � φpxk q. Note

φkpxq � 1 if |x| ¤ k and φkpxq � 0 if |x| ¥ 2k. Also note

|Dβφkpxq| � 1
k|β|

���Dβφpx
k
q��� ¤Mβ

for all β and x. Let f P SpRnq. We claim φkf Ñ f in SpRnq. Indeed, by
Leibniz’s rule,

|φkf � f |N,α � sup
xPRn

p1� |x|2qN |Dαpφkfqpxq �Dαfpxq|
� sup|x|¥k

p1� |x|2qN |Dαpφkfqpxq �Dαfpxq|
¤ sup|x|¥k

p1� |x|2qN |Dαfpxq| � sup|x|¥k
p1� |x|2qN |Dαpφkfqpxq|

¤ sup|x|¥k
p1� |x|2qN |Dαfpxq| �

β̧¤α

�α

β

	
sup|x|¥k

p1� |x|2qN |DβφkpxqDα�βfpxq|

¤ sup|x|¥k
p1� |x|2qN |Dαfpxq| �

β̧¤α

Mβ

�α

β

	
sup|x|¥k

p1� |x|2qN |Dα�βfpxq|.
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Thus |φkf � f |N,α Ñ 0 as k Ñ8 if sup|x|¥kp1� |x|2qN |Dγfpxq| Ñ 0 for
each γ P Nn

0 . But if |x| ¥ k,

p1� |x|2qN |Dγfpxq| ¤ 1
1� |x|2 p1� |x|2qN�1|Dγfpxq|

¤ 1
1� |x|2 |f |N,γ

¤ 1
1� k2

|f |N,γ .

To see the second statement, we recall that the linear span of character-
istic functions χ±raj ,bjs of rectangles are dense in LppRnq for 1 ¤ p   8. It
therefore suffices to show one can approximate in Lp the function χ±raj ,bjs
by a C8 function of compact support. Now again using Lemma 2.53, we
can choose a function φ P C8c pRq with 0 ¤ φ ¤ 1 and φpxq � 1 if and only
if �1 ¤ x ¤ 1. Define φkpxq by

(2.10)
φ1px1, x2, . . . , xnq �

n¹
j�1

φp 2
bj � aj

pxj � ajq � 1q
φkpx1, x2, . . . , xnq � φk

1.

Note φk converge pointwise to χ±raj ,bjs and 0 ¤ φk ¤ φ1. This implies
φk Ñ χ±raj ,bjs in Lp for 1 ¤ p   8. ¤

Since the locally convex topology on SpRnq is defined by the countable
collection of seminorms |�|N,α and these seminorms are separating, Exercises
2.1.1 and 2.1.10 show the space SpRnq is metrizable.

Proposition 2.56. The locally convex metrizable topological space SpRnq is
complete.

Proof. Let tfku be a Cauchy sequence. Since |Dαfk � Dαfl|8 � |fk �
fl|0,α, we see Dαfk are uniformly Cauchy for all α. Hence for each α, Dαfk

converges uniformly to a continuous function fα. This implies f0 is C8 and
Dαf0 � fα for all α. Moreover, p1�|x|2qN |Dαfkpxq�Dαflpxq| ¤ |fk�fl|N,α

and thus if ε ¡ 0 and K is chosen so that one has |fk � fl|N,α ¤ ε when
k, l ¥ K, then letting l Ñ8 gives

p1� |x|2qN |Dαfkpxq �Dαfpxq| ¤ ε @x P Rn for k ¥ K.

Consequently |fk� f0|N,α ¤ ε for k ¥ K. So |fk� f0|N,α Ñ 0 as k Ñ8 and
|f0|N,α ¤ |f0� fK |N,α� |fK |N,α   8 for all N and α. Thus f0 P SpRnq and
fk converges to f0 in SpRnq. ¤

There are several linear transformations of the space of complex valued
functions f on Rn. The following occur frequently and have special interest.
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(11)
Translation λpyqfpxq � fpx� yq
Dilation δpaqfpxq � a�n{2fpa�1xq and
Multiplication For g : Rn Ñ C, Mgfpxq � gpxqfpxq

Moreover, there are three idempotent operators on the complex valued
functions:

(12)
Conjugation f̄pxq :� fpxq
Check f̌pxq :� fp�xq
Adjoint f�pxq :� fp�xq

The linear transformations λpyq and δpaq will map SpRnq into itself as
will each of the three idempotent operations. To insure the multiplication
operator Mg maps SpRnq into itself one needs to put restrictions on the
function gpxq.

A complex valued function g on Rn is said to be tempered or to
grow polynomially if there is a constant K and an integer N such that
|gpxq| ¤ Kp1�|x|2qN for all x. A smooth function g is said to be infinitely
tempered if each of its derivatives Dαg is tempered. We denote the vector
space of infinitely tempered smooth functions by S 18pRnq.

For each α P Nn
0 , the polynomial function xα is defined by

xαpx1, . . . , xnq � xα1
1 xα2

2 � � �xαn
n .

A polynomial ppxq of degree m is a function of form¸
|α|¤m

cαxα

where cα � 0 for some α with |α| � m. We note

|xα|
p1� |x|2q|α|{2 ¤ 1 for all x.

This implies every polynomial function ppxq is in S 18pRnq.
Moreover, every C8 function gpxq which satisfies |Dαg|8   8 for all α

is infinitely tempered.

Proposition 2.57. Let g P S 18pRnq. Then Mg maps SpRnq into SpRnq and
is continuous.
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Proof. Clearly gf P C8 if f P SpRnq. For each β P Nn
0 , choose Nβ P N and

Kβ ¥ 0 so that for x P Rn, one has

|Dβgpxq| ¤ Kβp1� |x|2qNβ .

Then using Leibniz’s rule,

|gf |N,α � sup
xPRn

p1� |x|2qN |Dαpgfqpxq|
¤

β̧¤α

�
α

β



sup
xPRn

p1� |x|2qN |Dβgpxq| |Dα�βfpxq|

¤
β̧¤α

�
α

β



sup
xPRn

p1� |x|2q�Nβ |Dβgpxq|p1� |x|2qN�Nβ |Dα�βfpxq|

¤
β̧¤α

Kβ

�
α

β



|f |N�Nβ ,α�β.

This implies gf P SpRnq and the map Mg : f ÞÑ gf is continuous at 0. Since
Mg is a linear transformation, Mg is continuous everywhere. ¤

Proposition 2.58. For α P Nn
0 , y P Rn, and a ¡ 0, the linear transfor-

mations Dα, λpyq, and δpaq map SpRnq into SpRnq and are continuous in
the Schwartz topology. Moreover, the three idempotent operations φ ÞÑ φ̄,
φ ÞÑ φ̌, and φ ÞÑ φ� are also continuous.

Proof. Note each of these are linear or conjugate linear transformations. It
thus suffices to show continuity at 0. That Dα is continuous at 0 follows
from the equality

|Dαf |N,β � |f |N,α�β.

To see λpyq is continuous at 0, note

|λpyqf |N,β � sup
xPRn

p1� |x|2qN |Dβfpx� yq|
� sup

xPRn
p1� |x� y|2qN |Dβfpxq|

� |MgD
βf |0,0

where gpxq � p1�|x�y|2qN is a polynomial function and thus is in S 18pRnq.
By Proposition 2.57 and the already established statement that f ÞÑ Dβf
is continuous, the mapping f ÞÑ MgD

βf is continuous. Hence, if f Ñ 0 in
SpRnq, then |MgD

βf |0,0 Ñ 0, and we see λpyq is continuous at 0.



88 Function Spaces on Rn

Now let a ¡ 0. The chain rule implies

|δpaqf |N,β � supp1� |x|2qN |Dβδpaqfpxq|
� a�n{2 sup

xPRn
p1� |x|2qN |a�|β|pDβfqpa�1xq|

� a�n{2�|β| sup
xPRn

p1� |ax|2qN |Dβfpxq|
� a�n{2�|β||MgD

βf |0,0

where now gpxq � p1 � |ax|2qN is in S 18pRnq. Again, by Proposition 2.57,
δpaq is continuous at the zero function. Finally, if S is one of the three
idempotent operators, note |Spφq|N,α � |φ|N,α and thus S is continuous at
0. ¤

Lemma 2.59. Let φ P SpRnq. Then the mapping x ÞÑ λpxqφ is a continuous
mapping of R into SpRnq.
Proof. We need only show |λpxqφ � λpx0qφ|N,α Ñ 0 as x Ñ x0. Now by
the Mean Value Theorem, there is a y� of form y� � y � ptx � p1 � tqx0q
where 0   t   1 with

p1� |y|2qN |Dαφpy � xq �Dαφpy � x0q| � p1� |y|2qN |
ņ

k�1

pxk � x0,kqBkDαφpy�q|

¤ p1� |y|2qN ņ

k�1

|xk � x0,k| |BkDαφpy�q|

¤
�

1� |y|2
1� |y�|2


N ņ

k�1

|xk � x0,k| p1� |y�|2qN |BkDαφpy�q|

¤
�

1� |y|2
1� |y�|2


N ņ

k�1

|xk � x0,k| |φ|N,α�ek
.

Now using Exercise 2.3.4, we have

1� |y|2
1� |y�|2 �

1� |y|2
1� |y � ptx� p1� tqx0q|2

� 1� |y|2
p1� |y � ptx� p1� tqx0q|2qp1� |tx� p1� tqx0|2q

�
1� |tx� p1� tqx0|2�

¤ 2p1� |tx� p1� tqx0|2q
¤ 2p1� 2|x|2 � 2|x0|2q.

Putting these together we see

|λpxqφ� λpx0qφ|N,α ¤ 2N p1� 2|x|2 � 2|x0|2qN
ņ

k�1

|xk � x0,k| |φ|N,α�ek
.

So x ÞÑ λpxqφ is continuous. ¤
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SpRnq is a topological vector space. It is also closed under pointwise
multiplication. The following proposition establishes that with this multi-
plication SpRnq is a topological algebra.

Proposition 2.60. The mapping pf, gq ÞÑ f � g is a continuous bilinear
mapping from SpRnq � SpRnq into SpRnq.
Proof. Clearly multiplication is bilinear. We show it is continuous. Let f0

and g0 be in SpRnq and let N and α be given. Suppose ε ¡ 0. Then

|fg � f0g0|N,α ¤ |fg � f0g|N,α � |f0g � f0g0|N,α

� |pf � f0qg|N,α � |Mf0pg � g0q|N,α.

Note SpRnq � S 18pRnq. Thus by Proposition 2.57, there is a neighborhood
V of g0 in SpRnq such that |Mf0pg � g0q|N,α   ε

2 if g P V . Hence we need
only show that we can make |pf � f0qg|N,α   ε

2 for g in some neighborhood
V 1 of g0 and f in some neighborhood U of f0. But by Leibniz’s rule,

p1�|x|2qNDαppf �f0qgqpxq � p1�|x|2qN
β̧¤α

�
α

β



Dβpf �f0qpxqDα�βgpxq.

Hence |p1 � |x|2qNDαppf � f0qgqpxq| ¤ M
°

β¤α |f � f0|0,β|g|N,α�β where
M � maxβ¤α

�
α
β

�
. We restrict g to lie in the neighborhood V 1 of g0 consisting

of those g which satisfy |g � g0|N,γ   1 for all γ ¤ α. Take K to be the
largest of the numbers 1 � |g0|N,γ for γ ¤ α. Since |g|N,γ ¤ 1 � |g0|N,γ for
γ ¤ α, we see |p1 � |x|2qNDαppf � f0qgqpxq| ¤ KM

°
β¤α |f � f0|0,β. Take

U to be the open neighborhood of f0 consisting of the functions f satisfying°
β¤α |f � f0|0,β   ε

2KM . Then for pf, gq P U � pV X V 1q one has

|fg � f0g0|N,α   ε

and consequently pointwise multiplication is continuous. ¤

Corollary 2.61. Let g P S 18pRnq. Then

|f |g,α :� sup
xPRn

|gpxqDαfpxq| and |f |α,g � sup
xPRn

|Dαpgfqpxq|
define continuous seminorms on SpRnq.
Proof. That these are seminorms is clear. That they are continuous follows
from the fact that |f |g,α � |MgD

αf |0,0 and |f |α,g � |DαpMgfq|0,0. ¤

In particular, one could have defined the Schwartz topology on SpRnq
by using all the seminorms | � |p,α where p is a polynomial function. In many
situations, it is more convenient to use these seminorms.

We finish this section with some basic results on Schwartz space.
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Proposition 2.62. Let A be an invertible linear transformation of Rn.
Then f ÞÑ f �A is a linear homeomorphism of SpRnq onto SpRnq.
Proof. Clearly f �A is C8 by the chain rule. Moreover,

B
Bxj

pf �Aqpx1, . . . , xnq � B
Bxj

fp¸xlal,1, . . . ,
¸

xlal,nq
�

ķ

pDekfqpxAqaj,k.

Rewriting we see

Dej pf �Aq � pD1f �A, . . . , Dnf �Aq �Aj

where Aj is the jth row of A.
Repeating one sees

Dαpf �Aq � ¸
|β|�|α|

PβpAqDβf �A

where PβpAq is a homogeneous polynomial of degree |α| in the entries of the
matrix for A.

From this we see

|ppxqDαpf �Aqpxq| ¤ ¸
|β|�|α|

|PβpAq||ppxqDβfpAxq|
¤ ¸
|β|�|α|

|PβpAq| |p �A�1pAxqDβfpAxq|
¤ ¸
|β|�|α|

|PβpAq| ||f ||p�A�1,β.

This implies f �A is Schwartz and f ÞÑ f �A is continuous at 0. By linearity,
f ÞÑ f � A is continuous at every f . Since f ÞÑ f � A�1 is the inverse, we
have f ÞÑ f �A is a homeomorphism. ¤

Exercise Set 2.3

1. Show the function f defined by

fptq �
#

0 if t ¤ 0
e� 1

t if t ¡ 0

is C8 on R.

2. Let ppxq be a polynomial function and let λ ¡ 0. Show the function
x ÞÑ ppxqe�λ|x|2 is in SpRnq.
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3. Show that »
Rn

e�π|x|2 dx � 1 .

(Hint: Do the case n � 2 by using polar coordinates. Then use Fubini’s
Theorem to do the other cases.)

4. Show 1�|x�y|2p1�|x|2qp1�|y|2q ¤ 2.

5. Show that the following are equivalent:

 f P S pRnq;
 For all α, β P Nn

0 , |f |α,β :� sup
��Dαpxβfqpxq��   8;

 For all α, β P Nn
0 , |f |1α,β :� sup

��xαDβfpxq��   8;

 For all polynomials p and all α P Nn
0 ,

|f |p,α � sup |ppxqDαfpxq|   8;

 For all polynomials p and all α P Nn
0 ,

|f |α,p � sup |Dαpppxqfpxqq|   8;

 For all N P N0 and α P Nn
0 , |f |1N,α � supp1� |x|qN |Dαfpxq|   8.

Furthermore show each family of seminorms t| � |N,αu, t| � |α,βu,
!| � |1α,β

)
,

t| � |p,αu, t| � |α,pu, and
!| � |1N,α

)
defines the same topology on SpRnq.

6. Let g be a tempered measurable complex valued function on Rn. Show
that the map

SpRnq Q f ÞÑ Tgpfq :�
»
Rn

fpxqgpxq dx P C
is a well defined continuous linear functional on SpRnq.
7. Let A be a linear transformation of Rn given by

Apx1, . . . , xnq � p¸ a1,jxj ,
¸

a2,jx2, . . . ,
¸

an,jxjq.
Suppose f P C8pRnq. Show� B

Bxk


m pf �Aq � ¸
|β|�m

pa1,k, a2,k, . . . , an,kqβpDβfq �A

8. Let Φ � pφ1, . . . , φnq be C8 mapping of Rn onto Rn with C8 inverse
Ψ � pψ1, . . . , ψnq. Assume all the φi and ψj are in S 18pRnq; i.e., all their
derivatives have polynomial growth. Show

f ÞÑ f � Φ

is a linear homeomorphism of SnpRnq.
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9. Suppose φ P SpRq and
³8�8 φptq dt � 0. Show

F pxq �
» x

�8
φptq dt

is in SpRq. Hint: Consider
³8
x φptq dt.

10. Let f be Schwartz on Rm �Rn. Show y ÞÑ fpx, yq � fxpyq is Schwartz
on Rn for each x P Rm.

11. Show x ÞÑ fx where fxpyq � fpx, yq is continuous from Rm into SpRnq
for each f P SpRm � Rnq.
12. Let I be a continuous linear functional on SpRnq and suppose f P
SpRm � Rnq. Define Ipfqpxq � Ipfxq where fxpyq � fpx, yq. Show I is a
continuous linear transformation of SpRm � Rnq into SpRmq.
6. Topologies on Spaces of Smooth Compactly Supported

Functions

Let Ω be an open subset of Rn and let C8pΩq be the set of all C8 complex
valued functions on Ω. For each compact subset K of Ω, define a seminorms
| � |K,α on C8pΩq by

|φ|K,α � max
xPK |Dαφpxq|.

The space C8pΩq equipped with the locally convex topological vector space
on C8pΩq defined by these seminorms is called EpΩq. These seminorms
make EpΩq a separated locally convex topological vector space. To simplify
notation, the space EpRnq is denoted by En.

For each compact subset K of Ω, set DKpΩq to be the subspace of
C8pΩq consisting of those f with supp f � K. We give DKpΩq the relative
topology of EpΩq on DKpΩq. It is the locally convex topology defined by the
restrictions of the seminorms | � |K,α to DKpΩq. Exercise 2.1.10 shows this
space is metrizable.

Lemma 2.63. The mapping φ ÞÑ φ|Ω is a continuous mapping from Sn into
EpΩq.
Proof. Let T pφq � φ|Ω. Then

|Tφ|K,α � max
xPK |Dαφpxq| ¤ |φ|0,α.

Consequently T is continuous. ¤

For each open subset Ω of Rn, C8c pΩq will denote the vector space of all
complex valued C8 functions on Ω with compact support in Ω. We note we
may identify this space with the space of C8 functions on Rn which have
compact support in the open set Ω.
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Definition 2.64. The Schwartz topology on C8c pΩq is the inductive limit
topology of the topological vector subspaces DKpΩq where K is a compact
subset of Ω. The space C8c pΩq with the Schwartz topology is called DpΩq.

Note DK1pΩqYDK2pΩq � DK1YK2pΩq and YK�ΩDKpΩq � DpΩq. Hence
by Proposition 2.16, a seminorm | � | on DpΩq is continuous in the Schwartz
topology on DpΩq if and only if its restriction to each subspace DKpΩq is
continuous.

The space DpRnq is denoted by Dn and is the space of all C8 complex
valued functions with compact support with its Schwartz topology.

One could also take C8c pΩq to be the space of all C8 functions on Rn with
compact support in Ω. In this situation, we can take the relative topology
of Sn on C8c pΩq. The next result shows the relative topology is weaker than
the Schwartz topology. Exercise 2.4.9 shows the relative topology is strictly
weaker.

Proposition 2.65. The relative topology of Sn on C8c pΩq is weaker than
the Schwartz topology.

Proof. Give C8c pΩq the relative topology of Sn. Let I : DpΩq Ñ C8c pΩq be
the identity map. Since I is a linear transformation, Proposition 2.15 shows
that I is continuous if and only if I|DKpΩq is continuous for each compact
subset K of Ω. But

|f |K,α � |Dαf |8 ¤ |f |0,α.

Thus I|DKpΩq is continuous at 0. Hence I restricted to each DKpΩq is con-
tinuous. So I is continuous. This gives G � I�1pGq is open in DpΩq for
every open subset G in C8c pΩq. ¤
Lemma 2.66. The relative topology of DpΩq on DKpΩq is the topology of
DKpΩq.
Proof. Recall that the inductive limit topology on DpΩq is the strongest
topology such that the relative topology on each DKpΩq is weaker than the
topology of DKpΩq. Hence, we need only show every open set in DKpΩq is
open in the relative topology.

Let U be open in DKpΩq and let f0 P U . Choose a finite set F of α1s
and an ε ¡ 0 such that f P U if |f � f0|K,α   ε for α P F . The seminorms
| � |α on DpΩq defined by

|f |α � max
x
|Dαfpxq|

are continuous on DpΩq for their restrictions to each DK1pΩq are continuous.
Let G � tf P DpΩq | |f � f0|α   ε for α P F u. Then G is open in DpΩq
and f0 P GXDKpΩq � U . Thus each f0 P U is interior in U in the relative
topology. Hence U is open in the relative topology. ¤
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Theorem 2.67. The inclusion mappings DpRnq ιãÑ SpRnq κãÑ EpRnq are
continuous. Furthermore DpRnq is dense in SpRnq and EpRnq.
Proof. We first note ι is continuous for by Proposition 2.65, the relative
topology of Sn on C8c pRnq is weaker than the Schwartz topology on Dn.
Next we show Dn is dense in Sn.

Let f P Sn and suppose ϕ is C8 and 0 ¤ ϕ ¤ 1 and ϕpxq � 1 if and
only if |x| ¤ 1 and ϕpxq � 0 if |x| ¥ 2. Then ϕpx{nqfpxq P Dn. We
claim it converges to f in Sn. Indeed |ppxqDαpϕpx{nqfpxq � fpxqq| � 0
if |x| ¤ n while it is |ppxqDαfpxq| for |x| ¥ 2n. Between n and 2n it is
|ppxq°�

α
β

�
Dβppϕpx{nq � 1qDα�βfpxq| � |ppxq°�

α
β

�
n�|β|pDβϕqpx{nqDα�βfpxq|.

We thus see there is an M independent of n such that

|ppxq¸�
α

β



Dβppϕpx{nq � 1qDα�βfpxq| ¤ M

β̧¤α

|ppxqDα�βfpxq|

for n ¤ x ¤ 2n. But note supx¥|n| |ppxqDγfpxq| Ñ 0 for every p and γ as
nÑ8. Thus |ϕpx{nqfpxq � fpxq|p,α Ñ 0 as nÑ8.

That the mapping κ is continuous following from Lemma 2.63. Let
Kj � Bjp0q, j P N. Let ϕj P DpRnq be such that 0 ¤ ϕj ¤ 1, and ϕ|Kj � 1.
Let ϕ P EpRnq. Then ϕjϕ P DpRnq and ϕjϕÑ ϕ. ¤

Proposition 2.68. Let 1 ¤ p   8. Then DpΩq � LppΩq and the inclusion
mapping DpΩq Q f ÞÑ f P LP pΩq is continuous and has dense range.

Proof. By Proposition 2.15, it suffices to show f ÞÑ f from C8K pΩq Ñ
LppΩq is continuous. Since this is a linear transformation, we need only
show continuity at 0 . But |f |pp � ³

K |fpxq|p dλnpxq ¤ ³
K |f |pK,0 dλnpxq ¤

λnpKq |f |pK,0. Thus

|f |p ¤ λnpKq 1
p |f |K,0

and continuity at 0 is established.
To see that the range is dense, the argument in the second part of the

proof of Proposition 2.55 can be applied to the situation when Ω is a proper
open subset of Rn. ¤

One can show that Proposition 2.58 continues to hold on DpRnq.
Proposition 2.69. For α P Nn

0 , y P Rn, and a ¡ 0, the linear transfor-
mations Dα, λpyq, and δpaq map DpRnq into DpRnq and are continuous.
Moreover, the three idempotent operations φ ÞÑ φ̄, φ ÞÑ φ̌, and φ ÞÑ φ� are
homeomorphisms.
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6.1. Convergence in Schwartz Spaces. Recall subset B of a locally
convex topological vector space X is bounded if for each open subset U
of X containing 0, there is an R ¡ 0 such that B � λU for all λ ¡ R.
By Exercise 2.1.13, a subset of X is bounded if and only if each continuous
seminorm is bounded on X.

Proposition 2.70. Let Ω be an open subset of Rn. Then a subset B is a
bounded subset of DpΩq if and only if there is a compact subset K of Ω such
that B is a bounded subset of DKpΩq.
Proof. Suppose B is a bounded subset of DpΩq. We first show there is
a compact subset K of Ω with B � DKpΩq. Assume no such K exists.
By Exercise 2.4.4, there is a sequence Ki of compact subsets of Ω such that
Ki � K�

i�1 � Ki�1 and YKi � Ω. Since B � DKipΩq, we can choose φi P B,
φi R DKipΩq. In particular, there exists xi R Ki such that φipxiq � 0. Define
U by

U � tϕ P DpΩq | |ϕpxjq|   1
j
|ϕjpxjq| for all ju .

Note U is balanced and convex. If K � Ω, then

#tj P N | xj P Ku   8
and hence U X DKpΩq is open. Corollary 2.17 implies U is open in DpΩq.
In particular, there exists a λ ¡ 0 such that B � λU . But, if j ¡ λ, then
ϕj R λU , which contradicts ϕj P B. Hence, there exists a K such that
B � DKpΩq.

Finally we note that a subset B of DKpΩq is bounded in DKpΩq if and
only if it is bounded in DpΩq. Indeed, by Lemma 2.66, the topology on
DKpΩq is the relative topology from DpΩq. Thus every open neighborhood
V of 0 in DKpΩq has form GXDKpΩq where G is an open neighborhood of
0 in DpΩq. In particular, there is an R ¡ 0 such that B � λV for λ ¡ R if
and only if such an R exists with B � λG for λ ¡ R. ¤

Proposition 2.71. The space DKpΩq is a Fréchet space.

Proof. We have already noted the separated locally convex topological vec-
tor space DKpΩq is metrizable for its topology is defined by countably many
seminorms; i.e. see Exercise 2.1.10.

We have to prove that DKpΩq is complete. Let tfkuk be a Cauchy
sequence in DKpΩq. Then for each α, the sequence tDαfku converges uni-
formly to a continuous function gα on CpΩq. Let f � g0. It follows by
Exercise 2.4.13 that f is in C8pΩq and Dαfk converges uniformly to Dαf .
Clearly supppfq � K. Hence fk Ñ f in the topology of DKpΩq. ¤
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Corollary 2.72. Let Ω be a nonempty open subset of Rn. Then a sequence
tφku8k�1 is Cauchy in DpΩq if and only if there is a compact subset K of Ω
such that it is Cauchy in DKpΩq. Moreover, the space DpΩq is complete.

Proof. We first note that if K is a compact subset of Ω, then since DKpΩq
has the relative topology of DpΩq, a sequence in DKpΩq is Cauchy if and
only if it is Cauchy in DpΩq.

Now let tφkuk be a Cauchy sequence in DpΩq. By Exercise 2.1.14, this
sequence is bounded. Proposition 2.70 then implies there exists a compact
set K � Ω, such that φk P DKpΩq for all k. Consequently, the sequence φk

is Cauchy in DKpΩq.
By Proposition 2.71, there exists a φ P DKpΩq such that φk Ñ φ in

DKpΩq. But then, as DKpΩq carries the relative topology, one has φk Ñ φ
in DpΩq. ¤

Proposition 2.73. Let V be a locally convex topological vector space and Ω
be a nonempty open subset of Rn. Then a linear transformation T : DpΩq Ñ
V is continuous if and only if T pφkq Ñ T pφq for every convergent sequence
φk Ñ φ in DpΩq.
Proof. By Proposition 2.15, T is continuous if and only if T |DKpΩq is con-
tinuous for each compact subset K of Ω. Since each DKpΩq is a metric space
and φk Ñ φ in DpΩq if and only if there is a K with φk Ñ φ in DKpΩq, T
is continuous if and only if T pφkq Ñ T pφq whenever φk Ñ φ. ¤

Exercise Set 2.4

1. Show if Ω is a nonempty open subset of Rn, then the inclusion mapping
from DpΩq into EpΩq is continuous.

2. Show if Ω1 and Ω2 are nonempty open subsets of Rn and Ω1 � Ω2, then
the restriction mapping from EpΩ2q into EpΩ1q is continuous.

3. Give a proof for Proposition 2.69.

4. Let Ω be an open subset of Rn.

(a) Show there is a countable increasing sequence K1 � K2 � K3 � � � �
of compact subsets of Ω such that Ω � YKi and Ki � K�

i�1 for all
i. Conclude DpΩq � YDKipΩq.

(b) Show the inductive limit topology defined by the subspaces DKipΩq
is the same as the inductive limit topology defined by all the sub-
spaces DKpΩq where K is a compact subset of Ω.

5. Prove that EpΩq is complete.
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6. Let Ω be an open subset of Rn and suppose K is a nonempty compact
subset.

(a) Show if B is a bounded subset of DKpΩq, then the collection of
functions inside B is equicontinuous.

(b) Show every bounded subset of DKpΩq has compact closure. Con-
clude that the space DKpΩq has the Heine-Borel property; i.e., a
subset of DKpΩq is compact if and only if it is closed and bounded.

7. Show C8c pRq with the relative topology from S1 is not complete in the
sense that there is a sequence tfnu in C8c pRq such that for each open
neighborhood V of 0 in S1, there is a K P N with fm � fn P V for
m,n ¥ K, but tfnu does not have a limit in D1. (Hint: Use Lemma 2.53
to find a φ which is C8, is nonzero, and vanishes for x R r0, 1s. Then take
fn � φ� 1

2λ1φ� 1
4λ2φ� � � � 1

2n�1 λnφ.)

8. Let Ω1 and Ω2 be nonempty open subsets of Rn with Ω1 � Ω2. We can
redefine DpΩq to be all C8 functions on Rn which have compact support
inside Ω.

(a) Show the inclusion mapping of DpΩ1q into DpΩ2q is continuous.

(b) Show the relative topology of DpRq on Dp�1, 1q is strictly weaker
than the topology of Dp�1, 1q.

9. Let Ω be a nonempty open subset of Rn. Give C8c pΩq the relative
topology of EpΩq. Show this topology on C8c pΩq is strictly weaker than the
relative topology of SpRnq on C8c pΩq.
10. Show there is no countable family of seminorms on Dn which defines
the Schwartz topology on Dn, and as a consequence show the topology on
Dn is not first countable and hence cannot be metrizable.

11. A seminorm || � || on DpΩq is said to be admissible if its restriction to
every DKpΩq where K � Ω and K is compact is continuous on DKpΩq.

(a) Show the mapping that assigns to each admissible seminorm to the
open set tf P DpΩq | ||f ||   1u is a one-to-correspondence between
all admissible seminorms || � || on DpΩq and all balanced convex sets
U contained in Ω such that U X DKpΩq is open in DKpΩq for all
compact K � Ω.

(b) Show a seminorm on DpΩq is continuous if and only if it is admis-
sible.

12. Let Ω be an open subset of Rn. For each compact subset K of Ω, let
CKpΩq be the subset of CcpΩq consisting of those φ P CcpΩq with supp φ �
K. Define a norm on this space by |φ|K � maxxPK |φpxq|. Give CcpΩq the
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inductive limit topology obtained from the subspaces CKpΩq. Show CcpΩq
is complete.

13. Let Ω be an open subset of Rn. Suppose tfku8k�1 is a sequence of C8
functions on Ω such that for each multiindex α, the sequence tDαfku8k�1

is uniformly Cauchy on Ω. Show there is a C8 function f on Ω such that
Dαfk Ñ Dαf uniformly for all multiindices α.

14. Show a subset ofDpΩq is compact if and only if it is closed and bounded.
Hint: Suppose F is a closed and bounded subset of Dn. Then F � DKpΩq
for some compact subset K, and since this is in a metric space (the relative
topology of DpΩq is the topology on DK), you need only show sequential
compactness; use the boundedness of the seminorms defining the topology
on DK to show one can apply Ascoli’s Theorem.

15. In Lemma 2.59, we showed x ÞÑ λpxqφ is a continuous mapping from
R into SpRnq for φ P SpRnq. Suppose f P DpRnq. Show x ÞÑ λpxqf is a
continuous mapping of R into DpRnq.
16. Let Ω1 and Ω2 be nonempty subsets of Rm and Rn, respectively. Let
Φ P DpΩ1 � Ω2q. For x P Ω1, define Φx by Φxpyq � Φpx, yq. Show x ÞÑ Φx

is continuous mapping from DpΩ1q into DpΩ2q.
17. Let Ω � Rn be open and non-empty. For α P Nn

0 , let Cα
c pΩq be the

space of compactly supported functions such that Dβf P CpΩq for all β ¤ α.
For each compact set K � Ω, let Cα

KpΩq � tf P CαpΩq | supppfq � Ku. The
seminorms | � |K,β , β ¤ α define a topology on Cα

KpΩq. Denote the corre-
sponding topological vector space by Dα

KpΩq. Let DαpΩq have the inductive
limit topology of the subspaces Dα

KpΩq where K is a compact subset of Ω.
Show the following:

(a) Dα
KpΩq and DαpΩq are complete.

(b) The inclusion maps DKpΩq ãÑ Dα
KpΩq and DpΩq ãÑ DαpΩq are

continuous.

18. Show that DKpΩq is closed subspace of DpΩq for all compact subsets
K � Ω. Hint: Let f R DK and choose x0 with fpx0q � 0. Let U � tφ P
Dn : |φpx0q|   |fpx0q|u; show U is open in Dn and f � U misses DK .

19. Let K be a compact subset of an open subset Ω of Rn. Show if F is a
closed subset of DKpΩq and α P Nn

0 , then DαF is a closed subset of DKpΩq.
20. Let 1 ¤ p   8, and K � LppRnq be a closed and bounded subset.
Then K is compact in LppRnq if and only if for every ε ¡ 0 there exists a
δ � δpεq ¡ 0 and a compact subset L � Rn, Lo �� H, such that for each
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f P K and y P Rn with |y|   δ we have�»
|fpx� yq � fpxq|p dµpxq


1{p   ε

and �»
Lc

|fpxq|p dµ


1{p   ε .

7. Convolution on Rn

The space of C8 functions on Rn which are Lp form a dense subspace of
LppRnq for 1 ¤ p   8. Thus for f P LppRnq and for any n P N there exists
a smooth function fn such that |f � fn|p   1

n . One way to obtain such a
function is to convolve f with a Schwartz function. Formally convolution is
defined by

f � hpxq �
»
Rn

fpyqhpx� yq dy.

One needs to determine when and in what sense this integral converges.
We begin this section with some of the central facts concerning convolution.

Recall we have defined translation by y by λpyqfpxq � fpx � yq. Since
Lebesgue measure is translation invariant, the operators λpyq for y P Rn are
isometries of LppRnq.
Lemma 2.74. Let 1 ¤ p   8. The map λ : Rn Ñ BpLppRnqq is a strongly
continuous homomorphism; i.e., if f P LppRmq, then

lim
yÑy0

λpyqf � λpy0qf
for all y0 P Rn.

Proof. Let f P LppRnq. Suppose tyku8k�1 is a sequence in Rn converg-
ing to y0. Let ε ¡ 0. Choose a continuous function g with compact
support K satisfying |g � f |p   ε

3 . Note λpynqg converges pointwise to
λpy0qg and |λpynqg � λpy0qg|pp ¤ 2p|g|p81K1 where K 1 is the compact set
K � ty0, y1, y2, . . .u. By the Lebesgue Dominated Convergence Theorem,|λpykqg � λpy0qg|pp Ñ 0 as k Ñ 8. Thus there is an N P N so that|λpykqg � λpy0qg|p   ε

3 if k ¥ N . Hence for k ¥ N ,

|λpykqf � λpy0qf |p ¤ |λpykqf � λpykqg|p � |λpykqg � λpyqg| � |λpy0qg � λpy0qf |p
  2|f � g|p � ε

3
  ε.

So y ÞÑ λpyqf is continuous at y0 for each f P LppRnq. ¤
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Assume that f and g are functions on Rn such that the function y ÞÑ
fpyqgpx� yq is integrable for almost all x. Then the function

f � gpxq :�
»

fpyqgpx� yq dy

is defined a.e. and is called the convolution of f and g.

Lemma 2.75. Suppose f , g, and h are complex valued measurable functions
on Rn. Then the following hold:

(a) f � gpxq exists if and only if g � fpxq and then

f � gpxq � g � fpxq.
(b) Suppose f � gpxq and f � hpxq exist. Then f � pc1g � c2hqpxq exists

for any complex numbers c1 and c2. Moreover,

f � pc1g � c2hqpxq � c1f � gpxq � c2f � hpxq.
Proof. For (a) note if fpyqgpx � yq is integrable in y, then by making the
change in variables z � x � y, the function z ÞÑ fpx � zqgpzq is integrable
in z and »

fpyqgpx� yq dy �
»

gpzqfpx� zq dz.

In particular, f � gpxq exists if and only if g � fpxq exists and then

f � gpxq � g � fpxq.
Finally (b) follows immediately from the linearity of the integral and the

fact that y ÞÑ fpyqpc1gpx� yq� c2hpx� yqq is integrable if y ÞÑ fpyqgpx� yq
and y ÞÑ fpyqhpx� yq are integrable. ¤
Lemma 2.76. Let 1 ¤ p ¤ q ¤ 8 satisfy 1

p � 1
q � 1. Suppose that f P

LppRnq and g P LqpRnq. Then the following hold:

(a) f � gpxq exists for all x and |f � gpxq| ¤ |f |p|g|q.
(b) f � g is continuous.

Proof. Note (a) follows from the Hölder inequality because y ÞÑ gpx� yq is
in LqpRnq and has the same norm as g.

For (b), we recall f̌pyq � fp�yq. Since f � gpxq � g � fpxq, we have³
gpyqfpx � yq dy � ³

f̌py � xqgpyq dy. Thus f � gpxq � ³
λpxqf̌pyq gpyq dy.

Hence

|f � gpxq � f � gpx0q| ¤
»
|λpxqf̌pyq � λpx0qf̌pyq| |gpyq| dy

¤ |λpxqf̌ � λpx0qf̌ |p|g|q.
Since f̌ P LqpRnq and 1 ¤ p   8, Lemma 2.74 implies f � gpxq Ñ f � gpx0q
as xÑ x0. ¤
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Lemma 2.77. Let f P L1pRnq and g P LppRnq where 1 ¤ p ¤ 8. Then
f � g P LppRnq and

|f � g|p ¤ |f |1|g|p.
In particular, the mapping g ÞÑ f �g is a bounded linear operator on LppRnq.

Proof. We note f � gpxq � ³
fpx � yqgpyq dy. Define Kpx, yq � fpx � yq.

Then |Kx|1 � |f |1 and |Ky|1 � |f |1 for all x and y. By Lemma 2.28,
pTgqpxq � ³

Kpx, yqgpyq dy exists a.e. x, Tg P LppRnq, and the linear opera-
tor T defined by the kernel K has norm at most |f |1. ¤

One can obtain Lemma 2.77 using more direct arguments. See Exercise
2.5.1 and Exercise 2.5.2.

A � algebraA is an algebra over the complex numbers having a mapping
a ÞÑ a� satisfying pa�q� � a, pa�bq� � a��b�, pcaq� � c̄a�, and pabq� � b�a�
for all a, b P A and c P C. The element a� is called the adjoint of a.

A Banach � algebra is a � algebra B with a complete norm || � || having
properties ||a�|| � ||a|| and ||ab|| ¤ ||a|| ||b|| for all a, b P B.

The involution f ÞÑ f� on complex valued functions on Rn is defined by

(A) f�pxq � fp�xq.
One has pf � gq� � f� � g�, pf�q� � f , pcfq� � c̄f� and |f�|p � |f |p if f is
measurable.

Proposition 2.78. Under convolution and adjoint operation (A), the alge-
bra L1pRnq is a commutative Banach � algebra.

Proof. By Lemmas 2.75 and 2.77, f � g � g � f and |f � g|1 ¤ |f |1|g|1 for
all f, g P L1pRnq. We have noted |f�|1 � |f |1. To finish we need to check
convolution is associative and pf � gq� � g� � f� for f, g P L1pRnq.

For associativity, note if f, g, h P L1pRnq, then by the changes of variables
x ÞÑ x� y followed by y ÞÑ y � z, one sees» » »

|fpzqgpy � zqhpx� yq| dx dy dz �
» » »

|fpzqgpyqhpxq| dx dy dz

� |f |1|g|1|h|1
  8.
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Fubini’s Theorem implies py, zq ÞÑ fpzqgpy� zqhpx� yq is integrable for a.e.
x and for a.e. x,

pf � gq � hpxq �
»
pf � gqpyqhpx� yq dy

�
» �»

fpzqgpy � zq dz



hpx� yq dy

�
» »

fpzqgpy � zqhpx� yq dy dz

�
» »

fpzqgpyqhpx� py � zqq dy dz

�
»

fpzq
»

gpyqhpx� y � zq dy dz

�
»

fpzqg � hpx� zq dz

� f � pg � hqpxq.
Thus convolution is associative. Finally translation invariance of Lebesgue
measure implies

pf � gq�pxq � f � gp�xq
�
»

fpyqgp�x� yq dy

�
»

fpy � xqgp�yq dy

�
»

gp�yq fpy � xq dy

�
»

g�pyqf�px� yq dy

� g� � f�pxq a.e. x.

¤

The next two lemmas deals with the regularity properties of f �g in case
one of the function is in the Schwartz space SpRnq.
Lemma 2.79. Let 1 ¤ p ¤ 8. Let f P LppRnq and g P SpRnq. Then f � g
is smooth and

ppDqpf � gq � f � pppDqgq
for any polynomial p.

Proof. By Lemma 2.76, if h P SpRnq and f P LppRnq where 1 ¤ p   8,
then f�hpxq exists for all x and is continuous in x. It follows that it is enough
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to show that Djpf � gqpxq exists and equals f �Djgpxq. As Djg P SpRnq the
general statement follows by iteration.

Let 0   |h|   1. Then

f � gpx� hejq � f � gpxq
h

�
»

fpyq pgpx� hej � yq � gpx� yqq
h

dy.

Now by the Mean Value Theorem there is an h� depending on x, y, and h
with |h�|   |h|   1 such that

gpx� hej � yq � gpx� yqq � hDjgpx� h�ej � yq.
Hence

f � gpx� hejq � f � gpxq
h

�
»

fpyqDjgpx� h�ej � yq dy.

Take q with 1
p � 1

q � 1. Choose M ¡ 0 and K ¡ 0 such that

p1� |y|2q�M P LqpRnq and |Djgpzq| ¤ K

p1� |z|2qM for all z.

Note using the triangle inequality that

1� |y � x� h�ej � px� h�ejq|2 ¤ 2p1� |y � x� h�ej |2qp1� |x� h�ej |2q.
From this one sees:

1
1� |x� h�ej � y|2 ¤

2p1� |x� h�ej |2q
1� |y|2 .

Thus

|fpyqDjgpx� h�ej � yq| ¤ |fpyq| K

p1� |x� h�ej � y|2qM
¤ 2M |fpyq| Kp1� |x� h�ej |2qMp1� |y|2qM
¤ 2MKp1� p|x| � 1qq2qM |fpyq| p1� |y|2q�M

which by Hölder’s inequality is integrable in y. The Lebesgue Dominated
Convergence Theorem then implies

lim
hÑ0

f � gpx� hejq � f � gpxq
h

�
»

lim
hÑ0

fpyqDjgpx� h�ej � yq dy

�
»

fpyqDjgpx� yq dy

� f �Djgpxq.
¤



104 Function Spaces on Rn

Lemma 2.80. If f, g P SpRnq then f � g P SpRnq and the bilinear map

SpRnq � SpRnq Q pf, gq ÞÑ f � g P SpRnq
is continuous.

Proof. Using Lemma 2.79, we see f � g is C8 and Dαpf � gq � Dαf � g.
Moreover, using Exercise 2.3.4, we see

p1�|r|2qN |Dαpf �gqprq| ¤
» p1� |r|2qN
p1� |r � s|2qN p1�|r�s|2qN |Dαfpr�sq| |gpsq| dns

¤ ||f ||N,α

» p1� |r|2qN
p1� |r � s|2qN

p1� |s|2qN�k|gpsq|
p1� |s|2qN

1
p1� |s|2qk dns

¤ 2N ||f ||N,α||g||N�k,0

»
1

p1� |s|2qk dx.

Hence ||f � g||N,α   C||f ||N,α||g||N�k,0 for some constant C. This shows
f � g is Schwartz and implies convolution is continuous. ¤

Exercise Set 2.5

1. Suppose f and g are in L1pRnq. Use Fubini’s Theorem to show f � g is
in L1pRnq and then

|f � g|1 ¤ |f |1|g|1.
2. Suppose f is in L1pRnq and g P LppRnq where 1   p ¤ 8. Choose q
with 1

p � 1
q � 1. Use the fact that the dual of LqpRnq is LppRnq to show

f � gpxq exists a.e. and |f � g|p ¤ |f |1|g|p.
3. Let

fpxq �
"

1 0 ¤ x   1
0 otherwise.

For N P N, define fN by f1 � f and fN�1 � fN � f .

(a) Evaluate the functions f2 and f3.

(b) Show that SupppfN q � r0, N s and fN pxq ¡ 0 for x P p0, Nq.
(c) For N ¥ 2 show that f P CN�2pRq.
(d) If f P CpRq, show» 8

�8
fpxqfN pxq dx �

» 1

0
. . .

» 1

0
fpx1 � . . .� xN q dx1 . . . dxN

(e) Show
°8

k��8 fN px� kq � 1 for all x P R.

(f) Verify each function fN is symmetric with respect to the center of
r0, N s, i.e.,

fN pN2 � xq � fN pN2 � xq .
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(g) Show the following difference equation holds:

fN�1pxq � x

N
fN pxq � N � 1� x

N
fN�1px� 1q .

4. Let f and g be even functions. Show f � g is an even function. That is
show if x is in the domain of f � g, then �x is in the domain of f � g and
then

f � gpxq � f � gp�xq.
5. Let fpxq � e�|x| for x P R. Show f � fpxq � p1� |x|q e�|x| .
6. Let fpxq � e�x χr0,8qpxq. Set f1 � f and fN�1 � f � fN for N ¡ 1.
Evaluate the function fN for all N .

7. Let f P L1
locpRnq. Suppose that g P C8c pRnq. Show f � gpxq exists

everywhere and f � g P C8pRnq.
8. Suppose fpxq � 0 for x R E and gpxq � 0 for x R F . Show f � gpxq � 0
for any x R E � F . In particular, if f and g have compact supports supp f
and supp g and f � g is defined everywhere, then f � g has compact support
contained in supp f � supp g.

9. Suppose f � gpxq is defined a.e. x. Show λpaqf � λpbqgpxq is defined a.e.
and

λpaqf � λpbqgpxq � λpa� bqpf � gqpxq
for a.e. x.

10. Recall δpaqfpxq � a�n{2fpa�1xq for a ¡ 0 and f a function on Rn.
Show

δpaqf � δpaqgpxq � pf � gqpa�1xq � an{2δpaqpf � gqpxq.
11. Show χr0,1s � χra,bs is the function defined by:

χr0,1s�χra,bspxqpxq �

$''''''&''''''%
0 if x ¤ a

x� a if a ¤ x ¤ minta� 1, bu
mint1, b� au if minta� 1, bu ¤ x ¤ maxta� 1, bu
b� 1� x if maxta� 1, bu ¤ x ¤ b� 1
0 if b� 1 ¤ x.

12. Let c ¡ 0. Show χr0,cs � χra,bs is the function defined by

χr0,cs � χra,bspxq �

$''''''&''''''%
0 if x ¤ a

x� a if a ¤ x ¤ minta� c, bu
mintc, b� au if minta� c, bu ¤ x ¤ maxta� c, bu
b� c� x if maxta� c, bu ¤ x ¤ b� c

0 ifb� c ¤ x.
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13. Let l ¤ m. Show the convolution of χr2l,2l�1s with χr2m,2m�1s is given
by:

χr2l,2l�1s � χr2m,2m�1spxq �

$''''''&''''''%
0 if x ¤ 2m

x� 2m if 2m ¤ x ¤ 2m � 2l

2l if 2m � 2l ¤ x ¤ 2m�1

2m�1 � 2l � x if 2m�1 ¤ x ¤ 2m�1 � 2l

0 if 2m�1 � 2l ¤ x.

14. Let f � °8
k�1 2k{2χr2�k,2�k�1s.

(a) Show f P L1pRq but f R L2pRq.
(b) Show f � f is not continuous.

15. Give an example of f, h P L2pRq where f � hpxq � ³
fpyqhpx� yq d1y is

not an L2 function.

16. Show the Hilbert space of Hilbert-Schmidt operators on a Hilbert space
H is an example of Hilbert algebra. That is show the space B2pH,Hq is a
Banach � algebra with multiplication given by composition and the adjoint
given by operator adjoint and then show one has the following additional
properties:

(a) For each A P B2pH,Hq, the linear transformation LA of B2pH,Hq
given by LApBq � AB is bounded and has norm ||A||.

(b) L�A � LA�
(c) The linear span of the set tAB | A,B P B2pH,Hqu is dense in

B2pH,Hq.

8. Regularization and Approximate Identity

Notice that by Lemmas 2.77 and 2.79, the convolution of a Schwartz function
g and any Lp function f is a smooth function in Lp. Since the space of
Schwartz functions contains C8c pRnq and any rapidly decreasing function
such as the “Gaussian” gpxq � expp�π|x|2q, there is a variety of choices for
the function g. We shall see that if g ¥ 0,

³
gpxq dx � 1, and the integral of

g is small off a small diameter ball about the origin, then the convolution
f � g is not only smooth but is also close to f in the space Lp. In fact for
g, we can take compactly supported functions similar to those constructed
at the beginning of Section 5, i.e., suppose ϕ ¥ 0, ϕpxq � 1 if |x|   δ

2 and
ϕpxq � 0 if |x| ¥ δ. Then take g � 1

M φ where M � ³
φpxq dx. We note if

|g|1 � 1, then |f � g|p ¤ |f |p for 1 ¤ p   8.
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To organize the process we instead start with any Schwartz function
h ¥ 0 satisfying |h|1 � ³

hpxq dx � 1 and define ht for t ¡ 0 by

htpxq � t�nhpt�1xq.
The function ht is still Schwartz and since»

htpxq dx �
»

t�nhpt�1xq dx �
»

hpxq dx � 1,

one still has |ht|1 � 1. As t Ñ 0�, the function ht localizes more about the
origin. In this section we use this to show

lim
tÑ0�ht � f � f in LppRnq.

When h ¥ 0, h P C8c pRnq, and
³
h dx � 1, the family of functions thtut¡0 is

sometimes called a mollifier. The convolution f �ht is then called a regular-
ization or mollification of the function f . The significance of convolution is
that the regularization of f P Lp, 1 ¤ p   8, approximates f ; thus f can
be approximated by smooth functions in a very controlled way.

The functions ht are also used in another manner. We note the Banach
algebra L1pRnq has no identity; i.e., there is no function g in L1pRnq such
that g � f � f for all f P L1pRnq. However, for any f , one has ht � f is
almost f for t near 0. The family of functions thtu is then an example of an
approximate identity for the Banach algebra L1pRnq, namely

lim
tÑ0� |ht � f � f |1 � 0

for all f P L1pRnq.
To show the ht’s form an approximate identity and can be used as mol-

lifiers, we start with a simple lemma.

Lemma 2.81. Let g P L1pRnq and suppose δ, ε ¡ 0. As usual for t ¡ 0, set
gtpxq � t�ngpt�1xq. Then there exists a T ¡ 0 such that»

|x|¥δ
|gtpxq| dx   ε

for all 0   t ¤ T .

Proof. Choose R ¡ 0 such that»
|x|¥R

|gpxq| dx   ε .
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Set T � δ{R. Then for t ¤ T we have δt�1 ¥ δT�1 � R and hence»
|x|¥δ

|gtpxq| dx � t�n

»
|x|¥δ

��gpt�1xq�� dx

�
»
|y|¥δt�1

|gpyq| dy py � t�1xq
¤
»
|y|¥R

|gpyq| dy

  ε

¤

Theorem 2.82. Suppose h ¥ 0, |h|1 � 1, and 1 ¤ p   8. For t ¡ 0, set
htpxq � t�nhpx{tq. Then

lim
tÑ0� |f � ht � f |p � 0

for each f P LppRnq. In particular, the family thtut¡0 is an approximate
identity in L1pRnq.
Proof. We have already noted that the change of variables x � ty shows»

htpxq dx �
»

t�nhpt�1xq dx �
»

hpyq dy � 1.

Consequently, |ht|1 � 1 for t ¡ 0. Assume f is in LppRnq. By Lemma 2.74,
we can choose δ ¡ 0 such that

|f � λpyqf |p   ε{2 for |y|   δ .

Let T ¡ 0 be such that for t   T we have»
|x|¥δ

ht dµ   ε

2p2|f |p � 1q .

Then using
³
htpyq dy � 1, we have

|f � ht � f |p �
�» ����fpxq � »

htpyqfpx� yq dy

����p dx


1{p

�
�» ����» htpyqpfpxq � fpx� yqq dy

����p dx


1{p
.
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We next apply Lemma 2.29 and obtain:

|f � ht � f |p ¤
» �»

|htpyqpfpxq � fpx� yq q|p dx


1{p
dy

�
»

htpyq
�»

|fpxq � fpx� yq|p dx


1{p
dy

�
»
|y| δ

htpyq
�»

|fpxq � fpx� yq|p dx


1{p
dy

�
»
|y|¥δ

htpyq
�»

|fpxq � fpx� yq|p dx


1{p
dy .

Note for any t, the first integral satisfies»
|y| δ

htpyq
�»

|fpxq � fpx� yq|p dx


1{p
dy �

»
|y| δ

htpyq |f � λpyqf |p dy

  ε{2
»

htpyq dy

� ε{2
while for 0   t   T , the second integral can be estimated by»

|y|¥δ
htpyq

�»
|fpxq � fpx� yq|p dx


1{p
dy

¤
»
|y|¥δ

htpyqp|f |p � |λpyqf |pq dy � 2|f |p
»
|y|¥δ

htpyq dy

  2|f |pε
2p2|f |p � 1q   ε{2 .

Hence |f � ht � f |p   ε if 0   t   T . ¤

Lemma 2.83. Assume h P SpRn), h ¥ 0, and
³
hpxq dx � 1.

(a) If f is a bounded continuous function, then

lim
tÑ0� f � htpxq � f pxq

for each x in Rn. Moreover, the convergence is uniform on compact
subsets of Rn.

(b) If f P SpRnq, then ht � f converges to f in the Schwartz topology as
t Ñ 0�. Thus the family thtut¡0 forms an “approximate identity”
in the algebra SpRnq.

(c) If, in addition, h has compact support and f P DpΩq where Ω is an
open subset of Rn, then ht � f Ñ f in DpΩq as t Ñ 0�.
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Proof. Assume f is bounded and continuous, and K is a compact subset
of Rn. Choose δ ¡ 0 such that |fpxq � fpx� yq|   ε

2 for |y|   δ and x P K.
Choose T ¡ 0 such that

³
|y|¥δ ht dµ   ε

2p2||f ||8�1q for 0   t   T . Then for
x P K and 0   t   T one has:

|fpxq � ht � fpxq| ¤
»

htpyq|fpxq � fpx� yq| dy

�
»
|y| δ

htpyq|fpxq � fpx� yq| dy

�
»
|y|¥δ

htpyq|fpxq � fpx� yq| dy

  ε

2
� 2|f |8

»
|y|¥δ

htpyq dy

  ε .

This shows (a). For (b) we show

|ht � f � f |N,α Ñ 0 as t Ñ 0.

But this is |Dαpht�fq�Dαf |N,0 which by Lemma 2.79 is |ht�Dαf�Dαf |N,0.
Since Dαf P SpRnq, it suffices to show

|ht � f � f |N,0 Ñ 0

for each N . But

|ht � f � f |N,0 � sup
x
p1� |x|2qN |ht � fpxq � fpxq|.

For 0   t   1 and a fixed L with L ¡ N , we have

p1�|x|2qN |ht � fpxq| � t�np1� |x|2qN
����» hpt�1yqfpx� yq dy

����
¤ p1� |x|2qN

»
hpyq |fpx� tyq| dy

�
»

hpyq p1� |x|2qN
p1� |x� ty|2qL p1� |x� ty|2qL |fpx� tyq| dy

� |f |L,0p1� |x|2qL�N

»
hpyq p1� |x|2qL

p1� |x� ty|2qL dy

¤ |f |L,0p1� |x|2qL�N

»
hpyq p1� |x|2qL

p1� |x� ty|2qL
�

1� |y|2
1� |ty|2


L

dy

¤ |f |L,0p1� |x|2qL�N

»
p1� |y|2qLhpyq p1� |x|2qL

p1� |x� ty|2qLp1� |ty|2qL dy.
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Now note 1�|x|2p1�|x�ty|2qp1�|ty|2q ¤ 4 for

1� |x|2 ¤ p1� |x� ty � ty|2q
¤ p1� p|x� ty| � |ty|q2q
¤ 1� 4|x� ty|2 � 4|ty|2
¤ 4p1� |x� ty|2qp1� |ty|2q.

Hence for 1   t   1,

p1� |x|2qN |ht � fpxq| ¤ 4L|f |L,0p1� |x|2qL�N

»
p1� |y|2qLhpyq dy

Now p1 � |y|2qLhpyq is Schwartz and thus is an L1 function. Consequently
we can choose R1 ¡ 0 such that

p| � |x|2qN |ht � fpxq| ¤ ε

4
for all |x| ¡ R1 and all 0   t   1.

Next since p1� |x|2qNf P SpRnq, we can choose R ¥ R1 such that

p1� |x|2qN |fpxq| ¤ ε

4
for all |x| ¡ R.

By part (a), there is a T with 0   T   1, such that 0   t   T implies

|ht � fpxq � fpxq|   ε

2p1�R2qN for all x with |x| ¤ R.

Hence if 0   t   T , we have

|ht � f � f |N,0 � sup
x
p1� |x|2qN |ht � fpxq � fpxq|

¤ max|x|¤R
p1�R2qN |ht � fpxq � fpxq|

� sup
|x|¡R

p1� |x|2qN p|ht � fpxq| � |fpxq|q
  ε

2
� sup
|x|¡R

p1� |x|2qN |ht � fpxq| � sup
|x|¡R1

p1� |x|2qN |fpxq|
¤ ε

2
� ε

4
� ε

4
� ε.

For (c), note if r ¡ 0 with Brp0q � supp phq, then supp phtq � Brtp0q
for t ¡ 0. Since supp pfq is a compact subset of Ω, there is a δ ¡ 0 so that
K :� supp pfq�Brδp0q � Ω. Thus if 0   t   δ, supppfq�suppphtq � K � Ω.
Thus by Exercise 2.5.8, ht�f has support in the compact set K for 0   t   δ.
Since DpΩq has the inductive limit topology of the topological subspaces
DKpΩq where K is a compact subset of Ω, we need only show ht � f Ñ f
in DKpΩq where 0   t   δ and t Ñ 0�. Since the seminorms | � |α for
α P Nn

0 define the topology on DKpΩq, it suffices to show |ht � f � f |α Ñ 0
as t Ñ 0�. Again using Lemma 2.79, since Dαf again has compact support
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in supppfq, it suffices to show |ht � f � f |0 Ñ 0 as t Ñ 0�. Now part (a)
shows |ht � f � f |0 � maxxPK |ht � fpxq � fpxq| Ñ 0 as tÑ 0�. ¤

Example: Let gpxq � e�π|x|2 . Then |g|1 � 1 according to Exercise 2.3.3.
The function gtpxq given by

gtpxq � t�ne�π|x|2{t2

is localized more and more around 0 as t nears 0.
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Gaussian Approximate Identities for t=1, t=.5, t=.25, t=.1

Figure 1. Gaussian Approximate Identities

The following Lemma’s proof depends on some complex analysis. Namely,
an entire function on Cn and its derivatives are uniform limits of a power
series on compact subsets of Cn. This result can be found in [19, Chapter1].

Lemma 2.84. Suppose f is a function in SpRnq and K is a compact subset
of Rn. Let m P N0. Then there is a sequence Pkpxq of polynomials

Pkpxq � ¸
|α|¤Nk

ck, αxα

such that
max
xPK |DγpPk � fqpxq| Ñ 0

as k Ñ8 for all γ P Nn
0 with |γ| ¤ m.

Proof. By Lemma 2.83, gtpxq � 1
tn e�|x|2{t2 has the property that gt �f Ñ f

in S as t Ñ 0�. Thus if k ¡ 0, there is a tk ¡ 0 with

|gtk � f � f |0,α   1
2k�1
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if |α| ¤ m.
Define Fkpzq � gtk � fpzq � ³

gtkpz � yqfpyq dy where

gtpzq � 1
tn

e� 1
t2
pz2

1�z2
2�����z2

nq.
Fk is an entire function on Cn and thus has a global power series

Fkpzq �
β̧

cβzβ

where

cβ � Dβ
z Fkp0q
β!

.

Moreover, this power series and its derivatives convergence uniformly on
compact sets to Fk and its derivatives, respectively. Hence there is a poly-
nomial Pkpzq such that

|Dα
z Pkpzq �Dα

z Fkpzq|   1
2k�1

if |α| ¤ m and z P K. But this implies

|DαPkpxq �DαFkpxq|   1
2k�1

if |α| ¤ m and x P K. Consequently, if x P K, then

|DγPkpxq �Dγfpxq| ¤ |DγPkpxq �DγFkpxq| � |Fk � f |0,γ   1
2k

for |γ| ¤ m. ¤

The second statement in the following theorem is reproved using the
Hermite functions in Chapter 4. Indeed, see Proposition 4.73.

Theorem 2.85. The mapping pf, hq ÞÑ f b h defined by

f b hpx, yq � fpxqhpyq
is a bilinear and continuous mapping of SpRnq�SpRnq into SpR2nq. More-
over, the linear span of the set of functions f b h is dense in SpR2nq.
Proof. First note

p1� |px, yq|2qN |Dα,βpf b hqpx, yq| � p1� |x|2 � |y|2qN |DαfpxqDβhpyq|
� ¸

r�s�t�N

N !
r!s!t!

|x|2s|y|2t|Dαfpxq| |Dβhpyq|

¤ ¸
r�s�t�N

N !
r!s!t!

p1� |x|2qsp1� |y|2qt|Dαfpxq| |Dβhpyq|

� ¸
r�s�t�N

N !
r!s!t!

|f |s,α|h|t,β.
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So
|f b h|N,pα,βq ¤ C|f |N,α|h|N,β

where C � 3N . Also

|f b h� f0 b h0|N, pα,βq ¤ |f b h� f b h0|N,pα,βq � |f b h0 � f0 b h0|N,pα,βq
¤ C|f |N,α|h� h0|N,β � C|f � f0|N,α|h0|N,β

¤ Cp|f0|N,α � |f � f0|N,αq|h� h0|N,β � C|f � f0|N,α|h0|N,β .

This implies continuity at pf0, h0q.
By Proposition 2.55, we know the functions F px, yq in SpRm�Rnq with

compact support are dense. Hence it suffices to show we can approximate
such F closely by linear combinations of tensors f b h. Let K1 � K2 be
a product of compact sets with the property that the interiors of K1 and
K2 contain the projections of the support of F on Rm and Rn, respectively.
Using Corollary 2.54, one can find Schwartz functions φ1pxq and φ2pyq such
that φj has support in Kj , 0 ¤ φj ¤ 1 and φj � 1 on a open set U containing
the appropriate projection of the support of F onto either Rm or Rn. Fix p
in N. Lemma 2.84 implies there is a sequence Pkpx, yq of polynomials such
that if

|Pk � F |p, K1�K2 � max|pα,βq|¤p
maxpx,yqPK1�K2,

|Dpα,βqPkpx, yq �Dpα,βqF px, yq|,
then |Pk�F |p, K1�K2 Ñ 0 as k Ñ8. Set Fkpx, yq � φ1pxqPkpx, yqφ2pyq and
F0px, yq � φpxqF px, yqφpyq. Note F0 � F and

Dpα,βqpFkpx, yq � F px, yqq � Dpα,βqpFk � F0qpx, yq
� Dpα,βqpφ1 b φ2qpPk � F qpx, yq

�
γ̧¤α δ̧¤β

�
α

γ


�
β

δ



pDα�γφ1 bDβ�δφ2qDpγ,δqpPk � F qpx, yq.

Let M � max|pγ,δq|¤p |Dpγ,δqpφ1b φ2q|8. Since all Dα�γφ1bDβ�δφ2 vanish
off K1 �K2 and

1 �
γ̧¤α

�
α

γ



�

δ̧¤β

�
β

δ



,

we have ���Dpα,βqpFkpx, yq � F px, yqq��� ¤M |Pk � F |p,K1�K2

for all px, yq and all pα, βq with |pα, βq| ¤ p. Thus for any p and any ε ¡ 0,
we can find an Fk with

|Fk � F |K1�K2, pα,βq ¤ ε

whenever |pα, βq| ¤ p. Since Fk and F have support in K1�K2, we conclude
every SpRm � Rnq neighborhood of F contains a function of form Fk. But
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Fk is a sum of functions of form cα,βxαφ1pxqyβφ2pyq and thus is a linear
combination of tensors fα b gβ where fα P SpRmq and gβ P SpRnq. ¤

A minor modification of this proof gives the following Theorem.

Theorem 2.86. Let Ω1 and Ω2 be nonempty open subsets of Rm and Rn,
respectively. Then the mapping pf, gq ÞÑ f b g from DpΩ1q � DpΩ2q into
DpΩ1 � Ω2q is a continuous bilinear mapping whose range spans a dense
linear subspace of DpΩ1 � Ω2q.
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Exercise Set 2.6

1. Using Lemma 2.79, Exercise 2.5.8, and Theorem 2.82, show C8c pRnq is
dense in LppRnq for 1 ¤ p   8. This gives an alternate proof to the second
part of Proposition 2.55.

2. Let f P LppRnq. For t ¡ 0 define upt, xq by

upt, xq � f � htpxq
where hpxq � e�π|x|2 and htpxq � t�n{2hpx{?tq. Show that u : R��Rn Ñ C
is smooth, satisfies the heat equation

Btu � 1
4π

∆u,

and
lim
tÑ0

upt, �q � f in LppRnq.
3. Let Ω be an open subset of Rn. Since LppΩq is a subspace of LppRnq,
h � f is defined for h P L1pRnq. Suppose h P C8c pRnq is nonnegative and has
integral one. Let f P DpΩq. Show ht � f Ñ f in DpΩq as t Ñ 0�.

4. By following the proof of Theorem 2.85, check the validity of Theorem
2.86.

5. Let Mn be the vector space of all complex Borel measures on Rn. For
each measure µ P Mn, let |µ| be the variation measure of µ. Then Mn

with norm ||µ|| � |µ|pRnq is a Banach space. By the Riesz representation
theorem, Mn is the dual space of the Banach space C0pRnq consisting of
continuous functions vanishing at 8. For µ and ν P Mn define µ� PMn and
µ � ν PMn by µ�pfq � ³

fp�xq dµpxq and µ � νpfq � ³
fpx� yq dµpxqdνpyq.

(a) Show Mn is a commutative Banach � algebra.
(b) For g P L1pRnq, define λg P Mn by λgpfq � ³

fpxqgpxq dx. Show

λg � λh � λg�h for g, h P L1pRnq.
(c) For f P L1pRnq, show pλf q� � λf� .
(d) For f P L1pRnq and µ P Mn, define f � µpxq � ³

fpx � yq dµpyq.
Show f � µ P L1pRnq and

λf � µ � λf�µ.

(e) Show f ÞÑ λf is an isometric � homomorphism of L1pRnq under
convolution onto a closed ideal in Mn.

(f) Let f P SpRnq and µ PMn. Show f � µ is a smooth function.



Chapter 3

The Fourier Transform
on Rn

In this chapter we present the Fourier transform on Rn. This transform
permeates mathematics and its applications. It is used to attack problems
ranging from partial differential equations to analytic number theory to sto-
chastic processes to filtering and noise reduction. It also is fundamental
in its importance in the representation theory of nonabelian groups and in
providing the basic means in the analysis of functions which are invariant
under noncommuting transformation groups. In this chapter, we view the
Fourier transform as a transform on function spaces. By selectively alter-
ing the spaces on which this transform acts, one extends the reach of the
transform to more general functions (distributions) or alters its topological
behavior by restricting to the space of Schwartz functions.

1. The Fourier Transform on L1pRnq
The easiest space on which to define the Fourier transform is on L1pRnq.
Indeed for ω P Rn, the function eω defined on Rn by

eωpyq � e2πiω�y

where ω � y � °n
j�1 ωjyj is in L8pRq, the dual space of L1. Thus

f̂pωq � Ffpωq :�
»
Rn

fpyqeωpyq dy �
»
Rn

fpyqe�2πiω�y dy

exists for each ω P Rn. The function f̂ is called the Fourier transform of
the L1 function f and it is defined at each point ω P Rn.
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Example 3.1. Let aj   bj, j � 1, . . . , n, and let f � χI where I � ra1, b1s�� � � � ran, bns. Then pfpωq � »
χIpxqe�2πi

°
xjωj dx

� n¹
j�1

» bj

aj

e�2πixjωj dxj .

Assume for the moment that n � 1 and a � a1   b � b1 and ω � ω1 �� 0.
Then » b

a
e�2πixω dx � e�2πiaω � e�2πibω

2πiω

� sin ppb� aqπωq
πω

e�iπpa�bqω.

For ω � 0 the integral is simply b� a. Consequently in general one has

f̂pωq � n¹
j�1

e�2πiajωj � e�2πibjωj

2πiωj

� e�πi
°n

j�1paj�bjqωj

n¹
j�1

sin ppbj � ajqπωjq
πωj

.

In the case bj ¡ 0 and aj � �bj the transformed function is given bypfpωq � π�n
n¹

j�1

sinp2πbjωjq
ωj

.

Note that pf is continuous, and Exercise 3.1.2 implies pf is not in L1pRnq. It
is in L2pR2q. In particular this example shows that the Fourier transform
does not map L1 pRnq into L1pRnq in general.

Example 3.2. Let gpxq � e�π|x|2, the Gaussian. Let hpωq � pgpωq. We
notice that

hpωq �
»

gpxqe�2πix�ω dx

�
»

gpxqe2πix�ω dx

�
»

gp�xqe�2πix�ω dx

� hpωq
because gpxq � gp�xq. Hence h is real and

hpωq �
»

gpxq cosp2πx � ωq dx .
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We will calculate h in two different ways.
1) Assume first that n � 1. We notice that ω ÞÑ gpxqe�2πixω is differ-

entiable with derivatives uniformly bounded by��Dα
ωgpxqe�2πixω

�� ¤ p2πq|α| |xαgpxq|
which is integrable as a function of x. Hence hpωq is differentiable and

h1pωq � �2πi

»
xe�πx2

e�2πixω dx .

Now �2πxe�πx2 � Dpe�πx2q. Integrating by parts and using gpxq has limit
zero at �8 one has

h1pωq � �i

»
e�πx2

Dxpe�2πixωq dx

� �2πω

»
e�πx2

e�2πixω dx

� �2πωhpωq .
It follows that h is a solution to the differential equation

h1pωq � �2πωhpωq .
Hence

hpωq � Ae�πω2

for some A ¡ 0. Furthermore

hp0q �
»

e�πx2
dx � 1 ;

(cf. Exercise 2.3.3). Hence hpωq � e�πω2 � gpωq. For general n, Fubini’s
Theorem implies

hpωq � n¹
j�1

hpωjq �
n¹

j�1

gpωjq � e�π|ω|2 .
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2) The second way to evaluate the integral uses complex integration.
Again it suffices to do the case n � 1. Completing the square gives

hpωq �
» 8
�8

e�πx2
e�2πixω dx

�
» 8
�8

e�πpx2�2ixωq dx

� e�πω2

» 8
�8

e�πpx2�2ixω�piωq2q dx

� e�πω2

» 8
�8

e�πpx�iωq2 dx

� e�πω2

» 8
�8

e�πx2
dx

� e�πω2

Here we have used Cauchy’s integral formula to see
³8�8 e�πpx�iωq2 dx �³8�8 e�πx2

dx.

The Fourier transform has several interesting properties relative to dif-
ferentiation, multiplication, and translation. Recall if p is the polynomial
function given by ppxq � °

|α|¤k aαxα with aα P C, then ppDq is the differ-
ential operator with constant coefficients defined by

ppDq � ¸
|α|¤k

aαDα.

Moreover, recall for y P Rn and a ¡ 0, and a complex valued function g
on Rn, we have linear transformations:

Translation λpyqfpxq � fpx� yq
Dilation δpaqfpxq � a�n{2fpa�1xq and
Multiplication Mgfpxq � gpxqfpxq

on the space of complex valued functions on Rn (cf. p.86 of Chapter 2).
Define τpyq by τpyq � Me�y . Thus

τpyqfpxq � e�2πix�yfpxq.
The maps λpyq and τpyq are isometries on LppRnq for 1 ¤ p ¤ 8 while

δpaq is an isometry only on L2pRnq. It, however, is bounded on every other
Lp space; in particular, its norm on L1 is a�n{2.

We next give three idempotent operations on the space of complex valued
functions. These were used in few instances in Chapters 1 and 2. They are
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conjugation, check, and adjoint. Conjugation and adjoint are conjugate
linear transformations while check is linear. All three are isometries on each
LppRnq for 1 ¤ p ¤ 8.

Conjugation fpxq :� fpxq
Check f_pxq :� fp�xq and
Adjoint f� � f_

In the next lemma we use the following two properties of the functions
eω.

(3.1) eωpx� yq � eωpxqeωpyq
and

(3.2) eωpxq � e�ωpxq � eωp�xq .
Lemma 3.3 (Basic Properties). Let f, g P L1pRnq.

(a) pf P CpRnq and | pf |8 ¤ |f |1.
(b) zf � g � pf � pg and xcf � c pf and for c P C.

(c) {λpyqf � τpyqf̂ .

(d) {τpyqf � λpyqf̂ .

(e) If a ¡ 0, then {δpaqf � δp1{aqf̂ .

(f) pfpωq � pfp�ωq, i.e., pf � pf̂q�.
(g) xf_ � f̂_.

(h) xf� � f̂ .

(i) zf � g � f̂ ĝ.

Proof. (a) Since |eωpxq| � 1, we have��� pfpωq��� � ����» fpxqe�ωpxq dx

���� ¤ »
|fpxq| dx ¤ |f |1 .

Hence | pf |8 ¤ |f |1. Moreover,��� pfpω1q � pfpω2q
��� � ����» fpxqpe�2πiω1�x � e�2πiω2�xq dx

����
¤
»
|fpxq| ���e�2πipω1�ω2q�x � 1

��� dx.

As ���e�2πipω1�ω2q�x � 1
��� ¤ 2,
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the Lebesgue Dominated Convergence Theorem implies

lim
ω1Ñw2

��� pfpω1q � pfpω2q
��� � 0 .

Hence pf is continuous. Note (b) is a direct consequence of the linearity of
integration. For (c) we note:

{λpyqfpωq � »
λpyqfpxqe�ωpxq dx

�
»

fpx� yqe�ωpxq dx

�
»

fpxqe�ωpx� yq du

� e�ωpyq
»

fpxqe�ωpxq du

� rτpyq pf spωq .
(d) follows by reversing the calculations in the proof of (c).
For (e) we have:

{δpaqfpωq � an{2
»

fpaxqe�ωpxq dx

� a�n{2
»

fpxqe�ωpx{aq dx

� a�n{2
»

fpxqe�ω{apxq dx

� �
δp1{aq pf� pωq .

To see (f) note

pfpωq � »
f̄puqe�ωpxq dx

�
»

fpxqeωpxq dx

� pfp�ωq
� pf�pωq .
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For (g) we see xf_pωq � »
fp�xqe�ωpxq dx

�
»

fpxqe�ωp�xq dx

�
»

fpxqeωpxq dx

� pfp�ωq
� pf_pωq.

while (h) follows from (e) and (f) and f� � f_.
To see (i), note if f, g P L1pRnq, then pw, yq ÞÑ fpwqgpy � wqe�2πix�y is

integrable for» »
|fpwqgpy � wq| dy dw �

¼
|fpwqgpyq| dy dw � |f |1|g|1   8.

Hence by Fubini’s Theorem,zf � gpxq �
»

f � gpyqe�2πix�y dy

�
¼

fpwqgpy � wqe�2πix�y dw dy

�
¼

fpwqgpyqe�2πix�py�wq dy dw

�
»

fpwqe�2πix�w dw

»
gpyqe�2πix�y dy

� pfpxqpgpxq.
¤

Exercise Set 3.1

1. Find the Fourier transform of the following functions:

(a) χr�1{2,1{2s;
(b) e�|x| ;
(c) e�|3x�2|;
(d) e�pax2�by�cq
(e) χr0,8,0se�x;

(f) xe�x2
;

(g) χr0,1s sinp2πxq;
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(h) 1px�iqn , n ¥ 2;

2. Let sincpωq � sin ω
ω for ω � 0. Show sinc is not in L1pRq.

3. By Exercise 2.6.5, the space Mn of complex Borel measures on Rn is
a Banach � algebra under convolution. Moreover if f P L1pRnq, then λf

defined by λf pEq � ³
E fpxq dx is in Mn. For µ in Mn, define

µ̂pωq :�
»
Rn

e�2πix�ω dµpxq .
(a) Show that µ̂ is continuous.

(b) Show if f is in L1pRnq, then xλf � f̂ .

(c) Express the function xµ� in terms of µ̂.

(d) Show that zµ � ν � µ̂ν̂ for µ, ν PMn.

(e) Show µ � 0 if µ̂ � 0..

2. The Fourier Transform on SpRnq
The Fourier transform has particularly nice behavior on the space SpRnq
of Schwartz functions. This is true in part because functions in SpRnq are
smooth with all derivatives integrable; and if P is a polynomial, then Pf P
LppRnq for all p ¥ 1, so one need not worry about integrability conditions. In
this section we show that F : SpRnq Ñ SpRnq is a topological isomorphism
of algebras whose inverse is given by F�1f � Fpfq_.

Theorem 3.4. Let f P SpRnq and p be a polynomial. Then for each ω P Rn,
the following hold:

(a) {ppDqfpωq � pp2πiωqf̂pωq;
(b) pf is smooth and ppDqf̂pωq � ppp�2πi�qfp�qq^pωq.

Proof. Linearity implies it suffices to show (a) and (b) for the polynomials
xα. For (a), integrating by parts |α| times yields»

Dα
xfpxqe�2πix�ω dx �p�1q|α|

»
fpxqDα

x pe�2πix�ωq dx

�p�1q|α|
»
p�2πiq|α|ωαfpxqe�2πix�ω dx

�p2πiωqαf̂pωq.
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For (b) we let 1 ¤ j ¤ n. Then

Fpfqpω � tejq � Fpfqpωq
t

�
»

fpxqe�2πipω�tejq�x � e�2πiω�x
t

dx

�
»

fpxq e�2πix�ω e�2πitxj � 1
t

dx .

But ����fpxq e�2πix�ω e�2πitxj � 1
t

���� ¤ |2πxjfpxq|
for all t � 0 and x ÞÑ xjfpxq is integrable. By the Lebesgue Dominated
Convergence Theorem, one sees DjpFpfqqpωq � limtÑ0

Fpfqpω�tejq�Fpfqpωq
t

exists and

DjpFpfqqpωq �
»
p�2πixjqfpxq e�ix�ω dx .

As x ÞÑ p�2πiq|α|xαfpxq is in SpRnq for any α, it follows by iteration that
Dαf̂pωq exists and is the Fourier transform of x ÞÑ p�2πixqαfpxq. Since
xαfpxq is Schwartz and thus L1, (a) of Lemma 3.3 shows DαFpfq is contin-
uous for all α. Hence Fpfq is smooth. ¤

The Laplacian ∆ on Rn is the second order differential operator defined
by:

(3.3) ∆ � B2
1 � . . .� B2

n

Note ∆ � ppDq where ppxq � |x|2. Since p1�|ω|2qN � pp1�pp2πiωq{p4π2qqN ,
(a) implies

p1� |ω|2qNFpfqpωq � F
�
p1� ∆

4π2
qNf



pωq.

Hence, also using (b), we have:

(3.4)
�
1� |ω|2	N

Dαf̂pωq � iαp2πq|α|�2NF �p4π2 �∆yqNyαfpyq� pωq .
Corollary 3.5. The Fourier transform is a continuous linear transforma-
tion from SpRnq into SpRnq.
Proof. Since F is linear, it suffices to show F is continuous at 0. Let TN,α be
the linear transformation of SpRnq defined by TN,αpfq � p4π2�∆yqNyαfpyq.
Using (a) of Lemma 3.3 one has

|Fpfq|N,α � sup
ω

�
1� |ω|2	N ���Dαf̂pωq���

� p2πq|α|�2N sup
ω
|F �p4π2 �∆yqNyαfpyq� pωq| � p2πq|α|�2N sup

ω
|FpTN,αpfqq

¤ p2πq|α|�2N |TN,αpfq|1.
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By inequality 2.9 of Chapter 2, |TN,αf |1 ¤ CN,0 |TN,αf |N,0 for N ¡ n{2.
Since Propositions 2.57 and 2.58 imply TN,α is continuous, we see for each
ε ¡ 0, there is a neighborhood V of 0 in SpRnq such that |TN,αf |1   εp2πq|α|�2N

for f P V . Thus |Fpfq|N,α   ε for f P V . ¤

Lemma 3.6. Let f, g P SpRnq. Then zf � g � f̂ ĝ.

Proof. By Lemma 2.80 we know if f, g P SpRnq, then f �g P SpRnq so zf � g
is well defined. Using Fubini’s Theorem, we see:zf � gpωq �

»
f � gpxq e�ωpxq dx

�
» �»

fpyqgpx� yq dy

�
e�ωpxq dx

�
» �»

fpyqgpx� yq e�ωpxq dx

�
dy

�
»

fpyq
�»

gpxqe�ωpx� yq dx

�
dy

�
»

fpyqe�ωpyq
�»

gpxqe�ωpxq dx

�
dy

� pfpωqpgpωq .
¤

Lemma 3.7. If f, g P L1pRnq, then the functions

ω ÞÑ pfpωqgpωq, ω ÞÑ fpωqpgpωq
are integrable and » pfpωqgpωq dω �

»
fpxqĝpxq dx .

Proof. First note f̂g and fĝ are integrable for by (a), their absolute values
are bounded by the L1 functions |f |1|g| and |g|1|f |.

Using Fubini’s Theorem and the integrability of the function

x, y ÞÑ fpxqe�2πix�yqgpyq on Rn � Rn,

we see: » pfpωqgpωq dω �
» �»

fpxqe�2πix�ω dx



gpωq dω

�
»

fpxq
�»

gpωqe�2πix�ω dω



dx

�
»

fpxqpgpxq dx.
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¤

Corollary 3.8. The Fourier transform is one-to-one on L1pRnq.
Proof. Let f P L1pRnq and assume f̂ � 0. Then

0 �
»

f̂pωqhpωq dω �
»

fpxqĥpxq dx

for every Schwartz function h. Since the Fourier transform maps SpRnq onto
SpRnq, we see

³
fpxqφpxq dx � 0 for all Schwartz functions φ. Using (2.10),

we see
³
Q fpxq dx � 0 for all rectangles Q. Thus fpxq � 0 for a.e. x. ¤

Proposition 3.9. Let f P SpRnq. Then F2pfqpωq � fp�ωq.
Proof. Let f, g P Sn. By (e) of Lemma 3.3 and Lemma 2,»

f̂pxqδpaqhpxq dx �
»

fpxqδp1
a
qĥpxq dx.

Thus »
f̂pxq 1?

an
hpx

a
q dx �

»
fpxq?anĥpaxq dx.

This gives »
f̂pxqhpx

a
q dx � an

»
fpxqĥpaxq dx �

»
fpx

a
qĥpxq dx.

Letting a Ñ 8 and using the Lebesgue Dominated Convergence Theorem,
we see

Fpf̂qp0qhp0q �
»

f̂pxqhp0q dx �
»

fp0qĥpxq dx � fp0qFpĥqp0q.
Take hpxq � e�π|x|2 . Example 3.2 shows

ĥpωq � hpωq.
Hence hp0q � Fpĥqp0q � 1 and thus

F2pfqp0q � fp0q.
But now (c) of Lemma 3.3 gives:

fp�yq � rλpyqf sp0q
� F rpλpyqfq^s p0q
� F �

f̂ e�y

� p0q
�
»

f̂pωqe�ypωq dω

� F2fpyq .
¤
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Theorem 3.10. F is a topological algebraic isomorphism of SpRnq with
inverse _ � F .

Proof. By Corollary 3.5, we know by now that F is a continuous linear
transformation of S pRnq into S pRnq. By Proposition 3.9 we have

F2f � f_
or p_�Fq � F � id. Hence _ � F is a left-inverse for F . By part (g) of
Lemma 3.3, _ � F � F �_; it thus follows that _ � F is also a right inverse.
The theorem follows now since by Proposition 2.58, _ : SpRnq Ñ SpRnq is
a topological isomorphism. ¤

Let f be a Schwartz function on Rm � Rn. Then the partial Fourier
transform F1f is defined by

F1fpω, yq �
»
Rm

fpx, yqe�2πix�ω dx

for ω P Rm. It is easy to check this function is smooth and by Exercise 3.2.1
one has

ppDqF1fpω, yq � F1ppp�2πi�qfqpω, yq and(3.5)

F1pppDqfqpω, yq � pp2πiωqF1fpω, yq(3.6)

for any polynomial p in x.

Theorem 3.11. The partial Fourier transform F1 is a linear homeomor-
phism of SpRn � Rmq onto SpRn � Rmq.
Proof. We show continuity. Let fk Ñ 0 in Schwartz space. Then
p�ixqαDβ

y fk Ñ 0 in Schwartz space.
Using Equations 3.5 and 3.6 we have

p1� |pw, yq|2qN |Dpα,βqpF1fqpω, yq| � p1� |ω|2 � |y|2qN |F1pp�2πixqαDβfqpω, yq|
� |F1pp1� 1

4π2

#�
�i

B
Bx1


2 � � � � �
�
�i

B
Bxn


2
+
� |y|2qp�2πixqαDβfqpw, yq|

which is bounded in pω, yq. Thus F1f is Schwartz. Hence it suffices to show
if hk Ñ 0 in Schwartz space,

|F1phkq|8 Ñ 0.

But

|F1hkpω, yq| ¤
»
|hkpx, yq|p1� |x|2 � |y|2qM p1� |x|2 � |y|2q�M dnx|

¤ |hk|M,0

»
1

p1� |x|2qM dnxÑ 0

as k Ñ8 for M ¡ n{2. ¤
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Example 3.12. (Continuation of Example 3.2) Again we take hpxq �
e�π|x|2 and define functions ht by

htpxq � t�n{2hpx{?tq � t�n{2e�π|x|2{t .

Then by Theorem 2.82, thtut¡0 is an approximate identity on LppRnq for
1 ¤ p   8; i.e., limtÑ0� |ht � f � f |p � 0 for each f P Lp. Moreover,

Fhtpxq � t�n{4Fpδp?tqhqpxq � t�n{4
�

δ

�
1?
t



ĥ



pxq � ĥp?txq � e�πt|x|2 .

Hence if we define linear operators Ht : LppRnq Ñ LppRnq by

Htpfqpxq :� ht � fpxq ,
then by Lemma 2.77

||Ht|| ¤ 1 .

Thus the fact that thtu is an approximate identity on Lp is equivalent to
Ht Ñ id in the strong operator topology as t Ñ 0� (the strong operator
topology is defined in Exercise 2.2.23). Moreover, since Fphtqpωq � e�πt|ω|2,
one has: {hs � htpωq � e�s|ω|2e�t|ω|2

� e�ps�tq|ω|2

� yht�spωq .
As the Fourier transform is injective it follows that

hs � ht � hs�t

which implies that
Hs�t � HsHt .

Thus the family tHtut¡0 is a semigroup of bounded operators on LppRnq
converging strongly to the identity as tÑ 0�.

One of the consequences of the last theorem is a simple proof of the
Riemann-Lebesgue Lemma:

Theorem 3.13 (Riemann-Lebesgue Lemma). Let f P L1pRnq. Then f̂ P
C0pRnq; that is f̂ is continuous and

lim|ω|Ñ8 f̂pωq � 0 .

Proof. By Lemma 3.3, we know that f̂ is continuous and bounded. Thus
we only have to show that lim|ω|Ñ8 f̂pωq � 0. Let ε ¡ 0. Using Proposition
2.55, we can choose a g in SpRnq such that

|f � g|1   ε{2 .
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As ĝ P S pRnq there is a R ¡ 0 such that |ĝpωq|   ε{2 for all |ω| ¥ R. But
then for |ω| ¥ R we have

|f̂pωq| ¤ ���f̂pωq � ĝpωq���� |ĝpωq|
¤ |f � g|1 � |ĝpωq|
  ε .

¤

3. Inversion for L1 Functions

In this section we show that for an L1 function f , one can obtain fpxq by
the inversion formula if the Fourier transform of f is L1 or we can obtain
fpxq from an improper Riemann integral when f is well behaved near x.

Theorem 3.14. Let f P L1pRnq and suppose f̂ P L1pRnq. Then f is con-

tinuous and ˆ̂
fp�xq � fpxq for all x.

Proof. Using Lemma 3.7 twice, we see if φ P SpRnq, then»
fpxq ˆ̂φpxq dx �

»
φ̂pyqf̂pyq dy

�
»

φpxq ˆ̂fpxq dx.

But by Proposition 3.9, ˆ̂
φpxq � φp�xq. Thus»

fp�xqφpxq dx �
»

φpxq ˆ̂fpxq dx

for all Schwartz functions φ. Moreover, by Lemma 2.53, there is a sequence
of Schwartz function φn so that φn Ñ χB a.e. where B is closed ball in Rn

and the supports of all φn are contained in B1, a ball containing B. Thus»
B
p ˆ̂fpxq � fp�xqq dx � 0

for all closed balls B. This implies ˆ̂
fpxq � fp�xq for a.e. x. But by Lemma

3.3, ˆ̂
f is continuous. Thus f is continuous. ¤

Next we attempt to reconstruct fpxq as an improper Riemann integral.
Formally, Fourier inversion on R is given by fpxq � ³

f̂ptqe2πitx dt but in
what sense can one interpret this integral?
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For a Schwartz function f the answer is clear. One has

fpxq �
» 8
�8

f̂ptqe2πitx dt

� lim
NÑ8

» N

�N

»
fpyqe�2πiyt dy e2πitx dt

� lim
NÑ8

» » N

�N
fpyqe2πitpx�yq dt dy

� lim
NÑ8

»
fpyq

» N

�N
e2πitpx�yq dt dy

� lim
NÑ8DN � fpxq

where

DN pxq �
» N

�N
e2πitx dt.

Now

(3.7) DN pxq � e2πitx

2πix
|t�N
t��N � e2πiNx � e�2πiNx

2πix
� sin 2πNx

πx
.

The function DN is called the Dirichlet kernel. See Exercise 3.2.11 for
some further properties.

Lemma 3.15. The improper Riemann integral

lim
NÑ8

» N

�N

sin t

t
dt � 2

» 8
0

sin t

t
dt � α

exists.

We shall see shortly that α � π.

Proof. » 8
0

sin t

t
dt � 8̧

n�1

» nπ

pn�1qπ
sin t

t
dt

is an alternating series with terms going to 0. ¤

This lemma along with a change of variables gives the following improper
integral. » 8

0
DN pxq dx � α

2π



132 The Fourier Transform on Rn

Indeed, » 8
0

DN pxq dx �
» 8
0

sinp2πNxq
πx

dx

�
» 8
0

sinx

πpx{2πNq dpx{2πNq
�
» 8
0

sinx

πx
dx

� α

2π
.

The Riemann-Lebesgue Lemma implies

lim
aÑ8

»
fpxq sin ax dx � 0

for f P L1pRq. These provide the central points in the proof of the following
theorem.

Theorem 3.16. Suppose f P L1pRq and fpx�q and fpx�q exist and there
is an α ¡ 0 and a δ ¡ 0 such that

|fpx� hq � fpx�q|   Mhα

and
|fpx� hq � fpx�q|   Mhα

for 0   h   δ. Then» N

�N
f̂pyqe2πixy dy � DN � fpxq Ñ 1

2
pfpx�q � fpx�qq

as N Ñ8.

Proof.

DN � fpxq �
» 8
�8

DN ptqfpx� tq dt

�
» 8
0

DN ptqfpx� tq dt�
» 0

�8
DN ptqfpx� tq dt

�
» 8
0

DN ptqfpx� tq dt�
»

χr�8,0sp�tqDN p�tqfpx� tq dt

�
» 8
0

DN ptqpfpx� tq � fpx� tqq dt.

We now show

lim
NÑ8

» 8
0

DN ptqfpx� tq dt � α

2π
fpx�q
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and by a similar argument

lim
NÑ8

» 8
0

DN ptqfpx� tq dt � α

2π
fpx�q.

Once this has been done, we need only verify α � π. Note we have����» 8
0

DN ptqfpx� tq dt� α

2π
fpx�q

���� � ����» 8
0

DN ptqpfpx� tq � fpx�qq dt

����
¤
�����» b

0

sin 2πNt

πt
pfpx� tq � fpx�qq dt

������ ����» 8
b

sin 2πNt

πt
pfpx� tq � fpx�qq dt

����
¤
�����» b

0

sin 2πNt

πt
pfpx� tq � fpx�qq dt

������ ����» 8
b

sin 2πNt

πt
fpx� tq dt

����
�
����» 8

b

sin 2πNt

πt
fpx�q dt

����
Let ε ¡ 0. Choose b ¡ 0 such that |fpx�q ³8b sin 2πNt

πt dt|   ε
4 . Next

pick b ¡ δ ¡ 0 so that |fpx � tq � fpx�q|   Mtα if 0   t   δ. Then if
ψptq � fpx�tq�fpx�q

πt , we have» b

0

sin 2πNt

πt
pfpx� tq � fpx�qq dt �

»
χp0,δqptqψptq sin 2πNt dt�

»
χpδ,bqptqψptq sin 2πNt dt.

Hence����» 8
0

DN ptqfpx� tq dt� α

2π
fpx�q

���� ¤ | » χp0,δqptqψptq sin 2πNt dt|
�
����» χpδ,bqptqψptq sin 2πNt dt

����� ����» 8
b

fpx� tq
πt

sin 2πNt dt

����� ε

4
.

Now note χp0,δqptq|ψptq| ¤ χp0,δqptqMtα

πt � M
π χp0,δqptqtα�1, χpδ,bqptqψptq, and

xpb,8qptqfpx�tq
t are all integrable in t. Hence the Lebesgue Lemma implies

we can find an N0 such that for N ¥ N0 we have

|
»

χp0,δqptqψptq sin 2πNt dt| �
����» χpδ,bqptqψptq sin 2πNt dt

����� ����» 8
b

fpx� tq
πt

sin 2πNt dt

����   3ε

4
.

Thus for N ¥ N0,
��³8

0 DN ptqfpx� tq dt� α
2πfpx�q ��   ε.

To finish, we note if f is an always positive Schwartz function, then

fpxq � 1
2
pfpx�q � fpx�qq � lim

NÑ8DN � fpxq � α

2π
pfpx�q � fpx�qq.

This implies α � π. ¤

Corollary 3.17. Suppose f P L1pRq and the limits fpx�q, fpx�q, f 1px�q :�
lim

hÑ0�
fpx�hq�fpx�q

h , and f 1px�q :� lim
hÑ0�

fpx�hq�fpx�q
h exist. Then

1
2
pfpx�q � fpx�qq � lim

NÑ8
» N

�N
f̂pyqe2πixy dy.
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Exercise Set 3.2

1. For f P SpRm � Rnq, show the partial Fourier transform F1f given by

F1fpω, yq �
»

fpx, yqe�2πix�ω dx

satisfies

ppDqF1fpω, yq � F1ppp�2πi�qfqpω, yq and

F1pppDqfqpω, yq � pp2πiωqF1fpω, yq
for any polynomial p in x.

2. Show the partial Fourier transform F1 satisfies properties corresponding
to properties (a) to (g) in Exercise 3.2.3.

3. Using » ����» fpxqe�2πix�ω dx

����2 dω �
»
|fpxq|2 dx

for f P SpRnq, show»
|
»

fpxqe�aix�ω
c� a

2π

	n
dx|2

c� a

2π

	n
dω �

»
|fpxq|2

c� a

2π

	n
dx

for f P SpRnq and a ¡ 0. Now define

Fapfqpωq �
»

fpxqe�iax�ω dax

where dax is the measure
b�

a
2π

�n
dx. Show Fa is a linear homeomorphism

of SpRnq that satisfies:

(a) Show F2
af � f̌ for f P SpRnq.

(b) Show Fa extends to a unitary transformation of the Hilbert space
L2pRn, daxq.

(c) Show Fapλpyqfqpωq � eiayωFapfqpωq for f P SpRnq
(d) Show Fapδpbqfq � δp1b qFapfq for f P SpRnq
(e) Show Fapf�q � Fapfq for f P SpRnq
(f) Show FapppDqfqpωq � ppaiωqFafpωq for f P SpRnq
(g) Show Fappfqpωq � pp iD

a qFapfqpωq for polynomials p and f P SpRnq.
The important cases are a � 1 and a � 2π.

4. Let f be Schwartz on Rm � Rn. Show y ÞÑ fpx, yq � fxpyq is Schwartz
on Rn for each x P Rm.

5. Show x ÞÑ fx is continuous from Rm into SpRnq for each f P SpRm�Rnq.
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6. Let f P L1pRnq be such that»
Rn

|x|k |fpxq| dx   8.

Then Dα pfpωq exists for all α with |α| ¤ k and

Dαf̂pωq � p�2πiq|α|
»

xαfpxq e�2πix�ω dx.

7. Suppose f is C8 and has support inside tx | |x| ¤ Ru. Define f̂pzq �³
fpxqe�2πiz�x dx. Show f̂pzq is a holomorphic function and show for each

N P N, there is a constant CN such that

|f̂pzq| ¤ CN p1� |z|2q�Ne2πR|Impzq|
for all z P Cn.

8. Let f P L1pRq and let htpyq � 1
t e
�πy2{t2 be the heat kernel. Show if

lim
rÑ0�

1
2r

» r

�r
pfpx� yq � fpxqq dy � 0,

then
lim

tÑ0�ht � fpxq � fpxq.
Hint: Consider

³T�T h1tpyqF pyq dy where F pyq � ³y�ypfpx� zq � fpxqq dz.

9. Let f P L1pRnq. Show that

lim
tÑ0

Htpfqpxq � fpxq
for all x P Rn such that

lim
rÑ0

1
rn

»
|x�y|¤r

pfpyq � fpxqq dy � 0.

10. Let f P L1pRnq and assume that f̂ P L1pRnq. Use Ht to show that

fpxq �
»

f̂pωqe2πix�ω dω

for almost all x P Rn. In particular f is continuous almost everywhere. Note
this gives another proof of Theorem 3.14.

11. Recall from (3.7) that the Dirichlet kernel is given by

DN puq �
» N

�N
e2πiux dx � sin 2πNx

πx
for N ¡ 0.

Let f P L2pRq.
(a) Show DN �fpxq is defined for all x and gives a continuous function.
(b) Show DN � fpxq � ³8

0 DN ptqpfpx� tq � fpx� tqq dt.

(c) Show DN � f is in L2pRq and DN � f Ñ f in L2pRq as N Ñ8.
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(d) Show DN ptq � Fpχr�N,Nsq, this function is sometimes called the
sincN function.

12. Suppose f is a real valued integrable function on R and suppose fpx�q,
fpx�q, f 1px�q, and f 1px�q exist. Define

Appq � 1
π

» 8
�8

fpxq cos px dx and Bppq � 1
π

» 8
�8

fpxq sin px dx.

Show

1
2
pfpx�q � fpx�qq � lim

NÑ8
» N

0
Appq cos px�Bppq sin px dp.

4. The Fourier Transform on L2pRnq and its Spectral
Decomposition

In the previous section we showed that the Fourier transform is a topological
isomorphism of SpRnq onto itself. We will show that this transform has a
natural extension of order 4 to the Hilbert space L2pRnq onto itself. Then we
will look at its spectral decomposition relative to a particularly well behaved
basis of eigenfunctions. Indeed, the Hermite operator 4πx2� d2

dx2 commutes
with the Fourier transform and has discrete spectrum with eigenspaces of
dimension one. The orthonormal basis formed by these eigenfunctions are
eigenvectors for the Fourier transform and thus give a spectral resolution
of the Fourier transform. Moreover, as we shall see in the next chapter, an
L2 function is Schwartz if and only if its Fourier coefficients relative to the
Hermite basis are rapidly decreasing. This will give another characterization
of SpRnq.

Recall (see Exercise 3.3.1) if U is a densely defined linearly transforma-
tion from a Hilbert space H having dense range in Hilbert space H1 and
pUu, Uvq1 � pu, vq for all u, v P DompUq, then U extends uniquely to a
unitary isomorphism from H1 onto H2.

Lemma 3.18. Let f, g P SpRnq. Then

pf̂ , ĝq2 � pf, gq2 .
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Proof. Recall SpRnq � L1pRnq. Using Lemma 3.7 followed by (f) of Lemma

3.3 and the inversion formula pph � ȟ for Schwartz functions h, we see

p pf, pgq2 � » pfpxqpgpxq dx

�
»

fpxqFppgqpxq dx

�
»

fpxq�ppg	� pxq dx

�
»

fpxq pǧq� pxq dx

�
»

fpxqgpxq dx

� pf, gq2.
¤

Theorem 3.19 (Plancherel). The mapping F from SpRnq to SpRnq extends
to a unitary isometry of L2 onto L2. We denote this extension again by F
or f ÞÑ f̂ . It satisfies ˆ̂

f � f̌ for f P L2.

Proof. The first statement follows the density of SpRnq in L2, Theorem
3.10, Lemma 3.18 and Exercise 3.3.1 The second is a consequence of Propo-
sition 3.9. ¤
Remark 3.20. Notice that if f P L2pRnq, then the Fourier transform of f
is not necessarily given by an integral of the form»

fpxqe�2πix�ω dx

as we do not know if this integral exists. In fact the Fourier transform
of f is the L2 limit of any sequence tf̂ku8k�1 where fk P SpRnq converges in
L2 to f .

We have seen that the Fourier transform F : L2pRnq Ñ L2pRnq is a
unitary isomorphism of order 4, i.e., F4 � id. It follows that the only
possible eigenvalues of F are 1, i,�1, and �i. Furthermore since F2pfqpxq �
fp�xq, F2pfq � f if and only if f is even and F2pfq � �f if and only if f
is odd. Therefore eigenfunctions with eigenvalues �1 have linear span the
even functions in L2 and the eigenfunctions corresponding to �i have linear
span the odd functions. Let A be the set of all n-tuples of nonnegative
integers. We will next construct a multi-indexed sequence of polynomials
Hα, α P A, such that the functions hαpxq � Hαpxqe�π|x|2 , α P A, are
an orthogonal basis for L2pRnq consisting of eigenfunctions for the Fourier
transform. It is also clear since Hα are polynomial functions that the hα
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are in SpRnq. The functions hα are not just eigenfunctions for the Fourier
transform but are also in fact eigenfunctions for an unbounded symmetric
operator H commuting with the Fourier transform. This operator H is a
slight renormalization of the usual Hermite operator

|x|2 �∆2.

We will call the polynomials Hα the Hermite polynomials and the func-
tions hα the Hermite functions although because of our normalization these
differ slightly from the standard definitions.

The Hermite polynomials Hα can be defined in terms of the following
generating function:

e�2πp|t|2�2t�xq � e2π|x|2e�2π|x�t|2 �
α̧PA

Hαpxq tα
α!

.

This series converges for all x and t and defines each function Hα uniquely.
Furthermore,

Hαpxq � Dα
t e�2πp|t|2�2t�xq|t�0 � e2π|x|2Dα

t e�2π|x�t|2 |t�0 ,

where the subscript t indicates a differentiation with respect to the variable
t. As

Dα
t e�2π|x�t|2 |t�0 � p�1q|α|Dα

xe�2π|x|2 ,
we obtain the lemma:

Lemma 3.21. Let α P A. Then

Hαpxq � p�1q|α|e2π|x|2Dαe�2π|x|2 .

The polynomial Hαpxq is called the Hermite polynomial of order α while
the function

(3.8) hαpxq � Hαpxqe�π|x|2

is the corresponding Hermite function. The Hermite functions are in SpRnq.
Remark 3.22. Usually the Hermite polynomials are defined by

p�1q|α|e|x|2{2Dαe�|x|2{2,
a difference which comes from the normalization of the Fourier transform.
We refer to Exercise 3.3.6 where the different normalizatons are compared.

Lemma 3.23. hαpxq �±n
j�1 hαj pxjq.

Proof. This follows from Dα � Dα1 � � �Dαn and e�π|x|2 �±
e�πx2

j . ¤
Lemma 3.24. The Hermite polynomial Hα has form

Hαpxq � p4πq|α|xα �
β̧ α

cα,βxβ.
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Proof. This is clear if |α| � 0 and for α� ei, we have

Hα�eipxq � p�1q|α|�1e2π|x|2DeiD
αe�2π|x|2

� �e2π|x|2Dei

�
Hαpxqe�2π|x|2	

� �e2π|x|2 �pDeiHαpxqqe�2π|x|2 �HαpxqDeie
�2π|x|2	

� �e2π|x|2
��

β̧ α

c1α,βxβ e�2π|x|2 �Hαpxqp�4πxiqe�2π|x|2
�

� p4πq|α�ei|xα � ¸
β α�ei

cα�ei,βxβ.

¤

Corollary 3.25. Every polynomial on Rn can be written as a linear com-
bination of the Hermite polynomials.

Proof. Induction shows each xα is in the linear span of the Hβpxq where
β ¤ α. ¤

Lemma 3.26. Let n � 1. Then for k ¥ 0

H2kp0q � p�2πqkp2kq!
k!

and H2k�1p0q � 0.

Proof. Setting x � 0 in the generating formula gives

e�2πt2 � 8̧

n�o

p�2πt2qn
n!

� 8̧

n�0

p�2πqnp2nq!
n!

t2n

p2nq!
� 8̧

k�0

Hkp0q tk
k!

.

This obviously yields the lemma. ¤

For n � 1 the first few Hermite polynomials are given by:

H0pxq � 1

H1pxq � 4πx

H2pxq � 16π2x2 � 4π

H3pxq � 64π3x3 � 48π2x
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Our next aim is to show the Hermite polynomials can be obtained nat-
urally by recursion. If E and F are two differential operators, then their
commutator rE,F s is given by

rE, F s � EF � FE .

If E and F have constant coefficients, then rE,F s � 0, for BiBj � BjBi.
Furthermore, note one always has

rE, F s � � rF, Es .
If at least one of the two differential operators has variable coefficients, then
they may not commute. This can be seen easily using

Bjpxjfq � f � xjBjf .

This behavior can be formulated more generally in terms of multiplica-
tion operators. We recall a multiplication operator has form Mgpfqpxq �
gpxqfpxq where g is a function. The g used in the following lemma is assumed
to be smooth.

Lemma 3.27. Let ∆ � D2
1 � . . .�D2

n be the Laplacian on Rn. Then:

(a) rDα, Dβs � rMg,Mhs � 0

(b) rDj ,Mgs � MDjg

(c) rDα,Mxj s � αjD
α�ej

(d) r∆,Mgs �M∆g � 2
°

MDjgDj.

In particular,

(e)
�
∆,Mxj

� � 2Dj

(f)
�
Dj ,Mx2

j

� � 2xj.

Proof. Note (a) is immediate and (b) follows by a simple calculation using
the product rule.

For (c), note from Leibniz’s Rule, Lemma 2.21, we have

Dαpxifq �
β̧¤α

�
α

β



Dβxi �Dα�βf

� xiD
αf � αiD

α�eif

for Dβxi � 0 for β � ei or β � 0. Thus

rDα,Mxisf � pDαpxifq � xiD
αfq

� xiD
αf � αiD

α�eif � xiD
αf

� αiD
α�eif.
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For (d), we first calculate rD2
j ,Mgs.

rD2
j ,Mgsf � D2

j pgfq � gD2
j f

� DjppDjgqf � gDjfq � gD2
j f

� pD2
j gqf � pDjgqpDjfq � pDjgqpDjfq � gD2

j f � gD2
j f

� pD2
j gqf � 2pDjgqpDjfq.

Thus rD2
j , Mgs �MD2

j g � 2MDjgDj . Consequently,

r∆,Mgs �¸
MD2

j g � 2
¸

MDjgDj �M∆g � 2
ņ

j�1

MDjgDj .

Finally (e) follows from (d) and (f) follows from (b). ¤

Lemma 3.28. Let α P A. Then the following hold:

(a) BjHαpxq � 4παjHα�ej pxq ;
(b) Hα�ej pxq � p4πxj �DjqHαpxq . In particular the Hermite polyno-

mials are defined by the recursion formula

H0pxq � 1

Hα�ej pxq � 4πxjHαpxq �DjHαpxq;
(c) p2πxj �Djqhαpxq � hα�ej pxq.
(d) p2πxj �Djqhαpxq � 4παjhα�ej pxq.

Proof. For (a) using the Leibniz Rule, one has:

BjHαpxq � Bx,jD
α
t e�2πp|t|2�2t�xq|t�0

� Dα
t

�
4πtje

�2π|t|2�4πt�x	 |t�0

� 4παjD
α�ej

t e�π|t|2�2πt�x|t�0

� 4παjHα�ej pxq.
Using the product formula for differentiation,

DjHαpxq � p�1q|α|pDje
2π|x|2Dαe�2π|x|2q

� p�1q|α| �4πxje
π|x|2Dαe�π|x|2 � eπ|x|2DjD

αe�π|x|2	
� 4πxjHαpxq �Hα�ej pxq.

This gives (b).
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Now (c) follows from the product rule and (b). Indeed,

p2πxj �Djqhαpxq � p2πxj �Djqe�π|x|2Hαpxq
� 4πxje

�π|x|2Hαpxq � e�π|x|2DjHαpxq
� e�π|x|2p4πxj �DjqHαpxq
� e�π|x|2Hα�ej pxq
� hα�ej pxq.

Finally for (d),

p2πxj �Djqhαpxq � p2πxj �Djqe�π|x|2Hαpxq
� e�π|x|2DjHαpxq
� e�π|x|2p4παjHα�ej pxqq
� 4παjhα�ej pxq.

¤

Lemma 3.29. Let Ej � 2πxj �Dj. Then F � Ej � �iEj � F .

Proof. This follows from Theorem 3.4. ¤

Proposition 3.30. Let α P A. Then Fphαq � p�iq|α|hα.

Proof. Assume first that α � 0. Then hαpxq � e�π|x|2 and according to
Example 3.2 we have Fpe�π|x|2q � e�π|ω|2 . Hence the Theorem holds for
|α| � 0.

Assume that the claim holds for α. To do induction, we show it holds
for α� ej . But by the last Lemma and (c) of Lemma 3.28, we have

F phα�ej q � F pp2πxj �Djqhαq
� F � Ejphαq
� �iEj � F phαq
� �iEjpp�iq|α|hαq
� p�iq|α�ej |hα�ej .

¤

We now define the Hermite differential operator H by

(3.9) H � 4π2M|x|2 �∆
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The Hermite differential operator maps SpRnq into itself. Hence H is a
densely defined differential operator on L2pRnq. Notice that

H � ņ

j�1

Hj

where Hj is the Hermite operator in “one dimension” Hj � 4π2x2
j�D2

j . The
Hermite operator is special because it commutes with the Fourier transform.

Lemma 3.31. Let f P SpRnq then

FpHfq � HpFfq .
Proof. By Theorem 3.4 we have Fppfq � ppiD{2πqFf and FpppDqfq �
pp2πiωqFfpωq for any polynomial p and ω P Rn. Let ppxq � p2πq2|x|2 and
qpxq � |x|2. Then

pp i

2π
Dq � �4π2

4π2
∆ � �∆ � �qpDq

and
qp2πiωq � �ppωq.

Hence

FpHfqpωq � Fppp� qpDqqfqpωq
� pp i

2π
Dqf̂pωq � qp2πiωqf̂pωq

� Hf̂pωq .
¤

Lemma 3.32. The Hermite operator is symmetric and positive on SpRnq.
Thus pHf, gq2 � pf,Hgq2 and pHf, fq2 ¡ 0 when f � 0.

Proof. Let f, g P SpRnq and let ppxq � 4π2 |x|2 be as in the proof of the
last lemma. Using that p is real valued and integrating by parts gives

pHf, gq � ppf �∆f, gq
�
»
pppxqfpxq �∆fpxqqgpxq dx

� pf, pgq �
»
p∆fqpxqgpxq dx

� pf, pgq �
»

fpxq∆gpxq dx

� pf, pg �∆gq
� pf, Hgq.
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For positivity let ϕpxq � 2π |x|. Then ϕf P L2 pRnq and ϕf �� 0 unless
f � 0. Hence

pHf, fq � 4π2

»
|x|2fpxqfpxq dx�

» ņ

j�1

rD2
j f spxqfpxq dx

� |ϕf |22 �
» ņ

j�1

DjfpxqDjfpxq dx

� |ϕf |22 �
ņ

j�1

|Djf |22 ¡ 0

if f �� 0. ¤

Lemma 3.33. For j � 1, . . . , n, rH, 2πxj �Djs � 4πp2πxj �Djq. Thus:

Hp2πxj �Djq � p2πxj �DjqpH � 4πq .
Proof. Set ppxq � 4π2 |x|2. Lemma 3.27 implies

rH, 2πMxj �Djs � rMp, 2πMxj s � rMp, Djs � r∆, 2πMxj s � r∆, Djs
�MDjp � 2

ņ

k�1

MDk2πxjDk

� 8π2xj � 4πDj

� 4π p2πxj �Djq .
¤

Lemma 3.34. The space of functions of the form x ÞÑ ppxqe�π|x|2, where p
is a polynomial, is dense in L2pRnq.
Proof. By Exercise 3.3.8 the span of functions with form x ÞÑ±n

j�1 fjpxjq,
fj P L2pRnq is dense in L2pRnq. Thus we can assume n � 1.

We have »
ppxqe�πx2

fpxq dx � 0

for all polynomial functions ppxq. Note e�πpx�iaq2 � eπa2
e�2πiaxe�πx2

. Set

pnpxq � eπa2
ņ

k�1

p�2πiaqk
k!

xk.

For each n we have: »
pnpxqe�πx2

fpxq dx � 0.
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Now

|pnpxqe�πx2
fpxq| ¤ eπa2

�
ņ

k�0

p2π|ax|qk
k!

�
e�πx2 |fpxq|

¤ eπa2
e2π|ax|e�πx2 |fpxq|.

This later function is integrable for x ÞÑ e2π|ax|e�πx2
is an L2 function for

each a. Thus by the Lebesgue Dominated Convergence Theorem,»
e�πpx�iaq2fpxq dx � 0

for each a P R. This implies»
e�2πiaxe�πx2

fpxq dx � 0

for all a. Consequently, the Fourier transform of the function x ÞÑ e�πx2
fpxq

is zero. Since the Fourier transform is one-to-one (on L1 or L2), we have
fpxq � 0 a.e. x. ¤

Proposition 3.35. The Hermite functions hα, α P A, are eigenfunctions
for the Hermite operator H � 4π2|x|2�∆ and span a dense subset of L2pRnq.
Moreover, the eigenvalue for hα is 2πp2 |α| � nq.
Proof. By Corollary 3.25, every polynomial function on Rn is a linear com-
bination of the Hermite polynomials Hαpxq. Consequently, every function
of form ppxqe�πx2

is a linear combination of Hermite functions hαpxq. By
the previous lemma, we see the Hermite functions span a dense subspace of
L2pRnq.

Next note Hph0qpxq � p4π2 |x|2�∆qpe�π|x|2q � 2πne�π|x|2 � 2πnh0pxq.
Assume that Hphαq � 2πp2 |α| � nqhα for all α with |α| � k. Suppose

|β| � k � 1. Then there exists a j such that α � β � ej P A. Obviously
|α| � k. From Lemmas 3.28 and 3.33 we see

Hphβq � Hp2πxj �Djqhα

� p2πxj �DjqpH � 4πqhα

� p2πxj �Djqp2πp2 |α| � nq � 4πqhα

� 2πp2 |α� ej | � nqhβ.

¤

Theorem 3.36. The functions

eα � 2n{4ap4πq|α|α!
hα, α P A
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form a complete orthonormal basis of L2pRnq consisting of eigenfunctions
of the Fourier transform with eigenvalue i�|α|.
Proof. We begin by determining the inner products of the Hermite func-
tions. First recall that hαpxq �±n

j�1 hαj pxjq. Hence

phα, hβq �
n¹

j�1

phαj , hβj
q.

Thus the inner product of hα and hβ in L2pRnq is determined by the inner
products of the functions hk and hl in L2pRq.

Thus we assume n � 1. We have H � 4π2x2 � d2

dx2 and Hhk � 2πp2k �
1qhk. Moreover by Lemma 3.32,

pHhk, hlq � phk,Hhlq.
Consequently,

2πp2k � 1qphk, hlq � 2πp2l � 1qphk, hlq.
Thus when k � l, we see the inner product phk, hlq is 0. By Lemma 3.28,
p2πx�Dqhk � hk�1. Consequently,

phk�1, hk�1q � pp2πx�Dqhk, p2πx�Dqhkq
� pp2πx�Dqp2πx�Dqhk, hkq
� pp4π2x2 �D2 � 2πqhk, hkq
� ppH � 2πqhk, hkq.

Using Hhk � 2πp2k � 1qhk from Proposition 3.35, we have

phk�1, hk�1q � 2πp2k � 2qphk, hkq � 4πpk � 1qphk, hkq.
But ph0, h0q � ³

e�2πx2
dx � 1?

2

³
e�πx2

dx � 1?
2
. These together imply

phk, hkq � p4πqkk!?
2

.

Putting this together in the general case gives:

phα, hβq2 � p4πq|α|α1! � � �αn!?
2n

δα,β.

Thus the vectors

(3.10) eα � 2n{4ap4πq|α|α!
hα, α P A

form an orthonormal set in L2pRnq. Proposition 3.35 gives they are com-
plete. Moreover, by Theorem 3.30, eα is an eigenfunction of the Fourier
transform with eigenvalue p�iq|α|. ¤
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Corollary 3.37. For j � 1, . . . , n,

p2πxj �Djqeαpxq �
b

4πpαj � 1q eα�ej pxq and

p2πxj �Djqeαpxq �a
4παj eα�ej pxq.

Proof. Using (c) and (d) of Lemma 3.28, we have:

p2πxj �Djqeα � p2πxj �Djq 2n{4ap4πq|α|α!
hα

� 2n{4ap4πq|α|α!
hα�ej

� 2n{4a4πpαj � 1qbp4πq|α�ej |pα� ejq!
hα�ej

�b
4πpαj � 1q eα�ej

and

p2πxj �Djqeα � p2πxj �Djq 2n{4ap4πq|α|α!
hα

� 2n{44παjap4πq|α|α!
hα�ej

� 2n{4a4παjbp4πq|α�ej |pα� ejq!
hα�ej

�a
4παj eα�ej

¤

We thus obtain:

Djeαpxq � ?παj eα�ej pxq �
b

πpαj � 1q eα�ej pxq(3.11)

xjeαpxq �
c

αj

4π
eα�ej pxq �

c
αj � 1

4π
eα�ej pxq.(3.12)

Exercise Set 3.3

1. Let H and H1 be Hilbert spaces. Let U be a linear transformation from a
dense linear subspace D ofH onto a dense linear subspace D1 ofH1. Suppose

pUv, Uwq1 � pu,wq
for all u,w P D.
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(a) Show if tunu8n�1 is a Cauchy sequence in D, then tUunu8n�1 is a
Cauchy sequence in D1.

(b) Show Ũ defined on H by Ũv � limUvn if v � limn vn where vn P D
is a unitary isomorphism of H onto H1.

2. Let h P L1pRnq and f P L2pRnq. Show Fpf � hq � ĥf̂ .

3. Let T be a bounded linear operator on a Hilbert space H satisfying
T 4 � I. Show H is the direct sum of four orthogonal eigenspaces for T .

4. The essential support ess-supppfq of a measurable complex valued func-
tion f on Rn is the complement of the union of all open subsets U of Rn on
which f � 0 a.e. For T ¡ 0, let

L2
T pRnq � !

f P L2pRnq | ess-supppf̂q � r�T, T sn) .

the space of T -band limited functions.

(a) Show that the operator defined on the dense subspace SpRnq of
L2pRnq by

h ÞÑ sincT � h

where

sincT pxq �
n¹

j�1

sinp2πTxjq
πxj

extends to the orthogonal projection PT of L2pRnq onto L2
T pRnq.

(b) Show that

f � lim
T ÞÑ8PT pfq

for f P L2pRnq.
5. Consider the differential operators Dα

t � � BBt1
	α1

� BBt2
	α2 � � �� BBtn

	αn

and Dα
x �

� BBx1

	α1
� BBx2

	α2 � � �� BBxn

	αn

. For f in C8pRnq, show

Dα
t fpx� tq|t�0 � p�1q|α|Dα

xfpxq.
6. In many books the Hermite polynomials are defined by using the gener-
ating function et�x�t�t{2. In this case, the Hermite polynomials H̃αpxq satisfy:

et�x�t�t{2 �
α̧

H̃αpxq tα
α!

.

Show that

p4πq|α|{2H̃αp?4πxq � Hαpxq .
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7. Let 0 ¤ ψptq ¤ 1 be a smooth function with support in p1{2,8q such
that ψptq � 1 for t ¥ 1. Let p � �

n
2

�� 1. Let

fpxq :� 1
|x|p ψp|x|q .

Show the following:

(a) f P L2pRnq.
(b) Hfpxq � 1|x|p�2 ψ p|x|q �∆fpxq is not in L2pRnq.

8. Show that the linear span of the functions

px1, . . . , xnq ÞÑ f1px1q � . . . � fnpxnq
where f1, f, . . . , fn are in L2pRq is a dense linear subspace of L2pRnq.





Chapter 4

Further Topics and
Applications

1. Holomorphic Functions on Cn

In the last chapters we determined the image of the two spaces, L2pRnq and
SpRnq, under the Fourier transform. In both cases the Fourier transform
was an isomorphism. In the next section we will determine the image of
the space of compactly supported functions. This will be a certain space
of holomorphic functions on Cn, so we need to review the most basic facts
from complex analysis. We present the material mostly without proofs.

Definition 4.1. Let H �� U be an open set in C and let f : U Ñ C be a
function. We say that f is complex differentiable or holomorphic at z P U
if the limit

(4.1) f 1pzq :� lim
wÑz

fpwq � fpzq
w � z

exists. The function f is differentiable on U if it is differentiable at every
point z P U .

A function on C can also be viewed as a function on R2 Ñ R2 by

px, yq ÞÑ pupx, yq, vpx, yqq
where upx, yq � Refpx � iyq and vpx, yq � Imfpx � iyq. Therefore if f 1pzq
exists, the partial derivatives

(4.2) Dxfpzq � BfBx pzq � lim
hÑ0

fpz � hq � fpzq
h

� Dxupx, yq � iDxvpx, yq
151
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and

(4.3) Dyfpzq � BfBy pzq � lim
hÑ0

fpz � ihq � fpzq
h

� Dyupx, yq � iDyvpx, yq
are well defined. Assume that f : U Ñ C is holomorphic at z0 � x0 � iy0.
Then, because the limit in (4.1) is independent of how we take the limit
w Ñ z0,

f 1pz0q � lim
hÑ0

fpz0 � hq � fpz0q
h

� Dxfpz0q
� Dxupx0, y0q � iDxvpx0, y0q
� lim

hÑ0

fpz0 � hiq � fpz0q
ih

� 1
i

Bf
By pz0q

� �iDyupx0, y0q �Dyvpx0, y0q
Thus

Dxupx0, y0q � Dyvpx0, y0q
Dyupx0, y0q � �Dxvpx0, y0q .

This system of equation is called the (real) Cauchy-Riemann equations. This
motivates also the following: Define the first order differential operators B{Bz
and B{Bz̄ by

B
Bz :� 1

2

� B
Bx �

1
i

B
By



and

B
Bz̄ :� 1

2

� B
Bx �

1
i

B
By



Then a holomorphic function satisfies the differential equation

(4.4)
Bf
Bz̄ � 0

which is called the (complex) Cauchy-Riemann equation.

Theorem 4.2. Let U � C be open, U �� H, and let f : U Ñ C. Then f is
holomorphic at a point z0 � x0� iy0 P U if and only if f is differentiable as
a function from R2 to R2 at the point px0, y0q and f satisfies the Cauchy-
Riemann equation at z0. In this case we have

f 1pz0q � Dxupx0, y0q � iDxvpx0, y0q
� Dyvpx0, y0q � iDyvpx0, y0q .

where u � Ref and v � Imf .
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Let I � ra, bs be a closed interval in R and let γ : I Ñ U be a piecewise-
continuously differentiable path in C. Define the integral of f over γ by»

γ
fpzq dz :�

» b

a
fpγptqqγ1ptq dt .

We will from now on always assume that γ is piecewise-continuously differ-
entiable path. We set Cpγq :� γpra, bsq. We say that γ is a parametrization
of the curve C if C � Cpγq. We say that γ is simple if γ is injective as a
function from ra, bq to C, i.e., γptq � γpsq implies that s � t. Notice, that we
allow γpaq � γpbq. We say that γ is closed if γpaq � γpbq. We say that the
curve C is simple (closed) if there exists a simple (closed) parametrization
γ of C. If C is a simple and closed curve then we say that C is a Jordan
curve. We can travel the same parameterized curve C � Cpγq in two di-
rections, t ÞÑ γptq and t ÞÑ γppb � aq � sq, so that we have two different
orientations. A Jordan curve divides the complex region into 3 parts, the
curve itself, an open bounded connected interior known as the interior of
C, and an unbounded open set called the exterior of C. A parametrization
γ of a Jordan curve C is positively oriented if iγ1ptq points to the interior
region determined by the curve.

Example 4.3. Let C be a circle with radius R ¡ 0 and center z0. Thus
γptq � R e2πit � z0, t P r0, 1s. Then γ is injective and closed. Thus C is a
Jordan curve. Furthermore, since iγ1ptq � �2πR e2πit, iγ1ptq points to the
interior of the circle. So γ is positively oriented. Let fpzq � Apz � z0qn,
n P N0. Then fpγptqq � ARn e2πint. Thus»

γ
fpzq dz � 2πARn�1i

» 1

0
e2πipn�1qt dt � 0 .

Furthermore

1
2πi

»
γ

fpzq
z � z0

dz � 1
2πi

» 1

0

ARne2πint

R e2πit
2πiR e2πit dt

� ARn

» 1

0
e2πint dt

�
"

A if n � 0
0 if n ¡ 0

� fpz0q .
If γptq and ηptq are two continuous paths defined on ra, bs then we say

that γ and η are homotopic if there exists a continuous function F : ra, bs �
r0, 1s Ñ U such that F ps, 0q � γptq and F ps, 1q � ηpsq for all t P r0, 1s.
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Theorem 4.4 (Independence of the path). Let f be a complex differentiable
function on a non-empty open subset U of C. Let γ, η : ra, bs Ñ U be two
homotopic curves. Then

³
γ fpzq dz � ³

η fpzq dz.

Corollary 4.5. Suppose that f : Cn Ñ C is complex differentiable and that
γ : I Ñ Cn is a closed curve. Then»

I
fpγptqq dt � 0 .

Proof. The curve γ is homotopic to the constant curve ηptq � γpt0q where
t0 P I is fixed. The claim follows then from the fact that»

η
fpzq dz � 0 .

¤

Theorem 4.6 (Cauchy’s integral formula). Let f be a complex differentiable
function on a non-empty simply connected open subset U of C. Let γ :
ra, bs Ñ U be a positively oriented Jordan curve. Assume that z0 is in the
interior of γ. Then

fpz0q � 1
2πi

»
γ

fpzq
z � z0

dz .

The Cauchy integral formula has several important consequences. The
first follows from the fact that the function inside the integral is infinitely
differentiable as a function of z0. Thus we obtain the following theorem:

Theorem 4.7. Let H �� U be an open subset of C and let f : U Ñ C
be complex differentiable. Then f is infinitely differentiable and for each
n P N0,

f pnqpz0q � n!
2πi

»
γ

fpzq
pz � z0qn�1

dz

where γ is any positively oriented Jordan curve in U surrounding z0 such
that the interior of γ is contained in U .

Example 4.8. Let γ be the circle γptq � z0�R eit, t P r0, 2πs as in Example
4.3. Then γ1ptq � iR eit and γptq � z0 � R eit, Hence the Cauchy integral
formula becomes

fpz0q � 1
2π

» 2π

0
fpz0 �R eitq dt .

Let F ps, tq :� z0�Rt eis. Then F is continuous and F ps, 0q � z0, F ps, 1q �
z0 � R eis � γpsq. Hence γ and the constant curve s ÞÑ z0 are homotopic.
As the path integral is independent of the path it follows that»

γ
fpzq dz �

»
t ÞÑz0

fpzq dz � 0 .



Holomorphic Functions on Cn 155

We notice that the same argument holds for any curve that is homotopic to
the constant curve t ÞÑ z0. Hence the integral of a holomorphic function of
a curve homotopic to a point is always zero.

The second application of Cauchy’s integral formula is that complex dif-
ferentiable functions are actually analytic. The function f is called analytic
or holomorphic on U if for each z0 P U there exists an open ball BRpz0q � U
such that f has an power series expansion

(4.5) fpzq � 8̧

k�0

akpz � z0qk
on BRpzq. The maximal radius ρ ¡ 0 such that the power series in (4.5) con-
verges is called the convergence radius of the power series. The convergence
radius can be evaluated as

1
ρ
� lim k

a|ak| .
Assume that ak �� 0 for all k. Then we can also evaluate ρ by

(4.6)
1
ρ
� lim

|ak�1||ak| .

Example 4.9. Let ak � 1
k! . Then |ak�1{ak| � 1{pk � 1q Ñ 0 for k Ñ 8.

Hence ρ � 8 and the series
°8

k�0
zk

k! converges for all z P C. The limit is
the exponential function

ez � 8̧

k�0

zk

k!
.

Example 4.10. Let a2k � p�1qkp2kq! and a2k�1 � 0. Then ak � 0 if k is odd.
To use (4.6) define bk � a2k � p�1qk{p2kq!, k P Z0. Then bk �� 0 and

|bk�1||bk| �
1

p2k � 2qp2k � 1q Ñ 0 as k Ñ8 .

Hence
°8

k�0 bkz
k exists for all z P C. It follows that

8̧

k�0

akz
k � 8̧

k�0

bkpz2qk
exists for all z P C. Furthermore

8̧

k�0

p�1qk
p2kq! z2k � cospzq .

We note that every analytic function is complex differentiable and that

ak � f pkqpz0q
k!

.
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Furthermore

f pnqpzq � 8̧

k�n

akkpk � 1q � � � pk � n� 1qpz � z0qk�n

� 8̧

k�0

pk � 1q � � � pk � nqak�npz � z0qk .

Theorem 4.11. Let R ¡ 0 and assume that f is complex differentiable on
BRpz0q. Then f is analytic on BRpz0q.

The last few theorems together give the following equivalent description
of holomorphic functions on open subsets of C:

Theorem 4.12. Let H � U � C be open, and let f : U Ñ C. Then the
following are equivalent:

(a) f is complex differentiable on U ;
(b) f is holomorphic on U ;
(c) Let γ be a positively oriented Jordan curve contained in U . Then

fpzq �
»

γ

fpwq
w � z

dw

for all z in the interior of γ.

Let us now consider functions defined on open subsets of Cn. In the
remaining part of this section, U will be for a non-empty open subset of Cn.
Let f : U Ñ Cm. Recall that f is differentiable at a point z P U if there
exists a R-linear map Dfpzq : R2n Ñ R2m such that

fpwq � fpzq �Dfpzqpw � zq � op|z � w|q .
Definition 4.13. The function f : U Ñ C is called:

(a) Complex differentiable at z P U if there exists a complex linear map
Dfpzq : Cn Ñ C such that

fpwq � fpzq �Dfpzqpw � zq � op|w � z|q .
(b) Complex differentiable on U if it is complex differentiable at every

point of U .
(c) Analytic or holomorphic on U if for each z P U there exists positive

numbers rj ¡ 0 such that the poly disc

P pz, rq � tw P Cn | @j : |wj � zj |   rju � U

and on P pz, rq we have

fpwq �
α̧PNn

0

aαpw � zqα
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with aα P C.

Most of the results that we will need follows from the one-dimensional
case because of the following lemma. Let r P Rn, we will write r ¡ 0 if
rj ¡ 0 for all j.

Lemma 4.14. Let z P Cn and r P Rn, r ¡ 0. Suppose that f : P pz, rq Ñ C
is continuous. Then f is complex differentiable if and only if for all 1 ¤ j ¤
n the function

P pzj , rjq Q w ÞÑ fpz1, . . . , zj�1, w, zj�1, . . . , znq P C
is complex differentiable.

Let r, s P Rn, r, s ¡ 0 such that sj   rj for j ¤ n. Let z P Cn and define
γjpθq � sje

2πiθ � zj and let γpθ1, . . . , θnq :� pγ1pθ1q, . . . , γnpθnqq. Finally let
f be a continuous function on the image I � P pz, rq of γ. Then

chpfqpzq :�
�

1
2πi


n »
I

fpwq
pw1 � z1q � � � pwn � znq dw1 . . . dwn

�
»
r0,2πsn

fpγ1pθ1q, . . . , γnpθnqq dθ1 . . . dθn

is called the Cauchy integral of f over I. We notice that by Cauchy’s
Integral formula and Lemma 4.14 it follows that fpzq � chpfqpzq if f is
holomorphic. Furthermore the integral is independent of the choice of path
γj as long as γj is homotopic to the circle. Similar to Theorem 4.12 we have
for more than one variables:

Theorem 4.15. Let H �� U � Cn be open and let f : U Ñ C be continuous.
Then the following are equivalent:

(a) f is complex differentiable on U .

(b) f is holomorphic on U .

(c) f � chpfq
We will also need the following simple lemma for the proof of the Paley-

Wiener theorem.

Lemma 4.16. Suppose that K � Rn is compact andH �� U � Cn open. Let
µ be a finite measure on K and suppose that f : K � U Ñ C is measurable
and bounded on compact sets. Then if U Q z Ñ fpx, zq P C is holomorphic
for each x P K, then the function

F pzq :�
»

K
fpx, zq dµpxq

is holomorphic.
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Proof. We can assume that µpKq ¡ 0 and that U � P pz0, rq with r ¡ 0.
The function F is continuous by Lebesgue dominated convergence theorem.
We now calculate

chpF qpzq �
»
r0,2πsn

F pγ1pθ1q, . . . , γnpθ1qq dθ1 . . . dθn

�
»
r0,2πsn

»
K

fpx, γ1pθ1q, . . . , γnpθ1qq dµpxq dθ1 . . . dθn .

As L :� r0, 2πsn � K is compact and fp�, γp�qq is bounded on L it follows
that fp�, γp�qq is integrable on L with respect to µ � pdθ1 � � � � � dθnq. By
Fubini’s Theorem and Theorem 4.15 we get

chpF qpzq �
»
r0,2πsn

»
K

fpx, γ1pθ1q, . . . , γnpθ1qq dµpxq dθ1 . . . dθn

�
»

K

»
r0,2πsn

fpx, γ1pθ1q, . . . , γnpθ1qq dθ1 . . . dθn dµpxq
�
»

K
fpx, zq dµpxq

� F pzq .
Hence by Theorem 4.15, it follows that F is holomorphic. ¤

2. The Paley-Wiener Theorem

We begin by defining the Paley-Wiener spaces. Let R ¡ 0 and let PWRpCnq
be the space of holomorphic functions F : Cn Ñ C satisfying

πR,N pF q :� sup
zPCn

p1� |z|2qNe�R|Impzq||F pzq|   8
for all N P N. We notice that the family of seminorms tπR,NuNPN defines
a locally convex Hausdorff topology on PWRpCnq. Next we let PWpCnq �
YR¡0PWRpCnq. We give PWpCnq the inductive limit topology. Recall that
for a compact set K � Rn, DKpRnq denotes the space of smooth functions
on Rn with support in K. For a positive number R ¡ 0, we let DRpRnq �
DBRp0qpRnq. Thus DRpRnq is the space of smooth functions with support
contained in a closed ball of radius R centered at zero. We start with the
following simple Lemma.

Lemma 4.17. Let n ¥ 2, R ¡ 0, and f P PWRpCnq. Let z0 P C. Then the
function F : Cn�1 Ñ C,

F pzq :�
»
R

fpz, z0 � xq dx

is in PWRpCn�1q and the map PWRpCnq Ñ PWRpCn�1q, f ÞÑ F , is con-
tinuous.
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Proof. We have |fpz, z0�xqp1�|z|2�|z0�x|2qN�1e�R|Impz,z0q|| ¤ πN�1,Rpfq
for all z P Cn�1 and x P R. Hence

p1� |z0 � x|2q|fpz, z0 � xqp1� |z|2qN ¤ πN�1,Rpfq.
This gives

p1� |z|2qN
»
R
|fpz, z0 � xq| dx ¤ πN�1,Rpfq

»
R

1
1� |z0 � x|2 dx

and consequently
πN,RpF q ¤ Cz0πN�1,Rpfq

where Cz0 � ³
R

1
1�|z0�x|2 dx   8. This implies F P PWRpCn�1q and f ÞÑ F

is continuous at 0. Since f Ñ F is a linear transformation, we see f ÞÑ F is
continuous. ¤

Theorem 4.18. Let f P PWpCnq and let σ P Rn. Then»
Rn

fpxq dλ �
»
Rn

fpx� iσq dλ .

Proof. We may assume that f P PWRpCnq for some R ¡ 0. Let T ¡ 0
and let σ � pσ1, . . . , σnq. Consider the curves γ1ptq � t, �T ¤ t ¤ T ,
γ2ptq � T � itσn, 0 ¤ t ¤ 1, γ3ptq � �t � iσn, �T ¤ t ¤ T , and γ4ptq ��T �p1� tqiσn, 0 ¤ t ¤ 1. Finally let γptq be the sum of those four curves:

γptq �
$''&''%

γ1ptq if �T ¤ t ¤ T
γ2pt� T q if T ¤ t ¤ T � 1
γ3pt� p2T � 1qq if T � 1 ¤ t ¤ 3T � 1
γ4pt� p3T � 1qq if 3T � 1 ¤ t ¤ 3T � 2

Then for each z P Cn�1 »
γ
fpz, wqdw � 0

by Corollary 4.5. Thus» T

�T
fpz, tqdt� i

» 1

0
fpz, T � itσnq dt�

» T

�T
fpz, t� iσnq dt� i

» 1

0
fpz,�T � itσnq dt � 0 .

Consider now the limit T Ñ8. Using that

|fpz,�T � itσnq| ¤ πR,1pfqp1� |z|2 � T 2 � σ2
nt2q�1eR

?|Impzq|�t|σn|
¤ C 1T�2,

we see

lim
TÑ8

» 1

0
fpz, T � itσnq dt �

» 1

0
fpz,�T � itσnq dt � 0 .

Thus » 8
�8

fpz, tq dt �
» 8
�8

fpz, t� iσnq dt
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By Lemma 4.17, we know that the function

F pzq �
» 8
�8

fpz, tnq dtn �
» 8
�8

fpz, tn � iσnq dtn

is in PWRpCn�1q. By iterating this argument, we see:

» 8
�8

» 8
�8 fpz, tn�1, tnq dtndtn�1 �

» 8
�8

» 8
�8 fpz, tn�1 � iσn�1, tn � iσnq dtndtn�1

..

.»
Rn

fptq dt �
»
Rn

fpt� iσq dt.

¤

Theorem 4.19. Let F P PWRpCnq and let α P Nn
0 . Then DαF P PWRpCnq

and the mapping F ÞÑ DαF is continuous.

Proof. It suffices to show BBz1
F P PWRpCnq, F ÞÑ BBz1

F is continuous, and
then argue inductively.

We write z � pz1, z
1q where z1 P C and z1 P Cn�1. Consider the curve

C: γptq � pz1 � eit, z1q for 0 ¤ t ¤ 2π. Then

B
Bz1

F pz1, z
1q � 1

2πi

»
C

F pw1, z
1q

pw1 � z1q2 dw1.

This gives

p1� |z|2qN
���� BBz1

F pzq
���� e�R|Imz| � 1

2π

�����»C

p1� |z|2qN p1� |pw1, z1q|2qN F pw1, z1qe�R|Imz|
p1� |pw1, z1q|2qN |w1 � z1|2

����� d|w1|

¤ 1

2π

»
C

p1� |z|2qN πR,N pF q
p1� |pw1, z1q|2qN |dw1|.
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Now on C, w1 � z1 � eit and thus

p1� |z|2qN
p1� |pw1, z1q|2qN � p1� |z1 � eit � eit|2 � |z1|2qN

p1� |w1|2 � |z1|2qN�1

� p1� |w1 � eit|2 � |z1|2qN
p1� |w1|2 � |z1|2qN

¤ p1� |w1|2 � 2|w1| � 1� |z1|2qN
p1� |w1|2 � |z1|2qN

�
�

1� |w1|2 � |z1|2p1� |w1|2 � |z1|2q �
2|w1| � 1

1� |w1|2 � |z1|2

N

¤
�

1� 2|w1| � 1
1� |w1|2


N

�
� |w1|2 � 2|w1| � 2

|w1|2 � 1


N

¤ 5N .

Hence

p1� |z|2qN
���� BBz1

F pzq
���� e�R|Imz| ¤ 1

2π

»
C

p1� |z|2qNπR,N pF qp1� |pw1, z1q|2qN |dw1|
¤ 5N

2π
πR,N pF q

»
C
|dw1|

� 5NπR,N pF q.
This gives BBz1

F P PWRpCnq and πR,N p BBz1
F q ¤ 5NπR,N pF q. Thus F ÞÑ

BBz1
F is continuous. ¤

Corollary 4.20. Let F P PWRpCnq. Then F |Rn is a Schwartz function.
Moreover, F ÞÑ F |Rn is a continuous linear transformation from PWRpCnq
into SpRnq.
Proof. The above proof implies

p1� |x|2qN |DαF pxq| ¤ 5N |α|πR,N pF q.
Thus if f � F |Rn , then

|f |N,α ¤ 5N |α|πR,N pF q.
¤

Recall DpRnq denotes the space of complex C8 functions with compact
support.
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Theorem 4.21 (The Paley-Wiener Theorem). For f P DpRnq, we extend
the domain of definition of the Fourier transform Fpfq to Cn by

Fpfqpzq �
»
Rn

fpxqe�2πix�z dx.

Let R ¡ 0. Then F is a topological isomorphism of DRpRnq onto PW2πRpCnq.
Consequently, the Fourier transform is a topological isomorphism of

DpRnq onto PWpCnq.
Proof. By Lemma 4.16, F defined by F pzq � ³

BRp0q fpyqe2πiz�y dy is a holo-
morphic function on Cn.

Let z � pz1, z2, . . . , znq where zj � sj � itj . Then on BRp0q we have the
estimate��e�2πiz�y�� ¤ e2π

°
tjyj ¤ e2π

° |tj |yj | ¤ exp

��2π

gffe ņ

j�1

t2j

gffe ņ

j�1

y2
j

�¤ e2πR|Impzq| .

Hence

|F pzq| ¤ e2πR|Impzq||f |1 ¤ volpBRp0qq|f |8 e2πR|Impzq|.
Integration by parts gives

p2πizqαF pzq �
»

BRp0q
p�1q|α|fpyqDα

y e�2πiz�y dy

�
»

BRp0q
Dαfpyq e�2πiz�y dy .

Thus |zα| |F pzq| ¤ p2πq�|α|volpBRp0qq|Dαf |8e2πR|Impzq|.
Now by expanding p1� |z|2qN � °

|α|¤2N aα |z1|α1 � � � |zn|αn we see that�
1� |z|2	N

e�2πR|Impzq| |F pzq| ¤ volpBRp0qq¸ aαp2πq�|α| |Dα1
1 � � �Dαn

n f |8 .

This implies F : DRpRnq Ñ PW2πRpCnq is continuous.
Let now F P PW2πRpCnq. By Corollary 4.20, F is Schwartz on Rn.

Thus f given by

fpxq � F�1pfqpxq �
»
Rn

F pyq2πiy�x dy.

is a Schwartz function.



The Paley-Wiener Theorem 163

Now let F P PW2πRpCnq and x P Rn with |x| ¡ R. We first note
Hpzq � F pzqe2πiz�x is in PW2πpR�|x|qpCnq. Indeed,

|p1� |z|2qN |Hpzq|e�2πpR�|x|q|Impzq| � p1� |z|2qN |F pzq|e�2πR|Imz|
� e�2πImz�xe�2π|x| |Impzq|

¤ πN,2πRpF qe2π|Imz||x|e�2π|x| |Imz|
¤ πN,2πRpF q.

Hence by Theorem 4.18, if z � a� ib where a, b P Rn, then»
Rn

Hpyq dx �
»
Rn

Hpy � ibq dx �
»
Rn

Hpy � a� ibq dx.

Consequently,

fpxq �
»

F pyqe2πiy�x dy �
»

F py � zqe2πipy�zq�x dy

for any z P Cn.
Now take z � αix where α ¡ 0. Then

fpxq �
»

F py � iαxqe2πipy�αixq�x dy

� e�2απ|x|2
»

F py � iαxqe2πiy�x dy

and we see

|fpxq| ¤ e�2απ|x|2
»

πN,2πRpF qp1� |y|2q�Ne2πRα|x|

� e2πα|x|pR�|x|qπN,2πRpF q
»
p1� |y|2q�N dy.

Take N so that
³p1 � |y|2q�N dy   8 and let α Ñ 8. We obtain fpxq � 0

for |x| ¡ R. Hence supp pfq � BRp0q, or f P DRpRnq.
Let α P Nn

0 . Choose N ¡ 0 such that y ÞÑ p1 � |y|2q�N |yα1
1 � � � yαn

n | is
integrable. Then

|Dαfpxq| ¤ p2πq|α|
»
|yα1

1 � � � yαn
n F pyq| dy

¤ p2πq|α|
»
|yα1

1 � � � yαn
n | p1� |y|2q�N dy sup

tPRn

�
1� |t|2	�N |F ptq|

¤ CπN,RpF q .
Thus the Fourier transform is a topological isomorphism.

The last statement follows from the fact that DpRnq and PWpCnq are
inductive limits of DRpRnq and PWRpCnq, respectively. ¤
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Remark 4.22. The discussion in the proof concerning Hpzq establishes the
following:

If F P PWRpCnq and a P Rn, then H defined by

Hpzq � eia�zF pzq
is in PWR�|a|pCnq.

Exercise Set 4.1

1. Show, using the definition, that the function z ÞÑ z̄, i.e., x� iy ÞÑ x� iy,
is not holomorphic.

2. Let T : R2 Ñ R2 be a linear map corresponding to the matrix
�

a b
c d



with respect to the standard basis e1, e2. Show T is complex linear if and
only if a � d and b � �c. Use that to show that if f : CÑ C is differentiable,
then f is complex differentiable if and only if Dfpzq is complex linear. Derive
from this that f is complex differentiable if and only if f satisfies the Cauchy-
Riemann differential equation.

3. Find the points at which the following functions are complex differen-
tiable

(a) fpzq � x2 � 2ixy;

(b) fpzq � 2xy � ipx� 2
3y3q;

(c) fpzq � x2 � y2 � zz̄;

4. Define f : CÑ C by

fpx� iyq �
#

0 if z � 0
p1�iqx3�p1�iqy3

x2�y2 if z �� 0
.

Show f solves to Cauchy-Riemann equation at z � 0 and f is not differen-
tiable at zero. Why does this not contradict Theorem 4.2?.

5. Let f be a holomorphic function on an open subset U � C. Write
f � u� iv as usual. Show ∆u � ∆v � 0.

6. Let f be a holomorphic function on an open subset of C. Show the
function z ÞÑ fpz̄q is holomorphic.

7. Find the radius of convergence for the following functions:

(a) fpzq � °8
n�0 nzn;

(b) fpzq � °8
n�0 n!zn;

(c) fpzq � °8
n�0 enzn;

(d) fpzq � °8
n�0 en!zn.
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8. Let x�, �y be a positive definite Hermitian form on Cn. Thus z, w ÞÑ xz, wy
is complex linear in the first variable, xz, wy � xw, zy and xz, zy ¡ 0 for
all z �� 0. Show px, yq :� Rexx, yy defines a inner product on R2n � Cn

as a real vector space. Let e1, . . . , en be the standard basis of Rn. Show
e1, . . . , en, ie1, . . . , ien is an orthonormal basis of R2n.

9. Define J : Cn Ñ Cn by x ÞÑ ix. Show the matrix expression of J with
the basis in problem 1.8 is given by

J �
�

0 �In

In 0



where In is the n� n identity matrix.

10. Let T : Rn Ñ Rn be R-linear. Show the following three conditions are
equivalent:

(a) T is complex linear;

(b) TJ � JT ;

(c) The matrix representation of T with respect to the basis in problem
1.8 is given by

T �
�

A B
�B A



where A,B PMnpRq.

11. Prove Lemma 4.17.

12. Prove the second part of the Paley-Wiener theorem.

13. For a P Rn, define τpaqfpzq � fpz� aq and eapzq � eia�z. Furthermore,
let ppzq be a complex polynomial.

(a) Show τpaq is a linear homeomorphism of PWpCnq.
(b) Show f ÞÑ eaf is a linear homeomorphism of PWpCnq.
(c) Show f ÞÑ pf is a continuous linear transformation of each space

PWRpCnq.
14. Show PWRpCnq is a Fréchet space.

15. Show if B is a bounded subset of PWpCnq, then there is an R ¡ 0 such
that B � PWRpCnq.
16. Show for each R ¡ 0, the space PWRpCnq has the Heine-Borel property.

17. Show the space PWpCnq has the Heine-Borel property.

18. Show the space PWpCnq is complete.
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19. Let f : RÑ C be measurable and such that on R� we have |fptq| ¤
Cetβ for some β P R and C ¡ 0. Let

Cβ :� tz P C | Repzq ¡ 0u .

Show the Laplace transform of f :

Lpfqpzq :�
» 8
0

e�ztfptq dt

is defined for z P Cβ and that Lpfq : Cβ Ñ C is holomorphic. Furthermore
show that for all x ¡ β the following inversion formula holds for t ¡ 0:

fptq � 1
2π

» 8
�8

Lpfqpx� iyqepx�iyqt dy .

(Hint: Relate the Laplace transform to the Fourier transform.)

20. (Hardy spaces) Let

L2�pRq �
!
f P L2pRq | supp pf̂q � r0,8q)

and
L2�pRnq � !

f P L2pRq | supp pf̂q � p�8, 0s) .

Let HpC�q be the space of all holomorphic functions on C� such that fp� �
iyq P L2pRq for all y ¡ 0, i.e.,» 8

�8
|fpx� iyq|2 dx   8 @y ¡ 0

and such that the L2-limit

β�pfq :� lim
yÑ0

fp� � iyq
exists. Similarly we define HpC�q, C� :� tz P C | Impzq   0u, to be the

space of all holomorphic functions on C� such that fp� � iyq P L2pRq for all
y ¡ 0, i.e., » 8

�8
|fpx� iyq|2 dx   8 @y ¡ 0

and such that the L2-limit

β�pfq :� lim
yÑ0

fp� � iyq
exists. Show the following:

(a) Let f P L2�pRq. Then the f extends to a holomorphic function
F�pzq on C�. It is given by

F�pzq �
»

f̂pxqe2πizx dx .

Furthermore F� P HpC�q and β�pF�q � f .
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(b) Let f P L2�pRq. Then f extends to a function F� P HpC�q such
that β�pF�q � f .

(c) If f P L2pRq then there exists F P HpC�q and G P HpC�q such that

f � β�pF q � β�pGq .
Thus any L2-function on R is the difference of a boundary value of
a holomorphic function on the upper half plane and a holomorphic
function on the lower half plane.

21. Let X be a Hausdorff topological space, and let H � CpXq be a Hilbert
space. Assume that the maps

evx : HÑ C , f ÞÑ fpxq
are continuous for all x P X. Show there exists a function K : X �X Ñ C
such that the following holds:

(a) If Ky : X Ñ C is the function Kypxq � Kpx, yq, then Ky P H for
all y. In particular Ky is continuous.

(b) We have fpyq � pf | Kyq for all y P X and all f P H.

(c) Kpx, yq � Kpy, xq for all x, y P X. In particular y ÞÑ Kpx, yq is
continuous for all x P X.

(d) Let x, y P X, then pKy | Kxq � Kpx, yq. In particular ||Kx||2 �
Kpx, xq for all x P X.

(e) The linear span

H0 :�
#

fi̧nite

cjKxj P H | cj P C, xj P X

+
is dense in H.

(f) The function K is positive definite in the sense, that for all k P N,
x1, . . . , xk P X, and c1, . . . , ck P C we have

ķ

i,j�1

cic̄jKpxj , xiq ¥ 0 .

The function K is called a reproducing kernel for the Hilbert space H.

22. (The Fock space and the Segal-Bargmann transform) This ex-
ercise is a set of problems dealing with the Fock space FpCnq of holomorphic
functions on Cn and the Segal-Bargmann transform B : L2pRnq Ñ FpCnq.

(a) Let FpCnq be the space of holomorphic functions F : Cn Ñ C such
that

||F ||2 :� π�n

»
|F px� iyq|2 e�|z|2 dxdy   8
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where z � x� iy. For F, G P FpCnq, let

pF | Gq � π�n

»
F px� iyqGpx� iyq e�|z|2 dxdy.

Show FpCnq is a Hilbert space.

(b) Show every polynomial p is in FpCnq and the vector space
Crz1, . . . , zns of polynomials is dense in FpCnq.

(c) Evaluate the norm of the monomials pαpzq � zα, α P Nn
0 .

(d) Show
!||pα||�1 pα | α P Nn

0

)
is an orthonormal basis for FpCnq.

(e) Define R : FpCnq Ñ C8pRnq by

RF pxq � e�|x|2{2F pxq .
Show R is injective and that Rp P L2pRnq for every polynomial p.

(f) Show ImpRq is dense in L2pRnq. Hence R : FpCnq Ñ L2pRnq is
densely defined. (Hint: Use the Hermite polynomials.)

(g) Show FpCnq Ñ C, F ÞÑ F pzq, is continuous for each z P Cn.

(h) Show the reproducing kernel for FpCnq is given by

Kpz, wq � ez�w

where u � v � °n
j�1 ujvj .

(i) Show R is closed.

(j) As R is closed and densely defined the map R� : L2pRnq Ñ FpCnq
is well defined. Show that

R�fpzq � ez�z{2f �Hpzq
where Hpzq � e� 1

2
z�z. In particularly RR�fpzq � f �Hpzq. (Hint:

Use that R�fpzq � pR�f | Kzq where as usually Kzpwq � Kpw, zq.)
(k) Using the heat semigroup Show

?
RR�pfqpxq � p2πq�n{2f � Lpxq

where Lpzq � Hp?2zq.
(l) Polarizing R we can write R � B

?
RR� where B : L2pRnq Ñ FpCnq

is an unitary isomorphism. Show B is given by

Bfpzq �
�

2
π


n{4 »
fpxqe�z�x�2x�z� 1

2
x�z dx .

The map B is the so-called Segal-Bargmann transform.
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3. Applications: The wave equation

It is well known that waves behaves differently in even and odd dimension.
In odd space dimensions the solution vanishes in finite time, depending on
the support of the initial data, whereas this is not necessarily the case in
even dimensions. Mathematically this can be formulated by saying that the
solution upx, tq of the Cauchy problem

∆xupx, tq � c�2uttpx, tq
upx, 0q � fpxq(4.7)

utpx, 0q � gpxq
when f, g P DRpRnq and c ¡ 0 satisfies the Huygens’ principle when n �
2k � 1 and not necessarily when n � 2k. Notice that if the function upx, tq
satisfies (4.7) for c � 1, then the function

vpx, tq � upx, t{cq
satisfies (4.7). Thus we can assume that c � 1. We can the state the
Huygens’ principle by saying that:

upx, tq � 0 if |t| ¥ R� |x| .
We start by taking the Fourier transform Fx in the x-variable and write
ûpω, tq � Fxupx, tq. This results in the Cauchy problem

d2

dt2
ûpλ, tq � � p2πq2 |λ|2 ûpλ, tq, ûpλ, 0q � f̂pλq, d

dt
ûpλ, 0q � ĝpλq .

For each fixed λ this Cauchy problem has a unique solution

ûpλ, tq � ĝpλq cosp2π|λ|tq � f̂pλqsinp2π |λ| tq
2π |λ| .

Taking the inverse Fourier transform and using Corollary 2.26, we obtain
the solution

upx, tq �
» �

ĝpλq cosp2π |λ| tq � f̂pλqsinp2π |λ| tq
2π |λ|



e2πiλ�x dλ

�
» 8
0

»
Sn�1

�
ĝprωq cosp2πrtq � f̂prωqsinp2πrtq

2πr



e2πirω�xrn�1 dσpωq dr .

Now assume that n � 2k� 1 is odd. To simplify the argument, we consider
each part in the inner integral separately.

First, for r ¡ 0, set

Gpx, rq � rn�1

»
Sn�1

ĝprωqe2πirω�x dσpωq.
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Since Sn�1 is compact and ĝ P PW2πRpCnq, we can define Gpx, zq for z P C
by

Gpx, zq � zn�1

»
Sn�1

ĝpzωqe2πizω�x dσpωq.
Note for each x P Rn, the function Gpx, zq is holomorphic in z. Moreover
by Theorem 4.21, ĝ P PW2πRpCnq and thus by Remark 4.22, H defined by

Hpξq � ĝpξqe2πiξ�x

is in PW2πpR�|x|qpCq. Thus given N , there is a C ¡ 0 with

|Hpξq| ¤ Cp1� |ξ|2q�Nep2πR�|x|q|Impξq|.
Since ω P Sn�1 � Rn, we see

(a) |Gpx, a� ibq| ¤ CσpSn�1qp1� pa2 � b2qq�Ne2πpR�|x|q|b|pa2 � b2qpn�1q{2

and consequently Gpx, �q is in PWpCq for each x P Rn.
As n� 1 is even and the surface measure dσ on Sn�1 is invariant under

the inversion ω ÞÑ �ω, it follows that Gpzq � Gp�zq, i.e. G is even. Now by
Remark 4.22, z ÞÑ Gpx, zqe2πizt is in PWpCq. Using all this and Theorem
4.18, we see if u1 is defined by u1px, tq � ³8

0 Gpx, rq cosp2πrtq dr, then

u1px, tq �
» 8
0

Gpx, tqe2πirt � e�2πirt

2
dr

� 1
2

» 8
0

Gpx, tqe2πirt dr � 1
2

» 8
0

Gpx,�tqe�2πirt dr

� 1
2

» 8
�8

Gpx, rqe2πirt dr

� e�2πbt

2

» 8
�8

Gpx, r � ibqe2πirt dr .

By (a) if we take N ¡ n�1
2 � 1 � k � 1 and C 1 � CσpSn�1q, then

|u1px, tq| ¤ e2πpR�|x|�tqbC 1
» 8
�8

pr2 � b2qpn�1q{2
p1� r2 � b2qN dr

¤ e2πpR�|x|�tqbC 1
» 8
�8

1
1� r2

dr

¤ e2πpR�|x|�tqbC 1π .

If t ¡ R� |x| then by letting bÑ8, we see

u1px, tq � 0 .

If t   0 and |t| ¡ R� |x| the same conclusion holds by letting bÑ �8.
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For the second integral we use a similar argument where for x P Rn and
r, t P R we define Hpx, rq and u2px, tq by

Hpx, rq � rn�2

»
Sn�1

f̂prωq e2πirω�x dσpωq
and

u2px, tq �
» 8
0

Hpx, rq sinp2πrtq dr .

Again since n ¥ 3, we note that r ÞÑ Hpx, rq extends to a holomorphic
function on C such that

|Hpx, a� ibq| ¤ Cp1� a2 � b2q�Ne2πpR�|x|q|b|pa2 � b2qpn�1q{2
¤ C 1e2πpR�|x|q|b|p1� r2q�1 .

Furthermore, since n � 2 is odd, Hpx, rq is odd as a function of r. As
r ÞÑ sinp2πrtq is odd, we see

u2px, tq � 1
2i

» 8
0

Hpx, rq �e2πirt � e�2πirt
�

dr

� 1
2i

» 8
0

Hpx, rqe2πirt �Hpx,�rqe�2πrt dr

� 1
2i

» 8
�8

Hpx, rqe2πirt dr .

and just as before it follows that for t ¡ R� |x| we have

u2px, tq � 0 .

Since upx, tq � u1px, tq � u2px, tq, one sees upx, tq � 0 for |t| ¥ R� |x|.
The case n � 1 is handled differently. We define

upx, tq � 1
2
pfpx� tq � fpx� tqq � 1

2

» x�t

x�t
gpuq du .

Then

uxpx, tq � 1
2
pf 1px� tq � f 1px� tqq � 1

2
pgpx� tq � gpx� tqq

and

uxxpx, tq � 1
2
pf2px� tq � f2px� tqq � 1

2
�
g1px� tq � g1px� tq� .

Similarly

utpx, tq � 1
2
pf 1px� tq � f 1px� tqq � 1

2
pgpx� tq � gpx� tqq

and hence

uttpx, tq � 1
2
pf2px� tq � f2px� tqq � 1

2
�
g1px� tq � g1px� tq� .
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It follows that uxxpx, tq � uttpx, tq. Furthermore

upx, 0q � fpxq
and

utpx, 0q � 1
2
pf 1px� tq � f 1px� tqq � 1

2
pgpx� tq � gpx� tqq

����
t�0� gpxq .

Hence upx, tq is the solution to the Cauchy problem (4.7). But if t ¡ |x|�R
then

fpx� tq � fpx� tq � 0

and » x�t

x�t
gpuq du �

» 8
�8

gpuq du .

Hence upx, tq � 0 for t ¡ |x| � R if and only if
³8�8 gpuq du � 0. This

condition can be formulated in the following way. Let

hpxq �
» x

�8
gpuq du .

Then hpxq � 0 if |x| ¥ R, h is smooth, and h1pxq � gpxq. This is equivalent
to g P d

dxDRpRq and we have:

Lemma 4.23. Suppose that n � 1. Then the solution upx, tq to the Cauchy
problem (4.7) satisfies the Huygens’ principle if and only if g P d

dxDRpRq.
Exercise Set 4.2

1. Use the Fourier transform to solve the Cauchy problem

Bu
Bxpx, tq � BuBt px, tq, upx, 0q � fpxq

for some f P SpRnq.
4. Distributions

In general we can not talk about the derivative of a generic Lp-function.
The function χr0,1s is differentiable almost everywhere, and the derivative
where it exists is zero. But what about the jump points 0 and 1? The theory
of distributions – or generalized functions, as they are sometimes called –
allows us to differentiate any locally integrable function as many times as
we please! The result is then, in general, not a function, but a distribution.

Let us start by reviewing the dual of a topological vector space. Let V, W
be complex, locally convex, Hausdorff topological vector spaces. HompV, W q
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will denote the space of continuous linear transformations T : V Ñ W . We
make HompV,W q into a vector space by defining

pλT � Sqpvq :� λT pvq � Spvq
for T, S P HompV, W q and λ P C. Then the dual V 1 is defined by

V 1 � HompV,Cq .
For ν P V 1 and u P V we write

νpuq � xu, νy
to underline the duality between the two spaces V and V 1. The space V 1
separates points in V , i.e.; if u �� 0 then there exists a ν P V 1 such that
xu, νy �� 0.

Now if V is a topological vector space, then the weak � topology on V 1
is the locally convex Hausdorff topology on V 1 given by the semi-norms | � |1v
for v P V where

(4.8) |ν|1v � |xv, νy| � |νpvq|
This is the weakest locally convex topology that makes all the linear func-
tionals

V 1 Q ν ÞÑ xu, νy P C
for u P V continuous.

Let Ω be a nonempty subset of Rn. In Definition 2.64, we defined the
topological vector space DpΩq. It is the inductive limit topology on C8c pΩq
of the subspaces DKpΩq. The locally convex topology on DKpΩq is defined
using the semi-norms | � |K,α where

|φ|K,α � max
xPK |Dαφpxq|.

Definition 4.24. Let H �� Ω � Rn be an open set. The elements of DpΩq1
are called distributions or generalized functions. The elements of DpΩq
are called test functions.

If T is a distribution and ϕ a test function, then we introduce the fol-
lowing notation for the value T pϕq of T at the point ϕ:

T pϕq � xϕ, T y �
»

ϕpxq dT pxq .
By Propositions 2.15 and 2.73 we have the following criteria for deciding

whether a linear functional T on DpΩq is a distribution:

(9)
T is a distribution if and only if the restriction of T to
DKpΩq is continuous for every compact set K � Ω.
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(10)
T is a distribution if and only if T is sequentially contin-
uous; i.e. if ϕj Ñ ϕ in DpΩq, then T pϕjq Ñ T pϕq.

Example 4.25 (The δ-distributions). Let x P Rn. Define δx : D Ñ C by

xϕ, δxy :� ϕpxq .
As |xϕ, δxy| ¤ |ϕ|K,0 for all compact sets K containing x it follows that δx

is continuous. When x � 0 we use the notation δ for δ0.

Example 4.26 (Locally integrable functions). Let Ω �� H be open. A
measurable function f : ΩÑ C is called locally integrable if»

K
|fpxq| dx   8

for all compact sets K � Ω. Let LlocpΩq be the space of locally integrable
functions and let

LlocpΩq :� LlocpΩq{ tf P LlocpΩq | fpyq � 0 a.e.u .

Note that LppΩq � LlocpΩq for all 1 ¤ p ¤ 8. For f P LlocpΩq define
Tf : DpΩq Ñ C by

xϕ, Tf y �
»

ϕpxqfpxq dxq .
Let K be a compact set containing supp pϕq. Then

|xϕ, Tf y| ¤
�»

K
|f pxq| dx



|ϕ|8 � CK |ϕ|K,0

where CK � ³
K |f pxq| dx   8. Hence Tf is continuous, and thus is a

distribution. We say that a distribution T is a locally integrable function if
there exists a f P LlocpΩq such that T � Tf . In that case Exercise 4.3.4
shows f is unique and we simply write T � f . Thus T � f if and only if

xϕ, T y �
»

ϕpxqfpxq dx

for all test functions φ. We say that T is an Lp-function, a smooth function,
etc. if T � f with f P Lp, f smooth, etc. Let Hpxq � χr0,8q. Then H and
the corresponding distribution

DpRq Q ϕ ÞÑ xϕ,Hy �
» 8
0

ϕpxq dx P C
is called the Heaviside distribution.

Theorem 4.27. Let tTnu be a sequence of distributions on Ω such that
tTnpϕqu converges for every test function ϕ in DpΩq. Then T : DpΩq Ñ C
defined by

T pϕq � lim
nÑ8Tnpϕq

is a distribution.
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Proof. This follows from Theorem 2.18, the Uniform Boundedness Princi-
ple. ¤

Recall that we have

(4.11) DpRnq ιãÑ SpRnq κãÑ EpRnq .
Here ι and κ are the canonical inclusion maps. Both maps are continuous
with dense image, c.f. Theorem 2.67. We will use this sequence to clarify
the connection between elements in the dual of SpRnq and EpΩq and distri-
butions. For that we first recall the some facts on the transpose of a linear
transformation. Let V and W be topological vector spaces and suppose
T : V ÑW is a continuous linear transformation. Then the transpose T t is
the linear transformation from W 1 to V 1 defined by

xv, T tpνqy � xT pvq, νy
for ν P W 1 and v P V . Since T and ν are continuous, we see T tpνq is a com-
position of continuous transformations and thus is continuous. Moreover,
the linear map T t : W 1 Ñ V 1 is continuous in the weak � topologies since

|T tpνq|v � |xv, T tpνqy| � |xT pvq, νy| � |ν|T pvq.
We will also need the following Lemma:

Lemma 4.28. Assume that T pV q � W is dense in W . Then T t : W 1 Ñ V 1
is injective.

Proof. Assume T tpνq � 0. Then xv, T tpνqy � 0 for all v P V . This says
xT pvq, νy � 0 for all v P V . Thus ν vanishes on a dense subset of W and we
see ν � 0. ¤

As a result of this general discussion, we see (4.11) gives the following
sequence of injective continuous maps:

EpRnq1 κtãÑ SpRnq1 ιtãÑ DpRnq1 .
Similarly we have EpΩq1 ãÑ DpΩq1 for any open set Ω �� H. Notice, that for
ϕ P DpRnq and T P EpRnq1 we have:

xpκ � ιqtpT q, ϕy � xT, pκ � ιqpϕqy � xT, ϕy .
Thus pκ � ιqtpT q � T |DpRnq, or the inclusion EpRnq1 ãÑ DpRnq1 is simply
the restriction map. The same holds for the other inclusions. Thus we can
view both SpRnq1 and EpRnq1 as subsets of DpRnq1. Namely, they are the
distributions on Rn which have extensions as continuous linear functionals
to the larger spaces SpRnq and EpRnq.

Let U � Ω � Rn be open. We say that a distribution T P DpΩq1 vanishes
on U if xf, T y � 0 for all f P DpΩq with supp pfq � U . Let UT be the union
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of all open sets U such that T vanishes on U . Then UT is open and hence
ΩzUT is closed in Ω. Define the support of T by:

(4.12) supp pT q � ΩzUT .

Lemma 4.29. Suppose φ P DpΩq and suppφ � U1 Y U2 Y � � � Y UN where
U1, U2, . . . , UN are open subsets of Ω. Then there are φ1, φ2, . . . , φN P DpΩq
with suppφi � Ui and φ � φ1 � φ2 � � � � � φN .

Proof. Let K � suppφ. Then for each p P K, choose a closed ball Bp of
radius rp ¡ 0 and center p with Bp � Ui for some i. Since K is compact, we
can choose a finite sequence Bpk

for k � 1, 2, . . . ,m of such balls that cover
K. Set Ki to be the union of the sets Bpk

XK where Bpk
� Ui. Then Ki

is a compact subset of Ui and K � YN
i�1Ki. By Corollary 2.54, there is a

ψi P C8c pUiq with 0 ¤ ψi ¤ 1 and ψi � 1 on Ki.

Set φi � φψi°
ψi

where we define 0
0 to be 0. Note φi is C8 on the open set

where
°

ψi ¡ 0 and thus is C8 on an open set containing the support K of
φ. Moreover, each φi is 0 on the open set Ω�K. Thus each φi is in C8c pUiq
and clearly

°
φi � φ.

¤

Proposition 4.30. Let T be a distribution on nonempty open subset Ω.
Then T vanishes on ΩzsuppT .

Proof. Let φ have support K where K � ΩzsuppT � UT . Since UT is the
union of all open sets U � Ω where T vanishes on U , we see these sets U
form an open cover of K. Since K is compact there are amongst these sets
a finite collection U1, U2, . . . , Um which cover K. By Lemma 4.29, there
exists φi P DpΩq with suppφi � Ui and

φ1 � φ2 � � � � � φm � φ.

But since T vanishes on each Ui, we see T pφq � °m
i�1 T pφiq � 0. So T

vanishes on UT . ¤

Lemma 4.31. Let T P D1pΩq. Then T P EpΩq1 if and only if supp pT q is
compact in Ω.

Proof. Let T P EpΩq1. Since T is continuous there is a compact set K, a
finite subset F � Nn

0 , and a M ¡ 0 such that if |f |K,α ¤ 1
M for α P F ,

then |T pfq| ¤ 1. This implies |T pfq| ¤ M maxt|f |K,α | α P F u for f P
EpΩq. Consequently, if f has compact support in the complement of K in
Ω, T pfq � 0; and we see T vanishes off K and thus has compact support.

Conversely, if T is a distribution with compact support K, we can by
Corollary 2.54 and Exercise 4.3.1 find a ψ P C8c pΩq with ψ � 1 on an open
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set V � Ω containing K. Extend T to all of EpΩq by

T epfq � T pψfq.
T e is continuous on EpΩq for the mapping f ÞÑ fψ is a continuous linear map
from EpΩq into DKpΩq and by the definition of inductive limit topology, the
inclusion mapping from DKpΩq into DpΩq is continuous. Moreover T e � T
on DpΩq. Indeed, if f P DpΩq, then f �ψf is 0 off V and hence has support
in ΩzV � ΩzK. Since T vanishes on ΩzK, we see T pf � ψfq � 0. Hence
T epfq � T pfq. ¤

Definition 4.32. A distribution T on Rn is a tempered distribution if
T has a continuous extension to SpRnq; since this extension is unique, we
also call it T .

Since a distribution T on a nonempty open subset Ω of Rn has compact
support if and only if it is the restriction of a unique continuous linear
functional on EpΩq, we identify T with this unique extension and again call
the extension T .

Definition 4.33. Let Ω be a nonempty open subset of Rn and suppose f :
ΩÑ C is a measurable function. Then the support of f is the complement
in Ω of the union of all open subset V of Ω for which fχV is 0 a.e.

Note a point x in Ω is in the support of f if and only if there is an open
neighborhood V of x such that f � 0 a.e. on V . It is an easy exercise to
show if f is continuous, then the support of f is the closure in Ω of the
set tx P Ω | fpxq � 0u. Moreover, two measurable functions equal almost
everywhere have the same support.

Remark 4.34. Let f P LlocpΩq. Then supp f � suppTf .
Indeed, Tf vanishes on an open subset V of Ω if and only if Tf pφq � 0

for all test functions φ with suppφ � V if and only if
³
V φpxqfpxq dx � 0 for

all such φ. The conclusion will then follow if one shows
³
V φpxq fpxq dx � 0

for all φ P C8c pΩq with suppφ � V if and only if f � 0 a.e. on V . But this
we leave as an exercise.

Example 4.35. Suppose f P LlocpRnq is is dominated by a polynomial func-
tion ppxq. Hence |fpxq| ¤ ppxq a.e. x. Note if P pxq is the polynomial
p1 � |x|2qppxq and φ is a Schwartz function, we have |φ|P,0 � max |p1 �
|x|2qnppxqφpxq|   8. Thus Tf defined by

Tf pφq �
»

fpxqφpxq dx for φ P SpRnq



178 Further Topics

satisfies

|xφ, Tf y| ¤
»
|fpxqφpxq| dx

¤
»
|ppxqφpxq| dx

� |φ|P,0

»
1

p1� |x|2qn dx.

By Corollary 2.61, | � |P,0 is a continuous seminorm. Thus Tf on DpRnq has
a continuous extension to SpRnq and hence is a tempered distribution .

Example 4.36. Let Ω be a nonempty open subset of Rn and let µ be a Borel
measure on Ω. Then every f P DpΩq is integrable if and only if µpKq   8
for all compact subsets K of Ω. For open subsets Ω of Rn, one has µpKq   8
for all compact subsets K of Ω if and only if µ is a Radon measure on Ω. For
a discussion of Radon measures see the material at the beginning of Section
1 in Chapter 6.

Suppose µ is a Radon measure on Ω. Note if φ P DKpΩq where K is a
compact subset of Ω, then |xφ, Tµy| ¤ ³ |φ| dµ ¤ |φ|8µpsuppφq ¤ |φ|K,0µpKq.
Thus by (4), Tµ is distribution on Ω. In the case when Ω � Rn and Tµ has
a continuous extension to SpRnq, we say µ is a tempered measure. More-
over, by Exercise 4.3.5, the distribution Tµ on Ω has a continuous extension
to EpΩq if and only if µ has compact support; that is there is a compact
subset K of Ω such that µpΩzKq � 0.

For example if µ is a measure on Rn such that
³p1 � |x|2qr dµpxq   8

is finite for some r P R, then µ is a tempered measure. Indeed, we have for
any nonnegative integer m ¥ �r,

|xφ, Tµy| ¤
»
|φpxq| dµpxq

�
»
p1� |x|2qm|φpxq| p1� |x|2q�m dµpxq

¤ |φ|m,0

»
p1� |x|2q�m dµpxq

¤ |φ|m,0

»
p1� |x|2qr dµpxq.

Example 4.37. Assume that f is a measurable function such that for some
r P R and 1 ¤ p   8, we have»

|fpxq|pp1� |x|2qr dx   8.
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Then Tf is a tempered distribution. To see this we first consider T|f |. Note
T|f |pφq � ³ |fpxq|φpxq dx and so T|f | is Tµ where µ is the measure defined by

µpEq �
»

E
|fpxq| dx.

We thus know T|f | is tempered if the measure µ is tempered. Choose q with
1
p � 1

q � 1 and set gspxq � p1� |x|2qs. Then»
p1� |x|2qs dµpxq �

»
p1� |x|2qs|fpxq| dx

�
»
p1� |x|2qs|fpxq|p1� |x|2qr{p dx

¤ |gs|q
�»

|fpxq|pp1� |x|2qr dx


1{p

  8
if s is chosen so that |gs|q   8. Moreover, as seen in the last part of
Example 4.36, we have

³ |φpxq fpxq| dx � ³ |φpxq| dµpxq ¤ C|φ|m,0 where
C � ³p1�|x|2qs dµpxq � ³p1�|x|2qs |fpxq| dx   8 and m is any nonnegative
integer with m ¥ �s. From |Tf pφq| � | ³ fpxqφpxq dx| ¤ ³ |fpxqφpxq| dx ¤
C|φ|m,0, it follows that Tf is a tempered distribution.

Exercise Set 4.3

1. Show if Ω is a nonempty open subset of Rn and K is a compact subset of
Ω, then there is an open set V with compact closure with K � V � V̄ � Ω.

2. Let Ω be a nonempty open subset of Rn. Show the inclusion mapping
from DpΩq into DpRnq is continuous and thus the restriction of every distri-
bution to DpΩq is a distribution on Ω.

3. Let Ω be a nonempty subset of Rn and suppose f : Ω Ñ C is a
continuous function. Show the support of f as a measurable function is
tx P Ω | fpxq � 0u X Ω.

4. Let V be an open subset of Rn and suppose f P LlocpV q. Show
³
φf dx �

0 for all φ P C8c pV q if and only if f � 0 a.e. on V .

5. Let µ be a Borel measure on Ω, a nonempty open subset of Rn. Then
the support of the measure µ (denoted by suppµ) is the complement of the
union of all open subsets of Ω which have measure 0. Show if µpKq   8
for all compact subsets K of Ω, then the distribution Tµ on Ω has compact
support if and only if suppµ is a compact subset of Ω.

6. Let µ be a measure on an open subset Ω of Rn. Show suppµ � tx P Ω |
µpNq ¡ 0 for every neighborhood N of xu
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7. Let µ be a complex Borel measure on a nonempty open set Ω of Rn.
Define Tµ by

Tµpφq �
»

φdµ

for φ P DpΩq. The support of the measure µ is the complement of the union
of all open subsets U of Ω such that µpEq � 0 for all Borel subsets E of U .
Show the support of the distribution Tµ is the support of the measure µ.

8. Prove Lemma 4.34.

9. Show supp pδxq � txu.
10. Let s P C with Repsq ¥ 0 and let ppxq be a nonnegative polynomial.
For s ¥ 0 define P s : DpRnq Ñ C by

P spϕq �
»
Rn

ϕpxqppxqs ds for ϕ P DpRnq.
Show P s is a distribution, and that

ts P C | Repsq ¡ 0u Q sÑ P spϕq P C
is a holomorphic function in s for all ϕ P DpRnq.
11. Suppose that n � 1 and let ppxq � x2. Show the following:

(a)
�

d
dx

�2
ppxqs � 2sp2s� 1qppxqs�1.

(b) If Repsq ¡ 0, then

P spfq � 2�2

ps� 1qps� 1{2q
»

f2pxqps�1pxq dx .

(c) The distribution P s can be extended to ts P Cz t1{2u | Repsq ¡ �1u
such that P spfq is meromorphic by defining

P spϕq � 2�2

ps� 1qps� 1{2q
»

ϕ2pxqps�1pxq dx .

(d) P s can be extended to all s P C where s R �1
2N.

(e) If ϕ P DpRq, then

C Qs ÞÑ 1
Γp2λ� 1qP spϕq P C

is holomorphic.

12. Let ppxq � |x|2. Find a differential operator D and a polynomial βpsq
such that

Dppxqs � βpsqppxqs�1 .

Use this to extend the distribution P s to almost all s P C.
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13. Define a function x� : RÑ r0,8s by x� � x if x ¥ 0 and x� � 0 if x ¤
0. Thus x� � xHpxq where Hpxq is the Heaviside function. The function xs�
is locally integrable for Repsq ¡ �1 and hence defines a distribution which
we denote by the same letter:

xxs�, ϕy �
» 8
0

xsϕpxq dx .

Show s ÞÑ xs� extends to ts P C | s �� �1,�2,�3, . . .u � Cz � N such that

s ÞÑ xxs�, ϕy
is holomorphic on the above set and

s ÞÑ 1
Γpλ� 1qxxs, ϕy

is holomorphic on C.

14. Let F : Rn Ñ Rn be linear and detF �� 0. If S is a distribution define
S � F by

S � F pϕq :� | detF |�1

»
ϕpF�1pxqq dSpxq .

Show S � F is a distribution. If S � f is a locally integrable function then
S � F � f � F .

15. (Definition of the Principal value) A function f : Rnz t0u Ñ C is
called homogeneous of degree µ if for all λ ¡ 0

fpλxq � λµfpxq .
Similarly a distribution T is called homogeneous of degree µ if for all
test functions ϕ we have»

λ�nϕpλ�1xq dSpxq � λµ

»
ϕpxq dSpxq.

(a) Show the δ-distribution is homogeneous and find its degree.

(b) Assume that f P CpRnz t0uq is homogeneous of degree �n and that³
Sn�1 fpωq dσpωq � 0. Define PVpfq : DpRnq Ñ C by

xPVpfq, ϕy :� lim
εÑ0

»
RnzBεp0q

fpxqϕpxq dx .

Show PVpfq is a distribution. This distribution is called the prin-
cipal value of f .

(c) Show for any ε ¡ 0

xPVpfq, ϕy �
»
|x|¤ε

fpxqpϕpxq � ϕp0qq dx�
»
|x|¥ε

fpxqϕpxq dx .

(d) Show PVpfq is homogeneous of degree �n.
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16. Define distributions
1

x� i0
� lim

yÑ0�
1

x� iy

where the limit is taken in D1pRq. Show

δ0 � 1
2πi

� �1
x� i0

� 1
x� i0



.

Thus δ0 is a difference of boundary values of a holomorphic function in the
upper half plane and a holomorphic function in the lower half plane.

5. Differentiation of Distributions

Next we show how the notion of differentiation and some other simple op-
erations on functions can be defined on distributions.

As we have seen every locally integrable function and hence every dif-
ferentiable function f can be viewed as a distribution. The definition of the
derivative of Tf if distributions are to be viewed as extensions of functions
must satisfy

pTf q1 � Tf 1
i.e., the derivative of f as a distribution is the same as the derivative of
f . The motivation of how these definitions are made is that the extended
operation should agree with the previous definition if the distribution is a
function. Thus for a test function ϕ on R one has

xTf 1 , ϕy �
»

ϕpxqf 1pxq dx � �
»

ϕ1pxqfpxq dx � �xTf , ϕ1y .
More generally, in Rn, one has to define

DαT pϕq � p�1q|α|T pDαϕq
for any multiindex α P Nn

0 . In fact every differential operator has an exten-
sion as an operator on distributions. Namely:

Definition 4.38. Let Ω �� H be open. A linear map D � °
|α|¤N aαDα :

DpΩq Ñ DpΩq, aα P EpΩq, is called a differential operator of order N if
there exists an α with |α| � N and aα �� 0. Denote by ordpDq the order of
the differential operator D.

Lemma 4.39. Let D be a differential operator and H �� Ω � Rn be open.
Then D : DpΩq Ñ DpΩq, ϕ ÞÑ Dϕ, is continuous.

Proof. Let K � Ω be compact, and α P Nn
0 . Write D � °

β aβDβ. Then

|Dϕ|K,α ¤
β̧

psup
xPK |aβpxq|q|ϕ|K,α�β .
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Using fact (4) and Lemma 2.66, we see D is continuous from DpΩq to DpΩq.
¤

Example 4.40. If a : Ω Ñ C is a smooth function, then the map

DpΩq Ñ DpΩq given by ϕ ÞÑ aϕ

is a differential operator of order zero. The Laplacian ∆ � °n
j�1

� BBxj

	2
is

a differential operator of degree two.

Remark 4.41. If D is a differential operator and ϕ P DpΩq. Then it follows
from the definition that supp pDϕq � supp pϕq and D : DpΩq Ñ DpΩq is
continuous. See Exercise 4.4.23 to see that essentially one can use this fact
to give an alternative definition of a differential operator.

Let D � °
α aαBα be a differential operator of order N . Define a differ-

ential operator D# : DpΩq Ñ DpΩq, the transpose of D, by

(4.13)
»

ϕpxqDψpxq dx �
»

D#ϕpxqψpxq dx .

for all test functions ψ and ϕ. Thus, by integration by parts we calculate
by using Leibnitz’s rule:»

ϕpxq
α̧

aαDαψpxq dx �
α̧

p�1q|α|
»

Dαpaαϕqpxqψpxq dx

�
α̧ β̧¤α

p�1q|α|
�

α

β


» �
Dα�βaαpxqDβϕpxq	ψpxq dx.

Thus

(4.14)

�
α̧

aαDα

�#

�
α̧ β̧¤α

p�1q|α|
�

α

β



Dα�βaαDβ .

In particular it follows that D# is a differential operator and ordpD#q �
ordpDq.

Moreover, pD#q# � D. Indeed, if φ is in DpΩq, then»
pD#q#φ pxqψpxq dx �

»
φpxqD#ψpxq dx

�
»

Dφpxqψpxq dx

for all ψ P DpΩq and so pD#q#φ � Dφ.
If T is a distribution then we define DT : DpΩq Ñ DpΩq by

(4.15) xϕ,DT y :� xD#ϕ, T y , f P DpΩq .



184 Further Topics

Lemma 4.42. Let T P DpΩq1 and let D be a differential operator. Then
DT is a distribution.

Proof. The map DpΩq Q ϕ ÞÑ D#ϕ P C is continuous by Lemma 4.39.
Hence the composition

DpΩq Q ϕ ÞÑ Dϕ ÞÑ T pD#ϕq P C
is continuous. ¤

Remark 4.43. Let D : DpΩq Ñ DpΩq be a differential operator. By
dualizing, we get a continuous linear map Dt : DpΩq1 Ñ DpΩq1 given by
xϕ,DtT y � xDϕ, T y. Note D#T � DtT for

xφ, D#T y � xpD#q#φ, T y � xDφ, T y � xφ,DtT y.
Example 4.44. Assume that n � 1 and let H � χr0,8q be the Heaviside
function. Then

xϕ,Hy �
» 8
0

ϕpxq dx .

We now calculate

xϕ,
dH

dx
y � x�ϕ1,Hy � �

» 8
0

ϕ1pxq dx � ϕp0q .
Thus dH

dx � δ.

Example 4.45. Assume that n � 1. Let fpxq � |x|. Then»
ϕpxq d

dx
|x| dx � �

»
ϕ1pxq|x| dx

� �
» 8
0

ϕ1pxqx dx�
» 0

�8
ϕ1pxqx dx

�
» 8
0

ϕpxq dx�
» 0

�8
ϕpxq dx

�
» 8
�8

ϕpxq signpxq dx .

Thus
d|x|
dx

� signpxq .
Let f P L1

locpΩq. Then Dαf is a distribution for every multiindex α P Nn
0 ,

but as the example of the Heaviside function shows, Dαf is not necessarily
a function (see Exercise 4.4.6). But in case there exists a locally integrable
function gα such that

DαTf � Tgα

then gα is unique (up to set of measure zero) and is called the weak or
distributional derivative of f . We simply write Dαf � gα. Thus by the
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definition, Dαf exists weakly if and only if there exists a locally integrable
function gα such that for all ϕ P C8c pRnq we have

p�1q|α|
»

Dαϕpxqfpxq dx �
»

ϕpxqgαpxq dx .

In (5) of Section 5 of Chapter 2, we defined translation λpyq, dilation
δpaq, and multiplication Mg by g on any complex valued function f on Rn;
namely λpyqfpxq � fpx � yq, δpaqfpxq � a�n{2fpa�1xq, and Mgf � gf .
There we also defined three idempotent operations: conjugation, check, and
adjoint. One can do these same operations on distributions. Namely, let T
be a distribution on Rn and suppose y P Rn, a ¡ 0, and g P EpRnq. Then
λpyqT , δpaqT , gT , T̄ , Ť , and T � are defined on functions ϕ P DpRnq by:

(16)

Translation λpyqT pϕq � T pλp�yqϕq
Dilation δpaqT pϕq � T pδpa�1qϕq
Multiplication gT pϕq � T pgϕq
Conjugation T̄ pϕq � T pϕ̄q
Check Ť pϕq � T pϕ̌q and
Adjoint T �pϕq � T pϕ�q

Multiplication can be done on any set. Thus if Ω is a nonempty open
subset of Rn and g P EpΩq and T is a distribution on Ω, then gT is defined
by xφ, gT y � xgφ, T y for φ P DpRnq.

Exercise 4.4.1 shows that λpyq, δpaq, and Mg where Mgφ � gφ are
continuous on DpRnq and thus λpyqT , δpaqT , and gT are distributions. Fur-
thermore, as seen in Exercise 4.4.2, if T � Tf where f is a locally integrable
function, then λpyqTf � Tλpyqf , δpaqTf � Tδpaqf , and gTf � Tgf . Similarly, if
T is a distribution, then T̄ , Ť , and T � are distributions and one has T̄f � Tf̄ ,
Ťf � Tf̌ , and pTf q� � Tf� .

Remark 4.46. In the more specialized case when T is a tempered distri-
bution, one knows by Proposition 2.58 that translation, dilation, differen-
tiation, and the three idempotent operations are continuous on SpRnq and
consequently λpyqT , δpaqT , DαT , T̄ , Ť , and T � are tempered distributions.
Moreover, the continuity of Mg given in Proposition 2.57 shows gT is a tem-
pered distribution when g P S 18pRnq. In particular, eyT is tempered when
eypxq � e2πix�y.
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Exercise Set 4.4

1. Let y P Rn and a ¡ 0. Show λpyq and δpaq are continuous linear homeo-
morphisms of DpRnq. Also show if Ω is an open subset of Rn and g P EpΩq,
then the map from DpΩq to DpΩq given by φ ÞÑ gφ is a continuous linear
transformation.

2. Show if y P Rn and a ¡ 0, then λpyqTf � Tλpyqf and δpaqTf � Tδpaqf for
f P L1

locpRnq. Also show gTf � Tgf whenever g P EpΩq and f P LlocpΩq.
3. Let f : ΩÑ C be m-times continuously differentiable. Show Dαf is the
weak derivative of f for all α with |α| ¤ m.

4. Suppose that the sequence of distributions tTnu converges to T P D1pRnq.
Show DαTn Ñ DαT for all α P Nn

0 .

5. Suppose that n � 1. Evaluate the distributional derivative of the fol-
lowing functions and distributions:

(a) fpxq � signpxq.
(b) fpxq � x |x|.
(c) fpxq � xHpxq
(d) fpxq � Hpx� 1qHp1� xq.
(e) δa, a P R.

(f) xδa, a P R.

(g) fpxq � x logpxqHpxq.
6. Show there is no locally integrable function f such that Tf � δ.

7. Show every Lp function, and every measurable function whose absolute
value is majorized by a polynomial is a tempered distribution. If f is such
a function the corresponding distribution is defined by

Tf pφq �
»

fpxqφpxq dx.

8. Let Lpxq � logpxqχp0,8qpxq.
(a) Show L is locally integrable on R, and hence that L defines a dis-

tribution on R.

(b) Show

Lpϕq �
» 8
0

1
x

ϕpxq dx

if supp pϕq � p0,8q.
(c) Show ϕ ÞÑ ³8

0
1
xϕpxq dx does not define a distribution on R.

(d) Determine the distribution L1.
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9. Suppose that the distribution S is homogeneous of degree λ. Then DαS
is homogeneous of degree λ � |α|. (See Exercise 4.3.15 for the definition of
homogeneous.)

10. Antiderivatives of distributions: The following steps show how to
find an antiderivative of a distribution T .

(a) Show if h P DpRq and
³
hpxq dx � 1, then the mapping φ ÞÑ Φ

defined by

Φpxq �
» x

�8

�
φptq � p

»
φqhptq



dt

is a continuous linear mapping of DpRq into DpRq; show this map-
ping is also continuous from SpRq into SpRq.

(b) Let T be a distribution on R. Define Sh by

xφ, Shy � �xΦ, T y.
Show

S1h � T.

(c) Show if S1 and S2 are distributions on R with S11 � S12, then S1 �
S2 � c where c is a constant, i.e., show there is a constant c such
that

S1pφq � S2pφq � Tcpφq � S2pφq � c

»
φpxq dx.

(d) Show if T is tempered, then the distribution Sh is tempered.

(e) Show if F is absolutely continuous with derivative f and T � Tf ,
then Sh � F � c for some constant c.

11. Find the antiderivatives of the following distributions:

(a) T � 1.

(b) δa.

(c) signpxq.
12. Let Ω be a connected open subset of Rn. Show if T is a distribution on
Ω and DαT � 0 for all α with |α| � 1, then T � c � Tc for some constant c.
(Hint: Show if T is a distribution on the interval pa, bq � R with d

dxT � 0,
then T � c. Then use Theorem 2.86).

13. Let f be a locally integrable function on Rn. Show the support of the
distribution Tf is the complement of the union of all open subsets U of Rn

such that f |U is zero almost everywhere.

14. Let f : Ω Ñ C be m-times continuously differentiable. Show Dαf is
the weak derivative of f for all α with |α| ¤ m.
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15. Let D be a differential operator of order N . Show the expression D �°
|α|¤N aαBα is unique. (Hint: Apply D to the polynomials x ÞÑ xγ .)

16. Let Ω be an open subset of Rn and suppose ppxq � °
|α|¤N aαxα is

a polynomial. Then L � ppDq � °
aαDα is a differential operator with

constant coefficients. Show if T is a distribution on Ω, then Definition
(4.15) agrees with the natural definition of ppDqT as

°
aαDαT .

17. Let T be a distribution on a nonempty open subset Ω of Rn. The
distribution T is said to have finite order if there is a N P N0 such that for
each compact subset K of Ω and each ε ¡ 0, there is a δK ¡ 0 such that if
φ P DpKq and maxxPK |Dαφpxq|   δK for |α| ¤ N , then |T pφq|   ε. The
smallest N for which this is true is called the order of T . If T has order 0,
then T is said to be a Radon distribution on Ω.

(a) Show if the order of T is 0 and T pφq ¥ 0 if φ ¥ 0, then there is a
Radon measure µ on Ω such that

T pφq �
»

φpxq dµpxq
for φ P DpΩq.

(b) Show if T is a Radon distribution on Ω, then there are Radon
measures µ1, µ2, µ3, and µ4 such that

T pφq �
»

φdµ1 �
»

φdµ2 � i

»
φdµ3 � i

»
φ dµ4.

(Hint: See Rudin, Real and Complex Analysis on complex measures
and the dual of CcpΩq.)

18. Show if T is a distribution on Ω with compact support, then T has
finite order.

19. Show if T is a Radon distribution on Ω with compact support, then
there is a complex measure µ on Ω with T pφq � ³

φdµ for φ P DpΩq.
20. Show if T is a distribution on Ω with compact support, then there
exists an N and complex Borel measures µα on Ω such that

T � ¸
|α|¤N

DαTµα .

Hint: Let N be the order of T and U be an open subset of Ω with
suppT � U � Ū � Ω and Ū compact. Show the mapping tDαφ|Uu|α|¤N ÞÑ
T pφq is continuous and linear on relative topology of the product topology
of

±
|α|¤N CcpUq. Then use the Hahn-Banach Theorem.
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21. Show the following version of Taylor’s formula. Suppose f is C8. Then

fpxq � ¸
|α|¤N

xα

α!
Dαpfqp0q � pN � 1q ¸

|α|�N�1

xα

α!

» 1

0
p1� tqNDαfptxq dt.

22. Show if T is a distribution on Ω and T has support tx0u where x0 P Ω,
then T has form

T pφq � ¸
|α|¤N

cαDαφpx0q

for some finite N . (Hint: Exercise 4.4.21 may be useful.)

23. Let Ω be an open connected subset of Rn and suppose D : DpΩq Ñ
DpΩq is a continuous linear mapping with the property that Dpsuppφq �
suppφ. Show there exist aα P EpΩq such that for each p P Ω, tα | aαppq � 0u
is finite and

Dpφq �
α̧

aαDαφ.

24. Let Ω be a nonempty open subset of Rn. Show there is a nondifferential
operator on DpΩq whose restriction to each DKpΩq is a differential operator.

6. The Fourier Transform of Tempered Distributions

As we have seen, the Fourier transform of functions works well for integrable,
square integrable, compactly supported smooth, and Schwartz functions. In
the cases of square integrable functions, compactly supported smooth func-
tions, and Schwartz functions, the Fourier transform provides a topological
isomorphism between well known spaces. We shall use the topological iso-
morphism given in Theorem 3.10 and the fact that

(4.17)
»
Fpφqpyqψpyq dy �

»
φpyqFpψqpyq dy

for Schwartz functions φ and ψ to Show F also extends to the space SpRnq1
of tempered distributions. We remark that Equation (4.17) is a simple
consequence of Lemma 3.7.

Note since φ ÞÑ φ̂ is a topological isomorphism of SpRnq, one sees if T
is a tempered distribution, then S defined by

Spφq � T pφ̂q
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is also a tempered distribution. We also note that if T � Tφ where φ P
SpRnq, then S � Tφ̂. Indeed,

Spψq � Tφpψ̂q
�
»

ψ̂pxqφpxq dx

�
»

ψpxqφ̂pxq dx

� Tφ̂pψq
for ψ P SpRnq. This observation is the basis for the following definition.

Definition 4.47. Let T be a tempered distribution. Define FpT q � T̂ pϕq �
T pϕ̂q. Then T̂ is the Fourier transform of T . The notation FpT q is also
used for T̂ .

If T � f P L1
locpRnq is a locally integrable function, then we will also

write f̂ for xTf . We have seen this is consistent when f is a Schwartz function.
By Exercise 4.5.1 one also has:

(4.18) T̂f � Tf̂ if f P L1pRnq or f P L2pRnq
Recall from (4.8) the seminorms | � |1φ where φ P SpRnq and |T |1φ � |T pφq|

make the space of tempered distributions into a locally convex topological
vector space. This topology is the weak � topology, and it is the smallest
topology which makes the functions T ÞÑ T pϕq continuous for all ϕ PSpRnq.

Recall eypxq � e2πix�y. In Remark 4.46, we noted if T is a tempered
distribution, then DαT , λpyqT , eyT , δpaqT , T̄ , Ť , and T � are tempered
distributions. Recall that λpyqT pϕq � T pλp�yqϕq � ³

ϕpx � yqdT pxq,
eyT pϕq � T peyϕq � ³

e2πiyxϕpxqdT pxq, and δpaqT pϕq � T pδpa�1qϕq �
an{2 ³ϕpaxq dT pxq for a ¡ 0.

Theorem 4.48. The Fourier transform is a topological isomorphism of
SpRnq1. Furthermore

(a) pFq2pT q � Ť and F4 � I;

(b) {λpyqT � ey
pT ;

(c) yeyT � λpyq pT ;

(d) {δpaqT � δpaq pT ;

(e) pT � pT �;
(f) xT � � pT ;

(g) p̌T � p̌T ;
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(h) Fppp D
2πiqT q � p pT .

(i) xpT � pp� D
2πiq pT ;

Proof. Claim F is continuous. It suffices to show T ÞÑ T̂ pϕq is continuous
for each ϕ. But this is T ÞÑ T pϕ̂q which is continuous.

Let φ be a Schwartz function. To see (a), note Proposition 3.9 implies
F2T pφq � T pF2φq � T pφ̌q � Ť pφq and thus F4T pφq � Ť pF2φq � Ť pφ̌q �
T p ˇ̌φq � T pφq.

From Lemma 3.3, we have λpyqφ̂ � Fpτpyqφq � ze�yφ and eyφ̂ � {λp�yqφ
and thus

FpλpyqT qpφq � λpyqT pφ̂q � T pλp�yqφ̂q � T pFpeyφqq � T̂ peyφq � eyT̂ pφq and

FpeyT qpφq � eyT pφ̂q � T peyφ̂q � T pFpλp�yqφqq � T̂ pλp�yqφq � λpyqT̂ pφq.
This gives (b) and (c).

For (d), suppose one has a ¡ 0. Then since Fpδpaqφq � δpa�1qFpφq, we
see

FpδpaqT qpφq � δpaqT pφ̂q � T pδpaqφ̂q � T pFpδpa�1qφqq
� T̂ pδpa�1qφq � δpaqT̂ pφq.

Next, to see (e) and (f), note by Lemma 3.3 that Fpφ�q � φ̂ and Fpφ̄q �
Fpφq� and thus

FpT̄ qpφq � T̄ pφ̂q � T p ¯̂φq � T pFpφ�qq � T̂ pφ�q � pT̂ q�pφq
and

FpT �qpφq � T �pφ̂q � T ppFφq�q � T pFpφ̄qq � T̂ pφ̄q.
Again using Lemma 3.3, we know Fpφ̌q � ˇ̂

φ and so

FpŤ qpφq � Ť pφ̂q � T p ˇ̂φq � T pFpφ̌qq � FpT qpφ̌q � ˇ̂
T pφq.

Finally to see Fppp D
2πiqT q � pT̂ and FppT q � pp�D

2πi qFpT q, we use The-
orem 3.4 which gives

Fppφq � pp� D

2πi
qFpφq and

FpppDqφqpωq � pp2πiωqφ̂pωq
for polynomials ppxq � °

|α|¤N aαxα.
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Hence

Fppp D

2πi
qT qpφq � pp D

2πi
qT pφ̂q

� ¸
|α|¤N

aα

p2πiq|α|DαT pφ̂q
� ¸
|α|¤N

p�1q|α| aα

p2πiq|α|T pDαφ̂q

� T ppp� D

2πi
qφ̂q

� T pFpp φqq
� T̂ ppφq
� pT̂ pφq

and

FppT qpφq � pT pφ̂q
� T ppφ̂q
� T pFppp D

2πi
qφq

� T̂ ppp D

2πi
qφq

� T̂ p ¸
|α|¤N

Dα

p2πiq|α|φq

� ¸
|α|¤N

��D

2πi


α

T̂ pφq

� pp�D

2πi
qT̂ pφq.

¤

Exercise Set 4.5

1. Suppose f P L1pRnq or f P L2pRnq. Show

FpTf q � Tf̂ .

2. Let f P SpRnq. Show λpxqpTf q � Tλpxqf , and gTf � Tgf if g is a tempered
C8 function.

3. Let x P Rn. Determine the following Fourier transforms:

(a) Fpexq
(b) Fpεxq where εx is the point mass measure at x
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(c) Explain why one writes Fpεxq � e�x and Fpexq � εx.

4. Let ppxq be a polynomial on Rn and for x P Rn, let εx be the point mass
measure at x. Determine the following:

(a) Fppεxq
(b) FpppDqεxq

5. Assume that n � 1. Evaluate the Fourier transform of the following
distributions:

(a) fpxq � |x|.
(b) fpxq � x |x|.
(c) fpxq � xHpxq
(d) fpxq � cospλxq for some λ P R.

(e) fpxq � x sinpλxq for some λ P R.

6. Let f and g be Schwartz functions. Show using the Fourier transform
that if ppxq is a polynomial function, then ppDqpf � gq � pppDqfq � g �
f � ppDqg.

7. Let T be a distribution on Rn and let φ be a test function. Show if ppxq
is a polynomial function, then ppDqpT � φq � pppDqT q � φ � T � ppDqφ.

8. One can use the Fourier transform to Show each tempered distribution
is the difference of a boundary value of a holomorphic function in the upper
half plane and one in the lower half plane. This exercise establishes this for
a special class of distributions. Let T be a tempered distribution on the real
line such that T̂ is a continuous function bounded by a polynomial ppωq.
Define F� by

F�pzq :�
» 8
0

e2πizωT̂ pωq dω , Impzq ¡ 0

and

F�pzq :�
» 0

�8
e2πizωT̂ pωq dω , Impzq   0 .

Show the following:

(a) The function F� is holomorphic in C� � tz P C | Impzq ¡ 0u and
F� is holomorphic in C� � tz P C | Impzq   0u.

(b) Define

xT�, ϕy � lim
yÑ0�

» 8
�8

ϕpxqF�px� iyq dx .

Then T� and T� are distributions and

T � T� � T� .
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(c) Show if T � δ0 then T� � �1
2πi

1
x�i0 and T� � �1

2πi
1

x�i0 .

(d) Assume that T̂ pωq � ωn. Find T�.

7. Convolution of Distributions

We have seen that it is possible to convolve functions f and g under special
conditions on f and g and in this case

f � gpxq � g � fpxq �
»

fpyqgpx� yq dy �
»

gpyqfpx� yq dy.

The usefulness of convolution has already been established and since dis-
tributions are “generalized functions”, it turns out to be quite useful to
convolve distributions when a suitable definition can be made. In order to
do this, let us start by a formal manipulation. Recall Tf is the distribution
defined by

Tf pφq �
»

φpyqfpyq dy.

Thus to make a suitable definition of Tf � Tg, one would like

Tf � Tgpφq � Tf�gpφq
when f , g, and f �g give distributions. Hence formally if T � Tf and S � Tg,
one would have:

pT � Sq pφq � Tf � Tgpφq
�
»

φpxqf � gpxq dx

�
»

φpxq
»

fpyqgpx� yq dy dx

�
»

fpyq
»

φpxqgpx� yq dx dy

�
» �»

φp�x� yqgp�xq dx



fpyq dy

�
» �»

ǧpxqφpy � xq dx



fpyq dy

�
»
pǧ � φpyqqfpyq dy

� Tf pŠ � φq
� T pŠ � φq
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where

Š � φpyq �
»

ǧpxqφpy � xq dx

�
»

gp�xqφpy � xq dx

�
»

φpy � xqgpxq dx

� Spλp�yqφq.
Since λp�yqφ is a test function when φ is a test function, we clearly see

that Š � φ is defined. The problem is it may not be a test function.

Definition 4.49. Suppose φ is in DpRnq and S is a distribution or φ is in
SpRnq and S is a tempered distribution. Then S � φ is the function defined
by

S � φpyq �
»

φpy � xq dSpxq � Sppλpyqφ̌qq
Definition 4.50. Let T and S be distributions on Rn. Then T �S is defined
if φ ÞÑ Š � φ is continuous on DpRnq into DpRnq and then T � S is the
distribution defined by

T � Spφq � T pŠ � φq
Similarly if T is a tempered distribution and φ ÞÑ Š � φ is continuous from
SpRnq into SpRnq, then T � S is the tempered distribution defined by

T � Spφq � T pŠ � φq.
Since φ ÞÑ Š � φ is continuous if and only if φ ÞÑ S � φ is continuous, a

central aspect of convolution depends on the continuity of the transformation
φ ÞÑ S � φ.

We shall first show the mapping φ ÞÑ S �φ is continuous into EpRnq. To
do this we shall use the following lemmas.

Lemma 4.51. Suppose Ω is an open subset of Rn and F P DpΩq. For
j P t1, 2, . . . , nu define Fh for h ¡ 0 by

Fhpxq � F px� hejq � F pxq
h

.

Then Fh is in DpΩq for h near 0 and Fh Ñ BjF in DpΩq as h Ñ 0.

Proof. Let K be the compact support of F . Since K � Ω, there is a δ ¡ 0
such that x � hej P Ω if |h| ¤ δ. Hence Fhpxq � 0 if x R K � r�δ, δsej .
So Fh has compact support inside K 1 where K 1 � K � r�δ, δsej . To show
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Fh Ñ BjF in DpΩq, it suffices to show Fh Ñ BjF in DK1pΩq. Now using the
Mean Value Theorem, we see

|Fh � BjF |K1,α � max
xPK1 |pDαFh �Dα�ejF qpxq|

� max
xPK1 |D

αF px� hejq �DαF pxq
h

� BjDαF pxq|
� max

xPK1 |D
αF px� hejq �DαF pxq

h
� BjDαF pxq|

� max
xPK1 |hBjD

αF px� h�pxqejq
h

� BjDαF pxq|
� max

xPK1 |BjDαF px� h�pxqejq � BjDαF pxq|
where |h�pxq|   h for each x in K 1. It follows by the uniform continuity of
BjDαF on K 1 that |Fh � BjF |K1,α Ñ 0 as hÑ 0. ¤

Lemma 4.52. Let F P SpRnq and suppose j P t1, 2, . . . , nu. Define Fh for
h � 0 by

Fhpxq � F px� hejq � F pxq
h

.

Then Fh is in SpRnq and Fh Ñ BjF in SpRnq as hÑ 0.

Proof. Since Fh � 1
hpλp�hejqF � F q, we see Fh P SpRnq for all h � 0.

The Mean Value Theorem argument in the proof of the previous lemma
shows for each x P Rn, there is an h�pxq P p�h, hq such that

|DαpFh � F qpxq| � |BjDαF px� h�pxqejq � BjDαF pxq|.
Hence using the Mean Value Theorem again, we see

p1� |x|2qN |DαpFh � F qpxq| � p1� |x|2qN |h�pxq|B2
j D

αF px� k�pxqejq|
for some k�pxq with |k�pxq|   |h�pxq|   h. Now an adaptation of Exercise
2.3.4 shows 1�|x|2

1�|x�k�pxqej |2 ¤ 2p1� |k�pxqej |2q. Consequently

p1� |x|2qN |DαpFh � F qpxq| ¤ |h| p1� |x|2qN
p1� |x� k�pxqej |2qN |F |N,α�2ej

¤ 2N p1� |k�pxqej |2qN |h| |F |N,α�2ej

¤ 2N |h|p1� h2qN |F |N,α�2ej .

Thus |Fh � F |N,α Ñ 0 as h Ñ 0 for each N and each α. ¤

Lemma 4.53. Let Ω1 and Ω2 be nonempty open subsets of Rm and Rn

respectively. Suppose T is a distribution on Ω2 and let Φ P DpΩ1 � Ω2q.
Then the function Φ1 given by

Φ1pxq � T pΦxq �
»

Φpx, yq dT pyq
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is smooth, has compact support, and satisfies

DαΦ1pxq � T pDα
xΦq �

»
Dα

xΦpx, yq dT pyq
for all α P Nm

0 . Furthermore, the mapping Φ ÞÑ Φ1 is continuous from
DpΩ1 � Ω2q into DpΩ1q.
Proof. Choose compact subsets K1 of Ω1 and K2 of Ω2 such that supp Φ �
K1 �K2. Thus Φx where Φxpyq � Φpx, yq is smooth and has support in K2

for all x. Hence T pΦxq is defined for all x. Moreover, if x R K1, then Φx � 0
and consequently T pΦxq � 0. Thus x ÞÑ T pΦxq has compact support. Note
Φ1 is continuous. Indeed, by Exercise 2.4.16, we know if xk Ñ x, then
Φxk

Ñ Φx in DpΩ2q. Since T is continuous, we see Φ1pxkq Ñ Φ1pxq. Using
induction, to show DαΦ1pxq � T pDα

xΦ1q, one need only show

B
Bxi

Φ1pxq � T

�� B
Bxi

Φ



x

�
.

Now by Lemma 4.51, Φpx�hei,yq�Φpx,yq
h Ñ BBxi

Φpx, yq in DpΩ1 � Ω2q as h Ñ
0. This implies

Φx�hei
�Φx

h Ñ � BBxi
Φ
	

x
in DpRnq as h Ñ 0. Thus by the

continuity of T , we see

Φ1px� heiq � Φ1pxq
h

Ñ T p
� B
Bxi

Φ



x

q as hÑ 0.

So BBxi
Φ1pxq � T

�� BBxi
Φ
	

x

�
.

Finally, to see Φ ÞÑ Φ1 is continuous, it suffices to see it is continuous
on DK1�K2pΩ1�Ω2q. Let ε ¡ 0 and fix α P Nm

0 . Choose a finite set F � Nn
0

and δ ¡ 0 such that |T pφq|   ε if φ P DK2pΩ2q and |φ|K2,β   δ for β P F .
Then if Φ P DK1�K2pΩ1 � Ω2q and |Φ|K1�K2,pα,βq   δ for β P F , one has

|Φ1|K1,α � |Dα
xΦ1|K1

� max
xPK1

|T ppDαΦqxq|
¤ ε.

¤

Lemma 4.54. Let T be a tempered distribution on Rn. Let Φ be a Schwartz
function on Rm�Rn. Then Φx is a Schwartz function on Rn for each x P Rm

and the function Φ1 defined by Φ1pxq � T pΦxq is a Schwartz function on
Rm. Moreover, the mapping Φ ÞÑ Φ1 is a continuous linear transformation
of SpRm � Rnq into SpRmq.
Proof. Exercises 2.3.10 shows Φ ÞÑ Φx is a continuous linear transformation
from SpRm � Rnq into SpRnq. Moreover, Exercise 2.3.11 shows x ÞÑ Φx
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is continuous from Rm into SpRnq. Consequently, Φ1pxq is a continuous
function in x for each Φ in SpRmq. Moreover, by Lemma 4.52,

Φhej
� Φ

h
Ñ B
Bxj

Φ

in SpRm � Rnq for each j � 1, 2, . . . , m. By continuity of Φ ÞÑ Φx, one has

Φx�hej�Φx

h
�
�

Φhej � Φ
h



x

Ñ
� B
Bxj

Φ



x

in SpRnq. The linearity and continuity of T then shows

B
Bxj

Φ1pxq � T pp BBxj
Φqxq.

Using induction it follows that DαΦ1pxq � T ppDαΦqxq and we see Φ1 is C8
on Rm.

To obtain continuity, we note since T is continuous, that there is an
natural number N 1 and a finite subset F of Nn

0 and a δ ¡ 0 such that one
has |T pfq| ¤ 1 if |f |N 1,β ¤ δ for all β P F . Thus if N P Nm

0 and α P Nm
0 , we

see

p1� |y|2qN 1 |Dβp1� |x|2qN pDαΦqxpyq| � p1� |x|2qN p1� |y|2qN 1 |Dpα,βqΦpx, yq|
¤ p1� |x|2 � |y|2q2N�2N 1 |Dpα,βqΦpx, yq|
¤ |Φ|2N�2N 1,pα,βq.

Consequently, if |Φ|2N�2N 1,pα,βq ¤ δ for all x and all β P F , then |p1 �
|x|2qN pDαΦqx|N 1,β ¤ δ and hence

|Φ1|N,α � sup
x
p1� |x|2qN |DαΦ1pxq| � sup

x
|T �p1� |x|2qN pDαΦqx� | ¤ 1.

Thus Φ ÞÑ Φ1 is continuous. ¤

Theorem 4.55. Let T and S be distributions on nonempty subsets Ω1 and
Ω2 of Rm and Rn respectively. Then there is a distribution T �S on Ω1�Ω2

such that
pT � Sqpφ� ψq � T pφqSpψq

if φ P DpΩ1q and ψ P DpΩ2q. It satisfies

pT � SqpΦq �
» »

Φpx, yq dT pxq dSpyq �
¼

Φpx, yq dSpyq dT pxq
for all Φ P DpΩ1 � Ω2q.
Proof. We show there is a distribution P that satisfies

P pφ� ψq � T pφqSpψq.
Indeed, by Lemma 4.53, the mapping Φ ÞÑ Φ1 where Φ1pxq � ³

Φpx, yq dSpyq
is a continuous linear mapping from DpΩ1�Ω2q into DpΩ1q. Thus P defined
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by P pΦq � T pΦ1q is a distribution on Ω1�Ω2. Clearly it satisfies, P pφ�ψq �
T pφqSpψq and is defined by

P pΦq �
» »

Φpx, yq dSpyq dT pxq.
In a similar fashion, there is a distribution Q satisfying Qpφ�ψq � T pφqSpψq
and

QpΦq �
» »

Φpx, yq dSpyq dT pxq.
Using Theorem 2.86, one sees P � Q. ¤

Theorem 4.56. Let T and S be tempered distributions on Rm and Rn,
respectively. Then the distribution T �S on Rm�Rn is tempered; i.e., there
is a tempered distribution T � S such that

pT � Sqpφ� ψq � T pφqSpψq
if φ P SpRmq and ψ P SpRnq. It satisfies

pT � SqpΦq �
» »

Φpx, yq dT pxq dSpyq �
¼

Φpx, yq dSpyq dT pxq
for all Φ P SpRm � Rnq.
Proof. We follow the previous argument. First there is a tempered distri-
bution P that satisfies

P pφ� ψq � T pφqSpψq forφ P SpRmq andψ P SpRnq .
Indeed, by Lemma 4.54, the mapping Φ ÞÑ Φ1 where Φ1pxq � ³

Φpx, yq dSpyq
is a continuous linear mapping from SpRm�Rnq into SpRmq. Thus P defined
by P pΦq � T pΦ1q is a tempered distribution Rm�n. Clearly it satisfies,
P pφ� ψq � T pφqSpψq and is defined by

P pΦq �
» »

Φpx, yq dSpyq dT pxq.
In a similar fashion, there is a tempered distribution Q satisfying Qpφ�ψq �
T pφqSpψq and

QpΦq �
» »

Φpx, yq dSpyq dT pxq.
Using Theorem 2.85, one sees P � Q. ¤

Proposition 4.57. Let S be a distribution on Rn. Then the mapping φ ÞÑ
S � φ is a continuous mapping from DpRnq into EpRnq. Moreover,

DαpS � φq � pDαSq � φ � S � pDαφq.
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Proof. We have S � φpxq � Spλpxqφ̌q. Hence continuity will follow if
x ÞÑ λpxqφ̌ is continuous from DpRnq into DpRnq. But this following from
Exercise 2.4.15.

We calculate BjpS � φq. By definition,

BjpS � φqpxq � lim
hÑ0

1
h
pSpλpx� hejqφ̌� λpxqφ̌q

� lim
hÑ0

Spλpx� hejqφ̌� λpxqφ̌
�h

q.
Now by Lemma 4.51,

λpx� hejqφ̌pyq � λpxqφ̌pyq
h

� φ̌py � x� hejq � φ̌py � xq
h

� pλpxqφ̌qpy � hejq � pλpxqφ̌qpyq
h

Ñ �Bjpλpxqφ̌qpyq
in DpRnq as h Ñ 0.

Thus

BjpS � φqpxq � Sp�Bjpλpxqφ̌qq � pBjSqpλpxqφ̌q � pBjSq � φpxq.
Next note since Bjpλpxqφ̌qpyq � �λpxqpBjφq̌pyq, we also have

BjpS � φqpxq � SpλpxqpBjφq̌q � S � pBjφqpxq.
Consequently, DαpS � φq � pDαSq � φ � S � pDαφq for all α and we have
that S � φ is smooth.

To show the linear mapping φ ÞÑ S � φ is continuous from DpRnq into
EpRnq, it suffices to show for each compact subset K � Rn, the mapping
φ ÞÑ S �φ is continuous on DKpRnq. To see this let K 1 be a compact subset
of Rn and let α P Nn

0 . Then K 1 � K is a compact set and since DαS is a
distribution, there is a finite set F � N0 and a δ ¡ 0 such that

|DαSpψq| ¤ 1

if ψ P DK1�KpRnq and |ψ|K1�K,β ¤ δ for β P F .
Now let φ P DKpRnq and suppose |φ|K,β ¤ δ for β P F . If x P K 1, then

ψ � λpxqφ̌ has support in K 1�K and Dβψpyq � p�1q|β|pDβφqpx�yq. Thus
|ψ|K1�K,β ¤ δ for β P F and hence

|DαpS � φqpxq| � |pDαSqpλpxqφ̌q| � |DαSpψq| ¤ 1.

Consequently,
|S � φ|K1,α � max

xPK1 |pDαSqpλpxqφ̌q| ¤ 1

when |φ|K,β ¤ δ for β P F . This implies the continuity of φ ÞÑ S � φ on
DKpRnq. ¤
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Proposition 4.58. Let S be a tempered distribution on Rn. Then the map-
ping φ ÞÑ S � φ is a linear mapping from SpRnq into S 18pRnq. Moreover,

DαpS � φq � pDαSq � φ � S � pDαφq
for α P Nn

0 .

Proof. We have S � φpxq � Spλpxqφ̌q. Hence continuity will follow if x ÞÑ
λpxqφ̌ is continuous from SpRnq into SpRnq. But this follows from Lemma
2.59.

We calculate BjpS � φq. By definition,

BjpS � φqpxq � lim
hÑ0

1
h
pSpλpx� hejqφ̌� λpxqφ̌q

� lim
hÑ0

Spλpx� hejqφ̌� λpxqφ̌
�h

q.
Now by Lemma 4.52,

λpx� hejqφ̌pyq � λpxqφ̌pyq
h

� φ̌py � x� hejq � φ̌py � xq
h

� pλpxqφ̌qpy � hejq � pλpxqφ̌qpyq
h

Ñ �Bjpλpxqφ̌qpyq
in SpRnq as hÑ 0. Thus

BjpS � φqpxq � Sp�Bjpλpxqφ̌qq � pBjSqpλpxqφ̌q � pBjSq � φpxq.
Again Bjpλpxqφ̌qpyq � �λpxqpBjφq̌pyq, and so we have

BjpS � φqpxq � SpλpxqpBjφq̌q � S � pBjφqpxq.
Consequently, DαpS � φq � pDαSq � φ � S � pDαφq for all α and we have
that S � φ is smooth.

We next show S � φ P S 18pRnq. To do this since DαpS � φq � S �Dαφ,
we need only show S � φ has polynomial growth for each φ P SpRnq. Since
S is continuous, there is an N and a δ ¡ 0 so that

|Spφq| ¤ 1 if |φ|N,α ¤ δ for |α| ¤ N.

Hence if M � 1
δ , we see by linearity of S that |Spφq| ¤ M if |φ|N,α ¤ 1 for

|α| ¤ N . By using Exercise 2.3.4 one has

|p1� |y|2qNDαφpx� yq| � p1� |x|2qN p1� |y|2qNp1� |x|2qN
p1� |x� y|2qN
p1� |x� y|2qN |Dαφpx� yq|

¤ 2N p1� |x|2qN |φ|N,α
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for |α| ¤ N . Fix x and let

K � 2N p1� |x|2qN max|α|¤N
|φ|N,α.

Then | 1
K λpxqφ̌|N,α ¤ 1 for |α| ¤ N . Hence | 1

K Spλpxqφ̌q| ¤ M . Multiplying
by K, we have

|Spλpxqφ̌q| ¤ 2NMp1� |x|2qN max|α|¤N
|φ|N,α,

and we see one has polynomial growth. ¤

Hence we see if S is a distribution and ϕ P DpRnq then the function
S � ϕpxq :� ³

ϕpx � yq dSpyq � Spλpxqϕ̌q is smooth and thus S � ϕ is a
distribution. Therefore pS � ϕq � ψ is defined for all ψ P DpRnq. Similarly if
ϕ P SpRnq and S is a tempered distribution, then S � ϕ is a C8 functions
all of whose derivatives have polynomial growth. Thus S � ϕ is a tempered
distribution, and therefore pS�ϕq�ψ is defined and smooth for all ψ P SpRnq.
Proposition 4.59. Suppose S is a distribution on Rn and φ and ψ are in
DpRnq. Then

pS � φq � ψ � S � pφ � ψq.
The same statement holds if S is a tempered distribution and φ and ψ are
in SpRnq.
Proof. Fix x. Define F py, zq � φpy � zqψpx � yq. Thus F py, zq � pφ b
λpxqψ̌qpy � z, yq. By Proposition 2.69 and Theorem 2.86, F P DpRm�nq.
Moreover, by Theorem 4.55,

pS � φq � ψpxq �
»

S � φpyqψpx� yq dy

�
» �»

φpy � zq dSpzq



ψpx� yq dy

�
» »

F py, zq dSpzq dy

�
» »

F py, zq dy dSpzq
�
» �»

φpy � zqψpx� yq dy



dSpzq

�
» �»

φpyqψpx� z � yq dy



dSpzq

�
»
pφ � ψqpx� zq dSpzq

� Spφ � ψq.
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The same argument works for tempered distributions if one uses Proposition
2.58, Theorem 2.85, and Theorem 4.56 instead of Proposition 2.69, Theorem
2.86 and Theorem 4.55. ¤

We are interested when S � φ P DpRnq for all φ P DpRnq. In order to
do this we shall use a theorem due to Lion. See Studia Math 81 (1985), “A
Proof of the Theorem of Supports”, p. 323-328.

For a subset E of Rn, the convex hull rEs of E is the intersection of all
closed convex sets containing E. The following theorem we state without
proof.

Theorem 4.60 (Leon). Let φ and ψ be in DpRnq. Then

rsupp pφ � ψqs � rsuppφs � rsuppψs.
Proposition 4.61. Let S be a distribution on Rn. Then S � φ P DpRnq
for all φ P DpRnq if and only if S has compact support. Moreover, if S has
compact support, then linear mapping φ ÞÑ S � φ from DpRnq into DpRnq is
a continuous.

Proof. We already know S � φ is smooth. Suppose S has compact support
K. Let φ be a test function with compact support F . Then if ψ P DpRnq
has support W where W X pK � F q � H, we see

xψ, S � φy �
»

ψpxq dpS � φqpxq
�
»

ψpxq
»

φpx� yq dSpyq dx

�
» »

ψpxqφpx� yq dSpyq dx

�
»

Spλpxqφ̌q dx

�
»

0 dx

since if ψpxq � 0, then x P W and so φpx�yq � 0 implies x�y P F and thus
y P x�F �W�F . So the support of λpxqφ̌ misses K for pW�F qXK � H.
Thus S � φ has compact support.

Conversely, suppose S � φ has compact support for all φ. Then take an
approximate identity ht. Specifically, for 0   t ¤ 1, set htpxq � t�nhpt�1xq
where h ¥ 0 is C8, has integral one, and has support in the closed unit ball
|x| ¤ 1. We may also assume ȟ � h.

Then since pS � ht � h1q � pS � h1q � ht, we see by Lion’s Theorem that
rsupp pS�htqs�rsupp ph1qs � rsupppS�h1qs�rsupphts � rsupppS�h1qs�tx |
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|x| ¤ 1u. In particular, S � ht has compact support in the compact set
K � rsupppS � h1qs � tx | |x| ¤ 1u for 0   t ¤ 1.

Now suppose φ has compact support disjoint from K. Then pS�htqpφq �
0 for all all 0   t ¤ 1. But S � htpφq Ñ Spφq as t Ñ 0�. Indeed,

pS � htqpφq �
»

φpxq dpS � htqpxq
�
»

φpxq
»

htpx� yq dSpyq dx

�
» �»

htpx� yqφpxq dx



dSpyq

�
» �»

htpy � xqφpxq dx



dSpyq

� Spht � φq.
So Spht � φq � 0 for 0   t ¤ 1 and since by Lemma 2.83, ht � φ Ñ φ in
DpRnq as t Ñ 0�, we obtain Spφq � 0 for all φ whose support misses K.
Hence suppS � K.

Assume now S has compact support. Consider the linear mapping φ ÞÑ
S � φ. By Proposition 4.57, this mapping is continuous from DpRnq into
EpRnq. Hence if K is a compact subset of Rn, then the mapping φ ÞÑ S�φ is a
continuous linear mapping of DKpRnq into DK�supp SpRnq. But by Lemma
2.66, the relative topology of DpRnq on D8K�supp SpRnq is the topology of
DK�supp SpRnq. Thus the mapping φ ÞÑ S �φ is a continuous linear mapping
of DKpRnq into DpRnq for all compact subsets K of Rn. Since DpRnq is the
inductive limit topology, Proposition 2.15 shows φ ÞÑ S �φ is continuous on
DpRnq into DpRnq. ¤
Proposition 4.62. Let S be a distribution on Rn with compact support.
Then S � φ P SpRnq for all φ P SpRnq and the linear mapping φ ÞÑ S � φ is
continuous from SpRnq into SpRnq.
Proof. Let K be the support of S. Fix α and N . Let ε ¡ 0. Since S
has compact support K, there is a finite subset F � Nn

0 and a δ ¡ 0 such
that |Spφq|   ε

2N maxyPKp1�|y|2qN if |φ|K,β � maxxPK |Dβφpxq|   δ for β P F .
Then by Exercise 2.3.4,

p1�|x|2qN |DαpS � φqpxq|
� |

» p1� |x|2qN
p1� |x� y|2qN p1� |y|2qN p1� |y|2qN pDαφqpx� yq dSpyq|

¤ 2N max
yPK p1� |y|2qN |

»
pDαφqpx� yq dSpyq|

  ε
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if |φ|0,α�β � |Dαφ|0,β   δ for β P F . From this one has

|S � φ|N,α   ε if |φ|0,γ   δ for γ P α� F.

Consequently S � φ P SpRnq and φ ÞÑ S � φ is a continuous linear mapping
of SpRnq into SpRnq. ¤

Conditions that make S � φ rapidly decreasing for all rapidly decreasing
φ depend on S being “rapidly decreasing”. An example of such an S is
S � °8

k�1 e�kδk.
Putting the prior two propositions together with Definition 4.50 gives

the following theorem.

Theorem 4.63. Let S be a distribution on Rn having compact support. If
T P D1pRnq, then T � S defined by T � Spφq � T pŠ � φq is a distribution on
Rn. If T is a tempered distribution, then T � S is a tempered distribution.

Exercise Set 4.6

1. Let T be a tempered distribution and let ϕ PSpRnq. Show zT � ϕ � ϕ̂T̂ .

2. Show δ0 � φ � φ for all test functions φ.

3. Let H be the Heaviside function. Show H � ϕpxq � ³x�8 ϕpyq dy for
ϕ P SpRq.
4. Suppose that S is a compactly supported distribution. Show ϕ ÞÑ S �ϕ
is a continuous linear transformation of EpRnq into EpRnq.
5. Suppose T and S are distributions on Rn with compact support. Show
supppS � T q � suppS � suppT .

6. Let T be a tempered distribution on Rn. Suppose λpxqT � T for all x.
Show T � c dx; i.e. T is a multiple of Lebesgue measure.

8. The Sobolev Lemma

In solving PDE’s one needs to be able to tell when a distribution is actually
a function and when it is differentiable. In this section we shall establish a
fundamental tool in handling such problems.

Lemma 4.64. Suppose γ ¤ α where γ and α are in Nn
0 . Then¸

γ¤β¤α

p�1qα
�

α

β


�
β

γ



�
#

0 if γ � α

p�1q|α| if γ � α.
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Proof. It suffices to do the one dimensional case. Now note¸
p¤q¤r

p�1qq
�

r

q


�
q

p



� ¸

0¤q¤r�p

p�1qq�p

�
r

q � p


�
q � p

p



� ¸

0¤q¤r�p

p�1qq�p r!
pq � pq!pr � q � pq!

pq � pq!
p!q!

� r!
p!pr � pq!

¸
0¤q¤r�p

p�1qq�p pr � pq!
pr � p� qq!q!

� p�1qpr!
p!pr � pq!

¸
0¤q¤r�p

p�1qq
�

r � p

q



� p�1qpr!

p!pr � pq!p1� 1qr�p

which is 0 if r ¡ p and is p�1qr if r � p. The formula follows from this and
the distributive law. ¤

Lemma 4.65. Let Ω be a nonempty open subset of Rn. Suppose ψ is a C8
function on Ω and f is a locally L1 function. Then

DαpψTf q �
β̧¤α

�
α

β



pDα�βψqDβTf .

In particular we shall write

Dαpψfq �
β̧¤α

�
α

β



pDα�βψqDβf

where this equality is understood in the distributional sense.

Proof. We start by calculating the right hand side on a test function φ in
DpΩq. Using the Leibnitz Formula, one sees

RHS �
β̧¤α

�
α

β



pDα�βψqpDβTf qpφq

�
β̧¤α

�
α

β



DβTf ppDα�βψqφq

�
β̧¤α

p�1q|β|
�

α

β



Tf pDβppDα�βψqφqq

�
β̧¤α

p�1q|β|
�

α

β



Tf p

γ̧¤β

�
β

γ



pDβ�γpDα�βψqqDγφq

�
β̧¤α

p�1q|β|
�

α

β



Tf p

γ̧¤β

�
β

γ



pDα�γψqDγφq
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Continuing we see with the help of Lemma 4.64 that:

RHS �
γ̧¤α

�� ¸
γ¤β¤α

p�1q|β|
�

α

β


�
β

γ


�Tf ppDα�γψqDγφq
� p�1q|α|Tf pψDαφq
� p�1q|α|pψTf qpDαφq
� Dα pψTf q .

¤

Lemma 4.66. Let T be a distribution on Rn such that all DαT for |α| ¤ p
are distributions given by continuous functions. Then T � Tg where g is in
CppRnq and DαT � TDαg for |α| ¤ p.

Proof. For simplicity we take n � 1 and p � 1. The general case follows
easily by the same reasoning. We then have T � Tf and DT � Tg where f
and g are continuous. We claim

fpxq � fp0q �
» x

0
gptq dt.

Let φ be a test function. Set c � ³
φpxq dx and define F by

F pxq � fp0q �
» x

0
gptq dt.

Let h be a C8 function with compact support and integral 1. Set ψpxq �³x�8pφptq � chptqq dt. Note ψ is C8 with compact support and ψ1pxq �
φpxq � chpxq. Thus

T pφ� chq � T pψ1q � �DT pψq � �Tgpψq � �
»

gpxqψpxq dx

� �
»

F 1pxqψpxq dx �
»

F pxqψ1pxq dx

�
»

F pxqpφpxq � chpxqq dx

�
»

F pxqφpxq dx� c

»
F pxqhpxq dx.

Thus

T pφq �
»

F pxqφpxq dx� cT phq � c

»
F pxqhpxq dx.

Since T � Tf , we have

T pφq �
»

F pxqφpxq dx� c

»
hpxqpfpxq � F pxqq dx
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for all h in C8c pRq with
³
hptq dt � 1. This implies

³
hpxqpfpxq � F pxqq dx

is independent of h and consequently fpxq � F pxq is constant in x. Since
fp0q�F p0q � 0, we see f � F and thus f is differentiable and has derivative
g. ¤

Theorem 4.67 (The Sobolev Lemma). Let T be a distribution on Ω where
Ω is an open subset of Rn. Suppose r and p are integers with p ¥ 0 and
r ¡ p � n

2 . If DαT is locally an L2 function for each α with 0 ¤ |α| ¤ r,
then there is an f P CppΩq such that T � Tf .

Proof. Let DαT � gα P L2
locpΩq for 0 ¤ |α| ¤ r. Extend all these gα to all of

Rn by defining them to be 0 off Ω. Note T pDαϕq � p�1q|α| ³ gαpxqϕpxq dnx
for any ϕ P DpΩq. Set g � g0. Let V be an open subset of Ω hav-
ing compact closure in Ω. Let ψ be in DpΩq with ψ � 1 on V̄ . De-
fine fpxq � ψpxqgpxq. Extend f to all of Rn by setting fpxq � 0 for
x R suppψ. Then f is both an L2 and an L1 function on Rn. By Lemma
4.65, Dαf � °

β¤α

�
α
β

�
Dα�βψ Dβg. More precisely, this is an equality of

distributions; i.e. DαTf � °�
α
β

�pDα�βψ qDβTg and this holds on Rn. Thus
f and Dαf as distributions are given by functions which are both L2 and
L1. Thus FpDαfqpyq � p2πiyqαf̂pyq is continuous and L2. This gives³ |y2αf̂pyq|2 dy   8 if |α| ¤ r and since f̂ is bounded, it follows by an easy
argument that E :� ³p1�|y|2qr|f̂pyq|2 dy   8. (Indeed, one need only show³
|y|¥1 |y|2k|f̂pyq|2 dy   8 whenever k ¤ r. But |y|2k is a finite sum of terms

of form y2α where |α| ¤ k.) Now using the Cauchy-Schwarz inequality and
integration in polar coordinates, one has»

p1� |y|2qp{2|f̂pyq| dy �
» �p1� |y|2q r

2 |f̂pyq|	 p1� |y|2q p�r
2 dy

¤ E1{2
�»
p1� |y|2qp�r dy


1{2

� E1{2
�

σpSn�1q
» 8
0
p1� r2qp�rrn�1 dr


1{2

� E1{2
�

σpSn�1q
» 8
0
p1� r2qp�rrn�1 dr


1{2

which is finite if
³8
1 r2p�2rrn�1 dr   8. This occurs if 2p� 2r � n   0; that

is if p   r � n{2. We thus see yαf̂pyq P L1pRnq whenever |α| ¤ p. Since
F�1pp2πyqαf̂q � Dαf , we see Dαf as distribution is a continuous function
when |α| ¤ p. Lemma 4.66 implies f is equal to a Cp function a.e. and
the derivatives of this Cp function up to order p give the derivatives of the
distribution f . Consequently, the same is true for g and the gα on V . ¤
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Exercise Set 4.7

1. Let f ¥ 0 be a continuous function such that
³
Rn f dx � 1. Define

fmpxq :� mnfpmxq. Show

lim
mÑ8Tfm � δ0.

2. Let s P p�8,8q. Define Hs to be the Hilbert space of tempered dis-
tributions obtained by Fourier transforming the Hilbert space L2pRn, p1 �
|x|2qs dxq; i.e.,

Hs � tFf |
»
|fpxq|2p1� |x|2qs dx   8u

with

pFf,Fgq �
»

fpxqḡpxqp1� |x|2qs dx.

Hs is the Sobolev space of order s on Rn; it is sometimes denoted by
W s,2pRnq.

(a) Show Hs � Hs1 if s   s1 and Hs � L2pRnq if and only if s ¥ 0;

(b) Given an integer p ¥ 0, find the smallest index s such that Hs1 �
CppRnq if s1 ¡ s.

(c) Show the differential operator Dα is a bounded linear operator from
Hs into Hs�|α|.

(c) Let α P Nn
0 . Determine which Hs contain the distribution Dαε0

where ε0 is point mass at 0.

(d) Show p1� 1
4π2 ∆qq is a unitary mapping of Hs onto Hs�4.

(e) Show Hsp�q :� Ys1¡sHs1 and Hsp�q :� Xs1 sHs are proper sub-
spaces of Hs.

(f) Show H8 � XsHs is the subspace of C8pRnq consisting of all f
with Dαf P L2pRnq for all α P Nn

0 .

9. Schwartz Bases and Spaces of Rapidly Decreasing
Sequences

We have been using Nn
0 to denote the collection of all n tuples α of nonneg-

ative integers. In this section, to minimize notation, we shall denote this set
by A. Recall for α � pa1, a2, . . . , anq P A, one has |α| � a1 � a2 � � � � � an,
xα � xa1

1 xa2
2 � � �xan

n , and Dα � � BBx1

	a1
� BBx2

	a2 � � �� BBxn

	an

. Also as before

we have Di � Bi � BBxi
. A n-multi index sequence is a complex valued

function λ : A Ñ C. This sequence converges to 0 as α Ñ 8 if λα Ñ 0 as
|α| Ñ 8. The space R of rapidly decreasing sequences is the space of all
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n-multi index sequences λ satisfying

ppαqλα Ñ 0 as α Ñ8
for each polynomial ppxq in n variables. This is clearly a complex vector
space.

For each polynomial ppxq, we define a seminorm | � |p on R by

|λ|p � max
αPA |ppαqλα|.

These seminorms define a separated locally convex vector space topology on
R. We call it the Schwartz topology on R. By Exercise 4.8.1 the space R
with this topology is a Fréchet space.

The Weyl algebra W is the collection of all differential operators D on
C8pRnq which can be written as a finite sum of multiples of the operators
xαDβ where α, β P A. Thus if D PW, on has

D �
α̧,β

cα,βxαDβ.

where cα,β P C.
The Weyl algebra is closely related to the Heisenberg group which we

study in a later chapter. We introduce it here because it contains the
Hermite operator whose spectral decomposition we shall use to charac-
terize Schwartz functions. Recall from Equation 3.9 that we are taking
H � 4π|x|2 �∆. This operator is in W.

Definition 4.68. We say an orthonormal basis teα | α P Au of L2pRnq
consisting of Schwartz functions is a Schwartz basis if a function f P L2pRnq
is Schwartz if and only if the sequence λα � pf, eαq2 is rapidly decreasing.

Theorem 4.69. Let teαuαPA be an orthonormal basis of L2pRnq satisfying:

(a) There is a k such that pxieα, eβq2 � pDieα, eβq2 � 0 if |α � β| ¡ k
and 1 ¤ i ¤ n.

(b) There is a nonnegative polynomial Q so that

|pxieα, eβq2| ¤ Qpαq
|pDieα, eβq2| ¤ Qpαq for all α and β in A and 1 ¤ i ¤ n.

(c) There is an H P W and an ε ¡ 0 such that Heα � cαeα where
|cα| ¥ |α|ε for all α P A.

Then teαuαPA is a Schwartz basis and the mapping Λ defined on R by
Λpλq � °

λαeα is a bicontinuous one-to-one linear transformation from
R onto SpRnq.
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Proof. Suppose λ � tλαuαPA is in R. Set ppxq � |x|2n. Since ppαqλα Ñ 0
as |α| Ñ 8, there is a constant M such that |α|2n

2 |λα| ¤ M for all α.
Hence |λα|2 ¤ M|α|4n when |α| ¡ 0. By Exercise 4.8.8, we see

° |λα|2   8.
Thus fλ � °

λαeα exists in L2pRnq and hence is a tempered distribution.
We calculate the distributional derivative Difλ. Note if φ is a Schwartz
function xφ,Difλy � �xDiφ, fλy � �°

α

³
λαeαpxqDiφpxq dx. Hence

xφ,Difλy �
α̧

λαxDieα, φy
�

α̧

λαx ¸
|β�α|¤k

pDieα, eβq2eβ, φy
�

β̧

¸
|β�α|¤k

λαpDieα, eβq2xeβ, φy.

The rearrangement in summation follows by absolute summability. In-
deed, by the Cauchy-Schwarz inequality and since

|Dieα|22 � ¸
|β�α|¤k

|pDieα, eβq2|2 ¤ ¸
|β�α|¤k

Qpαq2 ¤ knQpαq2,
we see

α̧

¸
|β�α|¤k

|λαpDieα, eβq2xeβ , φy| ¤

α̧

|λα|
�� ¸
|β�α|¤k

|pDieα, eβq2|2
�1{2 �� ¸

|β�α|¤k

|xeβ , φy|2
�1{2

¤ |φ|2
α̧

|λα| |Dieα|2
¤ k

n
2 |φ|2 ¸ |λα|Qpαq   8.

Thus:

xφ,Difλy �
β̧

�� ¸
|α�β|¤k

λαpDieα, eβq2
�xeβ, φy.

Set λ1β � °
|α�β|¤k λαpDieα, eβq2. We show λ1 P R. Indeed,

|λ1β| ¤ ¸
|α�β|¤k

|λα|Qpαq.
Now let ppxq be any positive polynomial.

Define polynomial P pxq by

P pxq � ¸
γPA,|γ|¤k

P px� γq.
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Then ppβq ¤ P pαq if |α� β| ¤ k. Hence

ppβq|λ1β| ¤ ppβq ¸
|α�β|¤k

|λα|Qpαq ¤ ¸
|α�β|¤k

|λα|P pαqQpαq.

Consequently, ppβq|λ1β| Ñ 0 as β Ñ8 and we see λ1 P R.

Thus Difλ � fλ1 where λ1 P R. Repeating, we see for any α P A, one
has Dαfλ � fλ1 for some λ1 P R. Since fλ1 is L2 for each λ1 P R, we see all
distributions Dαfλ are L2 functions. By the Sobolev Lemma, fλ P C8pRnq.

Using the same argument as above, one has xifλ � fλ1 for some λ1 P R
for each λ P R. Thus by induction, pfλ is a fλ1 for some λ1 P R and hence
is both C8 and an L2 function for any polynomial p.

Using polar coordinates, (see Corollary 2.26), one has x ÞÑ p1� |x|2q�m

is in L2pRnq for m ¡ n
4 . Thus if m is an integer larger than n

4 , and ppxq �
p1 � |x|2qm, then fλ � ppfλqp1pq is in L1pRnq. So fλ is in L1pRnq for each
λ P R. It’s Fourier transform is thus a bounded continuous function. Thus
the Fourier transforms of all ppxqDαfλpxq are bounded L2 functions. Hence
ppyqf̂λpyq is L2 for all polynomials ppyq. As above, we see this implies f̂λ

is L1. Consequently, fλ � F�1pf̂λq is bounded. Since ppxqDαfλ � fλ1 for
some λ1, |fλ|p,α   8 for all polynomials ppxq and α P A. Thus fλ is a
Schwartz function.

Let f be a Schwartz function. Define λα by λα � pf, eαq2. We claim
λ P R. Indeed, Hkf � °

ck
αλαeα for all k. Thus ck

αλα is square summable
over α P A for all k. Using (c), we see |α|kε|λα| is in l2pAq for all k. Let
p be a polynomial of order m. Note if m   kε and |β| ¤ m, then |αβ| ¤
pmax |αj |q|β| ¤ |α|m. Hence |αβλα| ¤ |α|kε|λα| Ñ 0 as α Ñ 8. Thus
ppαqλα Ñ 0 and we see λ is rapidly decreasing. Clearly fλ � f . Hence the
mapping λ ÞÑ fλ is onto.

We thus see the linear mapping Λ from SpRnq intoR defined by Λpfqpαq �
pf, eαq2 is one-to-one and onto. We show Λ is continuous. Define

Λm : SpRnq Ñ R

by

Λmpfqpαq �
#

0 for |α| ¡ m and
Λpfqpαq for |α| ¤ m

Note each Λm is continuous. Moreover, Λmpfq Ñ Λpfq in R as m Ñ 8
for each f P SpRnq. Indeed, if p is a polynomial, |Λmpfq � Λpfq|p �
max|α|¡m |ppαqΛpfqpαq| Ñ 0 as m Ñ 8 for limαÑ8 ppαqΛpfqpαq � 0. By
the Principle of Uniform Boundedness, Theorem 2.18, Λ is continuous.
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But since Λ is continuous and onto, we can apply the Open Mapping
Theorem 2.19. Consequently Λ is an open mapping. Hence Λ is a topological
isomorphism. ¤

Corollary 4.70. Let teαuαPA be a Schwartz basis for SpRnq. Suppose D is
a differential operator in the Weyl algebra W and Deα � cαeα for all α. If
inf
α
|cα| ¡ 0, then D : SpRnq Ñ SpRnq is a homeomorphism.

Proof. We already know D is continuous. Let c � inf
α
|cα| ¡ 0. Take

f P SpRnq and define λ by λα � pf, eαq. Then f � fλ and tλαuαPA is
rapidly decreasing. For α P A, set Λα � λα

cα
. We note Λ is rapidly decreasing.

Indeed, if P is polynomial,

|P pλqΛα| � |P pλqλα||cα|
¤ |P pλqλα|

c

¤ c�1|λ|P
  8.

Thus fΛ P SpRnq, DpfΛq � f , and |Λ|P ¤ c�1|λ|P . Hence D is onto and
one-to-one and the mapping f ÞÑ D�1f is given by λ ÞÑ Λ in R, we have
that D�1 is continuous. ¤

Recall from 3.8 that the Hermite functions hαpxq are defined by

hαpxq � Hαpxqe�π|x|2

where Hα is the Hermite polynomial

Hαpxq � p�1q|α|e2π|x|2Dαpe�2π|x|2q.
By Theorem 3.36, the normalized Hermite functions

eα � 2n{4ap4πq|α|α!
hα, α P A

form an orthonormal basis for L2pRnq. It in fact is a Schwartz basis. Indeed,
from equations (3.11) and (3.12) we know:

Djeαpxq � ?παj eα�ej pxq �
b

πpαj � 1q eα�ej pxq and

xjeαpxq �
c

αj

4π
eα�ej pxq �

c
αj � 1

4π
eα�ej pxq.

Moreover, if H is the Hermite operator 4π2|x|2 �∆, then Proposition 3.35
gives

Heα � cαeα where cα � 2πp2|α| � nq.
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In particular, we see

pxjeα, eβq � pDjeα, eβq � 0 if |α� β| ¡ 1

and
|pxjeα, eβq| ¤ πpαj � 1q2 and |pDjeα, eβq| ¤ πpαj � 1q2.

Since, in addition, cα ¡ |α|, we may apply Theorem 4.69.

Theorem 4.71. The orthonormal collection eα � 2n{4?p4πq|α|α!
hα where α P Nn

0

is a Schwartz basis of L2pRnq.
From Lemma 3.23 we have

hαpxq � hαpx1, x2, . . . , xnq � hα1px1qhα2px2q � � �hαnpxnq
and thus hα � hα1 b hα2 b � � � b hαn . Consequently, hα,β � hα b hβ for
pα, βq P Nm

0 � Nn
0 � Nm�n

0 . Since cα,β � 2pm�nq{4?p4πq|α|�|β|α!β!
� cα cβ, we see

(4.19) eα,β � eα b eβ for pα, βq P Nm
0 � Nm

0 � Nm�n
0 .

Proposition 4.72. The Hermite operator 4π2|x|2 � ∆ is a linear homeo-
morphism of SpRnq onto SpRnq.
Proof. This follows immediately from Corollary 4.70 since inf |cα| � 2πn.

¤

The next proposition was proved earlier using an alternate method in
Theorem 2.85.

Proposition 4.73. The linear span of the simple tensors f b h where f P
SpRmq and h P SpRnq is dense in SpRm�nq in the Schwartz topology.

Proof. Since the eα,β � cα,βhα,β for α P Nm
0 and β P Nn

0 form a Schwartz
basis for L2pRm�nq, we see the linear span of the functions hα,β is a Schwartz
dense subspace of SpRm�nq. But hα,β � hα b hβ. Thus the linear span of
the tensors f b h where f P SpRmq and h P SpRnq contains the linear span
of the Hermite functions hα,β. ¤

We shall make use of the following theorem.

Theorem 4.74. Let K P SpRn � Rnq. Then the operator T : L2pRnq Ñ
L2pRnq defined by

Tfpxq �
»
Rn

Kpx, yqfpyq dy

is a trace class operator and

TrpKq �
»
Rn

Kpx, xq dx.
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Proof. Define λα,β � pK, eα b eβq2. By Theorem 4.71, we know λ is a
member of R2n, the space of rapidly decreasing multi 2n-sequences. In
L2pR2nq one has K � °

α,βPNm�n
0

λα,βeα b ēβ. We can conclude T is trace
class by referring to Exercise 2.2.29.

As an alternative, one can proceed directly using Definition 2.37. Note°
αPNn

0

1
ppαq   8 where p is the polynomial given by

ppx1, x2, . . . , xnq � p1� x2
1qp1� x2

2q � � � p1� x2
nq.

Define wα � °
β

a
ppαqλ̄α,βeβ. Let Qpx, yq be the polynomial defined by

Qpx, yq � ppxq2ppyq for x, y P Rn.

Then

α̧

|wα|22 �
α̧,β

ppαq|λα,β|2

�
α̧,β

1
ppαqppβq |p2pαqppβqλα,β|2

¤ |λ|2Q
α̧,β

1
ppαqppβq

� |λ|2Q
��

α̧PNn
0

1
ppαq

�2

  8.

Moreover, if vα � 1
ppαqeα, then

°
α |vα|2 � ° 1

ppαq2   8. Thus
°

vα b w̄α is
trace class. It is T for

T pfq �¸
λα,βpf, eβq2eα

�
α̧

pf,
β̧

λ̄α,βeβq2eα

�
α̧

pf, ppαq¸ λ̄α,βeβq2 1
ppαqeα

�
α̧

vα b w̄αpfq.
Hence by definition, T is a trace class operator. Moreover, by Theorem 2.44,
TrpT q � ³

Kpx, xq dx. ¤

Definition 4.75. A multi-index complex valued sequence tcαuαPA is tem-
pered if there is a polynomial ppxq such that |cα| ¤ |ppαq| for all α.

Corollary 4.76. Let |�| be any continuous seminorm on SpRnq and suppose
teα | α P Au is a Schwartz basis. Then the sequence |eα| is tempered.
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Proof. Under the mapping f ÞÑ λ, eα Ñ δα P R where

δαpβq �
#

0 if β � α

1 if β � α.

Thus we need only show t|δα|uαPA is tempered for any continuous semi-
norm on R. But if | � | is a continuous seminorm on R, there exists poly-
nomials p1pxq, p2pxq, . . . , pmpxq and a δ ¡ 0 such that |λ| ¤ 1 if |λ|pk

¤ δ
for k � 1, 2, . . . ,m. Set ppxq � 1 � °

pkpxqp̄kpxq. Note |λ|pk
¤ |λ|p for

each k. Hence |λ|p ¤ δ implies |λ| ¤ 1. But | δ
ppαqδα|p ¤ δ for all α. Thus

| δ
ppαqδα| ¤ 1 for all α. We thus have |δα| ¤ 1

δ ppαq for all α. Consequently,
the sequence α ÞÑ |δα| is tempered. ¤

Exercise Set 4.8

1. Show the space R of rapidly decreasing n-multi indexed sequences with
the Schwartz topology is a Fréchet space.

2. Let en, n � 0, 1, 2, . . . be a Schwartz basis of L2pRq. Show there is a
positive polynomial p with maxxPR |enpxq| ¤ ppnq for all n.

3. Show the dual of R is the vector space of all tempered multi-indexed
sequences tcαuαPA.

4. Show a rearrangement of a rapidly decreasing sequence need not be
rapidly decreasing.

5. Let en be the orthonormal sequence of normalized Hermite functions on
R. Show n ÞÑ supx |ppxqDkenpxq|p,k is tempered for all polynomials p and
nonnegative integers k.

6. Show the Weyl algebra W is an algebra; i.e., show it is closed under
addition, multiplication by scalars, and composition.

7. Show SpRnq is the collection of all f P L2pRnq such that as distributions,
Df P L2pRnq for all D in the Weyl algebra W.

8. Let A be the collection of all n-tuples of nonnegative integers. Recall
|α| � °

ai if α � pa1, a2, . . . , anq P A. Show¸
|α|¡0

1
|α|k   8 if and only if k ¡ n.

9. Let A be the collection of all n-tuples consisting of nonnegative integers.
Show teαuαPA is a Schwartz basis if and only if the mapping Λ : RÑ SpRnq
defined by Λpλq � °

αPA λαeα is a topological isomorphism.
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10. Heisenberg Uncertainty Principle

One of the inherent problems with the Fourier transform is that it is not
possible to localize both f and f̂ at the same time. An extreme situation
arises when f � T � δ0 which has support t0u and is as well localized as
possible. But T̂ � 1 is evenly distributed and thus has no localization. The
same phenomenon can been seen by the dilation properties of the Fourier
transform. If f ¥ 0 is an integrable function with support in the closed
ball BRp0q and a ¡ 0, then fapxq � a�1fpa�1xq has support in BaRp0q
and fa Ñ δ0 as a Ñ 0� whereas pfapωq � f̂paωq Ñ f̂p0q � 1 for each ω.
Moreover, since f̂ is holomorphic and therefore cannot vanish on any open
set, we see each f̂a has support R. This non-local property of the Fourier
transform implies that a short term change in the function f has a global
change in f̂ . As an example consider a variation of f by aχp�ε,εq, ε ¡ 0:

fε � f � aχp�ε,εq .
Then since pfεpωq � f̂pωq � a sinp2πεωq

πω
,

we see there is a global change which vanishes at infinity in the frequency
representation of f . A partial explanation for this is the fact that the expo-
nential function

e2πiωx � cosp2πωxq � i sinp2πωxq
is a uniform wave on R and hence the integrals

f̂pωq �
»

fpxqe�2πiωx dx

and

fpxq �
»

f̂pωqe2πiωx dω

both involve global information on f and f̂ , respectively.
The Heisenberg Uncertainty Principle is a general statement about the

joint distribution of f and f̂ . This principle can efficiently be expressed
using ideas from probability theory. Let µ be a probability measure on R,
i.e., µpRq � 1. Then one defines the mean of µ to be the number

mpµq :�
»

x dµpxq
if the function id : x ÞÑ x is integrable. If the mean is finite, then the
variance of µ is defined to be the number

νpµq :�
»
px�mpµqq2 dµpxq
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in case x ÞÑ px �mpµqq2 is integrable. Otherwise νpµq � 8. The number
σpµq � a

νpµq is the standard deviation of µ. If f is a nonzero member of
L2pRq, the functions

x ÞÑ |fpxq|2
|f |22 , ω ÞÑ

���f̂pωq���2
|f |22

define probability measures µf and µf̂ by

µf pAq � 1
|f |22

»
A
|fpxq| 2dx and µf̂ pAq � 1���f̂ ���2

2

»
A

���f̂pωq��� 2dx .

To simplify the discussion, we shall work with functions f in SpRq. Then
the means and the variances of both µf and µf̂ are finite. We shall simply
write

mpfq � mpµf q � 1
|f |22

»
x |fpxq|2 dx

νpfq � νpµf q � 1
|f |22

»
px�mpfqq2 |fpxq|2 dx

(4.20)

and similarly for f̂ . Then νpfq and νpf̂q give information about the spread
of f and f̂ .

Example 4.77. For µ P R and σ ¡ 0, let γµ, σ denote the Gaussian

γµ, σpxq � 1
p2πσ2q1{4 expp�px� µq2

4σ2
q .

Then

|γµ, σpxq|2 � 1?
2πσ

expp�px� µq2
2σ2

q .

The substitution u � x�µ?
2πσ

yields:

|γµ, σ|22 � 1?
2πσ

»
expr�px� µq2

2σ2
s dx

�
»

e�πu2
du

� 1
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Figure 1. |γp0, σq|2 for σ � 1
2
pblueq , 1 predq , 2 pgreenq.

and

mpγµ, σq � 1?
2πσ

»
x expr�px� µq2

2σ2
s dx

� 1?
2πσ

»
px� µq expr�

�
x?
2σ


2s dx

� 1?
2πσ

»
x expr�

�
x?
2σ


2s dx� µ?
2πσ

»
expr�

�
x?
2σ


2s dx

� µ

»
e�πu2

dx

� µ .

Here we used x ÞÑ e� x2

2σ2 is even, the substitution u � x?
2πσ

, and
³
e�πu2

du �
1. Finally for the variance:

νpγµ, σq � 1?
2πσ

»
px� µq2 exp

�
�px� µq2

2σ2



dx

� σ

c
2
π

» �
x� µ?

2σ


2

expr�
�

x� µ?
2σ


2s dx � 2σ2

»
πu2e�πu2

du

� �σ2

»
u

d

du
e�πu2

du � σ2

»
e�πu2

du � σ2.
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Using the fact that ĥ � h for hpxq � e�πx2
, we see

γ̂µ,σpωq � 1
p2πσ2q1{4

»
expp�px� µq2

4σ2
qe�2πiωx dx

� e�2πiωµ

p2πσ2q1{4
»

expp� x2

4σ2
qe�2πiωx dx

� 2σ
?

πe�2πiωµ

p2πσ2q1{4
»

expp�p2σ
?

πxq2
4σ2

qe�2πiω2σ
?

πx dx

� 23{4π1{4?σe�2πiωµ

»
expp�πx2qe�2πiωp2σ

?
πxq dx

� 23{4π1{4?σe�2πiωµĥp2?πσωq
� 23{4π1{4?σe�2πiωµ expp�4π2σ2ω2q
� e�2πiωµ 1

p2πp4πσq�2q1{4 expp� ω2

4p4πσq�2
q

� e�2πiωµγ0, 1
4πσ
pωq.

Hence

mpyγµ, σq � 0 and ν pyγµ, σq � 1
16π2σ2

.

It follows that

νpγµ, σqνpyγµ, σq � 1
16π2

.

Theorem 4.78 (Heisenberg Uncertainty Principle). Assume that f P SpRq.
Then

νpfqνpf̂q ¥ 1
16π2

.

Furthermore νpfqνpf̂q � 1
16π2 if and only if there exists µ P R and a pair A

and a of nonzero complex numbers such that Repaq ¡ 0 and

fpxq � Ae�apx�µq2 .

Proof. We can assume without loss of generality that |f |2 � 1. Set m �
mpfq and m̂ � mpf̂q. Then we can assume that m � m̂ � 0. Indeed,
if we replace f by g where gpxq � e�2πim̂xfpx � mq, then mpgq � 0 and
νpgq � νpfq. Furthermore, since

ĝpωq � e2πipω�m̂qmf̂pω � m̂q,
we see mpĝq � 0 and νpĝq � vpf̂q. As f is rapidly decreasing, we can use
integration by parts and the fact that

d

dx
|fpxq|2 � d

dx
fpxqfpxq � 2Repfpxqf 1pxqq
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to see that»
xRepfpxqf 1pxq qdx � 1

2

»
x

d

dx
|fpxq|2 dx � �1

2

»
|fpxq|2 dx � �1

2
.

Now Hölder’s inequality and FpDfqpωq � 2πiωfpωq imply

1
2
� �

»
xRepfpxqf 1pxqq dx

� �Re
�»

xfpxqf 1pxq dx



¤ |xf |2 ��f 1��2
� 2π |xf |2

���ω pf ���
2

� 2πσpfqσpf̂q.
Thus

νpfqνpf̂q ¥ 1
16π2

and we have equality if and only if

|xf |2 ��f 1��2 � �Re
�»

xfpxqf 1pxq dx



¤ |

»
xfpxqf 1pxq dx| ¤ |xf |2 ��f 1��2 .

Thus equality is equivalent to | ³ xfpxqf 1pxq dx| � |xf |2 |f 1|2, and since
equality occurs in Hölder’s inequality precisely when the functions are lin-
early dependent, we see νpfqνpf̂q � 1

16π2 if and only if there is a constant b
with such that

f 1pxq � 2bxfpxq
and thus fpxq � Aebx2

.
Finally the argument in Example 4.77 can be used to Show fpxq �

Ae�apx�µq2 with Repaq ¡ 0 satisfies νpfqνpf̂q � 1{16π2. ¤

Exercise Set 4.9

1. Let f P SpRq. Let a, b P R. Define g by gpxq � e�2πiaxfpx � bq. Show
mpgq � mpfq � b, mpĝq � mpf̂q � a, νpgq � νpfq and νpĝq � νpf̂q.
2. Let f P L2pRq. Suppose ω ÞÑ ωf̂pωq is an L2 function. Show the
distribution Df is an L2 function f 1 and»

|f 1pxq|2 dx � 4π2

»
ω2|f̂pωq|2 dω.

3. Suppose f and xf are in L2pRq and the distribution Df is an L2 function
f 1. Show there is a sequence fk in DpRq such that fk Ñ f , f 1k Ñ f 1, and
xfk Ñ xf in L2pRq. (Hint: Consider hq � pkpfq where hq is an approximate
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identity and kppxq � kpx
p q where k is a C8 function of compact support in

r�1, 1s, 0 ¤ kpxq ¤ 1, and kpxq � 1 for �1{2 ¤ x ¤ 1{2.

4. Assume f P L2pRq with |f |2 � 1. Show using the previous exercise that�»
x2|fpxq|2 dx


�»
ω2|f̂pωq|2 dω



¥ 1

16π2
.

Also show one has equality if and only if f � Aebx where Re b   0. (Hint:
Show |fpxq|2 is absolutely continuous and use integration by parts.)

5. Let f P L2pRq. Let a, b P R. Show�»
px� aq2|fpxq|2 dx


�»
pω � bq2|f̂pωq|2 dω



¥ |f |4

16π2
.

11. The Windowed Fourier Transform

One of the first proposals for dealing with the non-local behavior of the
Fourier transform was made by D. Gabor in 1946. His idea was to multiply
f by a well localized window function ψ, i.e., to consider the function

fψpx, uq � fpxqψpx� uq .
If ψ is localized around 0, then x ÞÑ ψpx � uq is localized around u and
hence x ÞÑ fψp�, uq contains local information about f around u. A natural
requirement is that ψ has mean zero and that ψ and ψ̂ have finite momen-
tum, i.e., that x ÞÑ xαψpxq, ω ÞÑ ωβψ̂pωq are in L2pRq for all α, β ¡ 0. The
second condition is clearly satisfied for all rapidly decreasing functions. But
as all proofs are the same for ψ P L2pRnq we will assume so if nothing else is
stated. Let ψu,ωpxq � ψpx� uqe2πix�ω. Define the windowed, or short time,
Fourier transform Spfqpu, ωq � Sψpfqpu, ωq by

(4.21) Sψpfqpu, ωq :�
»

fpxqψ px� uqe�2πiω�x dx � pf | ψu,ωq2.
Before we discuss the L2-theory of this transform note that when f and ψ be-
long to L1pRnqXL2pRnq and

³
ψpxq dx � C �� 0, then px, uq ÞÑ fpxqψpx� uq

is integrable on R2n and

C�1

»
Sψpfqpω, uqdu �

»
fpxqe�2πiω�x dx � f̂pωq .

Thus the windowed Fourier transform decomposes the Fourier transform
of f into an integral of a localized Fourier transform given by the window
function ψ. Furthermore, as the Fourier transform is a unitary isomorphism,
and

yψu,ωpηq � e2πiu�pω�ηqψ̂pη � ωq � e2πiu�ωpψ̂qω,�upηq
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one sees we obtain the following Lemma.

Lemma 4.79 (Fundamental identity). Let f, ψ P L2pRnq. Then

(4.22) Sψpfqpu, ωq � e�2πiu�ωSψ̂pf̂qpω,�uq .
This identity shows that the short time Fourier transform giving local

information about f is expressible in terms of f̂ and ψ̂. It is called the
fundamental identity of time-frequency analysis. Other properties for the
short time Fourier transform are presented in the exercise set following this
section. We will focus on the inversion formula for the transform. We start
with the Plancherel formula.

Theorem 4.80 (Plancherel Formula). Let ψ,ϕ P L2pRnq. Then

pSψpfq,SϕpgqqL2pR2nq � pf, gq2pϕ,ψq2
for all f, g P L2pRnq. In particular the following hold:

(a) Sψpfq P L2pR2nq and Sψ : L2pRnq Ñ L2pR2nq is continuous.

(b) If |ψ|2 � 1, then Sψ is an unitary isomorphism from L2pRnq onto
its image.

(c) If pϕ,ψq2 �� 0, then f � pϕ, ψq�1
2 S�ϕSψpfq for all f P L2pRnq.

Remark 4.81. In Chapter 7 we study the Heisenberg group and its repre-
sentation theory. The windowed (short term) Fourier transform turns out
to be a matrix coefficient of an irreducible unitary representation and many
of the formulas involving the windowed Fourier transform have reinterpre-
tations in terms of formulas for the Heisenberg group. In particular, see
Exercise 7.2.2.

Proof. We notice first that

Sψpfqpu, ωq � Fpfλpuqψqpωq .
Thus by taking the inverse Fourier transform in the ω variable and applying
Tonelli’s Theorem one sees¼

R2n

Sψfpu, ωqSψfpu, ωq dpω, uq �
»
pFpf λpuqψq, Fpf λpuqψqqL2pRnq du

�
»
pf λpuqψ, f λpuqψq2 du

�
» �»

fpxqλpuqψpxq fpxqλpuqψpxqdx



du

�
»
|fpxq|2

�»
|ψpx� uq|2 du



dx

� |f |22 |ψ|22 .
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Hence Sψf P L2pR2nq and f ÞÑ |ψ|�1
2 Sψpfq is an isometry. Now know-

ing that Sψpfq and Sϕpgq are in L2pR2nq, the same argument except with
Fubini’s instead of Tonelli’s Theorem shows

pSψpfq,SϕpgqqL2pR2nq �
¼
R2n

Sψfpu, ωqSϕgpu, ωq dpω, uq

�
»
pFpf λpuqψq, Fpg λpuqϕqq2 du(4.23)

� pf, gq2 pϕ,ψq2 .

The rest is now formal. In particular (a) and (b) follows directly form (4.23).
For (c) notice that (4.23) implies that

pϕ, ψq�1
2 pS�ϕSψpfq, gq2 � pϕ, ψq�1

2 pSψpfq, Sϕpgqq2
� pϕ, ψq�1

2 pf, gq2pϕ, ψq2
� pf, gq2

for all g P L2pRnq. Thus pϕ, ψq�1
2 S�ϕSψpfq � f . ¤

The last statement shows that a formula for the adjoint of the operator
Sφ : L2pRnq Ñ L2pR2nq would allow one to recover f from Sψpfq.
Theorem 4.82. Let ϕ P L2pRnq and F2 denote the Fourier transform on
L2pRn � Rnq in the second variable. Then

S�ϕpF qpxq �
»
Rn

F2F pu,�xqϕpx� uq du for a.e. x.

In particular, if f, ψ, ϕ P L2pRnq are such that pϕ, ψq2 � 1, then for almost
all x in Rn

(4.24) fpxq �
»
Rn

F2Sψpfqpu,�xqϕpx� uq du

Proof. For F P L2pR2nq denote by Fu the function v ÞÑ F pu, vq. Note
F2 is a unitary isomorphism of L2 and F�2 pF qpu, xq � F2F pu,�xq a.e.
pu, xq. From (4.21), one sees if Gpu, xq � fpxqψpx� uq, then Sψfpu, ωq �
F2Gpu, ωq. Now |G|L2pR2nq � |f |2|ψ|2   8. Consequently

(4.25)

pSψpfq, F qL2pR2nq � pF2G,F q
� pG,F�2 F q
�
» »

Gpu, xqF2F pu,�xq du dx

�
»

fpxq
»

ψpx� uqF2F pu,�xq du dx .
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This implies for a.e. x, the function S�ψF in L2pRnq is given by S�ψF pxq �³
ψpx� uqF2F pu,�xq du.

Assume φ P L2pRnq and pφ, ψq2 � 0. By (c) of the Plancherel Theorem,
we have

f � 1
pφ, ψq2 S�φSψf.

Thus for a.e. x, we have

fpxq � 1
pφ, ψq2

»
φpx� uqF2Sψfpu,�xq du.

¤

Remark 4.83. Note for ψ P L2pRnq, since

S�ψpF qpxq �
»

ψpx� uqF2F pu,�xq du

for a.e. x, Cauchy-Schwarz implies

|S�ψF |22 �
»
|
»

ψpx� uqF2F pu,�xq du|2 dx

¤
» �»

|ψpx� uq|2 du

»
|F2F pu,�xq|2 du



dx

�
»
|ψpuq|2 du

» »
|F2F pu,�xq|2 du dx

� |ψ|22|F |22.
Thus as a linear operator from L2pR2nq to L2pRnq one has

||S�ψ|| ¤ |ψ|2.
Note from Equation (4.24) we can write

(4.26) fpxq �
¼
R2n

Sψpfqpu, ωqe2πiω�xφpx� uq dωdu ,

but of course the inner integral does not necessarily exist. However, it
can can be interpreted as a weak integral in a Hilbert space. To define´

Sψpfqpu, ωqe2πiω�xφpx�uq dω du weakly, set Hpu, ωq to be the function in
L2pRnq given by

Hpu, ωqpxq � Sψfpu, ωqe2πix�ωφpx� uq.
Note Hpu, ωq is in L2pRnq and if h P L2pRnq, then

ph, Hpu, ωqq2 �
»

Sψfpu, ωqhpxqe�2πix�ωφpx� uq dx

� Sφhpu, ωqSψfpu, ωq



226 Further Topics

which by the Plancherel Formula is integrable on R2n. Moreover, by Theo-
rem 4.80, »

ph,Hpu, ωqq2 dpu, ωq � pψ, φq2ph, fq2.
Hence, by the Riesz representation theorem, there is a unique vector¼

Hpu, ωq dpu, ωq �
¼

Sψfpu, ωqe2πix�ωφpx� uq dpu, ωq
in L2pRnq such that

ph,

¼
Hpu, ωq dpu, ωqq2 �

¼
ph,Hpu, ωqq2 dpu, ωq � ph, pφ, ψq2fq2

and this vector is said to be the weak L2 integral of the L2pRnq valued
function pu, ωq ÞÑ Hpu, ωq.

Summarizing we obtain

pφ, ψq2f �
¼
R2n

Sψfpu, ωqrτpωqλpuqφs dpu, ωq

as a weak L2 integral. The formal inversion formula (4.26) can now be stated
in an elegant way as:

Theorem 4.84. Let ψ and ϕ be window functions such that pϕ, ψq2 �� 0.
Then

(4.27) f � 1
pϕ, ψq2

¼
R2n

Sψpfqpu, ωq rτpωqλpuqφs dpu, ωq

for all f P L2pRnq.
Two remarks are central here. First (4.27) is an identification of elements

in L2pRnq. As it stands it does not say anything about the pointwise
identity fpxq � pϕ, ψq�1

´ Sψpfqτpωqλpuqϕpxq dpu, ωq. This might or might
not be correct! Secondly we can not write the Fourier transform in a similar
way because in this case we have

fpxq �
»
Rn

f̂pωqeωpxq dω

where as usual eωpxq � e2πix�ω. But the “basis functions” eω are not in
L2pRnq!

Exercise Set 4.10

1. Let f and g be in L2pRnq. Show
³ |fpxqλpuqgpxq| dxÑ 0 as uÑ8.

2. Show if f, ψ P L2pRnq, then the windowed Fourier transform Sψf is a
bounded uniformly continuous function on Rn � Rn.
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3. Let ψ P L2pRnq. Show the range SψpL2pRnqq is a closed subspace of
L2pRn � Rnq.
4. Let f and ψ be L2 functions on Rn. Show

Sψpfqpu, ωq � e�πiu�ω
»
Rn

fpx� u

2
qψpx� u

2
q e�2πix�ω dx .

5. Let ψ P SpRnq be nonzero. Show the mapping Sψ is a continuous linear
linear homeomorphism of SpRnq onto its range which is a closed subspace
of SpR2nq. Hint: Use Propositions 2.62 and 4.73.

6. Let φ P SpRnq. Show S�φ is a continuous linear mapping from SpR2nq into
SpRnq. Conclude using the previous exercise that if φ and ψ are in SpRnq
with pφ, ψq2 � 1, then Sψ is a homeomorphism of SpRnq onto the closed
subspace F � SψpSpRnqq of SpR2nq which has inverse S�φ|F . Moreover,

fpxq �
¼

Sψfpu, ωqe2πiω�xφpx� uq dpu, ωq for all x.

7. Let ψ P L2pRnq. Show ImpSψq is a reproducing Hilbert space with
reproducing kernel

Kppu1, ω1q, pu, ωqq �
»

ψpx� uqψpx� u1qe2πix�pω�ω1qdx .

8. Assume H is a separable Hilbert space, Ω is open in Rd, and F : ΩÑ H
is weakly integrable; i.e. x ÞÑ pv, F pxqq is integrable for each v P H . Show
if teju is an orthonormal basis for H then F pxq � °

jpF pxq, ejqej for a.e. x
and the weak Hilbert space integral satisfies»

F pxqdx �
j̧

�»
Ω
pF pxq, ejq dx



ej .

12. The Continuous Wavelet Transform

In this section we briefly discuss a simple form of the continuous wavelet
transform. In Section 18 of Chapter 6 we will give a more sophisticated
discussion and explanation based on the representation theory of topological
groups. That discussion will clarify the importance of abstract harmonic
analysis in general for transforms of many types; one which is not widely
known in applied science. This approach is inclusive to both the windowed
Fourier transform and the continuous wavelet transform.

The windowed Fourier transform uses a window function ψ and two
parameters u and ω, where u indicates where we are localizing our functions
and ω is the dual frequency parameter coming form the Fourier transform.
But after introducing both a new parameter and a “localizing” window
function ψ one can just as well take the final step and completely forget about
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the exponential function in the decomposition. Instead we both dilate and
translate the function ψ to get information about f . First we introduce some
notation that we will use for the n-dimensional case. For a � pa1, . . . , anq P
Rn, let Mpaq be the multiplication operator

Mpaqpxq � pa1x1, . . . , anxnq.
Then

detMpa1, . . . , anq � a1a2 � � � an .

We will therefore simply write

detpaq � a1a2 � � � an

for a � pa1, . . . , anq P Rn. We obviously have detpaq �� 0 if and only if
a P pR�qn. Define for a P pR�qn and b P Rn the function ψa,b by ψa,bpxq �
|det a|�1{2 ψpMpaq�1px� bqq and then define Wψf : R2n Ñ R by

(4.28)

Wψfpa, bq �pf, ψa,bq2
� |det a|�1{2

»
fpxqψ pMpaq�1px� bqq dx

� |det a|1{2
»

f̂pωqψ̂pMpaqωqe2πib�ω dω

where we have used that the function ψa,bpxq � | det a|�1{2ψpMpaq�1px�bqq
has Fourier transform

(4.29) yψa,bpωq � | det a|1{2e�2πib�ωψ̂pMpaqωq .
If the function ψ is fixed, then we simply write Wf for Wψf .

Definition 4.85. A nonzero function ψ P L2pRnq is called a wavelet func-
tion if and only if

(4.30) ψ̂ P L2ppR�qn,
dω

|det ω| q.
The transform

L2pRnq Q f ÞÑWψf P CppR�qn � Rnq
is called the wavelet transform.

Example 4.86. Let ψ � χp�1{2,0q � χr0,1{2q. Then

ψ̂pωq �
» 0

�1{2
e�2πiωxdx�

» 1{2
0

e�2πiωx dx

� i

πω
rcospπωq � 1s .
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As
���ψ̂��� is even it follows that

³8
0
|ψ̂pωq|2
|ω| dω � ³0�8 |ψ̂pωq|2|ω| dω. Note»

|ω|¥1

����cospπωq � 1
πω

����2 { |ω| ¤ 2
π2

»
|ω|¥1

1
|ω|3 dω   8 .

On the other hand close to zero we have
cospπωq � 1

πω
� ωF pωq

where F is the analytic function

F pωq � 8̧

k�0

p�1qk�1 π2k�1ω2k�1

p2pk � 1qq! .

Hence ����cospπωq � 1
πω

����2 � 1
|ω| � |ω| |F pωq|2

is clearly integrable on r�1, 1s. Together these imply

1
π2

»
R

| cospπωq � 1|2
|ω|3 dω   8 .

It follows that (4.30) holds. Notice that for positive a we have

χpα,βq
�

x� b

a



� χpb�aα,b�aβqpxq .

Thus for a ¡ 0

Wfpa, bq � a�1{2
» b

b�a{2
fpxq dx� a�1{2

» b�a{2
b

fpxq dx

�
?

a

2

�
2
a

» b

b�a{2
fpxq dx� 2

a

» b�a{2
b

fpxq dx

�
.

Thus the wavelet transform associated to this choice of wavelet function
gives us with a factor of

?
a

2 the change of average value by going from the
interval pb� a{2, bq to the next interval pb, b� a{2q.

We will see in a moment why this condition is reasonable. But let us first
give the following simple replacement for the wavelet condition in the one
dimensional case. Suppose that ψ P SpRq. Then ψ̂ is continuous. Assume
that ψ̂p0q � ³

ψpxq dx �� 0. Then there exists ε, δ ¡ 0 such that
���ψ̂pωq��� ¡ δ

for |ω|   ε. But then » 8
0

���ψ̂pωq���2
ω

dω ¥
» ε

0

δ

ω
dω � 8 .
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On the other hand, if ψ̂p0q � 0 then Φpxq � ³x�8 ψpuq du is rapidly decreasing
(see Exercise 2.3.9). As Φ1 � ψ it follows that

ψ̂pωq � 2πiωΦ̂pωq
and hence ���ψ̂pωq���2

|ω| � 2π |ω| ���Φ̂pωq��� P L2pRq .
We have thus proved the following Lemma.

Lemma 4.87. Suppose that ψ P SpRq is real valued. Then the following are
equivalent:

(a) ψ is a wavelet function;

(b) ψ̂p0q � ³
ψpuq du � 0;

(c) ψ P d
dxSpRq.

Before we go on to prove the Plancherel formula and inversion formula,
we will need to give simple reformulations of the Wavelet transform. Recall
first that yψa,bpωq � e�2πib�ω| det a|1{2ψ̂pMpaqωq � e�2πib�ωΨapωq
where we are taking

(4.31) Ψapωq � detpaq1{2ψ̂pMpaqωq.
The following Lemma follows then form the fact that the Fourier transform
is an unitary isomorphism.

Lemma 4.88. Let ψ be a wavelet function. Then

Wψfpa, bq � pf̂ , yψa,bq
� |det a|1{2

»
f̂pωq ψ̂pMpaqωq e2πib�ω dω(4.32)

� F�1pf̂Ψaqpbq .
We will now consider the wavelet condition (4.30). For that we notice

the following fact:

Lemma 4.89. Let ψ P L2pRq. Let f be a nonzero L2 function on Rn. Then
Wψf P L2ppR�qn � Rn, da db|det a|2 q if and only if ψ̂ P L2ppR�qn , dω|det ω|q, i.e., if
and only if ψ is a wavelet.
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Proof. First note by (4.32) one has»
|Wψfpa, bq|2 db � pF�1pf̂Ψaq, F�1pf̂Ψaqq

� pf̂ �Ψa, f̂ �Ψaq
� |det a|

»
|f̂pωq|2 ���ψ̂pMpaqωq���2 dω.

Fubini’s Theorem and the fact that RnzpR�qn has measure zero now gives¼
|Wψfpa, bq|2 dadb

|det a|2 �
¼ ���f̂pbq���2 ���ψ̂pMpaqbq���2

|det a| dadb

�
¼

pR�q2n

���f̂pbq���2 ���ψ̂pMpaqbq���2
|det a| dadb

�
»
pR�qn

|f̂pbq|2
»
pR�qn

|ψ̂pa1b1, . . . , anbnq|2 da

| det a| db

�
»
pR�qn

|f̂pbq|2
»
pR�qn

|ψ̂pu1, . . . , unq|2 du

| detu| db

� |ψ̂|2
L2ppR�qn, da| det a| q

»
pR�qn

|f̂pbq|2 db

� |ψ̂|2
L2ppR�qn, da| det a| q|f |2L2pRnq

where we have used the change of coordinates uj � ajbj and

duj|uj | �
daj|aj | .

Hence Wψf P L2ppR�qn � Rn, dadb| det a|2 q if and only if

Cψ :� |ψ̂|2
L2ppR�qn, da| det a| q   8

¤

For the remainder of this section we consider X � pR�qn � Rn with the
measure dµpa, xq � | det a|�2dadx.

Theorem 4.90 (Plancherel Theorem). Let ψ and ϕ be wavelet functions.
Then

pWψf, WϕgqL2pX,dµq � pf, gqL2pRnqppϕ, pψqL2ppR�qn, da| det a| q
for all f, g P L2pRnq. In particular the following holds:

(a) Wψ : L2pRnq Ñ L2pX, dµq is continuous.
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(b) If Cψ,ϕ :� ppϕ, pψqL2ppR�qn, da| det a| q �� 0, then

f � 1
Cψ,ϕ

W �
ϕWψf

for all f P L2pRnq.
(c) If

³
pR�qn

���ψ̂pωq���2 dω| det ω| � 1 then Wψ : L2pRnq Ñ ImpWψq is an
unitary isomorphism.

Proof. By Lemma 4.89 we know that Wϕg and Wψf are in L2pX, dµq.
Hence

pa, bq ÞÑWψfpa, bqWϕgpa, bq
is integrable with respect to µ. We can therefore use Fubini’s Theorem
without hesitation and repeat the arguments in the proof of Lemma 4.89.
Thus with Φa defined in the same way as Ψa in (4.31)

pWψf, WϕgqL2pX,dµq �
»
pF�1pf̂Ψaq, F�1pĝΦaqq da

|det a|2
�
»
pf̂Ψa, ĝΦaq da

| det a|2
�
¼

f̂pωqĝpωq |det a|ΨpMpaqωqΦpMpaqωq dω
da

|det a|2
�
»

f̂pωqĝpωq
�»

ϕ̂pMpaqωq ψ̂pMpaqωq da

|det a|



dω

�
»
pR�qn

f̂pωqĝpωq
�»

pR�qn
ϕ̂paq ψ̂paq da

|det a|
�

dω

� pf, gqL2pRnqpϕ̂, ψ̂qL2ppR�qn, da| det a| q .
The proof of the remaining statements is exactly the same as in the proof
of Theorem 4.80 and is therefore left to the reader. ¤

The Plancherel formula states that the inversion formula is given by W �
ψ ,

but instead of finding this operator we state the inversion formula using the
weak integral.

Theorem 4.91. Let ψ and ϕ be wavelet functions. Assume

Cψ,ϕ � ppϕ, pψqL2ppR�qn, da| det a| q �� 0.

Then

f � 1
Cψ,ϕ

¼
Rn�pR�qn

Wψfpa, bqϕa,b
dadb

|det a|2 .
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Proof. Let F pa, bq � 1
Cψ,ϕ

Wψfpa, bqϕa,b. Then F : X Ñ L2pRnq. Let
g P L2pRnq. Then»

X

pF pa, bq, gqL2pRnq dµpa, bq � 1
Cψ,ϕ

»
X

Wψfpa, bq
�»
Rn

gpxqϕa,bpxq dx



dµpa, bq

� 1
Cψ,ϕ

»
X

Wψfpa, bqWϕgpa, bq dµpa, bq
� 1

Cψ,ϕ
pWψf, Wϕgq

� pf, gq.
Thus g ÞÑ ³pF pa, bq, gq dµ is a continuous antilinear form and hence the
weak integral 1

Cψ,ϕ

´
Rn�pR�qn Wψfpa, bqϕa,b

dadb|det a|2 exists. As»
X
pF pa, bq, gqL2pRnq dµpa, bq � pf, gq2

for all g P L2pRnq, it follows that
³
F pa, bq dµpa, bq � f weakly. ¤

Exercise Set 4.11

1. In many applications one would prefer to use positive numbers for the
dilation. In this exercise we show what changes are necessary. For ε �
pε1, . . . , εnq P t�1, 1un let

Rn
ε � tx P pR�qn | @j P t1, . . . , nu : signpxjq � εju .

Define a wavelet function to be a function ψ P L2pRnq such that there exists
a constant 0   Cψ   8 such that for all ε P t�1, 1un we have»

Rn
ε

|ψ̂pωq|2
|detω| dω � Cψ .

Show the Plancherel and Inversion formula still hold.

2. Let ψ be a wavelet function such that Cψ,ψ � 1. Prove the following:

(a) Hψ :� ImpWψq is a closed subspace of L2pX, dµq and hence is a
Hilbert space.

(b) Hψ � CpXq and the point evaluation maps evx : Hψ Ñ C, F ÞÑ
F pxq are continuous for each x P X.

(c) The reproducing kernel for Hψ is given by

Kpx, yq � Wψψypxq .
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13. Shannon Sampling Theorem

The transforms that we have considered up to now, except the Fourier trans-
form on the torus, express a function as a continuous superposition of func-
tions with coefficients given by the corresponding transform. In many ap-
plications it is necessary, or at least preferable, to deal with countable sums
instead of integrals. Thus we would need to convert a function defined on
the line or an interval into a sequence of numbers. We can do that for peri-
odic functions on the line by using the Fourier series. For functions defined
on the line the Fourier transform is again a function on the line, so that
does not work directly. But in most applications we only need a finite band
width of frequency information, so one can combine the Fourier transform
on the line and the Fourier transform of a periodic function to recover a
function by a discrete sample of values of f̂ .

Definition 4.92. We say that an L2 function f : Rn Ñ C is band-limited
if f̂ has compact essential support.

If f is band-limited, say supp pfq � Brp0q for some r ¡ 0, then f̂ �
f̂ χBrp0q P L1 and hence for almost every x

fpxq �
»

Brp0q
f̂pωqe2πix�ω dω.

By the same methods as in the section on the Paley-Wiener theorem, the
right hand side is a smooth function that extends to a holomorphic function.
Now holomorphic functions are determined by their values at any sequence
having at least one accumulation point. Here we give a discussion of this
which does not use the Paley Wiener theorem. For T � pT1, . . . , Tnq P Rn,
let us write T ¡ 0 if Tj ¡ 0 for j � 1, . . . , n. For T ¡ 0 we introduce the
notation QT � tx P Rn | �Tj ¤ xj ¤ Tju. We say that a function (or better
class) f P L2pRnq is continuous, smooth, etc if there exists a function g in
the same class that is continuous, smooth, etc. Moreover, we shall use χT

to denote the characteristic function of QT and Γ to denote the lattice of
points

Γ � Zn

2T
� tp k1

2T1
,

k2

2T2
, . . . ,

kn

2Tn
q | ki P Zu

Lemma 4.93. Let f P L2pRnq be such that ess-suppp pfq � QT for some
T ¡ 0. Then f P C8pRnq. In particular,

Dαfpxq � p2πiq|α|
»

QT

ωαf̂pωqe2πiω�x dx

for each α P Nn
0 .
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Proof. By our assumption on f̂ it follows that ω ÞÑ ωαf̂pωq is integrable
for all α P Nn

0 . In particular we have

fpxq �
»

f̂pωqe2πiω�x dω �
»

QT

f̂pωqe2πix�ω dy

is continuous and
fpx� hejq � fpxq

h
�
»

QT

f̂pωqe2πix�ω e2πihωj � 1
h

dω .

But ����e2πihωj � 1
h

���� ¤ 2π |ωj |
and hence ����f̂pωqe2πix�ω e2πihωj � 1

h

���� ¤ 2π
���ωj f̂pωq

��� ¤ 2πTj |f̂pωq|
which is integrable. It follows that f is once continuously differentiable with

B
Bxj

fpxq � 2πi

»
QT

ωj f̂pωqe2πiω�x dω .

By induction we see that Dαf exists for all α P Nn
0 and

Dαfpxq � p2πiq|α|
»

QT

ωαf̂pωqe2πiω�x dx

is continuous. It follows that f is smooth. ¤

This lemma allows us to define L2
T pRnq by

(4.33) L2
T pRnq � tf P C8pRnq |

»
|fpxq|2 dx   8, suppf̂ � QT u

Proposition 4.94. For γ � p k1
2T1

, k2
2T2

, . . . , kn
2Tn
q P Γ � Zn

2T , set eγpxq �
e2πiγ�x for x P QT . The functions eγ for γ P Zn

2T are an orthonormal basis of
L2pQT , dx

VolpQT qq.
Proof. By Theorem 1.20, the functions ekpzq � zk form an orthonormal
basis of L2pTq. Now the mapping W : L2pTq Ñ L2r�1

2 , 1
2 s defined by

Wfpθq � fpe2πiθq is a unitary isomorphism. Hence the functions Wek for
k P Z form an orthonormal basis of L2r�1

2 , 1
2 s. For each j P t1, 2, . . . , nu,

the operator Vj : L2r�1
2 , 1

2 s Ñ L2pr�Tj , Tjs, dx
2Tj
q defined by

Vjfpxq � fp x

2Tj
q

is a unitary isomorphism of L2r�1
2 , 1

2 s onto L2pr�Tj , Tjs, dx
2Tj
q. Thus the

functions VjpWekq for k P Z form an orthonormal basis of L2r�Tj , Tjs.
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Repeatedly using Exercise 2.2.18 we see the functions eγ � V1pWek1q �
V2pWek2q � � � � � VnpWeknq where γ � p k1

2T1
, k2

2T2
, . . . , kn

2Tn
q P Zn

2T form an
orthonormal basis of L2pQT , dx

VolpQT qq. ¤

In Exercise 3.1.2 the function sinc was defined. Namely one has

sinc pxq �
#

1 if x � 0
sin x

x if x � 0.

Note sincpxq is a analytic function on R.
For T ¡ 0 we define the sinc-function sincT by

sincT pxq :� n¹
j�1

sinp2πTjxjq
2πTjxj

.

Lemma 4.95. sincT is the Fourier transform of 1
VolpQT qχQT

.

Proof. By Example 3.1, the Fourier transform of χT is given by

xχT pωq � π�n
¹ sinp2πTjωjq

ωj
� VolpQT q

n¹
j�1

sinp2πTjωjq
2πTj

� VolpQT qsincT pωq.
¤

As can be seen using Exercise 4.1.21, we see since L2
T pRnq is a Hilbert

space of continuous functions for which the point evaluation maps are contin-
uous, there exists a reproducing kernel Kpx, yq having the property fpyq �
pf, Kyq where Kypxq � Kpx, yq. Indeed, since evy is bounded, ev�y is
a bounded linear transformation from Hilbert space C into Hilbert space
L2

T pRnq. Consequently,

Kpx, yq � evxpev�yp1qq � ev�yp1qpxq
is well defined and

fpyq � evypfq � pevypfq, 1qC � pf, ev�yp1qq2 � pf,Kyq2.
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To find K we start with a continuous f in L2
T pRnq and see:

pf, ev�yp1qq � fpyq �
»

QT

f̂pxqe2πix�y dy

�
»

χT pxqf̂pxqe2πix�y dy

�
»
FpeyχT qpxqfpxq dx

�
»
FpχT qpx� yqfpxq dx

� VolpQT q
»

sincT px� yqfpxq dx

� VolpQT q
»

fpxqsincT px� yq dx

� pf,VolpQT qτpyqsincT q2.
Hence

(4.34) Kpx, yq � VolpQT qτpyqsincT pxq � VolpQT qsincT px� yq
After this preparation we can now state and prove the Shannon sampling

Theorem:

Theorem 4.96 (Shannon Sampling Theorem). Let f P L2
T pRnq. Then f is

C8, each Dαf is in L2
T pRnq, and the series

γ̧PΓ
fpγqDα psincT px� γqq

converges in L2 and pointwise uniformly to Dαf . Moreover,

(Parseval)
γ̧PΓ
|fpγq|2 � VolpQT q|f |22.

Proof. By Lemma 4.93, we know f is C8, Dαf is L2
T pRnq, and FpDαfqpωq �

p2πiωqαf̂pωq. Using Proposition 4.94, it follows that Fpfq has an L2 ex-
pansion on QT in terms of the orthonormal basis 1?

VolpQT qeγ for γ P Γ.

Specifically,

Fpfq|QT
� 1

VolpQT q γ̧

pFpfq, eγq2eγ

where this convergence is in L2 and

1
VolpQT q γ̧

|pFpfq, eγq2|2 � |Fpfq|QT
|22 � |Fpfq|22 � |f |22.
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Using pFf, eγq2 � ³
QT

f̂pωqeγpωq dω � ³
f̂pωqe�2πiγ�ω dω � fp�γq, we have

Fpfq|QT
� 1

VolpQT q γ̧

fp�γqeγ

in L2pQT q and Parseval’s equality
°

γPΓ |fp�γq|2 � VolpQT q|f |22.
Define g by gpωq � p2πiωqα. Using the boundedness of g on QT , we see

the convergence in L2pQT q of 1
VolpQT q

°
γ fp�γqeγ to Fpfq|QT

implies the
convergence of 1

VolpQT q
°

γ fp�γqgeγχT to gFpfq in L2pRnq. From this we
can conclude since F : L2

T pRnq Ñ FpL2pQT qq is unitary with inverse F�1,
that

1
VolpQT q γ̧

fp�γqF�1pgeγχT q Ñ F�1pgFfq � Dαf

in L2
T pRnq. Since F�1p 1

VolpQT qχT q � sincT , we see
°

γ fp�γqDαsincT px� γq
converges in L2 to Dαf .

Furthermore, the evaluation maps evx on L2
T pRnq for x P Rn have a

uniform bound M . Since

γ̧

fp�γqpgeγq Ñ gFpfq|QT

in L2pQT q we have

γ̧PF
fp�γqF�1pgeγχT q Ñ F�1pgFfq � Dαf in L2

T pRnq
where F is a finite subset of Γ and the limit is as F increases.

Consequently

|evxpDαfq � evxp
γ̧PF

fp�γqDαFpeγχT q| ¤ M |Dαf �
γ̧PF

DαFpeγχT q|2 Ñ 0

independently of x as F increases. ¤

Remark 4.97. For x P Rn, the series
°

γPΓ fp�γqDαsincT px � γq is abso-
lutely summable for the sum is the same after any rearrangement.

One can actually establish more. Namely we shall show the series°
γPΓ fp�γqDαsincT px � γq converges absolutely uniformly on all compact

subsets of Rn.

Lemma 4.98. All derivatives of sincpxq are bounded. Moreover, for each
k, there is an M ¡ 0 such that

��� dk

dxk sincpxq��� ¤ M|x| for |x| ¡ 1.

Proof. Let fpxq � sin x
x . Clearly f is bounded. Now f 1pxq � x cos x�sin x

x2 �
cos x

x � 1
x

sin x
x . Thus f 1pxq is bounded. We now inductively show f pkqpxq �
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P p 1
xq sinx�Qp 1

xq cosx for some polynomials P and Q both having 0 constant
term. This is true for k � 0 and k � 1. Now note

f pk�1qpxq � P 1p1
x
q
��1

x2



sinx�P p1

x
q cosx�Q1p1

x
q
��1

x2



cosx�Qp1

x
q sinx.

Since P p 1
xq and Qp 1

xq are bounded for |x| large and f pkq is continuous on R,
one has f pkq is a bounded function for all k.

Moreover, since P p 1
xq � 1

xRp 1
xq and Qp 1

xq � 1
xSp 1

xq where R and S are
polynomials, we have |Rp 1

xq| and |Sp 1
xq| are bounded for |x| ¥ 1. Conse-

quently, there is an M such that |Rp 1
xq sinx � Sp 1

xq cosx| ¤ M for |x| ¡ 1.
This gives |f pkqpxq| ¤ M|x| for |x| ¡ 1. ¤

Lemma 4.99. Let M ¡ 0. Suppose a ¡ 0, b ¡ 0, and f is a bounded
function on R satisfying |fpxq|   M|x| for all |x| ¡ b. Then

ķPZ
sup

xPr�m,ms
|fpx� kaq|2   8 for all m P N.

Proof. Let B ¡ 0 be an upperbound for |f |. Then if �m ¤ x ¤ m, we
have

ķ

sup�m¤x¤m
|fpx� kaq|2 � ¸

ka¡m�b

sup |fpx� kaq|2 � ¸
ka �m�b

sup |fpx� kaq|2

� | ¸
�m�b¤ka¤m�b

sup |fpx� kaq|2

¤ ¸
ka¡m�b

sup |fpx� kaq|2 � ¸
ka �m�b

sup |fpx� kaq|2 � p2m� 2b

a
� 1qB

¤ ¸
ka¡m�b

sup
M

|x� ka|2 �
¸

ka �m�b

sup
M

|x� ka|2 � p
2m� 2b

a
� 1qB

¤ ¸
ka¡m�b

M

|m� ka|2 �
¸

ka �m�b

M

| �m� ka|2 � p
2m� 2b

a
� 1qB

¤ 2
8̧

ka¡m�b

M

pka�mq2 � p
2m� 2b

a
� 1qB

� 2
a2

¸
k¡m�b

a

M

pk � m
a q2 � p

2m� 2b

a
� 1qB

¤ 2
a2

8̧

j�1

M

pj � 1� b
a q2 � p

2m� 2b

a
� 1qB.

¤
Theorem 4.100. Suppose f P L2

T pRnq. If K is a compact subset of Rn and
α P Nn

0 , the series

γ̧PΓ
fpγqDαsincT px� γq
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converges absolutely uniformly on K.

Proof. Note we may assume K � ±n
j�1r�m,ms where m P N. We show

there is a square summable function b : Γ Ñ r0,8q such that for each γ P Γ,

sup
xPK |D

αsincT px� γq| ¤ bpγq.
Since

sincT px� γq � n¹
j�1

sincp2πTjpxj � γjqq,
it suffices to find a square summable function

bj : ZÑ r0,8q
satisfying

|
�

d

dt


αj

sincp2πTjpt� k

2Tj
q| ¤ bjpkq for all t P r�m,ms.

Consider the function f defined by

fptq �
�

d

dt


αj

sincp2πTjtq � p2πTjqαj sincpαjqp2πTjtq.
By Lemma 4.98, we know |sincpαjqptq| is bounded and there is a constant

Bj ¡ 0 such that |sincpαjqpxq|   Bj|x| for |x| ¡ 1. Hence f is a bounded func-

tion and |fptq|   p2πTjqαj
Bj|2πTjt| if |2πTjt| ¡ 1. Taking M � p2πTjqαj�1Bj ,

we see

|fptq|   M

|t| for |t| ¡ 1
2πTj

.

By Lemma 4.99,

ķPZ

�
sup

tPr�m,ms
|fpt� k

2Tj
q|
�2

  8.

So we take

bjpkq � sup
tPr�m,ms

|fpt� k

2Tj
q|.

Setting

bpm1

2T1
, . . . ,

mn

2Tn
q � b1pm1qb2pm2q � � � bnpmnq,

we obtain a square summable function b on Γ with

|DαsincT px� γq| ¤ bpγq
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for all x P K and all γ. Since
°

γPΓ |fpγq|2   8 by Parseval’s equality, we
see γ ÞÑ fpγqbpγq is absolutely summable. This implies the uniform absolute
convergence for x P K of

γ̧

fpγqDαsincT px� γq.
¤

Exercise Set 4.12

1. Use the Fourier transforms given in Exercise 3.2.3 to show if f P L2pRnq,
then Ff � F2πf has essential support in QT where T ¡ 0 if and only if Faf
has essential support in Q a

2π
T .

2. Suppose f is a C8 square integrable function on R with ess-suppf̂ �
ra, a� 2bs. Show

fpxq �
ķ

e�πikpa
b
�1qfpk

b
qe2πipa�bqxsincp2πbx� kπq

pointwise uniformly and in L2pRq.
3. Show

sinπx

2x
� cosπx� 1

πx2
� 4x sinπx

π2

8̧

n�1

1
p2n� 1q2

�
1

p2n� 1q2 � x2



pointwise uniformly in x. Hint: Apply Shannon’s sampling to the function
f where f̂pωq � |2πω|χr� 1

2
, 1
2
spωq.

14. The Poisson Summation Formula

In this section we discuss the Poisson summation formula, which shows in
particular that for certain functions f we have the relation

°
kPZn fpx�kq �°

kPZn f̂pkqe2πik�x between the function f and its Fourier transform f̂ . In
particular

ķPZn

fpkq �
ķPZn

f̂pkq .
We will not try to prove this in most generality, but refer to the exercises.
Let Tn � Rn{2πZn and Q � r0, 1sn . We can then identify LppTq with LppQq
in the usual way.

Lemma 4.101. Let a ¡ 0. Then
°

kPZn
1pa�|k|2qp converges if and only if

p ¡ n
2 .
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Proof. It suffices to establish when
°

kPNn
0

1pa�|k|2qp converges. If Q � r0, 1sn,
we note if fpxq � 1pa�|x|2qp , then fpxq ¤ 1pa�|k|2qp on k � Q for k P Nn

0 .
Thus

°
kPNn

1pa�|k|2qp ¥ °
k

³
k�Q fpxq dk � ³

r0,8qn 1pa�|x|2qp dx. Using polar

coordinates (Corollary 2.26), we see σpSn�1� q ³80 rn�1

pa�r2qp dr � 8 if �2p�n�
1 ¥ �1. Hence the series diverges for p ¤ n

2 .

Now assume p ¡ n
2 . The series

°
kPNn

0

1pa�|k|2qp converges if
°
|k|¥2

?
n

1pa�|k|2qp
converges. Let gpxq � 1pα�α|x|2qp where 0   α   minta, 4

9u. Note if x P Q�k,
|x| ¤ |k| � |p1, 1, . . . , 1q| � |k| � ?n. Thus for x P Q� k,

α� α|x|2 ¤ α� αp|k|2 � 2
?

n|k| � nq
  a� αp|k|2 � |k|2 � |k|2

4
q

� a� 9
4
α|k|2

  a� |k|2.
Thus gpxq ¥ 1pa�|k|2qp for x P Q � k for all k P Nn

0 with |k| ¥ 2
?

n. Conse-
quently

³
r0,8qn gpxq dx ¥ °

|k|¥2
?

n
1pa�|k|2qp . Now again using polar coordi-

nates,
³
r0,8qn gpxq dx   8 if and only if p ¡ n

2 . ¤

Proposition 4.102. Let f be in SpRnq. Define fa by

fapxq �
ķPZn

fpx� kq.
Then fa is C8 and is Zn periodic on Rn. Moreover, the series°

kPZn fpx � kq and each series of its derivatives are absolutely uniformly
convergent and converge uniformly to fa and fa’s derivatives.

Proof. First we show if f P SpRnq, the series
°

kPZn fpx � kq is uniformly
absolutely convergent on Q � r0, 1sn. Since f is Schwartz we can take
positive A and p ¡ n

2 with |fpxq| ¤ Ap1�|x|2qpq for all x. We note if x P Q,

|x�k| ¥ ||x|�|k||. Hence Mpkq :� supxPQ |fpx�kq| ¤ supxPQ Ap1�p|k|�|x|q2qp .
Now

°
kPZn |fpx� kq| converges uniformly on Q if

°
k Mpkq is finite.

But if x P Q and |k| ¥ 2
?

n, we have |k| � |x| ¥ |k| �?n ¥ |k|
2 and thus

Mpkq ¤ A

p1� � |k|
2

	2qp
� 4pA

p4� |k|2qp .

Thus
°

Mpkq is finite by Lemma 4.101 for p ¡ n
2 .

Consequently,
° |fpx � kq| is uniformly summable in x on Q and by

Zn periodicity is uniformly convergent on Rn. Since Dαf is again Schwartz
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for all α, we can apply the above and obtain the series
°

k Dαfpx � kq is
uniformly absolutely summable.

To finish we need only show BBxi
fa �

� BBxi
f
	

a
and use induction to show

Dαfa � pDαfqa for higher order α. Now fapx� teiq � °
k fpx� k � teiq �°

kpfpx � kq � ³t
0
BBxi

fpx � k � seiq dsq. Since
°

k fpx � kq converges and°
k
BBxi

fpx�k�seiq converges uniformly in s, we can interchange summation
and integration and obtain

fapx� teiq �
ķ

fpx� kq �
» t

0 ķ

B
Bxi

fpx� k � seiq dx

� fapxq �
» t

0

� B
Bxi

f



a

px� seiq ds.

This gives BBxi
fa �

� BBxi
f
	

a
. ¤

Theorem 4.103 (Poisson Summation Formula). Let f P SpRnq. Then

ķPZn

Dαfpx� kq �
ķPZn

f̂pkqDαe2πik�x

where both sides converge absolutely uniformly and both sides give Dαfa

where fapxq � °
kPZn fpx� kq. In particular,

ķPZn

fpkq �
ķPZn

f̂pkq

Proof. By Proposition 4.102, each series
°

k Dαfpx�kq converges uniformly
absolutely and gives Dαpfaq. Since fa is C8 and Zn periodic, Theorem 1.22,
Corollary 1.23, and their generalizations to Rn in Exercises 1.3.14 and 1.3.15,
show one has

ķ

Fpfaqpkqe2πik�x

and
°

k FpfaqpkqDαe2πik�x converge uniformly absolutely and their limits
are fa and Dαpfaq.
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To finish, we note:

Fpfaqpkq �
»

Q
fapyqe2πiy�k dy

�
»

Q

¸
jPZn

fpy � jq e�2πiy�k dy

�
j̧

»
Q

fpy � jqe�2πipy�jq�k dy

�
j̧

»
Q�j

fpyqe�2πiy�k dy

�
»
Rn

fpyqe�2πiy�k dy

� f̂pkq.
¤

Corollary 4.104. Let f P SpRnq and T P Rn�. Then¸
γPTZn

fpγq � 1
T1T2 . . . Tn

¸
σPZn

T

f̂pσq .

Proof. Define δpT q on SpRnq for T ¡ 0 by

δpT qfpxq �a
T1T2 � � �TnfpT1x1, T2x2, . . . , Tnxnq.

Then δ is a homeomorphism of SpRnq with inverse δp 1
T q � δp 1

T1
, 1

T2
, . . . , 1

Tn
q.

Moreover, FpδpT qfq � δp 1
T qFpfq. Thus¸

γPZn

δpT qfpγq �
σ̧PZn

δp 1
T
qf̂pσq.

This gives the result. ¤

Example 4.105. Let n � 1. As seen by Example 3.2, we know ĝ � g for
the Gaussian gpxq � e�πx2

. Thus the Poisson summation formula for g is
trivial. Even so, Corollary 4.104 gives

T
ņPZ

e�πT 2k2 �
ņPZ

e�πk2

T2 .

The function θptq :� °8
n��8 e�πtn2

, t ¡ 0, is called a (Jacobi) theta-function
and is important in number theory. By choosing T � ?t the Poisson summa-
tion formula shows that the theta functions satisfies the functional equation?

tθptq � θp1{tq .
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Example 4.106. Now take fpxq � e�2πa|x|, a ¡ 0. Then

f̂pωq � a

π

1
a2 � ω2

.

The more general version of the Poisson summation formula in Exercise
4.13.1 shows that

1� 2
8̧

k�1

e�2πak � 1
πa
� a

π

8̧

k�1

2
a2 � k2

.

Exercise Set 4.13

1. Show the Poisson summation formula holds if we assume that there
exists positive constants A,B ¡ 0, and p ¡ n{2, such that

|fpxq| ¤ Ap1� |x|2q�p ,
���f̂pωq��� ¤ Bp1� |ω|2q�p

More specifically show
°

kPZn fpx � kq and
°

kPZn f̂pkqe2πix�k converge uni-
formly absolutely and

ķPZn

fpx� kq �
ķPZn

f̂pkqe2πix�k.

In particular,

ķPZn

fpkq �
ķPZn

f̂pkq.
2. Let f : Rn Ñ C be Zn periodic and satisfy

ķPZn

|f̂pkq| |k|m   8.

Show f P CmpRnq and

ķ

f̂pkqp2πikqαe2πik�x

converges uniformly to Dαf if |α| ¤ m.

3. Suppose f is an L2 function on Rn, m P N, and there are positive
constants A, B ¡ 0, and p ¡ m�n

2 with

|fpxq| ¤ Ap1� |x|2qp, |f̂pωq| ¤ Bp1� |ω|2qp.
Show f is in CmpRnq and for |α| ¤ m one has

Dα

�
ķPZn

fpx� kq
�
�

ķPZn

Dαfpx� kq �
ķPZn

f̂pkqp2πikqαe2πik�x.

4. Introduce the Wiener space W pRnq as the space of functions f P L8pRnq
such that

||f ||W :�
ķPZd

||λpkqf |Q||L8pQq   8 .
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Show the following:

(a) W pRnq � L1pRnq.
(b) SpRnq � W pRnq.
(c) If f and f̂ are in W pRnq then

°
kPZn fpx�kq and

°
kPZn f̂pkqe2πik�x

converge uniformly absolutely.
(d) The Poisson summation formula holds if f, f̂ PW pRnq; i.e.,

ķPZn

fpx� kq �
ķPZn

f̂pkqe2πik�x

for x P Rn.



Chapter 5

Topological Groups

In this chapter we develop the basic theory of topological groups, but having
in mind the material for which it will be used in this text. A topological
group has two compatible structures; the algebraic structure of a group, and
the analytic/geometric structure of a topological space. Here compatibility
requires the algebraic operations are continuous.

We shall make use of standard notions in both topology and algebra. In
many instances, we will recall appropriate definitions and well known results.
Terminology will be standard and thus we hope students with basic courses
in algebra and topology will have no difficulty in following the presentation.

1. Topological Groups

Definition 5.1. Let G be a group and a topological space. Then G is a
topological group if

(a) G�G Q px, yq ÞÑ xy P G and

(b) G Q x Ñ x�1 P G

are continuous functions, (here G�G has the product topology).

We note that the definition can be regiven by replacing (a) and (b) by

pAq G�G Q px, yq ÞÑ xy�1 P G is continuous.

Indeed, it is easy to show the equivalence. See Exercise 5.1.1.
If G is a topological group, then the inversion ι : G Ñ G, ιpxq � x�1 is

a homeomorphism with inverse ι. Since groups are not necessarily commu-
tative, one must distinguish between left translation λpaqpxq � ax and right

247
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translation ρpaqpxq � xa. When convenient, we will also use the notation
λapxq for λpaqx and ρapxq for ρpaqx.

Lemma 5.2. Let G be a topological group and let a, b P G. Then λpaq and
ρpaq are homeomorphisms with inverse λpa�1q, respectively ρpa�1q. Further-
more λpeq � ρpeq � id, λpabq � λpaq � λpbq and ρpabq � ρpbq � ρpaq.
Proof. We can write λpaq in the following way

G Ñ G�G Ñ G
x ÞÑ pa, xq ÞÑ ax.

The first map is continuous by the definition of the product topology and
the second map is continuous by part (a) in the definition of a topological
group. Hence λpaq : GÑ G is continuous. We have

λpabqpxq � pabqx � apbxq � λpaqpλpbqpxqq � pλpaq � λpbqqpxq.
Obviously λpeqpxq � ex � x, so λpeq is the identity map. Finally λpa�1qλpaq �
λpa�1aq � id � λpaq�λpa�1q. It follows that λpaq is a homeomorphism with
inverse λpa�1q. The case ρpaq is treated similarly. ¤

Let A and B be non-empty subsets of G, and let x P G. Define

AB � tab | a P A, b P Bu
A�1 � ta�1 | a P Au
xA � txuA � txa | a P Au � λpxqpAq
Ax � Atxu � tax | a P Au � ρpxqpAq
A1 � A and An�1 � AAn , n ¥ 1 .

Lemma 5.2 implies that if a P G and U is an open neighborhood of the
identity, then aU and Ua are open neighborhoods of a.

Lemma 5.3. Assume that A, B � G and that B is open. Then AB, BA,
and B�1 are open.

Proof. We have AB � �
aPA aB and each aB is open according to Lemma

5.2. That BA is open follows in the same way. The last statement follows
since inversion is a homeomorphism. ¤

For x in a topological space, N pxq will denote the neighborhood system
at x; i.e., N pxq is the collection of all neighborhoods of x. A subset A of a
group said to be symmetric if A � A�1.

Corollary 5.4. Let U P N peq, then there exists a symmetric open set V P
N peq such that V � U .
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Proof. Take an open subset W of U containing e. Set V �W XW�1 Then
V is open, e P V , and V is symmetric. ¤
Corollary 5.5. Let a P G. Then

N paq � taU | U P N pequ � tUa | A P N pequ.
Proof. This is immediate for λa and ρa are homeomorphisms. ¤
Proposition 5.6. Let G and H be topological groups. Then G�H with the
product topology is a topological group.

Proof. Let W be a neighborhood of pab�1, cd�1q where a, b P G and c, d P
H. Then W contains a set of form U �V where U is an open neighborhood
of ab�1 in G and V is an open neighborhood of cd�1 in H. Since G and H
are topological groups, there are open neighborhoods Ua and Ub of a and b in
G and open neighborhoods Vc and Vd of c and d in H satisfying UaU

�1
b � U

and VcV
�1
d � V . Thus Ua�Vc and Ub�Vd are open neighborhoods of pa, cq

and pb, dq in G � H satisfying pUa � VcqpUb � Vdq�1 � U � V � W . Thus
the mapping ppa, cq, pb, dqq ÞÑ pa, cqpb, dq�1 is continuous. By (A), G�H is
a topological group. ¤

As just seen a product of topological groups with the product topology
is a topological group. This can be used to give some simple examples of
topological groups. A more extensive list of examples are given in Section
5.

Example 5.7 (Normed vector spaces). Let X be any topological vector
space. Then X is a topological group with respect to addition. In particular
this holds for any normed vector space X. As X is abelian it follows that the
maps λpxq and ρpxq agree and are given by translation by x, λxpyq � y� x.
Furthermore,

AB � tx� y | x P A, y P Bu � A�B

A�1 � �A

An � A�A� � � � �A .

In particular, the spaces Rn and Cn are topological groups.

Example 5.8 (C�n and the torus Tn). Let C� be the nonzero complex num-
bers under multiplication, and let T be the unit circle in C�. Then C� is a
topological group and T is a compact subgroup of C�. Indeed, since

|zw � z0w0| ¤ |z| |w � w0| � |z � z0| |w0|,
one sees multiplication is continuous. Moreover,

|1
z
� 1

z0
| � 1

|zz0| |z � z0|
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implies the inverse mapping ipzq � 1
z is continuous. Hence C� is a topo-

logical group. Since T has the relative topology of C�, it follows that T is a
topological group. Hence C�n and Tn with the product topologies are topo-
logical groups and their topologies are the relative topologies from the space
Cn.

Example 5.9 (The Heisenberg Groups). Let B be an alternating bilinear
form on R2n; thus

Bpx, yq � �Bpy, xq
Bpax� by, zq � aBpx, zq � bBpy, zq

for all x, y P R2n and a, b P R. Note if ek � pδk,iqni�1 is the usual standard
basis of Rn, then

Bpx, yq �
i̧,j

Bijxiyj

where Bi,j � Bpei, ejq. This implies B is continuous on R2n � R2n. More-
over, Bi,j � �Bj,i; i.e., the square matrix rBi,js is skew symmetric. If this
square matrix is invertible, the alternating form B is said to be nondegen-
erate; and then if one takes

H � R2n � R
with multiplication defined by

px, tqpy, sq � px� y, t� s� 1
2
Bpx, yqq,

one obtains a noncommutative group called the 2n� 1 dimensional Heisen-
berg group. We note p0, 0q is the multiplicative identity for this group andpx, tq�1 � p�x,�tq for Bpx, xq � 0. Since B is continuous, we see H with
the topology of R2n�1 is a topological group; for both multiplication and in-
version are continuous. Note the commutant of the group elements px, tq
and py, sq is p0, Bpx, yqq. Indeed,

px, tqpy, sqpx, tq�1py, sq�1 � ppx, tqpy, sqq pp�x,�tqp�y � sqq
� px� y, t� s� 1

2
Bpx, yqq p�x� y,�t� s� 1

2
Bpx, yqq

� p0, Bpx, yq � 1
2
Bpx� y,�x� yqq

� p0, Bpx, yqq.
The Heisenberg group has multiplication the commutative addition of R2n�1

but skewed in the last component by the alternating bilinear form B. Study-
ing this minor alteration and understanding its rather dramatic consequences
is the aim of Chapter 7.

Let G and H be groups. Recall a subgroup N � G is a normal subgroup
if aNa�1 � N for all a P G and a map ϕ : G Ñ H is a homomorphism if
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ϕpabq � ϕpaqϕpbq for all a, b P G. Note that ϕpGq is a subgroup of H and
Kerpϕq � ϕ�1peq � ta P G | ϕpaq � eu is a normal subgroup of G. If G
and H are topological groups, then G and H are isomorphic if there exists
a homomorphism ϕ : G Ñ H which is also a homeomorphism. In that case
ϕ�1 : H Ñ G is also an isomorphism. Finally, recall a topological space is
T1 if all sets with one element are closed. We will discuss the separation
axioms in more detail in Section 4.

Lemma 5.10. Let G and H be topological groups and ϕ : G Ñ H be a
homomorphism. Then the following hold:

(a) ϕ is continuous if and only if ϕ is continuous at e P G.
(b) If ϕ is continuous and H is T1, then Kerpϕq is a closed normal

subgroup of G.

Proof. Assume φ is continuous at e. Then φpxq � λφpaqφpλpa�1qxq is con-
tinuous at a for λpa�1q and λφpaq are homeomorphisms. Hence φ is contin-
uous everywhere if φ is continuous at e, and we see (a) holds.

Note (b) follows from the preimage of a closed set under a continuous
function is a closed set and teu is a closed set when H is T1. ¤

Theorem 5.11. Let G be a group and let U be a non-empty family of subsets
of G such that the following hold:

(a) e P U for all U P U ;
(b) If U, V P U , then U X V P U ;
(c) If U P U , then there is a V P U such that V V � U ;
(d) If U P U , then V �1 P U ;
(e) If U P U and a P G, then aUa�1 P U .

Call a set A in G open if for each a P A there exits a U P U such that
aU � A. Let τ be the collection of all open sets. Then τ is a topology on G
that makes G into a topological group.

Proof. It is clear that H and G are both open. Let U and U 1 be open sets.
We have to show U X U 1 is open. If U X U 1 is empty, then there is nothing
to prove. Otherwise let a P U X U 1. Choose V, V 1 P U such that aV � U
and aV 1 � U 1. Then by (b) it follows that V 2 :� V X V 1 P U . Finally
aV 2 � aV � U and aV 2 � aV 1 � U 1. Hence aV 2 � U X U 1, and it follows
that U XU 1 is open. Let tUiuiPI be a collection of open sets. Let a P YiPIUi.
Then there exists a i0 such that a P Ui0 . Let V P U be such that aV � Ui0 ,
then aV � YiUi and it follows that YiUi is open.

Next we note U is a neighborhood base at e for this topology. Clearly,
if N is a neighborhood of e, then there is a U P U with U � eU � N .
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Conversely, let U P U . Set N � ta P U | aV � U for some V P Uu. Since
eU � U , e P N . Moreover, if a P N then aV � U for some V P U . By (c),
we can choose W P U with W 2 � V . Thus paW qW � U . Hence aW � N .
Since a is arbitrary, N is open.

We have just shown that τ is a topology on G, but we still have to show
that G is a topological group. According to (A), it suffices to show that the

map G�G Q pa, bq ψÞÑ ab�1 P G is continuous. Let a, b P G and let U be an
open set containing ab�1. Let W P U be such that ab�1W � U . Let V be
such that V V �1 � b�1Wb. Then if x P aV and y P bV ,

xy�1 P aV V �1b�1 � ab�1W � U .

It follows that ψ is continuous. ¤

Exercise Set 5.1

1. Let G be a group with topology τ . Show that G is a topological group
if and only if the map

G�G Q px, yq ÞÑ xy�1 P G

is continuous.

2. Let G be a topological group. Show G is T1 if and only if teu is a closed
set in G.

3. Let G be a topological group. Let U � G be open and let a P U . Show
there exists an open set V Q e such that aV � U .

4. Let G and H be topological groups. Show a function f : G Ñ H is
continuous if and only if for each x in G and each neighborhood V of the
identity in H, there is a neighborhood U of the identity in G with

fpxUq � fpxqV.

5. Let G be a topological group. Show that ρpaq : G Ñ G is a homeomor-
phism.

6. Let G be a topological group and H � G an open subgroup. Show H is
also closed.

7. Let H be a subgroup of a topological group G. Show the closure H̄ is a
group and the interior H� of H is either empty or is a subgroup of G.

2. Group Actions

The importance of many groups comes from their connection to geometry
as a symmetry group of a geometric structure and their action on sets or
manifolds. We recall the main definitions. Let G be a group and X a set.
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An action or more precisely a left-action of G on X is a map µ : G�X Ñ X,
µpg, xq � g � x, such that the following hold:

(1) e � x � x for all x P X;

(2) pabq � x � a � pb � xq for all a, b P G and all x P X.

Similarly a right-action is a map G �X Ñ X, pg, xq ÞÑ x � g such that
x � e � x for all x P X and x � pabq � px � aq � b. If µ is a left action then we
can define a right action µR by µRpa, xq � µpa�1, xq. If x P X and a P G,
let

µx : GÑ X, g ÞÑ g � x
and

λa : X Ñ X, x ÞÑ a � x .

We also use the notation λpaq � λa. If G is a topological group and X is
a topological space, then the action is continuous if µ is continuous where
G�X has the product topology. In this case we say that X is a continuous
G-space. The action is separately continuous if for each x P X and a P G
the maps µx and λa are continuous. Let x P X, Y � X, and B � G be
non-empty. Then

Y B :� ty P Y | @g P B : g � y � yu ,
BY :� tg P B | @y P Y : g � y � yu ,
Bx :� Btxu � tg P B | g � x � xu .

The space X is a transitive G space if there exists a x P X such that
X � G � x, and in this case we say G acts transitively on X. If G acts
transitively, then X � G � y for every y P X. A function φ between G spaces
X and Y is G-equivariant if ϕpa �xq � a �ϕpxq for all a P G and all x P X. If
G acts separately continuously on X and Y , then a G-map is a continuous
G-equivariant function from X into Y ; we use MGpX,Y q to denote the set
of all G-maps X Ñ Y . If MGpX, Y q contains a homeomorphism, the G
spaces X and Y are said to be G isomorphic, and we write X �G Y .

Lemma 5.12. Assume that G acts separately continuously on X. Then the
following hold:

(a) Each mapping λpaq : X Ñ X, x ÞÑ a � x is a homeomorphism with
inverse λpa�1q.

(b) Assume that X is Hausdorff. If Y � X is closed and B � G, then
Y B is a closed subset of X; and if B � G is closed in G and Y � X
is non-empty, then BY � G is a closed subset of G.

(c) For Y � X, GY is a subgroup of G.
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Proof. To see (a), note both λpaq : X Ñ X and λpa�1q : X Ñ X are
continuous. Moreover, λpaqλpa�1q � λpaa�1q � λpeq � id and λpaq�1λpaq �
λpa�1aq � λpeq � id.

We show (b). Let g P B and suppose g � x �� x. Then there exist open
sets U P N pxq and V P N pg � xq with U X V � H. As λpgq : X Ñ X
is continuous, it follows that there exists an open set U1 P N pxq such that
λpgqpU1q � V . If y P U1 is such that g � y � y, then this would imply that
y P U1 X V � U X V � H, which is a contradiction. Hence x P U1 � ty P
X | g � y �� yu; and it follows that tx P X | g � x �� xu is open. Hence
tx P X | g � x � xu is closed. As Y is closed in X and

Y B � tx P Y | @g P B : g � x � xu �
�£

gPB
tx P X | g � x � xu

�
X Y,

it follows that Y B is closed in X.
Now fix x. Assume that b � x �� x. Let U P N pxq and W P N pb � xq be

open and satisfy U XW � H. As

G Q a ÞÑ a � x P X

is continuous, it follows that we can find a neighborhood V of b such that
V � x � W . Assume that a P V and a � x � x. Then a � x P W X U � H, a
contradiction. Hence tg P G | g �x �� xu is open in G. Thus tg P G | g �x � xu
is closed in G. As B is closed in G, it follows that

BY � £
xPY
tb P G | b � x � xu XB

is closed in G.
Finally, let Y be a nonempty subset of X. Note e P GY and if a and b

are in GY , then pabq � y � a � pb � yq � a � y � y and a�1 � y � a�1 � pa � yq �
pa�1aq � y � y for y P Y . So GY is a subgroup of G.

¤

3. Homogeneous Spaces

Assume G acts on a space X. Define a equivalence relation � on X by

x � y if and only if there exists a g P G with g � x � y .

If x P X, let rxs denote the equivalence class containing x. This set is called
the orbit of x and equals the set G � x. Then GzX � trxs | x P Xu is called
the orbit space of the action. We define X{G in a similar manner if G acts
from the right. Let H � G be a subgroup. Then H acts on G on the right
by g � h � gh. The orbits are the “left cosets” gH and the space G{H is
the space of left cosets. The group G acts on G{H by a � pbHq � pabqH.



Homogeneous Spaces 255

Let κ : G Ñ G{H be the canonical map a ÞÑ aH. Assume that G is a
topological group. The quotient topology on G{H is defined by requiring a
set U � G{H to be open if and only if κ�1pUq is open in G. Note a subset
U of G{H is open if and only if the union of the cosets in G{H is open in
G. That this is a topology is an easy exercise. See Exercise 5.2.3.

Lemma 5.13. Let G be a topological group and H be a subgroup. Then the
following hold:

(a) The canonical map κ : G Ñ G{H is continuous and open.
(b) The action of G on G{H is continuous.
(c) G{H is Hausdorff if and only if H is closed in G.

Proof. The quotient map is continuous by definition. Let U � G be open.
Then

κ�1pκpUqq � UH � ¤
hPH

Uh

which is open as Uh is open in G for all h P H. Hence κpUq � G{H is open
by the definition of the topology on G{H. Thus (a) holds.

To do (b) we need to show px, aHq ÞÑ xaH is continuous. Let U be
a nonempty open subset of G{H, and let px0, a0Hq be such that x0a0H is
in U . Then x0a0 is contained in the open set κ�1pUq. Since px, aq ÞÑ xa
is continuous from G � G into G, there are open sets V and W in G with
x0 P V , a0 P W , and V W � κ�1pUq. Then (a) implies κpW q is open in
G{H, and clearly a0H P κpW q. Moreover, the image of V � κpW q in G{H
under the mapping px, aHq ÞÑ xaH is contained in U .

Finally to see (c), assume first that G{H is Hausdorff. Then tκpequ �
tHu P G{H is closed in G{H. Therefore

κ�1pG{H � tHuq � G�H

is open in G. It follows that H is closed. Suppose that H is closed in G. Let
µ : G�GÑ G be the map pa, bq ÞÑ a�1b. Then µ�1pHq is closed in G�G.
Assume that aH �� bH. Then µpa, bq � a�1b R H. As µ�1pHq is closed
in G � G, there exist open subsets U and V of G with a P U , b P V , and
pU � V q X µ�1pHq � H. Furthermore κpUq is an open neighborhood of aH
and κpV q is an open neighborhood of bH. Assume that x P κpUq X κpV q.
Then we can write

x � cH � dH

with c P U and d P V . It follows that c�1d � µpc, dq P H or pc, dq P
µ�1pHq X pU � V q � H, a contradiction. Hence G{H is Hausdorff. ¤

A natural problem to consider is which G-spaces are of the form G{H.
We will not attempt to answer this question in its most generality. Clearly
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the action of G must be transitive and at minimum the action must be
separately continuous.

Assume X is a topological space and G acts transitively and separately
continuously on X and x P X. Let H � Gx � ta P G | a � x � xu be the
stabilizer of x. Then the mapping

GÑ X, a
κxÞÑ a � x

factors to a bijection

G{H Q aH
πxÐÑ a � x P X,

i.e., κx � πx�κ. As the action of G is continuous and because of the definition
of the topology on G{H it follows that πx is continuous. Thus G{H � X
if and only if πx is open. This in general is not the case. Notice that πx is
open if and only if κx is open. We show that πx is a homeomorphism under
the assumptions that G is a locally compact Lindelöff space and X is locally
compact.

Recall a topological space X is locally compact if every point x has
a compact neighborhood. It is a Lindelöff space if every open covering
tUiuiPI of X has a countable subcovering, i.e., there exists a countable subset
J � I with X � YjPJUj .

We use the following standard results from topology. Let X and Y be
topological spaces and suppose K � X is compact. Then the following hold:

 If L � K is closed, then L is compact.
 If f : X Ñ Y is continuous, then fpKq is compact in Y .
 If X is Hausdorff, then K is closed.

We will use the the following lemma. An easier proof can be given when
the space is a topological group.

Lemma 5.14. Let X be a locally compact Hausdorff space. Suppose U is a
neighborhood of a point x in X. Then there is a compact neighborhood W
of x with W � U .

Proof. We may assume U is open. Let K be a compact neighborhood of
x. Since K � U is closed, it is compact. For each y in K � U , choose open
neighborhoods Npyq and Nypxq of y and x with Npyq X Nypxq � H and
Nypxq � U XK. Then Npyq for y P K � U cover K � U . By compactness,
there are y1, y2, . . . , ym with K�U � Ym

j�1Npyjq. Set W � XNyj pxq. Then
W is a closed neighborhood of x. Note if z P W and z R U , then z R Npyjq
for each j. So z R K � U . Since z R U , z R K. So X � K is an open
neighborhood of z missing K. Since each Nyj pxq � K, z R Nyj pxq for each
j. Thus z R W . But we are assuming z P W . Hence W � U . Since each
Nyj pxq � K, W � K. Hence W is compact. ¤
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For the proof of our next theorem we need the Baire category theorem.
A set is nowhere dense if its closure has no interior.

Baire Category Theorem: A complete metric space or a locally compact
Hausdorff space is second category; i.e., it cannot be written as a countable
union of nowhere dense subsets.

Sets which are countable unions of nowhere dense sets are said to be
of first category. They are also called meagre. An obvious consequence
of the definition is that a closed set A with no interior is of first category.
Furthermore, a countable union of sets of first category is of first category.
Note there are Cantor like sets in R that are closed, have no interior, but
can have positive Lebesgue measure.

Theorem 5.15. Let G be a locally compact Hausdorff topological group
and let X be a locally compact Hausdorff space or a complete metric space.
Assume that G acts separately continuously and transitively on X and that
G is a Lindelöff space. Then πx : G{Gx Ñ X is a homeomorphism for each
x P X and G acts continuously on X.

Proof. Let x P X. We only have to show that κx is an open mapping. Let
H � Gx and U be an open subset of G. Let g P U and y � κxpgq � g � x P
κxpUq. Let V be a compact symmetric neighborhood of e with gV 2 � U .
We have G � YaPG aV �. Since G is a Lindelöff space, there is a countable
set J such that G � YjajV

�. As the map κx is surjective, it follows that

X � ¤
jPJ

κxpajV q � ¤
jPJ

aj � κxpV q.
The continuity of κx implies each of the sets κxpajV q is compact. Since X is
Hausdorff, they are closed. By the Baire Category Theorem, there is a j such
that κxpajV q� �� H. The maps λpa�1q : X Ñ X being homeomorphisms
imply that κxpV q� �� H. Let z P κxpV q�. Then z � v � x for some v P V .
Hence x � v�1 �z is an interior point in λpv�1qκxpV q. Consequently, y � g �x
is interior to λpgv�1qκxpV q. But λpgv�1qκxpV q � κxpgV 2q � κxpUq. Thus
y is an interior point in κxpUq. As y was an arbitrary point in κxpUq, it
follows that κxpUq is open and hence κx is an open map. ¤

4. Separation in Topological Groups

Recall that a space is T0 or Kolomorgoroff if given two distinct points, there
is an open set U containing exactly one of these points. We have already
used T1-separability. This occurs if every set with one element is closed. A
space which is T1 is said to be Fréchet. A space is T2 if it is Hausdorff. A
space is regular if given any closed set A and a point x not in A, there are
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open sets U and V with A � U , x P V , and U X V � H. A space which is
both regular and T1 is said to be a T3-space. A space is completely regular
if for a given closed set A and a point x not in A, there is a continuous real
valued function f with fpxq � 1 and f � 0 on A. If a space is completely
regular and T1, then it is said to be a T3a-space. Such spaces are also called
Tichonov. Finally a space is said to be normal if given two disjoint closed
sets A and B, there are open sets U and V with A � U , B � V , and
U X V � H. It is a T4-space if it is normal and T1.

Our aim in this section is to show that any T0 topological group is
completely regular. We start with two simple consequences of Lemma 5.13.

Lemma 5.16. Let N be a closed normal subgroup of a topological group G.
Then G{N is a Hausdorff topological group.

Proof. By Lemma 5.13, G{N is Hausdorff and a continuous G-space. In
particular the mapping pg, xNq ÞÑ gxN is continuous. This implies the
mapping pgN, xNq ÞÑ gxN is continuous on G{N � G{N . Finally, xN ÞÑ
x�1N is continuous for the preimage of an open set U in G{N under this
mapping is U�1 and thus κ�1pU�1q � κ�1pUq�1 is open in G. ¤

Lemma 5.17. Let G be a topological group. Then the following are equiv-
alent:

(a) G is T0.

(b) The set teu is closed in G.

(c) G is T1.

(d) G is Hausdorff.

Proof. Assume G is T0. We show teu is a closed set. By Lemma 5.13,
since G and G{teu have the same topology, it then would follow that G is
Hausdorff and we would be done.

Take x � e. Pick an open set U containing precisely one of the two
points x and e. If e P U , replace U by the open set xU�1. Then U would
contain x but not e. Consequently, x could not be a limit point of teu, and
the set teu would be closed. ¤

The positive dyadic rationals are all rationals of form n
2m where n is a

natural number and m is an integer.

Lemma 5.18. Let G be a group. Suppose for each n P N0 � t0, 1, 2, . . .u,
Up 1

2n q is a nonempty subset containing the identity and

Up 1
2n
qUp 1

2n
q � Up 1

2n�1
q for n ¥ 1.
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Then there is an extension of U to the positive dyadic rationals with the
following properties:

(a) Up 1
2n qUp k

2n q � Upk�1
2n q for all integers n and natural numbers k.

(b) Uprq � Upsq if r ¤ s.

(c) Uprq � G if r ¡ 1.

Proof. Define Uprq � G for all dyadic rationals r ¡ 1. So (c) holds. We
now give an inductive definition for Upm

2n q when n ¥ 1. Suppose Up k
2n q has

been defined for all k for all n   m.
Then Up k

2m q is already defined if k is even, k � 1, or k ¥ 2m. If
k � 1� 2l   2m where l ¡ 0, define Up k

2m q by

Up k

2m
q � Up 1

2m
qUp l

2m�1
q.

Thus Uprq is defined for all positive dyadic rationals r.
We show (a) by induction on n. Note if n ¤ 1, (a) is clear. Hence assume

(a) is true for all n   m where m ¡ 1. First note from the definition that
Upk�1

2m q � Up 1
2m qUp k

2m q if k is even or k � 1 ¡ 2m. Hence we may assume k
is odd and k � 1 ¤ 2m. Then k � 1 � 2l where l ¥ 1. If k � 1, we have by
hypothesis that Up 1

2m qUp 1
2m q � Up1�1

2m q. Thus we may assume l ¥ 2. Hence

Up 1
2m
qUp2l � 1

2m
q � Up 1

2m
qUp2pl � 1q � 1

2m
q

� Up 1
2m
qUp 1

2m
qUp l � 1

2m�1
q

� Up 1
2m�1

qUp l � 1
2m�1

q
� Up 1

2m�1
� l � 1

2m�1
q by induction

� Up l

2m�1
q

� Up 2l

2m
q

� Up 1
2m

� k

2m
q.

Thus (a) holds.
Using (a) and e P Upsq for all s, one has Upm

2n q � Up 1
2n qUpm

2n q � Upm�1
2n q

for any natural number m. Repeating, we see Upm
2n q � Up l

2n q whenever
m   l. This implies (b). ¤
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Definition 5.19. A function f : G Ñ C is uniformly continuous from
the right if for each ε ¡ 0 there is a U P N peq such that

|fpxq � fpyq|   ε

for all x, y P G with x�1y P U . f is uniformly continuous from the left
if for each ε ¡ 0 there is a U P N peq such that

|fpxq � fpyq|   ε

for all x, y P G with xy�1 P U . f is uniformly continuous if it is uni-
formly continuous from the left and the right.

Notice that a function that is uniformly continuous from the left or the
right is obviously continuous.

Lemma 5.20. Let Un, n P N0, be nonempty open symmetric sets in N peq
with U2

n�1 � Un. Let H be a subgroup of G. Then there exists a f P CpGq
such that:

(a) fpGq � r0, 1s.
(b) fpeq � 0;

(c) If a�1b P H, then fpaq � fpbq.
(d) If n P N0 and fpxq   2�n, then x P UnH.

(e) f is uniformly continuous from the left.

Proof. Let D be the set of positive dyadic rationals. We can find sets Uprq
with Up 1

2n q � Un which satisfy Lemma 5.18. The construction in the Lemma
shows we may assume the sets Uprq are open neighborhoods of e.

For x P G let Fx � tr P D | x P UprqHu. Define fpxq by fpxq � inf Fx.
Clearly fpxq ¥ 0 and since Uprq � G for r ¡ 1, we have fpxq ¤ 1. As
e P Uprq for all r it follows that fpeq � 0. If aH � bH then Fa � Fb and thus
fpaq � fpbq. Suppose now that fpxq   2�n. Then there exists a s   2�n

such that x P UpsqH. By (b) of Lemma 5.18, we see x P Up2�nqH � UnH.
Thus (a), (b), (c), and (d) hold.

We show (e). Let ε ¡ 0. Choose n such that 2�n   ε. Assume that
x, y P G are such that xy�1 P Un. Hence x P Up 1

2n qy. Now suppose r P Fy.
Then y P UprqH. Choose k with k�1

2n   r ¤ k
2n . By using (a) of Lemma

5.18, x P Up 1
2n qUp k

2n qH � Up1�k
2n qH. Hence fpxq ¤ r � 1

2n for all r P Fy.

Consequently, fpxq ¤ inf Fy � 1
2n � fpyq � 1

2n . But if xy�1 P Un, then
yx�1 P U�1

n � Un, and we see fpyq ¤ fpxq � 1
2n . Hence

|fpxq � fpyq|   ε if xy�1 P Un

and f is left uniformly continuous. ¤
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Theorem 5.21. Let H be a subgroup of G. Then G{H is completely regular.
If H is closed in G, then G{H is a T3a-space.

Proof. Let A � G{H be closed and let x � aH P G{H be a point not in
A. We have to show that there is a continuous function g : G{H Ñ r0, 1s
such that g|A � 0 and gpxq � 1. Let U :� a�1pG � κ�1pAqq. Note U is
an open neighborhood of e. By continuity of multiplication and inversion,
there is a sequence Un, n � 0, 1, 2, . . ., of open symmetric neighborhoods of
e satisfying U0 � U and U2

n�1 � Un. Let f : G Ñ r0, 1s be the function
obtained in Lemma 5.20. Note fpeq � 0 and if b R U , then b R Up1q � U0.
This implies fpbq � 1 for b R U . Define gpbHq � 1� fpa�1bq. This function
is well defined by (c) of Lemma 5.20. Moreover, since b ÞÑ 1 � fpa�1bq
is continuous on G and is constant on cosets bH, g is continuous. Note
gpaHq � 1 � fpeq � 1; and if y P A, then y � bH where a�1b R U .
Consequently, gpyq � 1 � fpa�1bq � 0. We thus see G{H is a completely
regular space.

If H is closed, then (c) of Lemma 5.13 shows G{H is T2. In particular
G{H is T1 and completely regular. So it is T3a. ¤

Corollary 5.22. Let G be a topological group. Then G is completely regular.
Furthermore G is a T3a-space if and only if teu is closed in G.

If f is a continuous real or complex valued function on a topological space
X, then the support of the function f is the closure of tx | fpxq � 0u. It is
denoted by supppfq. The space of continuous functions on X with compact
support is defined by

CcpXq � tf | f is continuous and supppfq is compactu.
Proposition 5.23. Let X be locally compact Hausdorff space. Suppose K
is a compact subset of an open subset V of X. Then there is a function
f P CcpXq such that 0 ¤ f ¤ 1, fpxq � 1 if x P K, and supp f � V . If K
is a Gδ, f may be chosen with f�1p1q � K.

Proof. We repeatedly use the result in Exercise 5.2.14. We start by choos-
ing an open subset V1 containing K whose closure is a compact subset of V .
Then choose an open subset V 1

2
containing K whose closure is a compact

subset of V1. Then choose open subsets V 1
4

and V 3
4

having compact closures
satisfying

K � V 1
4
� V̄ 1

4
� V 1

2
� V̄ 1

2
� V 3

4
� V̄ 3

4
� V.

Repeating in this manner, we can for each positive dyadic rational d � m
2n

where 1 ¤ d ¤ 2n, obtain a family of precompact open subsets Vd satisfying

K � Vd � V̄d � Vd1 � V̄d1 � V1 � V
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if d   d1. When K is a Gδ, we can write K � XnWn where Wn is a
decreasing sequence of open subsets of V . In this case, the choices for V 1

2n

can be made with the requirement that V 1
2n
�Wn.

Now using Exercise 5.2.13, the function fpxq � 1 � inftd | x P Vdu has
the desired properties. ¤

Lemma 5.24. Let G be a locally compact Hausdorff group. Suppose f P
CcpGq. Then f is uniformly continuous.

Proof. It suffices to show it is left uniformly continuous. Let K be the
compact support of f . For each x P G, choose an open neighborhood Nx of
e such that |fpyq�fpxq|   ε

2 if y P Nxx. Then choose an open neighborhood
Wx of e with W�1

x WxYW 2
x � Nx. The Wxx cover G and hence K. So there

are x1, . . . , xn with K � Yn
k�1Wxk

xk. Take U � Xn
k�1Wxk

. Now let x P G
and y P U . If x R K and yx R K, then |fpyxq � fpxq| � 0. Suppose x R K
and yx P K. Then yx P Wxixi for some i. Thus x PW�1

xi
Wxixi. So both yx

and x are in Nxixi. Thus

|fpyxq � fpxq| ¤ |fpyxq � fpxiq| � |fpxiq � fpxq|   ε.

Similarly, if x P K and y P U , then x P Wxixi � Nxixi for some i and
yx PW 2

xi
xi � Nxixi. Hence

|fpyxq � fpxq| ¤ |fpyxq � fpxiq| � |fpxiq � fpxq|   ε.

¤

Exercise Set 5.2

1. Let X be a topological space. Show the following:

(a) T4 ñ T3;
(b) T3 ñ T2;
(c) Completely regular ñ regular.

2. Show any subspace of a Lindelöf space is Lindelöf.

3. Suppose that G is a topological group and H a subgroup. Let τ be the
collection of all sets U � G{H such that κ�1pUq � G is open in G. Show
that τ is a topology on G{H.

4. Let H be a subgroup of a topological group G, and let X be a topological
space.

(a) Show that a function f : G{H Ñ X is continuous if and only if the
map f � κ : GÑ X is continuous.

(b) Suppose a function f maps G{H onto X. Show f is open if and
only if the map f � κ : GÑ X is open.
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(c) Assume that G acts separately continuously and transitively on X.
Show that the following are equivalent:
 There exists a x P X such that κx is open;
 There exists a x P X such that πx : G{Gx Ñ X is a homeo-

morphism;
 κx is open for all x P X;
 πx : G{Gx Ñ X is a homeomorphism for all x P X.

5. Let G � R, and let τ be an irrational number.

(a) Show G � Z � Zτ is dense in R. (Hint: Show G has no smallest
positive member.)

(b) Show that G acts continuously on T2 by

x � peiu, eivq :� peipu�xq, eipv�τxqq for x, u, v P R .

(c) Let z P T2. Show Gz � t0u and G � z is dense in T2.

(d) Show κz : x ÞÑ x � z is not an open mapping.

6. Prove the basic topological statements highlighted on page 256.

7. Suppose G is a topological group and X and Y are G-spaces. Assume
that ϕ : X Ñ Y is an G-isomorphism. Show that ϕ�1 : Y Ñ X is also a
G-isomorphism.

8. Let G be a topological group and let X be a topological G-space. Set
GzX � tGx | x P Xu to be the space of orbits. Let π : X Ñ GzX by
πpxq � Gx. Define a set U in GzX to be open if π�1pUq is open in X.

(a) Show the set of open sets is a topology on X. It is called the quotient
topology.

(b) Show π : X Ñ GzX is an open mapping.

(c) Give an example where G and X are Hausdorff, but GzX is not
Hausdorff.

(d) Suppose G and X are locally compact Hausdorff spaces. Show
GzX is compact if and only if there is a compact set C � X with
GC � X.

9. Let G be a topological group and let H be a subgroup with the relative
topology.

(a) Show if H is locally compact and Hausdorff, then H is closed in
G. In particular if H is discrete in the relative topology, then H is
closed.

(b) Give an example of a discrete subspace M of some topological space
X which is not closed.
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10. Suppose G is a locally compact Hausdorff group and K is a compact
subgroup. Show if A is compact in G{K, then κ�1pAq is compact in G.

11. Let G be a compact Hausdorff group. Show a subgroup D has discrete
relative topology if and only if D if finite.

12. Let D be a subgroup of G where G is locally compact and Hausdorff.
Show D is discrete if and only if D XK is finite for every compact subset
of G.

13. A dyadic rational is a number of form k
2n . Consider a topological space

X, and let F be a closed set and G be an open set with F � G. Suppose
Vd is an open set for each d P D, V0 � H, V1 � X, F � Vd � G when
0   d   1, and

V̄d � Vd1
for d   d1 in D. Show the function f defined by fpxq � inftd | x P Vdu is a
continuous function that satisfies 0 ¤ f ¤ 1, f � 0 on F , and f � 0 off G.
Moreover, if Xd¡0Gd � F , show fpxq � 0 if and only if x P F .

14. Let X be a locally compact Hausdorff space and let V be an open set
containing compact subset K. Show there is a an open subset G of V with
compact closure such that K � Ḡ � V .

15. Let X be a σ-compact locally compact Hausdorff space. Show there
is a sequence Un of precompact open subsets which cover X and has the
property Ūn � Un�1.

16. Let X be a locally compact Hausdorff space. Show a subset K is a
compact Gδ set if and only if there is a continuous function 0 ¤ φ ¤ 1 on X
having compact support with φ�1t1u � K.

5. Examples

In this section we give some examples of topological groups and homogeneous
spaces. We have met some of them before. Others play important roles in
harmonic analysis.

5.1. The general linear group GLpnq. Let F be the field of real or
complex numbers. Elements in Fn will be written as column vectors. Let
Mpm � n,Fq �!pxijqm,n

i,j�1 | xij P F
)

be the space of m by n matrices. If
n � m, we simply write Mpn,Fq. Mpm�n,Fq is linearly isomorphic to Fmn

under the mapping

X � rxi,js ÞÑ px1,1, x1,2, . . . , x1,n, x2,1, x2,2, . . . , x2,n, . . . , . . . , xm,nqt.
Fmn is a product space with the product topology. Using the above iso-
morphism we see there is a natural ‘product’ topology on the vector space
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Mpm � n,Fq. By Exercise 5.3.1, this topology is obtained from the norm
defined by:

||X||2 �
�

m̧

i�1

ņ

j�1

|xij |2
�1{2

The determinant function det : Mpn,Fq Ñ F,

X ÞÑ detpXq �
σ̧PΓn

signpσqx1σp1qx2σp2q � � �xnσpnq

is a polynomial in the coordinates and hence continuous. It follows that

GLpn,Fq :� tX P Mpn,Fq | detpXq �� 0u
is open and dense in Mpn,Fq. As X P Mpn,Fq is invertible if and only
if detpXq �� 0, detpXY q � detpXqdetpY q, and detpX�1q � detpXq�1, it
follows that GLpn,Fq is a group. It is called the general linear group. Let
X � pxijq and Y � pyijq. Note

pXY qij �
ņ

ν�1

xiνyνj .

Hence multiplication is continuous. Since X�1
ij � p�1qi�j detpMjiq

detpXq , where
Mij is the i, jth minor, we see X ÞÑ X�1 is continuous. Hence GLpn,Fq is a
topological group. Since det : GLpn,Fq Ñ F is a continuous homomorphism,
the kernel

SLpn,Fq :� tA P GLpn,Fq | detpAq � 1u
is a closed normal subgroup of GLpn,Fq and hence is a locally compact
Hausdorff topological group. It is called the special linear group.

The group SLp2,Fq acts continuously on F2 by pA, xq ÞÑ Ax. The set
t0u is obviously an orbit. Let x � px1, x2qt P F2z t0u. If A � pa1, a2q with
column vectors a1, a2 P F2, then Ae1 � a1. If x1 �� 0, let

A �
�

x1 0
x2 1{x1



P SLp2,Fq .

If x1 � 0, then x2 �� 0. Let

A �
�

0 �1{x2

x2 0



P SLp2,Fq

Then Ae1 � x. It follows that F2z t0u � SLp2,Fqe1 is one orbit. Hence F2

decomposes into exactly two orbits. Assume that Ae1 � e1. Then A must
have the form

A �
�

1 x
0 1



where x P F .
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It follows that

Ge1 �
"�

1 x
0 1



| x P F

*
�: N

and F2z t0u � SLp2,Fq{N . Note Theorem 5.15 shows this is a topological
isomorphism for SLp2,Fq is a locally compact Lindelöf space (see Exercise
5.3.4) and F2z t0u is locally compact.

For A � �
a b
c d

� P GLp2,Cq and z P C let

A � z � az � b

cz � d

if az � d �� 0. Let
H� � tz P C | Impzq ¡ 0u .

Lemma 5.25. Let A P SLp2,Rq and z P H�. Then A � z is well defined,
and A � z P H�. Furthermore SLp2,Rq � H� Q pA, zq ÞÑ A � z P H� de-
fines a continuous action of SLp2,Rq on H�. The action is transitive and

SLp2,Rqi � SOp2,Rq �
"�

cos θ sin θ
� sin θ cos θ



| θ P R

*
.

Proof. Write z � x� iy P H�. Let A � �
a
c

b
d

	 P SLp2,Rq. Then cz � d �
pcx � dq � icy. If cy � 0 then c � 0 as y ¡ 0. But then d �� 0 and
cz � d � d �� 0. Furthermore

ImA � z � y

pcx� dq2 � c2y2
¡ 0 .

Hence A � z P H�. As pA, zq ÞÑ A � z is a rational function in a, b, c, d, and z,
it follows that pA, zq ÞÑ A � z is continuous. We refer to the Exercise 5.3.21
to see that pABq � z � A � pB � zq.

Let x� iy P H�. Then y ¡ 0. Let A �
�?

y x?
y

0 1?
y

�
P SLp2,Rq. Then

A � i � i
?

y � x{?y

1{?y
� x� iy .

Hence the action is transitive. Assume that�
a b
c d



� i � ai� b

ci� d
� i .

Then
ai� b � di� c .

Thus a � d and b � �c. As detA � ad� bc � a2� b2 � 1 it follows that we
can write a � cospθq and b � sinpθq for some θ P R. ¤
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Let A be the subgroup of SLp2,Rq consisting of all matrices of form�
x 0
0 1

x

	
where x ¡ 0 and N be the subgroup of SLp2,Rq of all matrices of

form
�

1 x
0 1



where x P R. The argument just given shows for each z P H�,

there are unique a P A and n P N with panq � i � z. Exercise 5.3.22 shows
the subgroup AN is topologically isomorphic to H�.

Corollary 5.26. The mapping SOp2,Rq � A � N Q pk, a, nq ÞÑ kan is a
homeomorphism onto SLp2,Rq.
Proof. Clearly pk, a, nq ÞÑ kan is continuous. Let z � g�1 � i. Then z is
a continuous function of g and since H� is homeomorphic to AN by the
correspondence panq � i � z, there are unique functions a and n depending
continuously on g such that papgqnpgqq � i � g�1 � i. Hence gpapgqnpgqq�1 �
kpgq P SOp2,Rq where g ÞÑ kpgq is continuous. Thus the inverse mapping
g ÞÑ pkpgq, apgq, npgqq is continuous. ¤

5.2. The classical linear groups. There are many closed subgroups of
the general linear group. Those most important to us are the classical linear
groups. We list some of these here. Let F � R or F � C. Let V be a vector
space over F.

Definition 5.27. A map β : V � V Ñ F is

(a) bilinear if for each fixed u P V the maps

V Q x ÞÑ βpx, uq P F and V Q x ÞÑ βpu, xq P F
are linear;

(b) sesquilinear if for each fixed u P V the maps

V Q x ÞÑ βpx, uq P F and V Q x ÞÑ βpu, xq P F
are linear;

(c) symmetric if it is bilinear and βpu, vq � βpv, uq for all u, v P V ;

(d) Hermitian if it is sesquilinear and βpu, vq � βpv, uq for all u, v P
V ;

(e) skew-symmetric if it is bilinear and βpu, vq � �βpv, uq for all
u, v P V ;

(f) skew-Hermitian if it is sesquilinear and βpu, vq � �βpv, uq for
all u, v P V ;

(g) non-degenerate if for each u �� 0 there exists a v P V such that
βpu, vq �� 0 and for each v �� 0 there is a vector u with βpu, vq �� 0.

(h) positive if βpu, uq ¡ 0 for all u P V , u �� 0.
(i) an inner product on V if β is Hermitian and positive.
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If F � R, we prefer to use the terms sesquilinear, Hermitian, and skew-
Hermitian even though these are same as the more descriptive terms bilinear,
symmetric, and skew-symmetric. This is done so that we do not have to
make the distinction between R and C. Notice also that if F � C and β is
sesquilinear, then

βpu, λx� yq � βpu, λx� yq
� λβpu, xq � βpu, yq
� λ̄βpu, xq � βpu, yq .

Hence β is conjugate linear in the second variable.
If V is a Hilbert space and β is either sesquilinear or bilinear, define

||β|| :� sup
u,vPV, ||u||�||v||�1

|βpu, vq| .
We say that β is bounded if ||β||   8. In that case ||β|| is called norm of
β. Note β satisfies:

(5.1) |βpu, vq| ¤ ||β|| ||u|| ||v|| for all u, v P V

Proposition 5.28. Assume that V is a Hilbert space (over R or C) with
inner product p� , �q and corresponding norm ||�||. Suppose that β is a bounded
sesquilinear form on V . Then there exists a bounded linear transformation
T : V Ñ V such that

βpu, vq � pTu, vq
for all u, v P V . Furthermore ||β|| � ||T ||. T is injective with dense range
if and only if β is non-degenerate. We have βpu, vq � βpv, uq, respectively
βpu, vq � �βpv, uq, for all u, v P V , if and only if T is self adjoint, i.e.,
T � � T , respectively skew-adjoint, T � � �T .

Proof. For each u P V , define a linear mapping fu by

fupvq � βpu, vq.
Note |fupvq| ¤ ||β|| ||u|| ||v||. By the Riesz Representation Theorem, there
is a unique vector Tu P V with βpu, vq � fupvq � pv, Tuq for all u. Taking
conjugates gives

βpu, vq � pTu, vq
for all u and v. T is linear in u for βpu, vq is linear in u. Exercise 5.3.5 shows
||β|| � ||T ||.

Suppose T is injective with dense range. If u � 0, then Tu � 0 and thus
βpu, Tuq � pTu, Tuq � 0. Also if v � 0, then since T has dense range, there
is a u with βpu, vq � pTu, vq � 0. Thus β is nondegenerate. Conversely, let
β be nondegenerate. If Tu � 0, then βpu, vq � 0 for all v. So u � 0 and T
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is injective. If v P T pV qK, then βpu, vq � 0 for all u. But then v � 0. So
T pV qK � t0u and thus T pV q is dense.

Finally β is Hermitian if and only if pTu, vq � pTv, uq � pu, Tvq for all
u and v if and only if T � � T . Similarly β is skew-Hermitian if and only if
T � � �T . ¤

Definition 5.29. Let V be a complex Hilbert space. A continuous conjugate
linear transformation j of V satisfying j2 � I is called a conjugation on
V .

Let j be a conjugation on V . Then VR :� tv P V | jpvq � vu is a real
Hilbert space such that VR ` iVR � V and iVR � tv P V | jpvq � �vu.
Indeed, v � v1 � v2 where v1 � 1

2pv � jvq P VR and v2 � 1
2pv � jvq �

� i
2piv � jivq P iVR. On the other hand any decomposition V � VR ` iVR

with VR a real sub-Hilbert space gives rise to a conjugation by defining j to
be the identity on VR and �id on iVR. Note this decomposition need not be
orthogonal; see Exercise 5.3.10.

Lemma 5.30. Let V be a Hilbert space. Then there exists a conjugation
j : V Ñ V .

Proof. Let temumPI be a orthonormal basis for V . Define j : V Ñ V by

j
�¸

λmem

	
:�¸

λ̄mem .

Then j is conjugate linear and j2 � I. It is continuous since it is an isometry.
¤

As an example, the usual conjugation on Cn is the mapping j : Cn Ñ Cn

given by
jppz1, . . . , znqtq � pz̄1, . . . , z̄nqt.

In the above construction, it comes from the standard basis e1 � p1, 0, . . . , 0qt,
. . ., en � p0, 0, . . . , 0, 1qt of Cn. Not all conjugations on a Hilbert space are
obtained from an orthonormal basis as in the proof of this Lemma. See
Exercise 5.3.7.

Lemma 5.31. Let j be a conjugation on a Hilbert space V . Define βj by

βjpu, vq � pu, jvq.
Then

(a) βj is a nondegenerate bilinear form on V .
(b) If A is a bounded complex linear transformation on V , there is a

unique complex linear operator At of V such that

βjpAu, vq � βjpAtv, uq for u, v P V.
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Proof. We first note βjpu, juq � pu, uq � 0 and βjpju, uq � 0 if u � 0.
Hence βj is nondegenerate.

Let A be a bounded complex linear transformation of V . Define βpv, uq �
pAju, jvq. Then β is a bounded sesquilinear form. By Proposition 5.28, there
is a unique complex linear transformation At satisfying pAju, jvq � pAtv, uq.
Replacing u by ju, we see

pAu, jvq � pAtv, juq
for all u and v. Thus βjpAu, vq � βjpAtv, uq. ¤

If j is a conjugation on V , the form βj is called the canonical bilinear
form on V determined by j. The conjugation j is said to be symmetric if
βj is symmetric.

Lemma 5.32. If j is a symmetric conjugation on a complex Hilbert space
V , then At � jA�j.
Proof. Since βjpAu, vq � βjpAtv, uq and βj is symmetric, we have pAu, jvq �
βjpu,Atvq � pu, jAtvq. Hence pu,A�jvq � pu, jAtvq for all u and v. So
jAt � A�j. Thus At � jA�j. ¤

Lemma 5.33. Let j be a conjugation on a complex Hilbert space V . Then
the following are equivalent.

(a) j is symmetric.
(b) pju, jvq � pv, uq for all u and v.
(c) j is an isometry.
(d) There is an orthonormal basis temumPI of V with jem � em for all

m.

Proof. Suppose βj is symmetric. Then pu, jvq � pv, juq for all u and v.
Thus pju, jvq � pv, j2uq � pv, uq for all u and v. If pju, jvq � pv, uq for all u
and v. Then ||ju||2 � pju, juq � pu, uq � ||u||2 and we see j is an isometry.

Assume j is an isometry. Define pu, vqR � Repu, vq. Then V with this
inner product is a real Hilbert space. We know pju, juqR � pu, uqR for all u.
Hence
pjpu� vq, jpu� vqqR � pjpu� vq, jpu� vqqR � pu� v, u� vqR � pu� v, u� vqR.

This implies pju, jvqR�pjv, juqR � pu, vqR�pv, uqR. Since p � , � qR is symmet-
ric, we have pju, jvqR � pu, vqR for all u and v. This implies VR KR piVRq.
Indeed, if ju � u and jv � �v, then 2pu, vqR � pu, vqR � pju, jvqR �pu, 0qR � 0. Now let temumPI be an orthonormal basis of the real Hilbert
space VR under the inner product p � , � qR. Then since iem P iVR, we see
pem, ienqR � 0. Hence Impen, emq � 0 for all m,n P I and the vectors em

are orthonormal. They form a complete basis for VR ` piVRq � V . Since
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jem � em for all m, we have jp°λmemq � °
λ̄mem whenever

° |λm|2   8;
and one sees βjpu, vq � βjpv, uq for all u and v and thus βj is symmetric. ¤

Proposition 5.34. Assume that V is a complex Hilbert space with inner
product p � , � q and conjugation j. Suppose that β is a bounded bilinear form
on V . Then there exists a unique bounded complex linear map A : V Ñ V
with βpu, vq � βjpAu, vq for all u, v P V . β is non-degenerate if and only if
A is injective with dense range. β is symmetric if and only if At � A and
skew-symmetric if and only if At � �A. If in addition j is symmetric, then
||β|| � ||A||.
Proof. Define β1pu, vq � βpu, jvq. Note β1 is sesquilinear. It is also bounded
for

|β1pu, vq| � |βpu, jvq|
¤ ||β|| ||u|| ||jv||
¤ ||β|| ||u|| ||j|| ||v||.

By Proposition 5.28, there exists a unique complex linear mapping A satis-
fying ||A|| � ||β1|| and

β1pu, vq � pAu, vq for u, v P V.

Thus βpu, vq � β1pu, jvq � pAu, jvq � βjpu, vq. Now β1 is nondegenerate
if and only if β is nondegenerate. Hence again by Proposition 5.28, β is
nondegenerate if and only if A is injective with dense range.

Now β is symmetric if and only if βjpAu, vq � βjpAv, uq if and only if
At � A. Similarly, β is skew-symmetric if and only if At � �A.

Finally suppose j is symmetric. Then by (c) of Lemma 5.33, j is an
isometry. Hence

||β1|| � sup
||u||�1, ||v||�1

|β1pu, vq|
� sup

||u||�1, ||v||�1
|βpu, jvq|

� sup
||u||�1, ||v||�1

|βpu, vq|
� ||β||.

¤

Example (The Orthogonal Groups). In the examples we present here, the
space V will be either Rn or Cn with their usual inner products. We let j be
the standard symmetric conjugation on Cn given by j

�pz1, z2, . . . , znqt� �pz̄1, z̄2, . . . , z̄nqt.
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Set SymbnpFq to be the space of symmetric bilinear forms on Fn. This
is a finite dimensional vector space and thus has a unique vector space
topology. If β P SymbnpFq and a P GLpn,Fq, define a � β by

a � βpu, vq � βpatu, btvq.
Then

pabq � βpu, vq � βppabqtu, pabqtvq
� βpbtatu, btatvq
� b � βpatu, atvq
� a � pb � βqpu, vq.

Thus GLpn,Fq acts on SymbnpFq and this action is continuous; see Exercise
5.3.12. Thus the stabilizer Opβ,Fq of β is a closed subgroup of GLpn,Fq.
The subgroup SOpβ,Fq is the subgroup of Opβ,Fq consisting of those a’s in
Opβ,Fq with detpaq � 1.

Lemma 5.35. Let V be a vector space over F.

(a) If β is a symmetric bilinear form on a vector space V , then

βpu, vq � 1
2
pβpu� v, u� vq � βpu, uq � βpv, vqq .

(b) If F � C and β is an Hermitian sesquilinear form, then

βpu, vq � 1
4

3̧

j�0

ijβpu� ijv, u� ijvq.

Proof. Note (a) is immediate. For (b) note

1
4

3̧

j�0

ijβpu� ijv, u� ijvq � 1
4

3̧

j�0

ijβpu, uq � 1
4

3̧

j�0

ijβpu, ijvq�
1
4

3̧

j�0

ijβpijv, uq � 1
4

3̧

j�0

ijβpijv, ijvq �
1
4

�
0� 3̧

j�0

βpu, vq � 3̧

j�0

p�1qjβpv, uq � 0

�
� βpu, vq.

¤

The formulas in (a) and (b) are called polarizations of the forms.
The case F � C is simpler and we shall deal with it first. The main

reason it is simpler is the existence of square roots in C.
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Lemma 5.36. Let β be a symmetric bilinear form on Cn. Then there is a
basis e1, e2, . . . , er, er�1, er�2, . . . , en of Cn such that

βpei, vq � 0 for all v if i ¤ r

βpei, ejq � δi,j if i, j ¡ r.

Proof. The set R :� tv | βpv, wq � 0 for all w P Cnu is a linear subspace of
Cn. Take a basis e1, e2, . . . , er of R. If r � n, we are done. Hence suppose
e1, e2, . . . , es where r ¤ s   n are linearly independent and satisfy βpei, xq �
0 for all x if i ¤ r and βpei, ejq � δi,j if i, j ¡ r. Let V be the linear span of
the vectors e1, e2, . . . , es and define W :� tw | βpw, vq � 0 for all v P V u.
Note V � W � Cn, for if x P Cn, then w � x � °s

i�1 βpx, eiqei P W .
Indeed βpw, ejq � βpx, ejq � °s

i�1 βpx, eiqβpei, ejq � 0 for j � 1, 2, . . . , s.
By Lemma 5.35, β|W�W � 0 or there is a w P W with βpw,wq � 0. If
β|W�W � 0, then βpw, v � w1q � 0 for all v P V , w, w1 P W and thus
W � R. Consequently V � R and s � n, a contradiction. Hence there is a
w P W with βpw, wq � 0. Clearly w R V . Define es�1 � 1?

βpw,wqw. Then

e1, e2, . . . , es�1 has the property βpei, ejq � δi,j for r   i, j ¤ s� 1. ¤

The form βIpu, vq � utv � pu, jvq is the standard symmetric nondegen-
erate bilinear form on Fn. Note if F � C, then βIpu, vq � pu, jvq. In the
complex case we write Opn,Cq for OpβI ,Fq while in the real case we write
Opnq.
Proposition 5.37. If β is a nondegenerate symmetric bilinear form on Cn,
then there exists an a P GLpn,Fq with β � a � βI . Moreover, the mapping

b ÞÑ a�1ba

is a group isomorphism from Opβ,Cq onto Opn,Cq.
Proof. Since β is nondegenerate, Lemma 5.36 shows there is a basis tvkunk�1

of Cn satisfying βpvk, vlq � δk,l. Let e1, e2, . . . , en be the usual basis of Cn.
Define a P GLpn,Fq by atvk � ek. Then

a � βIpvk, vlq � βIpatvk, a
tvlq

� βIpek, elq
� δk,l.

Since a � βI and β are bilinear, we then have a � βI � β.
Finally b P GLpn,Fqβ if and only if a�βIpbtv, btwq � a�βIpv, wq if and only

if βIpatbtv, atbtwq � βIpatv, atwq if and only if βIpatbtpatq�1v, atbtpatq�1wq �
βIpv, wq if and only if βIppa�1baqtv, pa�1baqtwq � βIpv, wq if and only if
a�1ba P GLpn,FqβI

. Thus Opn,Cq � a�1Opβ,Cqa. ¤
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Let Symb�npCq denote the space of nondegenerate symmetric bilinear
forms on Cn. We then have

Symb�npCq � GLpn,Cq � βI ,

and since the stabilizer of βI is Opn,Cq, we see

Symb�npCq � GLpn,Cq{Opn,Cq.
The situation for symmetric bilinear forms on Rn is slightly more com-

plicated.

Lemma 5.38. Let β be a symmetric bilinear form on Rn. Then there are
nonnegative integers r, p, and q with r�p�q � n and a basis e1, e2, . . . , er,
er�1, . . . , er�p, er�p�1, er�m�2, . . . , er�p�q of Rn such that

βpei, ejq � 0 if i � j

βpei, eiq � 0 if i ¤ r

βpei, eiq � 1 if r   i ¤ r � p

βpei, eiq � �1 if r � p� 1   i ¤ n.

Proof. Let R be the linear subspace of all vectors v such that βpv, xq � 0
for all x P Rn. Choose a basis e1, e2, . . . , er of R. Let M be a maximal
collection of vectors satisfying

βpv, vq2 � 1 for v PM

βpv, v1q � 0 if v, v1 P M and v � v1.
We claim B :� te1, e2, . . . , eruYM is a basis of Rn. Note this set is linearly
independent. Indeed, if x � °r

i�1 aiei �°
vPM avv � 0 and v1 PM , then

βpv1, xq � av1βpv1, v1q � 0.

Since βpv1, v1q � �1, av1 � 0. Thus
°r

i�1 aiei � 0. Since teiuri�1 is a basis of
R, a1 � a2 � � � � � ar � 0.

We now show B spans Rn. Let V be the linear span of B. Suppose
V � Rn. Let W � tw | βpw, vq � 0 for all v P V u. Then V � W �
Rn. In fact, for each v P M , set εv � βpv, vq. Then εv is either 1 or
�1. If x P Rn, set w � x � °

vPM εvβpx, vqv. Clearly, βpw, eiq � 0 for
i � 1, 2, . . . , r and if v1 P M , then βpw, v1q � βpx, v1q � εv1βpx, v1qβpv1, v1q �
βpx, v1qp1�βpv1, v1q2q � 0. Hence w P W and thus x � °

vPM εvβpx, vqv�w P
V �W . So V �W � Rn. Note β|W�W � 0, for otherwise β|Rn�W � 0 and
consequently W � R. By Lemma 5.35, there is a w P W with βpw, wq � 0.
Set v � 1?|βpw,wq|w. Note βpv, vq2 � 1 and βpv, v1q � 0 for all v1 P V .

M 1 �M Ytv1u has the properties of M and thus M was not maximal. This
is a contradiction and we see B is a basis of Rn. We can now enumerate
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M as er�1, er�1, . . . , er�p, er�p�1, . . . , er�p�q where βpei, eiq � 1 for i �
r � 1, . . . , r � p and βpei, eiq � �1 for i � r � p� 1, . . . , n. ¤

The number r is called the nullity of the bilinear form, the number p�q
is called the rank, and the number p�q is called the signature. Note these
numbers are unique. See Exercise 5.3.14.

Corollary 5.39. Symmetric bilinear forms on Rn are in the same GLpn,Rq
orbit if and only if they have the same nullity, rank, and signature.

Proof. Suppose β and β1 have the same nullity, rank, and signature. Then
there exist bases e1, e2, . . . , er, er�1, . . . , er�p, er�p�1, . . . , er�p�q and e11,
e12, . . . , e1r, e1r�1, . . . , e1r�p, e1r�p�1, . . . , e1r�p�q with the properties in Lemma
5.38 for β and β1, respectively. There is a unique matrix a P GLpn,Rq with
ate1i � ei for i � 1, . . . , n. Hence a � βpe1i, e1jq � βpate1i, ate1jq � βpei, ejq �
β1pe1i, e1jq for all i and j. Since a � β and β1 are bilinear and the te1iuni�1

is a basis, we see a � β � β1. The converse follows by the inverse of this
argument. ¤

The orbits of β of full rank are described by pairs pp, qq where 0 ¤ p ¤ n,
0 ¤ q ¤ n, and p� q � n. Fix p, q with p� q � n. Define βp,q P SymbnpFq
by

βp,qpv, wq �
p̧

i�1

viwi �
p�q̧

i�p�1

viwi.

The stabilizer of βp,q in GLpn,Rq is denoted by Opp, qq. The subgroup of
Opp, qq consisting of those a with detpaq � 1 is called SOpp, qq.

If Symb�p,qpRq denotes the space of symmetric bilinear mappings on Rn

with rank n and signature p� q, then

Symb�p,qpRq � GLpn,Rq � βp,q.

Since the stabilizer GLpn,Rqβp,q of βp,q is Opp, qq, we see

Symb�p,qpRq � GLpn,Rq{Opp, qq.
Let SymnpFq be the vector space of n�n symmetric matrices with entries

from the field F.

Proposition 5.40. Let e1, e2, . . . , en be the standard basis of Fn. The
mapping β ÞÑ B where B � rβpei, ejqs is a one-to-one linear isomorphism
of SymbnpFq onto SymnpFq. Moreover, if a P GLnpFq and β ÞÑ B, then
a � β ÞÑ aBat.

Proof. First note if β is symmetric, then since βpei, ej � βpej , eiq, the
matrix B is symmetric. Clearly the map is linear. Moreover, if B � 0,
then βpei, ejq � 0 for all i and j. Since β is bilinear, one then would have
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β � 0. Hence this mapping is one-to-one. Moreover, if B P SymnpFq, define
β P SymbnpFq by

βp¸ aiei,
¸

bjejq �
i̧,j

aibjBi,j .

Then β ÞÑ B and the mapping is onto.
Suppose a P GLpn,Fq and β ÞÑ B. Then a � β ÞÑ a � B where a � B is

the matrix
�
βpatei, a

tejq�. But atei � °
k ai,kek and atej � °

l aj,lel. Thus
pa �Bqi,j � °

k

°
l ai,kβpek, elqaj,l � °

k

°
l ai,kBk,laj,l � paBatqi,j . ¤

We note if β ÞÑ B, then βpv, wq � vtBw. Indeed, v � °
i viei and

w � °
j wjej . Thus βpv, wq � °

i,j viwjβpei, ejq � °
i,j viBi,jwj � vtBw. In

particular, βI corresponds to the identity matrix I for βIpu, vq � utIv and
consequently, one has

Opn,Fq � tA P GLpn,Fq | A � βI � βIu
� tA P GLpn,Fq | AAt � Iu.

Note Opnq � Opn, 0q and if p � q � n, then βp,q corresponds to the
matrix

Ip,q �
�

Ip 0
0 �Iq



for βp,qpei, ejq � 0 if i � j and βp,qpei, eiq � 1 for i ¤ p and βp,qpei, eiq � �1
for i ¡ p. Thus

Opp, qq � tA P GLpn,Rq | A � βp,q � βp,qu
� tA P GLpn,Rq | AIp,qA

t � Ip,qu.
Moreover,

Symb�p,qpRq � GLpn,Rq{Opp, qq.
Example (The Symplectic Groups). Again we let F � R or F � C. Set
AltnpFq be the finite dimensional vector space of skew symmetric bilinear
forms β on V . As before the mapping GLpn,Fq � AltnpFq Q pa, βq ÞÑ a � β
where

a � βpu, vq � βpatu, atvq
satisfies a � pb � βq � pabq � β. This action is continuous and thus one has

GLpn,Fq � β � GLpn,Fq{GLpn,Fqβ.

We denote the stabilizer GLpn,Fqβ by Sppβ,Fq. Of greatest interest are
the stabilizers of nondegenerate skew symmetric β. To describe these we
need the following result.
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Lemma 5.41. Let β be a skew symmetric bilinear form on Fn. Then there
are nonnegative integers r and m with r�2m � n and a basis z1, z2, . . . , zr,
e1, e2, . . . , em, f1, f2, . . . , fm of Fn such that

βpzi, vq � 0 for all v P Fn

βpei, ejq � βpfi, fjq � 0 for all i, j

βpei, fjq � δi,j .

Proof. Let R � tx | βpx, vq � 0 for all v P Fnu. R is a linear subspace and
if r is its dimension, we can choose a basis z1, z2, . . . , zr of R. If r � n we
are done. Suppose we have chosen e1, e2, . . . , el and f1, f2, . . . , fl having
the properties listed. If r � 2l � n, we are done. Otherwise, if W is the
linear span of the set tz1, . . . , zr, e1, . . . , el, f1, . . . , flu, then W is a proper
linear subspace of Fn. Choose v R W . Set el�1 � v � °l

i�1 βpv, fiqei �°l
i�1 βpv, eiqfi. Note

βpel�1, ekq � βpv, ekq �
ļ

i�1

βpv, fiqβpei, ekq �
ļ

i�1

βpv, eiqβpfi, ekq
� βpv, ekq � βpv, ekqβpfk, ekq
� βpv, ekq � βpv, ekq
� 0

and

βpel�1, fkq � βpv, fkq �
ļ

i�1

βpv, fiqβpei, fkq �
ļ

i�1

βpv, eiqβpfi, fkq
� βpv, fkq � βpv, fkqβpek, fkq
� βpv, ekq � βpv, ekq
� 0.

Since v R W , el�1 R R. Thus there is a vector v1 with βpel�1, v
1q � 1. Since

βpel�1, wq � 0 for w P W , v1 R W . Define fl�1 by

fl�1 � v1 � ļ

i�1

βpv1, fiqei �
ļ

i�1

βpv1, eiqfi.

Note βpel�1, fl�1q � βpel�1, v
1q � 1 and as before we have βpfl�1, wq � 0

for w PW . Repeating one finally obtains the desired basis. ¤

The number r is called the nullity of the skew symmetric bilinear form
β. The number n � r is β’s rank. Analogous to Corollary 5.39, skew
symmetric bilinear forms on V are in the same GLpn,Fq orbit if and only
if they have the same rank. Moreover, note there are nondegenerate skew
symmetric bilinear forms on V if and only if the dimension of V is even.
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Fix n and let V � F2n. Set Alt�npFq to be the space of all nondegenerate
skew symmetric bilinear forms on V . Define J on

F2n � Fn � Fn �
"�

x
y



| x, y P Fn

*
by

J

�
x
y



�
�

y
�x



.

Note J

�
x
y



�
�

0 In�In 0


�
x
y



. Set βJpu, vq � utJv. Note

βJpu, vq � putJvqt � vtJ tu � vtp�Jqu � �βJpv, uq
and thus βJ is a skew symmetric nondegenerate bilinear form on F2n. We
call this particular skew symmetric form ω. In terms of components, we
have

ωpu, vq � ņ

i�1

puivn�i � ui�nviq.
We let

Sppn,Fq :� tA P GLp2n,Fq | A � ω � ωu
� tA P GLp2n,Fq | AJAt � Ju .

The group Sppn,Fq is the symplectic group. We let Sppnq � Sppn,Rq X
SOp2nq. Then Sppnq is a compact subgroup of Sppn,Rq.
5.3. The sphere Sn. The classical linear groups act continuously on Fn

by A �x � Ax. Since these groups are closed subgroups of the general linear
group, they are locally compact and Lindelöf. Hence by Theorem 5.15, any
closed orbit is topologically isomorphic to the quotient space G{H where H
is a stabilizer of a point in the orbit. Perhaps the most well known example
is the sphere Sn � tx | x P Rn�1, |x| � 1u. It is clearly closed and is the
orbit of the point e1 � p1, 0, 0, � � � , 0q under both Opn� 1q and SOpn� 1q.

Indeed, if x1 P Sn, then x1 is a unit vector. One can then extend
to an orthonormal basis x1, x2, . . . , xn�1 of Rn�1. Let A be the matrix
with column vectors x1, x2, . . . , xn�1. Thus A � �

x1, x2, . . . , xn�1

�
. Note

Ae1 � x1. Since txiuni�1 is an orthonormal basis, one has AAt � I, and we
see A P Opn � 1q. Moreover, detpAq2 � detpAAtq � 1. Hence detpAq �
�1. If the determinant is �1, then by changing xn�1 to �xn�1, we have
detpAq � 1. Thus A is in SOpn � 1q. The stabilizer in Opn � 1q of e1

consists of those matrices A P Opn � 1q whose first column is e1. Since
AtA � I, we have pAtAqi,1 � δi,1. Thus

°
at

i,jaj,1 � at
i,1 � δi,1. Hence
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a1,2 � a1,3 � . . . � a1,n�1 � 0. This implies A � pe1, x2, . . . , xn�1q where
the first elements in the column vectors x2, . . . , xn�1 are zero. Hence

A �
�

1 0t
n

0n B



where 0n is the zero column vector in Rn. Since AAt � In�1, BBt � In,
and we see B P Opnq. In the case where A P SOpn � 1q, then detpBq � 1
and so B P SOpnq.
Lemma 5.42. Sn � Opn� 1q{Opnq � SOpn� 1q{SOpnq.
5.4. The flag manifolds. Let V be the vector space Fn over F. Suppose
1 ¤ n1   n2   . . .   nk ¤ n with nj P N. Let n � pn1, . . . , nkq. Let
FlagFpnq � Flagpnq � Flagpn1, . . . , nkq be the set of nested chains V1 �
. . . � Vk of vector subspaces with dimVj � nj . Then GLpn,Fq acts on
Flagpnq by

A � pV1, . . . , Vkq � pAV1, . . . , AVkq .
Let e1, . . . , en be the standard basis of Fn. Let Ej � °nj

i�1 Fei. Let E :�
pE1, . . . , Ekq P Flagpnq. Let V � pV1, . . . , Vkq P Flagpnq. Choose f1, . . . , fn

a basis of V such that f1, . . . , fnj is a basis of Vj . Then there exists a
A P GLpn,Fq such that Aej � fj . It follows that A � E � V. Hence
GLpn,Rq acts transitively on Flagpnq. We can even say more: if we choose
f1, . . . , fn orthonormal with the same orientation as the standard basis, we
see that we can even choose A P SOpnq if F � R and A P SUpnq if F � C.
Hence SOpnq (respectively SUpnq) acts transitively on Flagpnq. Assume that
A �E � E. Then AV1 � V1. It follows that A has the form

A �
�

A1 B
0 C



with A1 P GLpn1,Fq, C P GLpn� n1,Fq, and B an arbitrary n1 � pn� n1q-
matrix. Using AVj � Vj and repeating the argument, one sees A has the
form

A �

�������
A1 � � � �
0 A2 � � �
0 0

. . . � �
0 0 0 Ak�1 �
0 0 0 0 Ak

������
with Aj P GLpnj�nj�1,Fq, 1 ¤ j ¤ k. Here � stands for an arbitrary matrix
of the correct size. Let P pnq be the group GLpn,FqE. Then P pnq is a para-
bolic subgroup of GLpn,Fq. Hence Flagpnq is isomorphic to GLpn,Fq{Ppnq.
But SOpnq (SUpnq in the case F � C) also acts transitively on Flagpnq. In
this case the stabilizer of E is SOpnq X P pnq (SUpnq X P pnq in the com-
plex case). These stabilizers can be described in the following manner.
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Let Gj � GLpnj � nj�1,Fq, j � 1, 2, . . . , k, be subgroups. Denote by
SpG1 � � � � �Gkq the subgroup of GLpn,Fq consisting of the matrices�������

A1 0 0 0 0
0 A2 0 0 0

0 0
. . . 0 0

0 0 0 Ak�1 0
0 0 0 0 Ak

������
where Aj P Gj and detpA1q � � �detpAkq � 1; so

SpG1 � � � � �Gkq � pG1 � � � � �Gkq X SLpn,Fq.
There are several ways of giving a topology to Flagpnq. The most obvious

is to use the quotient topologies from either GLpn,Fq{GLpn,FqE or from
SOpnq{pSOpnq X Ppnqq or SUpnq{pSUpnq X Ppnqq. The later make the flag
manifolds into compact homogeneous spaces. Exercises 3.23 and 3.24 show
this topology is the same as the quotient topology from GLpn,Fq{GLpn,FqE
and is a natural metric space topology.

Theorem 5.43. The space Flagpnq is compact. In fact we have:

(a) FlagRpnq � SOpnq{SpOpn1q �Opn2 � n1q � � � � �Opnk � nk�1qq;
(b) FlagCpnq � SUpnq{SpUpn1q �Upn2 � n1q � � � � �Upnk � nk�1qq.

5.5. Motion groups. Let H be a closed subgroup of GLpn,Rq. There is
a natural multiplication on the set G � Rn �H given by

px,Aq � py,Bq � px�Ay, ABq.
Using the product topology and this multiplication Rn � H is a locally
compact Lindelöf group. It is denoted by Rn �H. This construction is an
example of a semi-direct product group. (See Exercise 5.3.25). Moreover,
there is a natural action of Rn �H on Rn. It is defined by

px, Aq � y � x�Ay.

Note

rpx, Aq � px1, A1qs � y � px, Aq � px1 �A1yq
� x�Ax1 �AA1y
� px�Ax1, AA1q � y.

Since px,Aq � 0 � x, this action is transitive. Moreover, the stabilizer G0 is
H. Also the natural mapping

px,AqH ÞÑ x

is a topological equivariant isomorphism of G{H onto Rn.
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We point out two important examples. In the case when H � Opnq, the
group Epnq :� Rn � Opnq is the group of rigid motions of Euclidean space
and is known as the Euclidean group. In the case when H � SOpn � 1, 1q,
one obtains the Poincaré group Rn�SOpn� 1, 1q, a group important in the
study of special relativity. Other examples of semi-direct products occur in
the exercises.

Exercise Set 5.3

1. Show the topology defined by the norm || � ||2 on Mpm � n,Fq is the
product topology.

2. Show that the standard norm on Mpn�m,Fq is given by

||X|| �a
TrpXX�q, X PMpn�m,Fq

where X� � px̄jiq � X̄t.

3. Prove Lemma 5.34.

4. Let F be the reals or the complexes.

(a) Show GLpn,Fq is locally compact and Lindelöf.

(b) Show all closed subgroups of GLpn,Fq are locally compact and Lin-
delöf.

5. Suppose β is a sesquilinear form on a Hilbert space V given by

βpu, vq � pTu, vq
where T is a linear transformation of V . Show ||β|| � ||T ||.
6. Let F � C and let V be a complex vector space. Let β be a Hermitian
bilinear form on V . Show that βpu, uq P R for all u P V .

7. Show there is a conjugation on a Hilbert space which is not symmetric;
i.e., pu, jvq need not always be pv, juq. In view of Lemma 5.33, there is no
orthonormal basis teiuiPI with jei � ei.

8. Suppose j is a conjugation on a Hilbert space V defined by jp°λieiq �°
λ̄iei where teiu is an orthonormal basis. Let A be a complex bounded

linear operator on V . Show the matrix of At is the transpose of the matrix
for A; i.e., show pAej , eiq � pAtei, ejq
9. Let V be an infinite dimensional complex Hilbert space. Show there
is a conjugate linear transformation j of V satisfying j2 � I that is not a
conjugation.

10. Let j be a conjugation on a complex Hilbert space V . Show VR and
iVR are orthogonal relative to the real inner product pv, v1qR � Repv, v1q if
and only if j is symmetric.
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11. Show that Opβ,Fq is a group.

12. Show the action of GLpn,Fq on SymbnpFq given by

a � βpu, vq � βpatu, atvq
is continuous.

13. Let β be a bilinear symmetric form on Cn. Show there is a unique r
such that β is in the GLpn,Cnq orbit of the bilinear form βr defined on Cn

by

βrpu, vq � ņ

j�r�1

ujvj .

14. Let β be a symmetric bilinear form on Rn.

(a) Show the rank and signature of β are unique. (Hint: Show if V and
W are subspaces of Rn and β is positive definite on V and negative
definite on W , then the sum V �W is direct.)

(b) Show if β is a symmetric bilinear form of rank n� r and signature
p� q, then there is an a P GLpn,Rq such that

a � β � βr,p,q

where βr,p,q is the bilinear form defined by

βr,p,qpu, vq �
r�p̧

k�r�1

ukvk �
r�p�q¸

k�r�p�1

ukvk.

15. Let β be a bilinear form on a finite dimensional vector space V . Show
β is nondegenerate if and only if βpv, wq � 0 for all w implies v � 0.

16. Let βApu, vq � βpAu, vq where βpu, vq � °n
j�1 uiuj . Show the follow-

ing:

(a) Assume that A and B are symmetric and B � aAat for some a P
GLpn,Fq. Then

OpβB,Fq � aOpβA,Fqat

(b) Assume that A is in GLpn,Fq. Then OpβA,Fq :� ta P GLpn,Fq |
atAa � au, where at stands for the transposed matrix at

ij � aji.

17. Let A P Opp, qq. Show detpAq � �1, and if A P Sppn,Rq then detpAq �
1.
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18. Let n � pn1, . . . , nkq P Nj be such that n1   n2   . . .   nk. Let Gj be
a subgroup of GLpnj � nj�1,Rq. Define

SpG1�. . .�Gkq :�
$'&'%
���A1 0 0

0
. . . 0

0 0 Ak

��| Aj P Gj , detpA1q � . . . � detpAkq � 1

,/./- .

Show that SOpnq acts transitively on Flagpnq and that

Flagpnq � SOpnq{SpOpn1q � . . .�Opnk � nk�1qqq.
19. Show that Epnq is the group of distance preserving affine transforma-
tion of Rn.

20. Let Sym�pn,Rq be the set of positive definite symmetric matrices.
Show that Sym�pn,Rq � GLpn,Fq{Opnq.
21. Show that the map p a b

c d q�z � az�b
cz�d satisfies AB �z � A�pB �zq whereever

defined.

22. Let p a b
c d qz � az�b

cz�d be the action of SLp2,Rq on the upper half plane
H�. Let A � ta � �

x 0
0 x�1

� | x ¡ 0u and N � tn � p 1 x
0 1 q | x P Ru.

(a) Show AN is a closed subgroup of SLp2,Rq.
(b) Show the mapping g ÞÑ g � i is a homeomorphism from AN onto

H�.

23. Let Vplq be the collection of all subspaces of the Hilbert space Fn

having dimension l. Consider the collection of all ordered orthonormal sets
F � tf1, f2, . . . , flu in Fn. Let V, V 1 P Vplq. Define

ρlpV, V 1q � inf
F�V,F 1�V 1

ļ

i�1

||fi � f 1i ||.
(a) Show ρl is a metric on Vplq.
(b) Suppose the requirement that the ordered sets f1, f2, . . . , fl be or-

thonormal is weakened so that they need only be linearly indepen-
dent and have length one. Show that changing the metric in this
way does not change the resulting topology.

24. Define d on Flagpnq by

dppV1, V2, . . . , Vkq, pV 11 , V 12 , . . . , V 1kqq �
ķ

i�1

ρnipVi, V 1i q.
where ρni is the metric defined in Exercise 5.3.23.

(a) Show d is a metric.
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(b) Let F � R. Show the topology on Flagpnq given by the metric
d is the topology on Flagpnq given by the quotient topology on
SOpnq{SpOpn1q �Opn2 � n1q � � � � �Opnk � nk�1qq under the iso-
morphism given in Theorem 5.43.

(c) Show the topology on Flagpnq is also the quotient topology of
GLpn,Rq{Ppnq. (Similar statements hold in the case F � C.)

25. Let H and K be topological Hausdorff groups. Suppose α : H Ñ
AutpKq is a homomorphism of H into the automorphism group of K and
the mapping ph, kq ÞÑ αphqpkq is continuous. Define G � K �α H to be the
set K �H with product topology and multiplication defined by

pk, hq � pk1, h1q � pkαhpk1q, hh1q.
(a) Show G is a topological Hausdorff group.
(b) Show the mapping pk, hq�k1 � kαhpk1q defines a continuous G action

on K.
(c) Show

G{H � K

as G spaces; i.e.; the map pk, hqH ÞÑ k is a bicontinuous G map.
The group K�α H is a semi-direct product group of K and H.

26. Let H be the direct product group R � Opnq and let K be the group
Rn�Rn under addition. Define αpt,Aqpx, vq � pAx� tAv, Avq for pt, Aq P H.

(a) Show α : H Ñ AutpKq is a homomorphism and determine multi-
plication in the group K �α H.

(b) Show ppx, vq, pt, Aqq �py, sq � pAy�ps�tqv�x, s�tq is a continuous
action of the Gallilean group K�α H on Rn�R or Gallilean space-
time.

27. Let α : RÑ AutpC2,�q by

αtpz1, z2q � peitz1, e
πitz2q.

Show this defines a semi-direct product group C2�αR. Write out explicitly
the multiplication for this semi-direct product and find pz1, z2, tq�1.

28. Let φ be a transformation of Rn onto Rn that preserves the inner
product p� , �q. Show there is an matrix T P Opn,Rq so that φpxq � Tx for
x P Rn.



Chapter 6

Basic Representation
Theory

1. Invariant Integrals and Measures

In this section we shall state the existence of a Haar integral on a locally
compact Hausdorff group and use some general results from measure theory.
For a detailed proof, see for example the texts of [31, Loomis] or [22, Hewitt
and Ross].

Let X be a locally compact Hausdorff space and let CcpXq be the space
of continuous complex valued functions on X having compact support. We
start by recalling some standard results regarding integrals and measures
on X. First, the σ-algebra of Baire sets is the smallest σ-algebra on X
such that each f P CcpXq is measurable. It is a subalgebra of the σ-algebra
of Borel sets on X. This σ algebra is the smallest σ-algebra on X which
contains every compact Gδ set. A Radon measure is a measure µ on the
Baire sets satisfying µpKq   8 for each compact Gδ set K and for each Baire
set E, µpEq is the supremum of all µpKq where K is a compact Gδ subset
of E. If I is a positive integral on CcpXq, i.e., a complex valued linear
functional on CcpXq satisfying Ipfq ¥ 0 for any real valued nonnegative
function f P CcpXq, then there is a unique Radon measure µ on X such
that

Ipfq �
»

X
fpxq dµpxq for each f P CcpXq.

Moreover, every Radon measure µ extends to a unique Borel measure which
we also call µ that has the following properties:

(a) µpKq   8 for all compact sets K

285
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(b) If E is Borel and µpEq   8 or E is open, then

µpEq � suptµpKq | K is compact,K � Eu.
(c) µpEq � inftµpUq | U is open, E � Uu for each Borel set E.

A Borel measure will be called regular if µ satisfies (a), (b), and (c). The
following theorem due to F. Riesz characterizes the positive linear function-
als I on the space CcpXq.
Theorem 6.1 (Riesz). Let I : CcpXq Ñ C be a linear functional satisfying
Ipfq ¥ 0 if f ¥ 0. Then there is a unique Radon measure µ such that

Ipfq �
»

X
fpxq dµpxq

for all f P CcpXq.
The Haar integral is a major tool in extending harmonic analysis on

locally Euclidean spaces to general locally compact Hausdorff groups. Recall
λpaqfpxq � fpa�1xq if f is a function on a group G.

Theorem 6.2 (Haar Integral). Let G be a locally compact Hausdorff group.
Then there is a nonzero positive integral I on CcpGq such that Ipλpaqfq �
Ipfq for each f P CcpXq and a P G. Moreover, if J is another such integral,
there is a constant c ¡ 0 such that J � cI.

The resulting Radon measure m is called a left Haar measure for the left
invariant integral I. It has the property

mpaEq � mpEq
for all a and all Baire sets E. Moreover, it has a unique regular extension
to the Borel sets having the same invariance property. This measure is also
called a left Haar measure.

We now establish some facts for a left invariant Haar integral I and its
corresponding Haar measure m.

Proposition 6.3. Let I be a left Haar integral for a locally compact Haus-
dorff group G and let m be the corresponding left invariant Haar measure
on the σ-algebra of Borel subsets of G.

(a) Ipfq ¡ 0 if f ¥ 0 and f � 0.
(b) mpUq ¡ 0 for every nonempty open set U .
(c)

³
fpgxq dmpxq � ³

fpxq dmpxq for each nonnegative Borel function
f .

(d) For each g P G, there is a ∆pgq ¡ 0 such that

mpEgq � ∆pgqmpEq
for all Borel sets E.
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(e)
³
fpxgq dmpxq � ∆pg�1q ³ fpxq dmpxq for g P G and nonnegative

Borel functions f .

(f) ∆ : G Ñ p0,8q is a continuous homomorphism of G into the mul-
tiplicative group of positive real numbers.

(g)
³
fpx�1q∆px�1q dmpxq � ³

fpxq dmpxq for nonnegative Borel func-
tions f .

Proof. Assume f is a nonzero nonnegative continuous function with com-
pact support. Since I � 0, we can choose h P CcpGq such that Iphq � 0.
We note Iph1q ¤ Iph2q if h1 ¤ h2. This implies Ip|h|q ¡ 0. Thus we may
assume h ¥ 0. By replacing f by f||f ||8 , we may assume f has maximum
1. Choose x0 such that fpx0q � 1. Set K � supph. For x P K, consider
Ux � ty | p||h||8� 1qfpx0x

�1yq ¡ hpyqu. Note x P Ux and Ux is open. Since
K is compact, we can find a finite set x1, . . . , xk such that K � YUxi . In
particular

h ¤ ķ

i�1

p||h||8 � 1qλpxix
�1
0 qf.

Thus

0   Iphq ¤ ķ

i�1

p||h||8 � 1qIpfq.
So Ipfq ¡ 0.

For (b), note if U is a nonempty open set, there is a nonempty compact
subset K of U . Proposition 5.23 implies there is a nonzero f P CcpGq such
that 0 ¤ f ¤ 1 and suppf � U . Thus mpUq ¡ Ipfq ¡ 0.

For (c), note one can show using mpgEq � mpEq for any g P G and any
Borel set E that

³
spgxq dmpxq � ³

spxq dmpxq for any simple nonnegative
Borel function s. Now if f ¥ 0 is Borel, fpxq � lim snpxq for all x where
sn is a pointwise increasing sequence of simple Borel functions. Thus the
Monotone Convergence Theorem gives

³
fpgxq dmpxq � ³

fpxq dmpxq.
To see (d) and (e), let m be a left Haar measure. Then m1 defined by

m1pEq � mpEgq is left invariant and regular, positive on nonempty open
sets, and finite on compact sets. This implies m1 is also a left Haar measure
and corresponds uniquely to a positive left invariant integral on CcpGq. By
Haar’s Theorem, there is a ∆pgq ¡ 0 such that mpEgq � ∆pgqmpEq. An
easy calculation shows

³
spxg�1q dmpxq � ∆pgq ³ spxq dmpxq for simple non-

negative Borel functions s. Taking limits as in the argument for (c) shows³
fpxg�1q dmpxq � ∆pgq ³ fpxq dmpxq for Borel functions f ¥ 0.

For (f), we already know ∆pgq ¡ 0 for all g, and clearly ∆peq � 1. Since
∆pg1g2qmpEq � mpEg1g2q � ∆pg2qmpEg1q � ∆pg2q∆pg1qmpEq for Borel
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sets E, we have

∆pg1g2q � ∆pg1q∆pg2q.

To see continuity, by Lemma 5.10, we only need to show ∆ is continuous
at e. Using Proposition 5.23, we can find compact neighborhoods U and
V of e and a function f P CcpGq such that f � 1 on U , 0 ¤ f ¤ 1, and
suppf � UV . Recall ρpyqfpxq � fpxyq for x, y P G. Let ε ¡ 0. By right
uniform continuity, see Lemma 5.24, there is an open neighborhood W of e

contained in U�1 such that |fpxyq�fpxq|   εIpfq
mpUV Uq for all x and for y PW .

Note the support of f and ρpyqf are both contained in UV U . Consequently,
if y P W , then

|Ipρpyqfq � Ipfq| � |Ipρpyqf � fq|
� |

»
pfpxyq � fpxqq dmpxq|

¤
»

UV U
|fpxyq � fpxq| dmpxq

¤ εIpfq.

But Ipρpyqfq � ∆py�1qIpfq. Consequently, |∆py�1q � 1| ¤ ε for y P W . So
∆ is continuous at e.

Finally we show (g). Define Jpfq � ³
fpx�1q∆px�1q dmpxq for f P

CcpGq. Clearly J is positive. We show J is left invariant. Indeed, by
(f),

Jpλpgqfq �
»

fpg�1x�1q∆px�1q dmpxq
� ∆pgq�1

»
fpg�1pxg�1q�1q∆ppxg�1q�1q dmpxq

� ∆pgq�1

»
fpx�1q∆px�1q∆pgq dmpxq

� Jpfq.
Thus by uniqueness of left Haar integrals, there is a c ¡ 0 with J � cI.
Hence »

fpx�1q∆px�1q dmpxq � c

»
fpxq dmpxq
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for f P CcpGq. To see c � 1, note»
fpxq dmpxq � 1

c

»
fpx�1q∆px�1q dmpxq

� 1
c2

»
fpxq∆pxq∆px�1q dmpxq

� 1
c2

»
fpxq dmpxq.

Thus c2
³
fpxq dmpxq � ³

fpxq dmpxq. So c � 1.
¤

The function ∆ in Proposition 6.3 is called the modular function for
the group G. If ∆ is identically one, the group G is said to be unimod-
ular. Thus a left Haar measure on G is right invariant if and only if G is
unimodular.

In many of the most important instances, our locally compact Hausdorff
spaces X will be second countable or σ-compact. The following results show
that in these cases, the measure theory becomes a bit less complex. We start
by showing if X is second countable, then the Borel sets and the Baire sets
are the same.

Lemma 6.4. Let X be a second countable locally compact Hausdorff space.
Then the σ-algebra of Baire sets of X is the σ-algebra of Borel sets.

Proof. Let K be a compact subset of X. Since X is second countable
and locally compact, there exists a countable base Ui, i � 1, 2, . . . for the
topology of X such that each Ūi is compact. Now consider the collection
of those Ui such that Ūi misses K. This is countable and if y R K, then
there is an open set U having compact closure such that y P Ū � X�K. In
particular, there must be a Ui whose closure is compact and disjoint from K
that contains y. Thus X�K is the union of those Ui (call the corresponding
index set of i’s, I0) with Ūi � X � K. Thus K � XiPI0pG � Ūiq is a Gδ.
So every compact set is Baire. Since every open set is a countable union of
compact sets, every open set is Baire. Thus every Borel set is Baire. ¤

Next we present some general results on Baire sets and use these to
investigate σ-compactness. A subset E of X is said to be σ-bounded if it
is a subset of a countable union of compact subsets of X. Note that Exercise
6.1.3 shows that every second countable locally compact Hausdorff space is
σ-compact and hence every subset is σ-bounded.

Lemma 6.5. The union of two compact Gδ subsets of a locally compact
Hausdorff space is a compact Gδ.
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Proof. Let C and K be compact Gδ sets. Then CYK is compact. Now since
C and K are Gδ sets, there are decreasing sequences tUnu8n�1 and tVnu8n�1

of open subsets such that C � XUn and K � XVn. Wet Wn � Un Y Vn.
Each Wn is open and C YK �Wn for all n. So C YK � XWn. Moreover,
if x P XWn, then x belongs to either infinitely many of the Un or infinitely
many of the Vn. Since these are decreasing sequences, x either belongs to
all the Un or x belongs to all of the Vn. Thus x P C or x P K and we see
XWn � C YK. ¤
Lemma 6.6. Let X be a locally compact Hausdorff space and suppose F is
a closed Gδ subset of X with the relative topology. Then the Baire sets for
the topological space F consist of all F XB where B is a Baire subset of X.

Proof. The collection tB P BairepXq | F X B P BairepF qu is a σ-algebra.
If K is a compact Gδ in X, then K X F � XpUn X F q where Un are open
subsets of X and XUn � K. Thus this collection contains the compact Gδ

subsets of X. Hence it contains all Baire subsets of X. So F X B is Baire
in F for each Baire subset B of X.

Next consider the collection of all subsets tE � F | E � F X B, B P
BairepXqu. This is a σ-algebra on F . Now F � X8k�1Gk where each Gk

is an open subset of X. Hence, if K is a compact Gδ subset of the space
F , then K � XpUn X F q where the Un for n ¥ 1 are open subsets of X.
Thus K � Xk,npGk X Unq is a compact Gδ subset of X and hence is Baire
for X. Thus K is in this collection. Hence every Baire set for F is in this
collection. ¤

We thus see that for closed Gδ Baire subsets F of X, the Baire sets for
F are the Baire sets of X contained in F .

Part of the definition for a Radon measure µ on the Baire subsets of a
locally compact Hausdorff space is inner regularity for every Baire set E;
i.e.,

µpEq � suptµpKq | K � E, K is a compact Gδu.
The following shows σ-bounded Baire sets are always inner regular.

Proposition 6.7. Let µ be a measure on the Baire subsets of a locally
compact Hausdorff space X. Assume µpKq   8 for all compact Gδ subsets
K. Then µ is inner regular on every σ-bounded Baire set.

Proof. We first assume X is compact. Set A be the collection of all Baire
subsets E of X where both E and X �E are inner regular. This collection
is closed under complements. We also note it contains each compact Gδ

subset K. Indeed, if K is a compact Gδ, then clearly K is inner regular.
Moreover, by Proposition 5.23, there is an f P CpXq with 0 ¤ f ¤ 1 and
f�1p1q � K. Consider the subsets Kn � tx | fpxq ¤ 1 � 1

nu. These are an
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increasing sequence of compact Gδ subsets of the complement of K whose
union is X �K. Since µpX �Kq   8, we have µpX �Kq � limn µpKnq.
Thus X �K is inner regular.

Next we note A is closed under countable unions. Indeed, suppose En

for n ¥ 1 are in A. Note µpEnq ¤ µpXq   8 for all n. Choose Kn � En with
µpEn�Knq   ε

2n where Kn is a compact Gδ. Set E � Y8n�1En. By Lemma
6.5, Yn

i�1Ki is a finite union of compact Gδ sets and thus is a compact Gδ.
Also

µpYn
i�1Kiq ¤ µpEq � lim

nÑ8µ ppYn
i�1Kiq Y pYn

i�1pEi �Kiqq
¤ lim

nÑ8µpYn
i�1Kiq � lim sup

nÑ8
ņ

i�1

µpEi �Kiq
  lim

nÑ8µpYn
i�1Kiq � ε.

This true for all ε ¡ 0 implies limn ÞÑ8 µpYn
i�1Kiq � µpEq. Thus E is inner

regular.
Now X � E � XpX � Enq. Since each X � En is inner regular, there

is a compact Gδ subset Kn � X � En with µppX � Enq � Knq   ε
2n .

Set K � XnKn. Then K is a compact Gδ subset of XnpX � Enq. Also
pX � Eq �K � pX �YEnq �K � YppX � Enq �Knq and consequently,

µppX � Eq �Kq ¤ 8̧

n�1

µppX � Enq �Knq  
ņ

ε

2n
� ε.

Hence X � E is inner regular. We thus see A is closed under countable
unions and thus is a σ-algebra containing the compact Gδ subsets of X.
Thus A contains all the Baire subsets of X.

Now let X be a locally compact Hausdorff space and E be a σ-bounded
Baire subset of X. Then E is contained in a countable union of a sequence
tKnu8n�1 of compact sets.

Now for each n, choose a function fn P CcpXq with 0 ¤ fn ¤ 1 and
fnpxq � 1 for x P Kn. Set Fn � tx | fnpxq ¥ 1

2u � Xkx | fnpxq ¡ 1
2 � 1

ku.
Since each Fn is a compact Gδ set containing Kn, we see by replacing Fn

by F1 Y F2 Y � � � Y Fn that we have an increasing sequence of compact Gδ

subsets of X which cover E. Let ε ¡ 0. By Lemma 6.6, E X Fn is a Baire
subset for Fn and by the first part of the proof,

µpE X Fnq � suptµpKq | K is a compact Gδ, K � E X Fnu.
Since µpEq � limnÑ8 µpE X Fnq, we see E is inner regular. ¤

Corollary 6.8. Let X be a locally compact Hausdorff space and suppose µ
is a Radon measure on X. If ν is a measure on the Baire subsets of X and
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νpKq � µpKq for each compact Gδ, then µ and ν are equal on the σ-bounded
Baire sets. In particular, if X is σ-compact, then ν � µ.

As we have seen in Lemma 6.4, if X is a second countable locally compact
Hausdorff space, the Baire sets and the Borel sets are the same. Moreover,
every subset is σ bounded. Thus a Borel measure on X is Radon if and only
if the measure of each compact subset is finite.

In particular, in the second countable locally compact case, any left
invariant Borel measure which is finite on compact sets and nonzero is a left
Haar measure. For example, Lebesgue measures on the line or on Rn are
Haar measures for these groups.

Example 6.9 (GLpn,Rq). Recall that GLpn,Rq can be viewed as an open
dense subset of Mpn,Rq and Mpn,Rq can be naturally identified with Rn2

by stacking the n column vectors of n� n matrices into a column vector of
length n2. Define a Radon measure µ on GLpn,Rq by»

GLpn,Rq
fpXq dµpXq :�»
GLpn,Rq

fprxi,jsq|detprxi,jsq|�ndx1,1 � � � dx1,n � � � dx2,1 � � � dxn,n

�
»
GLpn,Rq

fpXq | detpXq|�ndλpXq
where dλ is the Lebesgue measure on Rn2

. Let C, X P GLpn,Rq and denote
by x1, . . . ,xn the column vectors of X. Then the matrix CX is given by

CX � pCx1, . . . , Cxnq
Hence left multiplication by C on GLpn,Rq corresponds after stacking col-
umn vectors to the linear transformation on Rn2

having n2 � n2 matrix

LC �
��� C 0

. . .
0 C

��.

This transformation has determinant detpCqn. It follows using Theorem
2.22 that»

fpCXq dµpXq �
»

fpCXq |detpXq|�n dλpXq
� |det C|n

»
fpCXq |detpCXq|�n dλpXq

�
»

fpXq |detpXq|�n dλpXq
Hence µ is a left Haar measure.
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It will be important later to integrate continuous functions using Radon
measures. To facilitate this, we will need to know continuous functions are
Baire measurable.

Definition 6.10. Let X and Y be locally compact Hausdorff spaces. A
function f : X Ñ Y is said to be Baire measurable if f�1pEq is a Baire
subset of X whenever E is a Baire subset of Y .

Since by Lemma 6.4, the Baire and Borel sets for R are the same and
a real valued function f on a measurable space pX,Aq is measurable if and
only if the f�1pEq is measurable for each Borel subset E of R, we see if A is
the σ-algebra consisting of the Baire subsets of a locally compact Hausdorff
space X, then f is measurable if and only if f is Baire measurable.

Lemma 6.11. Let X be a σ-compact locally compact Hausdorff space. If f
is a continuous function on X, then f is Baire measurable.

Proof. Note this is true if f has compact support. Suppose f has non
compact support. Now there is an increasing sequence of compact Gδ sub-
sets Fk whose union is X. By Proposition 5.23, for each k, we can choose
φk P CcpXq such that φk � 1 on Fk. So fφk P CcpXq and thus is Baire
measurable. Since f is the pointwise limit of the sequence fφk, f is Baire
measurable. ¤

We end this section with a discussion of product spaces. Note by Exercise
6.1.25, if X and Y are locally compact Hausdorff spaces and A is the σ-
algebra of Baire sets for X and B is the σ-algebra of Baire sets for Y , then
A� B need not be the σ-algebra of Baire subsets for the product topology
on X � Y . Exercise 6.1.26 establishes a similar result for the Borel sets.
However, one does have the following:

Proposition 6.12. Let A be the σ-algebra of Baire sets for a σ-compact
locally compact Hausdorff space X and let B be the σ-algebra of Baire sets
for a locally compact Hausdorff space Y . Then A � B is the σ-algebra of
Baire sets for the locally compact Hausdorff space X � Y .

Proof. Let C be the σ-algebra of Baire sets for X � Y . First note if f
and g are continuous complex valued functions on X and Y with compact
support, then f � g defined by f � gpx, yq � fpxqgpyq is continuous and has
compact support. Also it is easy to check f � g is A� B measurable. Now
the linear span S of all functions f �g where f P CcpXq and g P CcpY q is an
algebra of continuous functions that is closed under conjugation, separates
points, and vanishes at no point. By the Stone-Weierstrass Theorem, this
algebra is uniformly dense in CcpX � Y q. Thus if F P CcpX � Y q, there
exists a sequence Fn P S with Fn Ñ F uniformly and hence pointwise. Since
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each Fn is A � B measurable, the limit F is A � B measurable. Since the
Baire sets for X � Y are the elements in the smallest σ-algebra making all
F P CcpX � Y q measurable, we see C � A� B.

Conversely, we know X � YFn where each Fn is a compact Gδ subset of
X. Now by Lemma 6.6, the Baire sets for the subspace Fn are the Baire sets
for X contained in Fn. Thus to show A� B � C, it suffices to show all sets
U � V where U is a Baire subset of Fn and V is a Baire set for Y are in C.
Let F be a compact Gδ subset of X and set D to be the collection of Baire
subsets V of Y such that F �V is a Baire subset of X�Y . D is a σ-algebra
and if V is a Gδ compact subset of Y , then F � V is a compact Gδ subset
of X � Y . Thus D contains the compact Gδ subsets of Y . Consequently,
D � B. Thus F � V P C for all V P B. Now for each n and any given
V P B, let E be the collection of Baire subsets U of the space Fn such that
U � V P C. Again E is a σ-algebra. Moreover, if U is a compact Gδ subset
of Fn, then as already been established we have U P E . Thus E contains the
Baire subsets of Fn. So U � V is Baire in X � Y for any Baire subset U of
Fn and any Baire subset V of Y . ¤

We remark that each locally compact group is a disjoint union of open
σ-compact sets. This turns out to be sufficient to make the σ-algebra of
Baire sets for G � H be the product of the σ-algebras of Baire sets for G
and H whenever G and H are locally compact Hausdorff groups. Indeed,
see Exercise 6.1.35. One cannot show in general that multiplication is Baire
measurable. See Exercise 6.1.36. We do, however, have the following result.

Lemma 6.13. Let G be a σ-compact locally compact Hausdorff group. Then
the function px, yq ÞÑ xy is Baire measurable from G�G into G.

Proof. Let f be the function fpx, yq � xy. We need to show the preimage
f�1pEq of any Baire subset E of G is a Baire subset of G � G. But the
collection of subsets E of G where f�1pEq is a Baire subset of G � G is a
σ-algebra. Since the Baire subsets of G are generated by the compact Gδ

subsets F of G, it suffices to show f�1pF q is Baire for each compact Gδ

subset F . Now using the σ-compactness of G and Exercise 6.1.1, we see
there are compact Gδ subsets Fk of G such that G � Y8k�1Fk. Consequently
the sets Fj�Fk are compact Gδ subsets of G�G and f�1pF q � Yj,kf

�1pF qX
pFj �Fkq. Thus it is sufficient to show f�1pF q X pFj �Fkq is a compact Gδ

subset of G � G for each j and k. Since F � X8k�1Uk where Uk are open
and f is continuous, f�1pF q � Xkf

�1pUkq is a closed Gδ subset of G � G.
Consequently, f�1pF qX pFj �Fkq is a compact Gδ subset of G�G for each
pair of j and k. ¤
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Relatively Invariant Measures. Let H be a closed subgroup of a locally
compact Hausdorff group G. Then by Lemma 5.13, the homogeneous space
G{H with quotient topology is Hausdorff and the mapping

pg, xHq ÞÑ gxH

is a continuous action of G on G{H. Moreover, since the mapping κ : G Ñ
G{H is an open mapping, the space G{H is locally compact.

Lemma 6.14. Use dh to denote a left Haar measure on the σ-algebra of
Baire sets of H. The mapping f ÞÑ fH defined by fHpxHq � ³

fpxhq dh
maps CcpGq onto CcpG{Hq. More specifically, for each compact subset W
of G{H, there is a linear mapping TW from the subspace CW pG{Hq � tf P
CcpG{Hq | supp f �W u into CcpGq satisfying TW pf1q ¥ TW pf2q if f1 ¥ f2,
TW p|f |q � |T pfq|, and pTW fqH � f .

Proof. Let m be the left Haar measure on H corresponding to dh. Suppose
f P CcpGq. To see fH is continuous, let ε ¡ 0. Choose a compact neighbor-
hood N of e. By left uniform continuity of f , we choose a neighborhood N 1
of e contained in N such that

|fpnyq � fpyq| ¤ ε

mpH X x�1N�1suppfq for all y P G for n P N 1.

Let n P N 1. Then fpnxhq � 0 and fpxhq � 0 for h R HXx�1N�1suppf .
Hence

|fHpnxHq � fHpxHq| ¤
»

H
|fpnxhq � fpxhq| dh

¤
»

HXx�1N�1suppf

ε

mpH X x�1N�1supp fq dh

� ε.

So fH is continuous.
Moreover, recalling κ : G Ñ G{H is the mapping g ÞÑ gH, we have

supp pfHq � κpsupp fq. Hence fH P CcpG{Hq for f P CcpGq.
Now choose an open set V in G with V̄ compact and κpV q � W . By

Proposition 5.23, we can find a function t with t � 1 on V ; t ¥ 0, and
t P CcpGq. Then tH ¡ 0 on κpV q. Let F P CW pG{Hq. Define TW fpxq �

tpxq
tHpxHqfpxHq where we are using 0

0 � 1. Note TW f is continuous where
tHpxHq ¡ 0. If fpxHq � 0, then xH P V H and thus tHpxHq ¡ 0. Suppose
tHpxHq � 0. Then xH R V H and so xH R W . Since W is closed and G{H
has the quotient topology, it follows there is an open neighborhood U of x
in G with κpUq XW � H. So f � 0 on UH. Hence TW f is continuous
on U which contains x. The mapping TW is a linear mapping satisfying
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|TW pfq| � TW p|f |q and TW pf1q ¥ TW pf2q if f1 ¥ f2. Finally

pTW fqHpxHq �
»

H
pTW fqpxhq dh

�
»

tpxq
tHpxHqfpxHq dh

� fpxHq
for x P G. ¤

Theorem 6.15. Suppose H is a closed subgroup of a locally compact Haus-
dorff group G. Let φ be a positive continuous function on G satisfying
φpxhq � φpxq∆Hphq

∆Gphq . Then I defined on CcpG{Hq by IpfHq � ³
φpxqfpxq dx

where f P CcpGq is well defined on CcpG{Hq and defines a Radon measure
µ on G{H satisfying

dµpxyHq � φpxyq
φpyq dµpyHq.

Thus »
G{H

F px�1yHq dµpyHq �
»

G{H
φpxyq
φpyq F pyHq dµpyHq

for F P CcpG{Hq.
Proof. We first show I is well defined. Indeed, suppose fH � 0. Choose
g P CcpGq with gH � 1 on the compact set κpsupp fq. Using the compactness
of the supports of f and g one can use Fubini and obtain

0 �
» »

φpxqgpxqfpxhq dh dx

�
» »

φpxqgpxqfpxhq dx dh

�
» »

φpxh�1qgpxhcqfpxq∆Gph�1q dx dh

�
» »

∆Gphq∆Hph�1qφpxhqgpxhqfpxq dh dx

�
» »

φpxqgpxhqfpxq dh dx

�
»

φpxqfpxqgHpxHq dx

�
»

φpxqfpxq dx.
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So I is well defined. Now»
fHpyHq dµpxyHq �

»
fHpx�1yHq dµpyHq

�
»

fpx�1yqφpyq dy

�
»

fpyqφpxyq dy

�
»

fpyqφpxyq
φpyq φpyq dy

�
»

φpxyq
φpyq fHpyHq dµpyHq.

¤

Positive functions φ satisfying φpxhq � φpxq∆Hphq
∆Gphq are called rho func-

tions. As seen above, if they are continuous or more generally measurable,
one can obtain measures having translation given by Radon-Nikodym de-
rivative x ÞÑ φpxyq

φpyq ; i.e.,

µpxEq �
»

E

φpxyq
φpyq dµpyq.

In general continuous rho functions may or may not exist. However, for
paracompact groups they always exist.

Recall a Hausdorff space X is paracompact if every open covering
has an open locally finite refinement. Examples include both metrizable
spaces and compact Hausdorff spaces. Since second countable locally com-
pact Hausdorff spaces are metrizable, homogeneous spaces G{H are para-
compact if G is a second countable locally compact Hausdorff group and H
is a closed subgroup. However, for groups more is true. Indeed, every locally
compact Hausdorff group G is paracompact and so are their quotients G{H
for closed subgroups H; see Exercise 6.1.31.

Lemma 6.16. Let G be a locally compact Hausdorff group with closed sub-
group H. Then there is a positive continuous function φpxq with φpxhq �
φpxq∆Hphq

∆Gphq for all x P G and h P H.

Proof. We use G{H is paracompact. Since G{H is locally compact, we can
find a locally finite cover U of G{H consisting of open sets U with each Ū
compact. Now consider the collection of all open sets V with V̄ � U for
some U P U . This is an open cover of G{H. Hence it has a locally finite
refinement V of open sets covering G{H.

For each open set U in U , set WU � �tV P V | V̄ � Uu. The sets WU

for U P V form an open cover for G{H. Since WU � U , W̄U � Ū . Thus each
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W̄U is compact. We finally note W̄U � U . Indeed, let x P W̄U . Choose a
neighborhood Nx of x that meets only finitely many V in V. In particular,
tV P V | V̄ � U, NxXV � Hu consists of finitely many sets V1, V2, . . . , Vn.
This implies x P V1 Y V2 Y � � � Y Vn � Yn

k�1V̄k � U . So W̄U � U .
Now by Proposition 5.23, one can find for each U P U a continuous

function FU of compact support inside U and satisfying 0 ¤ FU ¤ 1 and
FU � 1 on WU . By Lemma 6.14 and its proof, there are nonnegative fU P
CcpGq such that

FU pxHq �
»

fU pxhq dh

for all xH. Define f � °
UPU fU . Note if x P G, there is an open set N

in G{H with xH P N and N meets only finitely many U . Since FU has
compact support in U , this implies fU is zero on κ�1pNq for all but finitely
many U . Thus f is defined, nonnegative, and continuous. Moreover, for
each x, fU pxhq ¡ 0 for some U and h; and the set of h with fU pxhq ¡ 0 is
precompact.

Now set δphq � ∆Hphq
∆Gphq . Define φpxq � ³

H fpxhq δph�1q dh. Note φ is
continuous for»

H
fpyhqδph�1q dh � ¸

UXN�H

»
fU pyhqδph�1q dh when y P N.

Moreover, φpxh1q � ³
fpxh1hqδph�1q dh � ³

ψpxhqδph�1h1q dh � δph1qφpxq.
¤

Theorem 6.17 (Relatively invariant measures). Assume G is locally com-
pact and Hausdorff and H is a closed subgroup. Let δ be a continuous
homomorphism from G into the positive multiplicative reals. Then there is
a Radon measure µ on G{H satisfying µpxEq � δpxqµpEq if and only if
δphq � ∆Hphq

∆Gphq for h P H.

Proof. We have done one direction already. Suppose µ is a measure on
G{H satisfying µpxEq � δpxqµpEq. For f P CcpGq, define Ipfq � ³pδ̌fqH dµ

where δ̌ is defined by δ̌pxq � δpx�1q. Define yf by yfpxq � fpyxq. Note
pδ̌yfqHpxHq � ³

δ̌pxhqfpyxhq dh � δpyq ³ δ̌pyxhqfpyxhq dh � δpyqypδ̌fqHpxHq. Thus

Ipyfq �
»

δpyqpδ̌fqHpyxHq dµpxHq
�
»

δpyqpδ̌fqHpxHq dµpy�1xHq
� δpyqδpy�1q

»
pδ̌fqHpxHq dµpxHq

� Ipfq.
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Hence I is a left Haar integral for G and we have» »
δ̌pxhqfpxhq dh dµpxHq �

»
fpyq dy.

Next note

∆Gph�1q
»

fpyq dy �
»

fpyhq dy

�
» »

δ̌pxh1qfpxh1hq dh1 dµpxHq
�
» »

δ̌pxh1h�1qfpxh1q∆Hph�1q dh1 dµpxHq
� δphq∆Hph�1q

» »
δ̌pxh1qfpxh1q dh1 dµpxHq

� δphq∆Hph�1q
»

fpyq dy.

Thus δphq � ∆Hphq
∆Gphq for h P H. ¤

Corollary 6.18. Any two nonzero δ covariant Radon measures on G{H are
positive multiples of each other.

Proof. Indeed, »
pδ̌fqHpxHq dµpxHq �

»
fpyq dy.

Thus
³
fH dµ � ³

δpyq fpyq dy where dy is a left Haar measure. Since Haar
measures are determined up to a multiple by a positive scalar, the result
follows. ¤

Quasi-invariant measures on G{H. Let µ be a Radon measure on G{H.
The measure xµ on the Baire sets of G{H given by

(6.1) xµpEq � µpx�1Eq
is called the left translate of µ by x. Note

pxyqµpEq � µpy�1x�1Eq
� pyµqpx�1Eq
� xpyµqpEq.

Moreover, one can show (see Exercise 6.1.27)

(6.2)
»

fpxyHq dµpyHq �
»

fpyHq dpxµqpyHq
for functions f P CcpG{Hq.
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Definition 6.19. Let H be a closed subgroup of a locally compact Hausdorff
group G. Then a left quasi-invariant measure µ on G{H is a Radon measure
with the property that a Baire subset E � G{H has µ measure 0 if and only
if µpxEq � 0 for all x P G.

In particular, a Radon measure µ on G{H is quasi-invariant if and only if
all the measures xµ have the same null sets. Furthermore, one has analogous
notions on homogeneous spaces HzG. Namely one takes µxpEq � µpEx�1q
and one again has the property pµxqy � µpxyq. Thus a Radon measure µ
on G is right quasi-invariant if µpEq � 0 if and only if µpExq � 0 for Baire
subsets E and all x P G.

Lemma 6.20. Let X be a locally compact Hausdorff space and suppose K
is a compact subset of an open subset V of X. Then there is a compact
Gδ subset of V whose interior contains K. Moreover, if K is a compact
Gδ, then there exists a pointwise decreasing sequence Fn P CcpXq such that
Fn Ñ χK pointwise.

Proof. By Proposition 5.23, there is an f P CcpXq with 0 ¤ f ¤ 1 and
fpxq � 1 for x P K and supp f � V . Set F � tx | fpxq ¥ 1

2u. Clearly F is
compact. Since F � X8k�2tx | fpxq ¡ 1

2 � 1
ku, we see F is a Gδ set. Also the

interior of F contains the open subset tx | fpxq ¡ 1
2u that contains K. Now

if K is also a Gδ, then we can take f to have the additional property that
fpxq � 1 implies x P K. Since 0 ¤ fpxq ¤ 1, we then would have Fn � fn

decreases pointwise to xK . ¤

If φ is a continuous rho function on G, the Radon measure µ given by»
fHpyHq dµpyHq �

»
fpxqφpxq dx

in Theorem 6.15 is left quasi-invariant. Indeed, Theorem 6.15 and Equation
6.2 give»

fpxyHqdµpyHq �
»

fpyHqφpx�1yq
φpyq dµpyHq �

»
fpyHq dpxµqpyHq

for f P CcpG{Hq. Together Lemma 6.20 and the Lebesgue Dominated Con-
vergence Theorem imply µpx�1Kq � ³

K
φpx�1yq

φpyq dµpyHq for compact Gδ sets

K. Now ν defined by νpEq � ³
E

φpx�1yq
φpyq dµpyHq is a Radon measure; inner

regularity, i.e. µpEq � supµpKq over the compact Gδ subsets K of E, can be
shown using the Monotone Convergence Theorem. Since Radon measures
which agree on compact Gδ sets are equal, one has xµ � ν. Thus

µpx�1Eq �
»

E

φpx�1yq
φpyq dµpyHq
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for Baire sets E.

Proposition 6.21. Let µ be a nonzero left quasi-invariant Radon measure
and let ν be a nonzero right quasi-invariant Radon measure on a σ-compact
locally compact group G. Then µ and ν are equivalent.

Proof. Since µ and ν are finite on compact Gδ’s and G is σ-compact and
by Exercise 6.1.1 each compact subset is a subset of a compact Gδ, we see
µ and ν are σ-finite and hence are equivalent to finite measures.

We may therefore assume µ and ν are finite measures. By Proposition
6.12, ifA is the σ-algebra of Baire subsets of G, thenA�A is the σ-algebra of
Baire subsets of G�G. Moreover, if E is a Baire subset of G, then by Lemma
6.13, tpx, yq | xy P Eu is a Baire subset of G�G. Consequently if µ�ν is the
product measure on A�A, we have by Fubini’s Theorem, µpEq � 0 if and
only if µpx�1Eq � 0 for all x P G if and only µty | xy P Eu � 0 for all x P G
if and only if pµ � νqtpx, yq | xy P Eu � 0 if and only if νtx | xy P Eu � 0
a.e. y if and only if νpEy�1q � 0 for all y if and only if νpEq � 0. ¤

Corollary 6.22. Let G be a locally compact group which is σ-compact. Then
any two nonzero left quasi-invariant Radon measures on G are equivalent.

Proof. Let µ and ν be such measures. Then ν�1 is a nonzero Radon mea-
sure which is right quasi-invariant. Thus µ � ν�1 and ν � ν�1. Hence
µ � ν. ¤

Lemma 6.23. Let H be a closed subgroup of a σ-compact locally compact
Hausdorff group G. Then κ : G Ñ G{H is Baire; i.e., κ�1pEq is a Baire
subset of G if E is Baire subset of G{H. Moreover, F �κ is Baire measurable
on G for each Baire measurable function F on G{H.

Proof. The argument for the first statement here can be made with the
same line of reasoning used in the proof of Lemma 6.13. Just replace f by
κ and use G and G{H instead of G�G and G.

Now for the statement regarding the Baire measurable function F on
G{H, one has pF � κq�1pUq � κ�1pF�1pUqq is a Baire subset of G for each
open subset U of R. ¤

Theorem 6.24. Let H be a closed subgroup of a locally compact σ-compact
Hausdorff group G. Any two left quasi-invariant measures on G{H are
equivalent.

Proof. Let µ be a quasi-invariant Radon measure on G{H. Note G{H is
σ-compact and hence µ is σ-finite. This implies there is an equivalent Radon
probability measure. Hence we may assume µpG{Hq � 1.
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Define a Radon measure µ� on G by

(6.3)
»

G
fpxq dµ�pxq :�

»
G{H

fHpyHq dµpyHq
for f P CcpGq. We claim µ� is left quasi-invariant. Indeed, if A � dpxµq

dµ ,
then A is Baire measurable and nonnegative and»

fpxyq dµ�pyq �
» »

H
fpxyhqdh dµpyHq

�
»

ApyHq
»

H
fpyhq dh dµpyHq

�
»

ApyHqfHpyHq dµpyHq
�
»
ppA � κqfqHpyHq dµpyHq

�
»
pA � κqpyqfpyq dµ�pyq

for f P CcpGq.
It follows that if K is a compact Gδ subset of G, then since by Lemma

6.20 there is a decreasing sequence fn P CcpGq of functions 0 ¤ fn ¤ 1 with
fnpxq Ñ χKpxq for all x, that»

χKpxyq dµ�pyq �
»

K
pA � κqpyq dµ�pyq.

So we see

µ�px�1Kq �
»

K
pA � κqpyq dµ�pyq.

Now define measure ν� on the Baire subsets of G by

ν�pEq �
»

E
pA � κqpyq dµ�pyq �

»
pA � κqpyqχEpyq dµ�pyq.

Note the Radon measure xµ� agrees with the Baire measure ν� on the
compact Gδ’s. By Corollary 6.8, ν� � xµ�. Thus the Radon measure xµ�
is given by

pxµ�qpEq � µ�px�1Eq �
»

E
pA � κqpyq dµ�pyq

for all Baire subsets E of G. This implies for each x P G, pxµ�qpEq � 0
whenever µ�pEq � 0. Hence the Radon measure µ� is left quasi-invariant
on G. By Corollary 6.22, we then know µ� is equivalent to Haar measure
on G.
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Now let K be a compact Gδ subset of G{H. By Lemma 6.20, there is a
sequence Fn P CcpG{Hq so that pointwise Fn decreases with limit χK . Since
ppFn � κqfqHpyHq � FnpyHfHpyHq for all y, (6.3) gives»

G
pFn � κqpxqfpxq dµ�pxq �

»
G{H

FnpyHqfHpyHq dµpyHq
for all n. Letting n Ñ 8, we thus see if f P CcpGq and K is a compact Gδ

subset of G{H, then»
pχK � κqpxqfpxq dµ�pxq �

»
χKpyHqfHpyHq dµpyHq.

Now suppose f P CcpGq and f ¥ 0. Define measures ν1 and ν2 by

ν1pEq �
»

χE � κpxqfpxq dµ�pxq
ν2pEq �

»
χEpyHqfHpyHq dµpyHq

for Baire subsets E of G{H. We note ν1pKq � ν2pKq   8 for compact
Gδ sets K. Since every subset is σ-bounded, by Proposition 6.7, we know
ν1 � ν2. Thus

(6.4)
»
pχE � κqpxqfpxq dµ�pxq �

»
χEpyHqfHpyHq dµpyHq

for every Baire subset E of G{H and all f P CcpGq.
By Lemma 6.23, κ�1pEq is a Baire subset of G for each Baire subset E

of G{H. We claim that a Baire subset E of G{H has µ measure 0 if and
only if κ�1pEq has Haar measure 0. This would then give the result.

First let E have µ measure 0 in G{H. Suppose f P CcpGq. Then by
(6.4),

³
χEpyHqfHpyHq dµpyHq � ³pχE � κqpxqfpxq dµ�pxq. So if E has µ

measure 0,
³pχE � κqpxqfpxq dµ�pxq � 0 for all f P CcpGq. Using Lemma

6.20 to obtain a decreasing sequence tfnu in CcpGq converging pointwise to
χK , we see

³pχE � κqpxqχKpxq dµ�pxq � 0 for all compact Gδ subsets K of
G. Thus for each compact Gδ subset K of κ�1pEq, µ�pKq � 0. By inner
regularity, µ�pκ�1pEqq � 0.

Next suppose µ�pκ�1pEqq � 0 where E is a Baire subset of G{H. Us-
ing (6.4), we see

³pχE � κqpxqfpxq dµ�pxq � ³
χEpyHqfHpyHq dµpyHq �

0 for all f P CcpGq. Then again by Lemma 6.20, if K is a compact
Gδ subset of E, there is a decreasing sequence Fn in CcpG{Hq such that
Fn Ñ χK . Now by Lemma 6.14, we can find a decreasing sequence fn

in CcpGq such that pfnqH � Fn and the fn converge pointwise. Thus³
χEpyHqFnpyHq dµpyHq � 0 for all n. Taking a limit, we have µpKq �³
χEpyHqχKpyHq dµpyHq � 0. By inner regularity, µpEq � 0. ¤
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This theorem holds even when G is not σ-compact. See Exercises 1.33
and 1.34.

Corollary 6.25. Let µ be a quasi-invariant Radon measure on G{H. Then
a Baire subset E of G{H has µ measure 0 if and only if κ�1pEq has Haar
measure 0.

Exercise Set 6.1

In the following exercises, unless otherwise stated, X and Y denote lo-
cally compact Hausdorff spaces and G will denote a locally compact Haus-
dorff topological group.

1. Use Proposition 5.23 to show every every compact subset K of X is
contained in a compact Gδ.

2. Show if E is a Baire subset of X, then E or X � E is σ-bounded.

3. Let X be a second countable locally compact Hausdorff space.

(a) Show X has a countable dense subset.

(b) Show there is a countable base for the topology of X consisting of
open sets whose closures are compact.

(c) Show X is σ-compact.

4. Let X be a locally compact Hausdorff space with Radon measure µ.
Show if ν is the unique regular extension of µ to the Borel subsets of X,
then for each Borel subset E of ν finite measure, there is a Baire subset E1
such that νpEzE1q � νpE1zEq � 0; i.e., E and E1 are the same sets in the
measure algebra of ν.

5. Let µ be a Radon measure on a locally compact Hausdorff space X
and let ν be the regular Borel measure measure which extends µ. Show
Lppµq � Lppνq for 1 ¤ p   8 while L8pµq might be strictly smaller than
L8pνq.
6. Show m is a left invariant regular Borel measure on G if and only if m�
defined by

m�pEq � mpE�1q
is a right invariant regular Borel measure on G. Then show the modular
function for m� and m satisfy ∆� � ∆̌; i.e., show if mpEgq � ∆pgqmpEq for
all Borel sets E, then m�pgEq � ∆pg�1qm�pEq for all Borel sets E.

7. Show Haar measures on the multiplicative group of positive reals is given
by dx

x . That is show
³
R� fpxq dmpxq � ³8

0
fpxq

x dx.
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8. Let G be the ax � b group; that is the subset tpa, bq | a ¡ 0, b P Ru of
R2 with the relative topology and with multiplication defined by

pa, bqpa1, b1q � paa1, b� ab1q.
Show that I defined by

Ipfq �
» 8
0

» 8
�8

fpa, bq 1
a2

db da

is a positive left invariant integral on CcpGq. Then show the modular func-
tion for G is given by ∆pa, bq � 1

a . In particular, the ax � b group is
nonunimodular.

9. Let G be a discrete topological group. Determine the Baire sets for
G. Then show counting measure on the Baire sets is both left and right
invariant.

10. Let C0pXq be the space of all continuous functions f on X that vanish
at 8; i.e., for each ε ¡ 0, tx | |fpxq| ¥ εu is compact. Show C0pXq is a
Banach space when equipped with norm | � |8 where |f |8 � maxxPX |fpxq|.
Then show CcpXq is dense in C0pXq.
11. Let X8 � X Y t8u be the one-point compactification of X and let
CpX8q be the space of continuous functions on X8. Show that

C0pXq � tf |X | f P CpX8q and fp8q � 0u
and that CpX8q corresponds to the space of bounded continuous functions
on X such that limxÑ8 fpxq exists. Finally show that every finite Borel
measure on X gives by integration a continuous linear functional on CpX8q.
12. Let λ be the Lebesgue measure on R.

(a) Show µ defined by µpEq � ³
E

1
x dλpxq is a Radon measure on R�.

(b) Show the measure µ can not be extended to a Radon measure on
R.

13. Let G be a locally compact Hausdorff topological group and let m be
a left Haar measure on G. Show the following:

(a) G is compact if and only if mpGq   8. (Hint: If G is not compact,
show if V is a compact symmetric neighborhood of e, there is a
sequence gk where the sets gkV are disjoint.)

(b) G is discrete if and only if mpteuq ¡ 0. (Hint: Show if mpteuq ¡ 0
and G is not discrete, then there is a compact subset of infinite
measure.)

14. Let µ be a Radon measure on X. Show CcpXq is dense in LppXq for
1 ¤ p   8.
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15. Let K be a compact subgroup of G. Set X � G{K, and let κ : GÑ X
be the canonical map a ÞÑ aH. Fix a left Haar measure m for G. Define a
linear functional IK on CcpXq by

IKpfq �
»

f � κpaq dmpaq .
Show that IK is a positive, G-invariant integral on CcpXq. Then determine
an expression for the Radon measure µ on X for this integral in terms of m.

16. By Lemma 5.25, SLp2,Rq acts on H� � tz P C | Impzq ¡ 0u by�
a b
c d

�
z � az�b

cz�d , has stabilizer SOp2q, and H� � SLp2,Rq{SOp2q. Define a
linear functional I on CcpH�q by

Ipfq �
» 8
�8

» 8
0

fpx� iyq dydx

y2
.

Show that I is positive, non-zero, and SLp2,Rq-invariant.

17. Let H be a locally compact Hausdorff group and suppose the modular
function for H is ∆. Define a multiplication on G � H � R by

px, sqpy, tq � pxy, ∆py�1qs� tq.
Then show if dy is a left invariant Haar measure on H, then

Ipfq �
»

G

» 8
0

fpy, tq dt dy

defines a left and right invariant integral on G. In particular, every locally
compact Hausdorff group is a closed subgroup of a unimodular group.

18. A 2n�1 dimensional Heisenberg group H is the Euclidean space R2n�R
with multiplication defined by

px, tqpy, sq � px� y, t� s� 1
2
Bpx, yqq

where B is a nondegenerate alternating bilinear form on R2n. See Example
5.9. Show Lebesgue measure on R2n � R is both a left and right Haar
measure for H. In particular, Heisenberg groups are unimodular.

19. Show extension groups of closed unimodular groups by compact groups
are unimodular. More specifically, let H be a closed normal subgroup of a
locally compact Hausdorff group G. Suppose H is unimodular and the group
G{H is compact. Show G is unimodular.

20. Use Example 6.6.9 to show the group GLpn,Rq is unimodular.

21. Let G be the group of invertible upper triangular matrices. Thus G is
collection of all real n�n matrices with 0’s below the diagonal having nonzero
diagonal elements. This is naturally identified with an open subset of Rk

where k � 1
2npn�1q. With the relative topology and matrix multiplication,
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this is a locally compact Hausdorff group. Define a homomorphism H on G
into R� by

HpAq � |An
11A

n�1
22 � � �A1

nn|.
Show a left Haar integral on G is given by

Ipfq �
»

fpXq
HpXq dX

where dX is Lebesgue measure on G. Moreover, show the modular function
∆ is given by

∆pXq �¹
i j

����Xj,j

Xi,i

���� .
22. Show an infinite dimensional Hilbert space with the weak topology is
an example of a σ-compact Hausdorff space X which is not locally compact.

23. Show every σ-compact open subset of a locally compact Hausdorff space
X is a countable union of compact Gδ subsets and hence is Baire.

24. Let W be a σ-compact open subset of a locally compact Hausdorff
space X. Show every Baire subset of the topological space W is a Baire
subset of X.

25. Let X be an uncountable set with the discrete topology. Give X �X
the product topology. Show the σ-algebra of Baire sets for X�X is strictly
smaller than A�A where A is the σ-algebra of Baire sets on X.

26. Let X and Y be locally compact Hausdorff spaces and consider X �Y
with the product topology. Let A be the algebra of Borel sets on X and B
be the algebra of Borel sets for Y . Show A � B need not be the σ-algebra
of Borel subsets for X � Y . Hint: Let X � Y be a set with cardinality
greater than c with the discrete topology. Show D � tpx, xq | x P Xu is
not in the product algebra by first establishing if not there are countably
many measurable rectangles Ai�Bi such that D is in the smallest σ-algebra
containing these rectangles.

27. Show if µ is a Radon measure on G{H where G is a locally compact
Hausdorff group and H is a closed subgroup, then the measure xµ defined
by (6.1) is a Radon measure on G{H and satisfies (6.2).

28. Let X be a locally compact Hausdorff space and suppose U is an open
subset of X with the relative topology.

(a) Show every Baire subset of U has form B X U where B is a Baire
subset of X.

(b) Let Y � r0, 1s with the discrete topology with one point compact-
ification Ȳ . Consider X � t0, 1u � Ȳ with the product topology.
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Show t0, 1u � Y is an open subset of X, B � t1u � Ȳ is a Baire
subset of X, and BXpt0, 1u � Y q is not a Baire subset of t0, 1u�Y .

(c) If U is σ-compact, then every Baire set for U is a Baire subset of
X.

29. Let H be a closed subgroup of a locally compact Hausdorff group G.
Show if f is a Baire measurable function on G and F is a Baire measurable
function on G{H, the function fpF � κq is a Baire function on G.

30. Show every σ-compact locally compact Hausdorff space X is paracom-
pact. Hint: Use Exercise 5.2.15.

31. Let G be a locally compact Hausdorff group.

(a) Show the subgroup generated by a compact neighborhood of e is
σ-compact and is open and closed.

(b) Show if H is a closed subgroup of G, then G{H is paracompact.
Hint: Show G{H is a disjoint union of open and closed σ-compact
sets.

32. Suppose X is a locally compact Hausdorff space which is a union of
disjoint open Baire subsets Xα of X.

(a) Show the Baire sets for X consists of all those sets E such that
EXXα is Baire in Xα for all α and either EXXα � H for countably
many α or pX � Eq XXα � H for countably many α.

(b) Show a measure µ on X is a Radon measure if and only if there is
for each α a Radon measure µα on Xα such that

µ �
α̧

µα

(c) A real valued function h on X is said to be Baire decomposable
if h|Xα is Baire measurable for each α. If h ¥ 0 and µ is a Baire
measure on X, then

³
h dµ is defined to be

°
α

³
Xα

h dµ. Show if ν
and µ are Radon measures on X and ν ! µ, then there is a Baire
decomposable f ¥ 0 on X such that

νpEq �
»

E
f dµ �

»
χEf dµ

for all Baire subsets E of X.

33. Show if µ and ν are nonzero left invariant Radon measures on a locally
compact Hausdorff group G, then µ and ν are equivalent. Hint: Use an
open closed σ-compact subgroup of G.

34. Show any two nonzero left quasi-invariant Radon measures on G{H
where G is a locally compact Hausdorff group and H is a closed subgroup
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are equivalent. More precisely, show the Baire sets of measure 0 in G{H are
the sets whose preimages in G have Haar measure 0.

35. Let G and H be a locally compact Hausdorff groups and suppose A is
the σ-algebra of Baire subsets of G and B is the σ-algebra of Baire subsets
of H. Use Exercise 6.1.32 to show the σ-algebra of Baire subsets of G�H
is A� B.

36. F be the free abelian group with c generators and with the discrete
topology. Show multiplication px, yq ÞÑ xy is not Baire measurable on F .

2. Representations for Groups and Algebras

We start in this section by presenting some basic notions for representations
of groups and algebras on topological vector spaces.

Definition 6.26. Let V be a locally convex Hausdorff topological vector
space and let GLpV q be the group of continuous and continuously invertible
linear transformations of V . If G is a topological group, a representation of
G on V is a homomorphism π : G Ñ GLpV q satisfying

g ÞÑ πpgqv
is continuous from G in V for each v P V . If A is an algebra over the reals
or complexes, a representation π of A is an algebra homomorphism of A
into the space of continuous linear transformations of V .

Definition 6.27. Two representation π and π1 on locally convex spaces V
and V 1 are equivalent if there is a topological linear isomorphism J : V Ñ V 1
such that

π1pxqJ � Jπpxq
for all x in G (or in A).

Example 6.28. Let G � R and let V � SpRq. Then λpxqfpyq � fpx � yq
and mpxqfpyq � e�2πixyfpyq are representations of R. They are equivalent.
Take J to be the Fourier transform F .

Let π be a representation of a topological group or an algebra on a
locally convex topological vector space V . A linear subspace V0 of V is
said to be invariant if πpxqv P V0 for all v P V0 and all x. Define π0 by
π0pxqw � πpxqw for w P V0. Give V0 the relative topology of V . Then
π0 is a representation on the locally convex topological vector V0. The
representation π0 is said to be a subrepresentation of π. We usually shall
be interested in subrepresentations obtained from closed invariant subspaces
of V . The following lemma shows this is not much of a limitation.
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Lemma 6.29. Let π be a representation on a locally convex topological
vector space V . Let V0 be an invariant linear subspace. Then the closure V̄0

is an invariant subspace.

Proof. Let w be in the closure of V0 and let U be an open neighborhood
of πpxqw in V . Since πpxq is continuous, πpxq�1U is an open neighborhood
of w. Hence there is a v in πpxq�1U X V0. Since V0 is invariant, v1 � πpxqv
is in U X V0. Hence πpxqw is in the closure of V0 and we see the closure is
invariant. ¤
Definition 6.30. A representation of a topological group or an algebra on
a locally convex topological vector space V is irreducible if the only closed
invariant subspaces of V are t0u and V .

3. Representations on Hilbert Spaces–Unitary
Representations

We have been discussing representations of groups or algebras on topological
vector spaces. In harmonic analysis, the most important cases occur when
the vector spaces are Hilbert spaces over the complexes. In this case one
can in many instances require stronger conditions on the representations;
namely for groups we shall deal with unitary representations and for Banach
�-algebras, we shall deal with �-representations. When dealing with Hilbert
spaces or � algebras, we assume the scalar field is the complexes.

Definition 6.31. Let A be a Banach � algebra. SupposeH is a Hilbert space.
A (star) representation π is a homomorphism of A into the algebra BpHq of
bounded linear transformations of H which has the additional property that

πpx�q � πpxq�
for each x in A.

Whenever we have a � algebra and a representation on a Hilbert space
we shall assume unless otherwise stated that the representation is a star
representation.

In Exercise 2.2.23, we introduced the strong operator topology on the
space BpHq of bounded linear operators on a Hilbert space H. It is the
locally convex topology on BpHq defined by the pseudonorms | � |v where

|A|v � |Av| for A P BpHq.
This is the topology on BpHq for which representations of topological groups
on H are continuous.

A unitary operator U on Hilbert space H is a bounded linear operator
satisfying

U�U � UU� � I.
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This is equivalent to U being linear, onto, and

pUv,Uwq � pv, wq for all v, w P H.

The unitary group on a Hilbert space H is the set UpHq consisting of all
unitary operators on H. It is easy to check it is closed under multiplication
and the taking of inverses. Thus it is a group.

Proposition 6.32. The unitary group UpHq with the strong operator topol-
ogy is a Hausdorff topological group.

Proof. It is Hausdorff for if U1 � U2, then we can choose v P H with U1v �
U2v. Thus tU | |U � U1|v   ||U1v � U2v||{2u and tU | |U � U2|v   ||U1v �
U2v||{2u are disjoint open sets containing U1 and U2. To see multiplication
is continuous, note if U, V, U0, V0 P UpHq and v P H, then

|UV � U0V0|v � |UpV � V0qv � pU � U0qV0v|
¤ |UpV � V0qv| � |U � U0|V0v

� |V � V0|v � |U � U0|V0v.

For inverses, we have:

|U�1 � U�1
0 |v � |U�1v � U�1

0 v|
� |U�1U0U

�1
0 v � U�1

0 v|
� |U0U

�1
0 v � UU�1

0 v|
� |U0 � U |U�1

0 v.

Thus U ÞÑ U�1 is continuous at U0. ¤

Definition 6.33. Let G be a topological group. A continuous homomor-
phism π : G Ñ UpHq of G into the unitary group of a Hilbert space H with
the strong operator topology is a unitary representation of G.

Note a mapping F from a topological space X into UpHq is strongly
continuous if and only if x ÞÑ F pxqv is continuous for each v. Now a homo-
morphism π is continuous if and only if g ÞÑ πpgq is continuous at e. Thus
π is continuous if and only if g ÞÑ πpgqv is continuous for each v if and only
if g ÞÑ πpgqv is continuous at e for each v.

Definition 6.34. Unitary representations π1 and π2 of topological group G
or (star) representations π1 and π2 of a Banach � algebra on Hilbert spaces
H1 and H2 are unitarily equivalent if there is a unitary isomorphism U
from H1 onto H2 satisfying

Uπ1pxq � π2pxqU for all x.
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We now have two notions of equivalence. The first is the existence of
a continuous linear transformation T from H1 onto H2 having continuous
inverse with the property

Tπ1pgq � π2pgqT for all g.

This prima-facie is a less restrictive notion than unitary equivalence. How-
ever, as we shall see these two are equivalent.

Exercise Set 6.2

1. Let π be a representation of G on a locally convex topological vector
space V . Let V � be the dual space of V with the weak � topology, see
Exercise 2.1.17. Define π̌ on V � by

xv, π̌pgqfy � xπpg�1qv, fy;
i.e., π̌pgqfpvq � fpπpg�1vqq. Show π̌ is a representation of G. It is the
representation contragredient to the representation π.

2. Let π be a unitary representation of a topological group G on a Hilbert
space H. Recall the dual space H� of H is the Hilbert space H̄ under the
identification v̄ Ñ fv where fvpwq � pv, wq. The representation π̄ of G

is defined by π̄pgqv̄ � πpgqv. Define a representation π̌ of G on H� by
π̌pgqpfqpvq � fpπpg�1qvq. Show π̌ and π̄ are unitarily equivalent represen-
tations of G.

3. Let V be the space of analytic functions f on R with seminorms | �
|K where |f |K � maxxPK |fpxq| and K is a compact subset. Show the
representation m given by mpxqfpyq � e2πixyfpyq has no one dimensional
invariant subspaces while the representation λ where λpxqfpyq � fpy � xq
has an uncountable number of distinct one dimensional invariant subspaces.

4. Show if H is a Hilbert space and tvnu8n�1 is a sequence in H satisfying
pvn, wq Ñ pv, wq for all w P H and ||vn|| Ñ ||v||, then vn Ñ v in H.

5. Let H be a Hilbert space. The weak operator topology on BpHq is
defined by the seminorms | � |v,w where v, w P H and

|T |v,w � |xTv, wy|.
Show a sequence (more generally a net) Tn converges to T in the strong
operator topology if and only if Tn Ñ T weakly and ||Tnv|| Ñ ||Tv|| for all
v P H.

6. Show a homomorphism π of G into the unitary group of a Hilbert space
is strongly continuous if and only if π is weakly continuous.

7. Let V be a locally convex Hausdorff topological vector space. Let F �
t| � |i | i P Iu be the collection of all continuous seminorms on V . Let BpV q
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be the algebra of continuous linear transformations of V . Define seminorms
| � |i,v on BpV q by

|T |i,v � |Tv|i.
The topology defined by these seminorms where v P V and i P I is called
the strong operator topology on BpV q.

(a) Show BpV q is a Hausdorff.

(b) Show a homomorphism π : GÑ GLpV q is continuous in the strong
operator topology if and only if g ÞÑ πpgqv is continuous for each
v P V .

(c) Show pA,Bq ÞÑ AB from BpV q � BpV q into BpV q is continuous in
the strong operator topology.

(d) Define a subset U � GLpV q to be open if U and U�1 are open in
the relative strong operator topology on GLpV q. Show GLpV q with
this topology is a Hausdorff topological group.

4. Orthogonal Sums of Representations

Definition 6.35. Let π be a representation on a Hilbert space H. If there
exist pairwise orthogonal closed invariant subspaces Hi whose orthogonal
direct sum `Hi is H, then π is said to the internal orthogonal direct sum
of the subrepresentations πi defined on Hi by πipgqw � πpgqw for w P Hi.
One writes:

π � `πi.

For unitary representations or representations of � algebras, one obtains
internal orthogonal direct sum decompositions whenever one has a proper
closed invariant subspace.

Lemma 6.36. Let π be a unitary representation of a group or a representa-
tion of a � algebra on a Hilbert space H and suppose H0 is a closed invariant
subspace. Then HK0 is a closed invariant subspace and π is an internal or-
thogonal direct sum of the subrepresentations π0 � π|H0 and πK0 � π|HK0 .

Proof. We first note H0 is invariant under πpxq� for all x. Indeed, in the
group case, since π is unitary, πpxq� � πpx�1q; and in the algebra case,
πpxq� � πpx�q for π is a � representation. In either case we then have

pπpxqw, vq � pw, πpxq�vq � 0

for v P H0 and w P HK0 . Thus πpxqHK0 � HK0 and so HK0 is a closed invariant
subspace. The remaining statements follows easily from H � H0 `HK0 . ¤
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Analogously, one sometimes can form external orthogonal direct sums
of representations. Namely if πi is a representation on Hi, set H � `Hi �tpviqiPI | vi P Hi,

° ||vi||2Hi
  8u. Then this is a Hilbert space under inner

product
ppviq, pwiqq �¸pvi, wiqHi .

Define π on H by πpxqpviq � pπipgqviq. If this π is a representation on H,
we say π is the “external” direct sum of the representations πi and write
π � `πi. For algebras, it is easy to check that `πi is a representation if and
only if the family πi is pointwise bounded; i.e.,

sup
i
||πipxq||   8 for each x.

Moreover, if the πi are pointwise bounded and each πi is a � representation,
then `πi is a � representation. See Exercise 6.3.2. For groups, one has to
be a little more careful.

Assume G is a topological group. The collection πi is said to be locally
uniformly bounded if there is a finite constant M and a neighborhood U of
e with

||πipgq|| ¤M for all i P I and g P U.

Lemma 6.37. Let tπi | i P Iu be a pointwise bounded collection of repre-
sentations of a topological group G on Hilbert spaces Hi. Define πpgqpviq �pπipgqviq for v � pviq P `Hi. If the πi are locally uniformly bounded, then π
is a representation of G.

Proof. Set H � `Hi. We first note πpgqpviq belongs to H when pviq P H.
Indeed,

° ||πipgqvi||2 ¤ sup ||πipgq||2 ° ||vi||2. Thus πpgq is bounded with
norm at most supi ||πipgq||. One easily checks πpg1qπpg2q � πpg1g2q and
πpgq�1 � πpg�1q. Thus we need only show π is strongly continuous.

Now choose a neighborhood U of e such that M � supt||πipgq|| | i P
I, g P Uu � M   8. Suppose v � pviq P H and suppose ε ¡ 0. Fix
g0. Pick F a finite subset of i’s with

°
iRF ||vi||2   ε2

8M2||πpg0q||2 . Choose a

neighborhood g0V of g0 where V � U such that ||πipgqvi�πipg0qvi||2i   ε2

2|F |
when g P g0V and i P F . Then if g � g0g

1 where g1 P V , we have

||πpgqv � πpg0qv||2 �
i̧PF
||πipg0g

1qvi � πipg0qvi||2i �
i̧RF
p||πipg0g

1qvi � π0pg0qvi||iq2

  ε2

2
�

i̧RF
||πipg0q||2||πipg1qvi � vi||2

¤ ε2

2
� ||πipg0q||2

i̧RF
p2Mq2||vi||2

  ε2.
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Thus π is strongly continuous. ¤

Corollary 6.38. Let πi be unitary representations on Hilbert spaces Hi.
Then π � `πi is a unitary representation of G on `Hi.

When one uses internal orthogonal direct sums, one is decomposing rep-
resentations into smaller subrepresentations. When one forms external di-
rect sums, one is building larger representations from smaller ones.

Exercise Set 6.3

1. Let G be a compact Hausdorff group. Suppose π is a representation of G
on a Banach space X. Using the finiteness of Haar measure and the Uniform
Boundedness Principle, show there is an equivalent norm on X such that
each πpgq is an isometry.

2. Let H � `Hi be an orthogonal direct sum of Hilbert spaces Hi. For
each i, let Ai P BpHiq. Define linear transformation A � `Ai on H by

Apviq � pAiviq.
(a) Show A is bounded if and only if supi ||Ai||   8 and then ||A|| �

supi ||Ai||.
(b) Show if `Ai is bounded, then p`Aiq� � `pA�i q.
(c) Show A is unitary if and only each Ai is unitary.

5. The Spectral Theorem, Intertwining Operators, and
Schur’s Lemma

One item we use from Functional Analysis is a von Neumann duality form
of the spectral theorem. We state it next without proof.

Theorem 6.39 (Spectral). Let A be a bounded self adjoint operator on
a Hilbert space H. Then A is in the norm closure of the linear span of
all orthogonal projections commuting with all the bounded linear operators
commuting with A.

We call the family of all orthogonal projections commuting with all
bounded operators commuting with A the family EpAq. We first note the
family EpAq is commutative. Indeed, suppose E1 and E2 are in EpAq. Then
since A commutes with A, E1 and E2 commute with A. Thus E1E2 � E2E1.
The family EpAq is sometimes called the resolution of the identity for A.

A simple consequence of this theorem is the following:
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Theorem 6.40. Let A be a bounded self adjoint operator and ε ¡ 0. Then
there exists real numbers λ1, . . . , λn in the interval r�||A||, ||A||s and pair-
wise orthogonal projections E1, E2, . . . , En in EpAq such that

||A�¸
λjEj ||   ε.

Proof. We can choose complex scalars c1, . . . , cm and E1, . . . , Em P EpAq
such that

||A�¸
cjEj || ¤ ε.

Since the Ej ’s commute, we may form projections Es � E1,s1 � � �Em,sm

where s P t�,�ut1,2,...,mu and Ei,� � Ej and Ej,� � I � Ej . The Es are
orthogonal projections and Ej � °

spjq��Es. This implies we may assume
EiEj � 0 for i � j.

Note we may also take the cj with |cj | ¤ ||A||. In fact, if |cj | ¡ ||A||, then
||Av � cjv|| ¤ ε||v|| for v P EjH implies |cj | ||v|| ¤ ||cjv � Av|| � ||Av|| ¤
pε � ||A||q||v||. So ||A||   |cj | ¤ ε � ||A||. This implies |cj � ||A|||cj | cj | �
||cj | � ||A|| | ¤ ε. So if µj � ||c�1

j A||cj and v P EjH, then

||Av � µjv|| ¤ ||Av � cjv|| � |cj � µj | ||v|| ¤ 2ε||v||.
Replacing cj by µj for each Ej where |cj | ¡ ||A|| gives

||AEj � cjEj || ¤ 2ε

for all j. The orthogonality of the ranges of the Ej and of the ranges of the
EjA gives ||A�°

j cjEj || ¤ 2ε.

Thus we may assume the Ej are orthogonal, the scalars cj satisfy |cj | ¤||A||, and ||A �°
j cjEj || ¤ ε. Now let cj � λj � µji where λj and µj are

real. We claim ||A�°
λjEj || ¤ ε. In fact,

ε2 ¥ ||Av �¸
cjEiv||2 � pAv �

j̧

cjEjv, Av �
j̧

cjEjvq
� pAv, Avq �

j̧

rc̄jpAv, Ejvq � cjpEjv, Avqs � p
j̧

cjEjv,
j̧

cjEjvq
� pAv, Avq �

j̧

rc̄jpAv, Ejvq � cjpEjv, Avqs �
j̧

|cj |2||Ejv||2

¥ pAv, Avq �
j̧

rc̄jpAv, Ejvq � cjpEjv, Avqs �
j̧

λ2
j ||Ejv||2.
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Now using the self adjointness of A and the Ej and the commutativity of
the Ej with A, one has

j̧

rc̄jpAv,Ejvq � cjpEjv, Avqs �
j̧

rc̄jpAv,Ejvq � cjpAEjv, vqs
�

j̧

rc̄jpAv,Ejvq � cjpEjA, vqs
�

j̧

rc̄jpAv,Ejvq � cjpA,Ejvqs
�

j̧

pcj � c̄jqpAv, Ejvq
� 2

j̧

λjpAv, Ejvq.
Hence

ε2 ¥ pAv, Avq � 2
j̧

λjpAv, Ejvq �
j̧

λ2
j ||Ejv||2

� pAv, Avq �
j̧

rpAv, λjEjvq � pλjEj , Avqs �
j̧

λ2
j ||Ejv||2

� pAv �
j̧

λjEjv,Av �
j̧

λjEjvq
� ||Av �

j̧

λjEjv||2.
Note |λj | � |Re cj | ¤ |cj | ¤ ||A|| for each j. ¤

Corollary 6.41. Let A be a positive self adjoint operator. Let ε ¡ 0. Then
there exist orthogonal E1, E2, . . . , En P EpAq and positive λ1, λ2, . . . , λn with

||A�¸
λiEi||   ε.

Proof. Choose λi real with ||A�°
λiEi||   ε. Then note:

||Av �¸
λiEiv||2 � pAv,Avq � 2

¸
λipAEiv, Eivq �¸

λ2
i pEiv, Eivq

¥ pAv,Avq � 2
λ̧i¡0

λipAEi, Eivq �
λ̧i¡0

λ2
i pEiv, Eivq

� ||Av �
λ̧i¡0

λiEiv||2.
¤

Theorem 6.42. Let A be a bounded positive linear operator on a complex
Hilbert space H. Then there exists a unique bounded positive linear operator
B with B2 � A.
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Proof. We first show we can find a δ ¡ 0 such that if ||°λiEi�°µjFj ||   δ
where Ei and Fj are pairwise orthogonal finite sets in EpAq and ||A|| �
1 ¥λi ¥ 0 and ||A|| � 1 ¥ µj ¥ 0, then ||°?λiEi �°?

µjFj ||   ε.

Indeed, first note fpλq � ?λ is uniformly continuous for 0 ¤ λ ¤ ||A||�
1. Hence we choose δ ¡ 0 such that |?λ � ?µ|   ε if |λ � µ|   δ and
0 ¤ λ ¤ 1� ||A||, 0 ¤ µ ¤ 1� ||A||.

Now by refining the Ei and Fi, i.e. taking projections E�,iF�,j where
E� � E and E� � I � E, we may suppose we have situation ||°λiEi �°

µiEi||   δ. Hence |λi � µi|   δ for each i where Ei � 0. This implies
|?λi �?µi|   ε and thus

||¸a
λiEi �¸?

µiFi||   ε.

Now choose λn,i ¡ 0, En,i P EpAq with ||A � °
λn,iEn,i||   1

n . Define
Bn � °

i

a
λn,iEn,i. Then ||A�B2

n||   1
n . We claim Bn is Cauchy in norm.

Let ε ¡ 0. Pick δ ¡ 0 as above. Choose N so that n ¥ N implies 1
n   δ

2 .
Thus for m,n ¥ N ,

||¸λm,iEm,i �¸
λn,iEn,i|| � ||B2

m �B2
n|| ¤ ||B2

m �A|| � ||A�B2
n||   δ

for n ¥ N . Thus ||Bm�Bn||   ε. Consequently, the sequence Bn converges
in norm to a bounded positive linear operator B. Since B2

n Ñ A, we see
B2 � A.

Finally we show uniqueness. First we note by the above construction
that B commutes with every bounded linear operator commuting with A.
Let C be another positive bounded linear operator with C2 � A. Then
CA � C3 � C2C � AC. Thus BC � CB. Consequently, B2 � C2 �
pB�CqpB�Cq � pB�CqpB�Cq. Thus B�C � 0 on the closed subspace
pB � CqpHq. We also note B � C � 0 on the kernel of B � C. Indeed, if
pB�Cqv � 0, then pBv, vq�pCv, vq � 0. Since pBv, vq ¥ 0 and pCv, vq ¥ 0,
we have pBv, vq � 0 and pCv, vq � 0. But as seen above these operators
have positive square roots D and E. So pBv, vq � pD2v, vq � pDv,Dvq � 0.
Thus Dv � 0 and so Bv � D2v � 0. Similarly, Cv � 0. Thus pB�Cqv � 0.
Now pB � CqpHq ` kerpB � Cq � H for ppB � CqHqK � kerpB � Cq�. So
B � C. ¤
Definition 6.43. Let H and K be Hilbert spaces. A linear transformation
U from H to K is said to be a partial isometry if U restricted to pkerUqK is
an isometry into K.

Let H0 � pkerUqK and K0 � UpH0q � UpHq. Then U |H0 is a unitary
transformation of H0 onto K0.

Theorem 6.44 (Polar Decomposition). Let T be a bounded linear operator
from Hilbert space H into Hilbert space K. Then T � UP where U is
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a partial isometry from pkerT qK onto the range closure T pHq of T and
P � ?T �T .

Proof. Set A � T �T . Then A� � A and pAv, vq � pTv, Tvq ¥ 0 for all
v P H. Thus A is a positive bounded linear operator on H. Hence P is
defined. Define U � 0 on kerP and set UPv � Tv on the range of P . This
is well defined for if Pv � Pv1, then T �T pv � v1q � P 2pv � v1q � 0, and we
see Tv � Tv1 for pT pv � v1q, T pv � v1qq � 0.

Since pkerP qK � P �pHq � P pHq, we have:

kerP ` P pHq � H.

We note:

pUPv, UPvq � pTv, Tvq � pT �Tv, vq � pP 2v, vq � pPv, Pvq.
Thus U is an isometry of P pHq onto T pHq. It thus has a unique linear
extension U to an isometry of P pHq onto T pHq. Since kerP ` P pHq � H,
we see U is defined on all of H, has kernel kerP and is an isometry of
P pHq onto T pHq. Since Pv � 0 if and only if pPv, Pvq � 0 if and only if
pP 2v, vq � 0 if and only if pT �Tv, vq � 0 if and only if pTv, Tvq � 0 if and
only if Tv � 0, we see kerP � kerT . Finally, UPv � Tv for all v. ¤

Definition 6.45. Let π and ρ be two representations of an algebra or a
group on topological vector spaces V and W . An intertwining operator is a
continuous linear transformation T : V ÑW satisfying

Tπpxq � ρpxqT for all x.

The collection consisting of all intertwining operators from π to ρ will be
denoted by Hompπ, ρq. At times when we are dealing with representations
of a group G or an algebra A, we shall use HomGpπ, ρq and HomApπ, ρq for
Hompπ, ρq.
Lemma 6.46. Let π, ρ, and σ be Hilbert space representations. Then

(a) Hompπ, ρq is a norm closed vector space in BpHπ,Hρq;
(b) If T P Hompπ, ρq and S P Hompρ, σq, then ST P Hompπ, σq. In

particular, Hompπ, πq is a normed closed algebra in BpHπq.
(c) If π and ρ are unitary representations of a group or � representa-

tions of a � algebra and T P Hompπ, ρq, then T � P Hompρ, πq. Thus
Hompπ, πq is a norm closed � subalgebra of BpHπq.

Proof. Clearly Hompπ, ρq is a vector space. Now if An Ñ A in norm where
An P Hompπ, ρq, then Anπpxq � ρpxqAn for all n. Since multiplication is
norm continuous, we have Aπpxq � ρpxqA for all x and thus A P Hompπ, ρq.
For (b), note STπpxq � SρpxqT � σpxqST . To see (c), from Tπpxq �
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ρpxqT we obtain πpxq�T � � T �ρpxq�. Now set spxq � x�1 if we have a
group and spxq � x� if we have a � algebra. Then πpxq� � πpspxqq and
ρpxq� � ρpspxqq if we are dealing with unitary or � representations. Hence
T �ρpspxqq � πpspxqqT � for all x and thus T � P Hompρ, πq. ¤

Let T P Hompπ, ρq. Note if v P kerT , then Tπpxqv � ρpxqTv � 0.
Hence kerT is a closed invariant subspace of the representation π. One also
notes ρpxqTv � T pπpxqvq. Thus the range of T is an invariant subspace of
ρ. Taking its closure gives a closed invariant subspace for the representation
ρ. Hence, existence of intertwiners is connected closely with reducibility or
the existence of proper closed invariant subspaces. For unitary or � repre-
sentations the situation is even nicer.

Theorem 6.47. Let π and ρ be unitary or � representations on Hilbert
spaces H and K. Let T P Hompπ, ρq. Then:

(a) pkerT qK is a closed π-invariant subspace of H and π0 � π|pker T qK is
unitarily equivalent to the representation ρ0 obtained by restricting
ρ to the closure of the range of T .

(b) If T is one-to-one and has dense range, then the representations π
and ρ are unitarily equivalent.

In particular, for unitary or � representations, any two equivalent represen-
tations are unitarily equivalent.

Proof. Note (b) follows immediately from (a). For (a), let T � UP be
the polar decomposition. Before continuing, we recall from the construction
of P � ?

T �T and the proof of the polar decomposition theorem that P
commutes with all operators commuting with T �T and pkerUqK � P pHq.
Thus U 1 � U |pkerT qK � U |

P pHq is a unitary mapping onto T pHq. Moreover,

U 1π0pxqPv � UPπpxqv
� Tπpxqv
� ρpxqTv

� ρ0pxqTv

� ρ0pxqU 1Pv.

Thus U 1π0pxqw � ρ0pxqU 1w for all w P P pHq � pkerT qK. ¤

Proposition 6.48 (Schur’s Lemma). Let π be a unitary or a � represen-
tation. Then π is irreducible if and only if Hompπ, πq � tcI | c P Cu.
Moreover, if π and ρ are irreducible unitary or � representations, then
dimHompπ, ρq is either 0 or 1.
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Proof. We first show Hompπ, πq � CI if and only if π is irreducible. Clearly
CI � Hompπ, πq. Suppose π is irreducible. Let A be a self adjoint operator
in Hompπ, πq. Then πpxqA � Aπpxq for all x. Thus πpxqE � Eπpxq for
all E P EpAq. This implies H0 � EpHq is a closed invariant subspace. But
then H0 � H or H0 � t0u. Hence EpAq � t0, Iu. But then the spectral
theorem implies A � λI for some real scalar λ. Now if T P Hompπ, πq, then
T � A� iB where A � 1

2pT �T �q and B � �i
2 pT �T �q are both self adjoint.

By Lemma 6.46, T � P Hompπ, πq. Thus both A and B are in Hompπ, πq. So
A � λI and B � µI. Thus T � pλ�µiqI and we see Hompπ, πq � CI. Now
if π is not irreducible, we can find a closed proper invariant subspace H0.
Let P0 be the orthogonal projection onto H0. By Lemma 6.36, HK0 is also
invariant. Now if v � v0 � vK0 , πpxqPv � πpxqv0 � P pπpxqv0 � πpxqvK0 q �
Pπpxqv. Thus P P Hompπ, πq and so Hompπ, πq � CI.

Now assume π and ρ are irreducible and Hompπ, ρq is nonzero. By
Theorem 6.47, we may choose a unitary operator U in Hompπ, ρq. Let
S P Hompπ, ρq. By Lemma 6.46, U�S P Hompπ, πq. So U�S � cI for some
scalar c. Hence S � UU�S � cU and we see Hompπ, ρq � CU . ¤

We next give a version of Schur’s Lemma for closed operators. Recall
a linear operator A from a linear subspace D of a Hilbert space H into a
Hilbert space K is closed if whenever vn Ñ v and tAvnu converges, then
v P D and Av � limn Avn.

Proposition 6.49 (Strong Schur’s Lemma). Let π be an irreducible unitary
representation of group G on the Hilbert space H. Suppose ρ is a unitary
representation of G on Hilbert space K and θ : D Ñ K is a closed operator
from a π invariant linear subspace D of H into K satisfying

θπpgqv � ρpgqθv for v P D and g P G.

Then either D � t0u or D � H, θ is bounded, and θ�θ � c2I where c ¥ 0.
Moreover, if ρ � π, then there is a scalar λ such that θ � λI.

Proof. Let rD � tpv, θvq | v P Du, the graph of θ. This is a vector space. If
v P D, let ṽ denote the pair pv, θvq in rD.

Define an inner product on rD by

pṽ1, ṽ2q � pv1, v2q � pθv1, θv2q.
Note ||ṽ||2 � ||v||2 � ||θv||2. Also rD is a complete inner product space for

||ṽk � ṽl||2 � ||vk � vl||2 � ||θvk � θvl||2.
Thus if ṽk is Cauchy, vk is Cauchy in H and θvk is Cauchy in K. Conse-
quently, vk Ñ v and θvk Ñ w. Since θ is closed, θv � w. So ṽk Ñ ṽ in rD.
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Define a representation π̃ of G on Hilbert space rD by

π̃pgqṽ � p�πpgqvq � pπpgqv, θπpgqvq � pπpgqv, ρpgqθvq.
The unitarity and strong continuity of both π and ρ imply the representation
π̃ is strongly continuous and unitary. Set Aṽ � v. Note A is a bounded
operator on the Hilbert space rD onto the linear subspace D of H. Also

Aπ̃pgqṽ � Ap�πpgqvq � πpgqv � πpgqAṽ.

Thus
π̃pg�1qA� � A�πpg�1qv.

Combining these we have:

AA�πpgqv � Aπ̃pgqA�v � πpgqAA�v.

Thus AA� is a bounded linear operator onH commuting with the irreducible
unitary representation π. By the usual Schur’s Lemma, AA� � C2I for some
C. This implies pA�v, A�vq � C2pv, vq. So C2 ¥ 0. If C � 0, A� � 0 and
thus A � pA�q� � 0. This gives D � 0. Thus we may assume C ¡ 0 and
D � t0u. We thus have

||A�v||2 � C2||v||2
where C ¡ 0. This implies the range of A is closed. Indeed, if Avk Ñ w as
k Ñ 8, then AA�Avk � C2Avk converges to C2w. But A�Avk is Cauchy
for

||A�Apvk � vlq||2 � pA�AA�Apvk � vlq, vk � vlq
� C2pA�Apvk � vlq, vk � vlq
� C2pApvk � vlq, Apvk � vlqq

converges to 0 as k, l Ñ8. Using completeness, there is a v with A�Avk Ñ v
and we see w � 1

C2 limk AA�Avk � Ap 1
C2 vq. It is also invariant under π for

πpgqAṽ � πpgqv � Aπ̃pgqṽ. Since π is irreducible, the range of A is H. But
A rD � D. So D � H.

Now θ is a closed linear operator from H into K. By the closed graph
theorem, θ is bounded. Finally θπpgq � ρpgqθ for all g implies πpg�1qθ� �
θ�ρpg�1q for all g. Thus θ�θπpgq � πpgqθ�θ. By the standard Schur’s
Lemma, θ�θ � c2I for some c ¥ 0.

The last statement follows from Schur’s Lemma for bounded operators.
¤

For a topological group G, the unitary dual Ĝ is the collection of all
equivalence classes of irreducible unitary representations of G. Thus Ĝ is
the collection of all rπs where π is an irreducible unitary representation of G
and rπs � tρ | ρ is an irreducible unitary representation equivalent to πu.
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This definition may not be set theoretically correct. However, we shall not
use this terminology in any meaningfully objective way.

A one dimensional unitary representation of a group G is often referred to
as a character. Because this terminology is also used in other contexts, e.g.
see Definition 6.120; we shall usually call them one-dimensional characters.
In the case of abelian groups, we see in the following corollaries that the
one-dimensional characters are all the irreducible unitary representations of
G and in this case Ĝ is called the character group of G. For more on this,
see Exercise 6.5.7.

Corollary 6.50. Let ZpGq denote the center of G. If π is an irreducible
unitary representation of G, then there exists a continuous homomorphism
χπ : ZpGq Ñ T such that πpzq � χπpzqI for all z P ZpGq. The character χπ

is called the central character of ρ.

Corollary 6.51. Let π be an irreducible unitary representation of an abelian
group G. Then π is one-dimensional.

Proof. By Schur’s Lemma, πpgq � χpgqI for some χpgq P T for each g. This
implies every subspace of Hπ is invariant. Since π is irreducible, there are
only two closed invariant subspaces. Consequently dimHπ � 1. ¤

Definition 6.52. Let π be a unitary representation or a � representation
on a Hilbert space H and let some index set I have cardinality n. Set nH �À

iPI H where |I| � n and define

nπ �à
iPI

π.

We know nπ is a unitary representation of a group or a � representation
of a � algebra on nH.

Theorem 6.53. Let π be an irreducible unitary representation of G or an
irreducible � representation of a � algebra A, and let ρ be a unitary represen-
tation of G or a � representation of a A. Then there is a unique orthogonal
projection P P Hompρ, ρq such that ρ|P pHρq � nπ and ρ|PKHρ

has no subrep-
resentation unitarily equivalent to π. Moreover, n ¤ dim pHompπ, ρqq with
equality holding if Hompπ, ρq is finite dimensional.

Proof. Let Uα be a maximal collection of isometries in Hompπ, ρq such that
the closed spaces UαHπ are perpendicular. Clearly, Uα : Hπ Ñ UHπ is a
unitary equivalence of π with ρ|Hα where Hα � UαHπ. Set Pα � UαU�α .
By Exercise 6.4.1, Pα is the orthogonal projection of H onto Hα. We set
P � °

Pα and shall show P is the orthogonal projection onto the closure of
the linear span of the ranges AHπ where A P Hompπ, ρq.
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Let A P Hompπ, ρq. We show PA � A. Suppose not. Set B � pI�P qA.
Since P P Hompρ, ρq, B P Hompπ, ρq and PB � 0. Thus BHπ K PH.
If B � 0, then B�B P Hompπ, πq � CI. Using Schur’s Lemma, one has
B�B � bI where b ¡ 0. Set U � 1?

b
B. Then U�U � I. This implies

pUv, Uwq � pU�Uv,wq � pv, wq and thus U P Hompπ, ρq is an isometry.
Also UHπ � BHπ K PH. So the collection Uα was not maximal. Hence
B � 0, and we see A � PA for A P Hompπ, ρq. Since P is the orthogonal
projection onto the closure of the sum of the spaces Hα � UαHπ, we have P
is the orthogonal projection onto the closure of the linear span of the ranges
of the A’s in Hompπ, ρq. So P is unique.

We consider the cardinality of the collection Pα. Clearly, we have one
copy of π in PH for each α. Also the Pα are linearly independent. Hence
dimHompπ, ρq ¥ n where n is the cardinality of the Pα’s. Suppose A P
Hompπ, ρq. Then PA � A. Thus A � °

PαA. Now PαA P Hompπ, ρ|Hαq.
By Schur’s Lemma, PαA � cαUα for some scalar cα. Thus the U 1αs form
a ‘strong operator topology’ base; i.e. every A in Hompπ, ρq is a unique
infinite linear combination of the operators Uα where the sum converges in
the strong operator topology. If Hompπ, ρq is finite dimensional, then the
Uα’s form a vector space base of Hompπ, ρq and thus n � dimHompπ, ρq. ¤

The unique projection P is called the π primary projection for ρ.

Corollary 6.54. The π-primary projection for a unitary representation or
a � representation ρ is the orthogonal projection whose range is the closure
of the linear span of the union of all AHπ where A P Hompπ, ρq.
Corollary 6.55. Let π and π1 be inequivalent irreducible unitary or � rep-
resentations. Suppose ρ is a representation (unitary or �) on a Hilbert space
H. Let P pπq and P pπ1q be the π and π1 primary projections for ρ. Then
P pπqP pπ1q � 0.

Proof. Suppose P pπqP pπ1q � 0. Then P pπqA � 0 for some A P Hompπ1, ρq.
Thus PαA � 0 for some Pα. Thus Hompπ1, ρ|Hαq � t0u. By Schur’s Lemma,
π1 and ρ|Hα are equivalent. Since ρ|Hα and π are equivalent, we see π and
π1 are equivalent, a contradiction. ¤
Definition 6.56. A representation is discretely decomposable if it can be
written as an internal orthogonal direct sum of irreducible subrepresenta-
tions.

Remark 6.57. The remaining statements of this section are also true for
� representations of � algebras. We, however, only state them for unitary
representations.

Proposition 6.58. Let ρ be a discretely decomposable unitary representa-
tion of G on a Hilbert space K. Let Ĝc be a family of irreducible unitary
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representations of G consisting of one representation from each equivalence
class in Ĝ. For each π P Ĝc, let P pπq be the π-primary projection for ρ.
Then à

πPĜc

P pπq � I.

Proof. We already have P pπqP pπ1q � 0 for π � π1 in Ĝc. Since ρ is dis-
cretely decomposable, there exists an index set B and an orthogonal internal
direct sum decomposition K � À

βPB Kβ where Kβ is ρ invariant and irre-
ducible. Let β P B. Set ρβ � ρ|Kβ

. Pick π P Ĝc such that ρβ is unitarily
equivalent to π. Then there is A P HomGpπ, ρq with AHπ � Kβ. Conse-
quently P pπqv � v for v P Kβ. Thus `π1P pπ1q � I. ¤
Definition 6.59. Let ρ be a discretely decomposable unitary representation
of a topological group G on a Hilbert space H. If π is an irreducible unitary
representation of G, then the multiplicity mpπ, ρq of π in ρ is the cardinality
n where ρ|P pπqH is unitarily equivalent to nπ.

By Theorem 6.53, mpπ, ρq is the dimension of the vector space HomGpπ, ρq
when this is a finite dimensional vector space; otherwise mpπ, ρq is an infinite
cardinal. We conclude with the following result.

Theorem 6.60. Let ρ be a discretely decomposable unitary representation
of a topological group G. Then:

ρ � à
πPĜc

mpπ, ρqπ.

6. Tensor Products of Representations

In this section we deal with tensor products of representations. Though one
can tensor tensor product more general topological vector spaces, we shall
be looking at only two cases; first, tensor products of finite dimensional
representations, and second tensor products of representations on Hilbert
spaces. We start with representations on finite dimensional spaces.

Let V and W be finite dimensional vector spaces. We set LpV,W q to
be the vector space of linear transformations from V to W and W � to be
the dual space of W . The tensor product V bW of the vector spaces V
and W is then the vector space LpW �, V q. In this space one has elementary
tensors v b w which are defined to be the rank one linear transformations
given by

(6.5) pv b wqpfq � fpwqv where v P V, w PW, and f PW �.
In particular, V b V � � LpV, V q has elementary tensors v b f where

pv b fqpv1q � fpv1qv.
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Recall if B P LpW,W q, then the transpose Bt of B is the linear trans-
formation of W � defined by

xw,Btfy � Btfpwq � fpBwq � xBw, fy
where we have used the notation xw, fy for the linear functional f evaluated
at vector w. Now if A and B are linear transformations of V and W ,
respectively, A b B is defined to be the linear transformation of V b W
given by

pAbBqpT q � ATBt.

In particular, if T � v b w P LpW �, V q, then

pAbBqpv b wq � Av bBw.

Definition 6.61. Let π1 and π2 be finite dimensional representations of
groups G1 and G2 on vector spaces V1 and V2. Then the outer tensor product
π1 � π2 is the representation of G1 �G2 on V1 b V2 given by

pπ1 � π2qpg1, g2q � π1pg1q b π2pg2q.
It is easy to check the continuity of π1 b π2 because of the finite dimen-

sionality of V1 b V2. The inner tensor product of two finite dimensional
representations π1 and π2 of G is defined by

(6.6) pπ1 b π2qpgq � π1pgq b π2pgq.
Definition 6.62 (Contragredient Representation). Let π be a representation
of G on a finite dimensional vector space V . Define π̌ on V � by

π̌pgqfpvq � fpπpg�1qvq � πpg�1qtfpvq.
Note one has

π̌pxyqfpvq � fpπpxyq�1vq
� fpπpyq�1πpxq�1vq
� pπ̌pyqfqpπpxq�1vq
� π̌pxqpπ̌pyqfqpvq

for x, y P G. Clearly π̌peq � I and thus π̌ is a homomorphism into GLpV q.
Again continuity is easy.

In terms of the alternative bilinear notation, we have

xv, π̌pgqfy � xπpg�1qv, fy.
Notice the similarity with being unitary.

Finally we mention if π is a representation of G on a finite dimensional
complex vector space V , then π b π̌ is the representation on LpV, V q given
by

(6.7) π b π̌pgqpT q � πpgqTπpg�1q.
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Next we look at tensor products of representations on Hilbert spaces.
In (2.8) of Chapter 2, we used the notation KbH for the space of Hilbert-
Schmidt operators from H to K. To further explain this notation, we start
by defining H.

Let H be a Hilbert space. Set H � H. To remind us a vector v P H is in
H rather than in H, we write v̄ for v even though they are the same vector.
Addition, scalar multiplication, and the inner product on H are defined by:

(6.8) v̄ � w̄ � v � w, λv̄ � λ̄v � λ̄v, and pv̄, w̄qH̄ � pw, vqH � pv, wqH.

Proposition 6.63. H is a Hilbert space and the mapping I : H Ñ H is a
conjugate linear isometry from H onto H.

Proof. It is easy to check that H is a vector space. Next note

pv̄ � v̄1, w̄qH � pv � v1, w̄qH̄
� pw, v � v1qH
� pw, vqH � pw, v1qH
� pv̄, w̄qH � pv̄1, w̄qH̄.

Also pv̄, w̄qH � pw, vq � pw̄, v̄qH. We also have pλv̄, w̄qH � pλ̄v, wq �
λpv, wq � λpv̄, w̄qH. Since pv̄, v̄qH � pv, vq, we see have an inner product
that defines the same norm as the original inner product. Thus H is a
Hilbert space. ¤

Definition 6.64. Let B P BpHq. Then B̄ is the operator defined on H by

B̄v̄ � Bv.

Remark 6.65. B̄ is a linear transformation of H with the same norm as the
operator B. For instance, B̄pλv̄q � B̄pλ̄vq � Bpλ̄vq � λ̄pBvq � λBv � λB̄v̄.
Moreover, B� � B̄� for

pB̄v̄, w̄qH � pBv, w̄qH
� pw, BvqH
� pB�w, vqH
� pv̄, B�wqH
� pv̄, B�w̄qH.

One can also check AB � ĀB̄ and U is unitary if and only if U is unitary.

Lemma 6.66. Let π be a representation of G on a Hilbert space H. Then
π̄ defined by π̄pgqv̄ � πpgqv is a representation of G on H. It is unitary if π
is unitary.
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Proof. Clearly π̄pgqpv̄�w̄q � π̄pgqpv̄q� π̄pgqpw̄q and π̄pgqpλv̄q � πpgqpλ̄vq �
λ̄πpgqv � λπ̄pgqv̄. Strong continuity follows immediately from ||v̄||H̄ �
||v||H. If π is unitary, one has

pπ̄pgqv̄, π̄pgqw̄qH � pπpgqw, πpgqvqH � pw, vqH � pv̄, w̄qH.

Thus π̄ is unitary. ¤

The representation π̄ is called the conjugate representation to π.

Proposition 6.67. Let π be a unitary representation on a finite dimensional
Hilbert space H. Then the mapping A : HÑ H� given by

xv1, Apv̄2qy � pv1, v2q
is an equivalence between the representations π̄ and π̌.

Proof. First note A is linear and invertible. Moreover,

xv1, Aπ̄pgqv̄2y � xv1, Apπpgqv2 qy
� pv1, πpgqv2q
� pπpg�1qv1, v2q
� xπpg�1qv1, Av̄2y
� xv1, πpg�1qtAv̄2y
� xv1, π̌pgqAv̄2y.

Thus Aπ̄pgq � π̌pgqA. ¤

In Section 3, we showed the space B2pK,Hq consisting of the Hilbert-
Schmidt operators from Hilbert space K into Hilbert space H is a Hilbert
space with inner product given by

pR, Sq2 �
α̧

pReα, Seαq �
α̧

pS�Teα, eαq � TrpS�T q
where teαu is an orthonormal basis of K. As we have already mentioned, we
have denoted this Hilbert space by H b K. In this Hilbert space the rank
one operator vb w̄ behave nicely with respect to this inner product; i.e., see
Proposition 2.42.

Because now we have the conjugate Hilbert space K, we can define the
tensor product of any two Hilbert spaces. Indeed, we define:

Definition 6.68. Let H and K be Hilbert spaces. Then the tensor product
is

HbK � B2pK,Hq.
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In this Hilbert space each rank one operator has form v b w where

(6.9) pv b wqpw̄1q � pw̄1, w̄qK̄v � pw,w1qKv

and the inner product satisfies

(6.10) pv b w, v1 b w1q2 � pv, v1qHpw,w1qK.

In particular,

(6.11) ||v b w||2 � ||v||H||w||K.

Definition 6.69. Let A P BpH1q and B P BpH2q. Then A b B is the
operator on H1 bH2 � B2pH2,H1q defined by

pAbBqpT q � ATB̄�.
It is called the tensor product of the operators A and B.

Proposition 6.70. Let A P BpH1q and let B P BpH2q. Then A b B P
BpH1 bH2q; in fact, ||AbB|| � ||A|| ||B||. Moreover,

pAbBqpv1 b v2q � Av1 bBv2 for all v1 P H1 and v2 P H2.

Proof. Clearly T ÞÑ ATB̄� is linear. By Proposition 2.32, we know ||ATB̄�||2 ¤||A|| ||T ||2||B̄�|| � ||A|| ||B|| ||T ||2. Thus ||A b B|| ¤ ||A|| ||B||. Now take
T � v b w. Then

pAbBqpv b wqpw̄1q � Apv b wqB̄�pw̄1q
� pB̄�pw̄1q, w̄qH2

Av

� pw̄1, B̄w̄qH2
Av

� pw̄1, BwqH2
Av

� pAv bBwqpw̄1q.
Thus

pAbBqpv b wq � Av bBw.

Recall ||vbw||2 � ||v||H1 ||w||H2 . Thus if ||v||H1 � 1 and ||w||H2 � 1, we
see ||A b B||2 ¥ ||Av b Bw||2 � ||Av||H1 ||Bw||H2 . Taking supremums over
all such v and w gives ||AbB|| ¥ ||A|| ||B||. ¤

Definition 6.71. Let π1 be a unitary representation of a topological group
G1 on a Hilbert space H1 and π2 be a unitary representation of a topological
group G2 on a Hilbert space H2. Define π1 � π2 on H1 bH2 by

pπ1 � π2qpg1, g2q � π1pg1q b π2pg2q.
Proposition 6.72. Give G1 �G2 the product topology. Then π1 � π2 is a
unitary representation of G1�G2 on the Hilbert space H1bH2. It is called
the outer tensor product of the representations π1 and π2.
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Proof. Set π � π1 � π2. Using Corollary 2.41, we see

pπpg1, g2qR, πpg1, g2qSq2 � Trppπ1pg1qSπ̄2pg2q�q�pπ1pg1qRπ̄2pg2q�qq
� Trpπ̄2pg2qS�π1pg1q�π1pg1qRπ̄2pg2q�q
� Trpπ̄2pg2qS�Rπ̄2pg�1

2 qq
� Trpπ̄2pg�1

2 qπ̄2pg2qS�Rq
� TrpS�Rq
� pS, Rq2.

Since πpg1, g2q is linear, we see πpg1, g2q is a inner product preserving bounded
linear transformation on H1 bH2 for each g1 P G1 and g2 P G2. Moreover
πpe1, e2q � I and

πpg1g
1
1, g2g

1
2qT � π1pg1g

1
1qT π̄2pg2g

1
2q�1

� π1pg1qπ1pg11qT π̄2pg12q�1π̄2pg2q�1

� π1pg1qpπpg11, g12qT qπ̄pg2q�1

� πpg1, g2qpπpg11, g12qT q.
Thus π is a homomorphism of G1 �G2 into UpH1 bH2q, the unitary group
of the Hilbert space H1 bH2.

To show π is a representation, it suffices to check strong continuity at
the identity pe1, e2q. For rank one tensors v1 b v2 one has:

||πpg1, g2qpv1 b v2q � v1 b v2||2 ¤ ||π1pg1qv1 b π2pg2qv2 � π1pg1qv1 b v2||2
� ||π1pg1qv1 b v2 � v1 b v2||2

� ||π1pg1qv1 b pπ2pg2qv2 � v2q||2 � ||pπ1pg1qv1 � v1q b v2||2
� ||π1pg1qv1|| ||π2pg2qv2 � v2|| � ||π1pg1qv1 � v1|| ||v2||
� ||v1|| ||π2pg2qv2 � v2|| � ||π1pg1qv1 � v1|| ||v2||
  ε

if pg1, g2q P N1 � N2, where N1 � tg1 | ||π1pg1qv1 � v1|| ||v2||   ε
2u and

N2 � tg2 | ||v1|| ||π2pg2qv2 � v2||   ε
2u.

Now if T P B2pH2,H1q and ε ¡ 0, using the density of the linear span
of the vectors v b w where v P H1 and w P H2, we can find an S of form
S � °n

k�1 vibwi with ||T �S||2   ε
3 . By continuity for the rank one vector

vi b wi, we can find a neighborhood Ui of pe1, e2q with

||πpg1, g2qpvi b wiq � vi b wi||   ε

3n
for pg1, g2q P Ui.
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Set U � Xn
i�1Ui. Then for pg1, g2q P U , we have

||πpg1, g2qT � T ||2 ¤ ||πpg1, g2qT � πpg1, g2qS||2 � ||πpg1, g2qS � S||2 � ||S � T ||2
� ||πpg1, g2qS � S||2 � 2||S � T ||2
  || ņ

i�1

pπpg1, g2qpvi b wiq � vi b wiq ||2 � 2ε

3

¤ ņ

i�1

||πpg1, g2qpvi b wiq � vi b wi||2 � 2ε

3

  ε.

¤

Definition 6.73. Let π1 and π2 be unitary representations of G on Hilbert
spaces H1 and H2. Then the inner tensor product representation π1 b π2 is
the representation of G given by g ÞÑ π1pgq b π2pgq.

Note the inner tensor product π1 b π2 is just the outer tensor product
representation π1�π2 of the group G�G restricted to the diagonal subgroup
Gd � tpg, gq | g P Gu.
Lemma 6.74. Let π be an irreducible unitary representation of G on Hilbert
space H and let I be the identity representation of G on Hilbert space K.
Then HomGpπ b I, π b Iq consists of the operators IH b B where B is in
BpKq and IH is the identity operator on H.

Proof. Let A be a bounded linear operator on B2pK̄,Hq such that

Apπpgq b Iq � pπpgq b IqA
for all g. Fix w1 and w2 in K and define Dv � Apv bw1qpw̄2q. Clearly D is
linear, and note since the Hilbert-Schmidt norm is larger than the operator
norm, one has ||Apv b w1q|| ¤ ||Apv b w1q||2 and thus

||Dv|| ¤ ||Apv b w1q|| ||w̄2|| ¤ ||Apv b w1q||2||w2||
¤ ||A|| ||v b w1||2||w̄2|| � ||A|| ||v|| ||w1|| ||w2||.

Moreover, D P HomGpπ, πq for

Dπpgqv � Apπpgqv b w1qpw̄2q � Apπpgq b Iqpv b w1qpw̄2q
� pπpgq b IqpApv b w1qqpw̄2q
� πpgqApv b w1qqpw̄2q � πpgqDv.

Thus by Schur’s Lemma D � cpw1, w2qI for some scalar cpw1, w2q. It is easy
to verify that c is a sesquilinear mapping on K �K which satisfies

|cpw1, w2q| ¤ ||A|| ||w1|| ||w2||
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for all w1 and w2. Thus by Proposition 5.28, there is a unique operator
B P BpKq such that

cpw1, w2q � pBw1, w2qK
for all w1 and w2 in K. Hence

Apv b w1qpw̄2q � pBw1, w2qKv � pw̄2, Bw1qKv � pv bBw1qpw̄2q.
Thus

Apv b wq � v bBw

for all v and w. ¤

Proposition 6.75. Let π1 be an irreducible unitary representation of G1

and let π2 be an irreducible unitary representation of G2. Then π1 � π2 is
an irreducible unitary representation of G1 �G2.

Proof. Set π � π1�π2. Let A be a bounded linear operator on B2pH̄2,H1q
such that

Aπpg1, g2q � πpg1, g2qA
for all g1, g2. Since πpg1, eq � π1pgqbI2, we see A P HomG1pπ1bI2, π1bI2q.
By Lemma 6.74, there is an operator B P BpH2q such that A � I1 b B.
Thus

Apv b wq � v bBw

for all v and w. But πpe, g2qA � Aπpe, g2q for all g2. Hence

v b π2pg2qBw � v bBπ2pgqw.

This implies B P HomG2pπ2, π2q � CI. Hence B � cI. So A � cI and
we see HomG1�G2pπ1 � π2, π1 � π2q � CI. By Schur’s Lemma, π1 � π2 is
irreducible. ¤

Corollary 6.76. Let π be an irreducible unitary representation of a group
G. Then π̄ and π � π̄ are irreducible representations.

Proof. Let S be a closed invariant subspace of H under π̄. Since π̄pgqv̄ �
πpgqv where v̄ � v, we see S is a closed invariant subspace in H under π.
Thus S � t0u or S � H � H. So π̄ is irreducible. Consequently, π � π̄ is
irreducible. ¤

Lemma 6.77. Let π and π1 be unitary representations of G on Hilbert spaces
H and H1. Then

HomG�Gpπ � π̄, π1 � π̄1q � t0u if HomGpπ, π1q � t0u.
Proof. Assume A P HomGpπ � π̄, π1 � π̄1q is nonzero. Thus there is a
v1 b v̄2 P H bH with Apv1 b v̄2q � 0. But Apv1 b v̄2q P B2pH1,H1q. Hence
there is a v1 P H1 with

Apv1 b v̄2qpv1q � 0.
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Define T P BpH,H1q by

Tv � Apv b v̄2qpv1q.
Clearly T is linear and ||Tv||H1 ¤ ||Apv b v̄2q|| ||v1|| ¤ ||Apv b v̄2q||2||v1|| ¤||A|| ||v b v̄2||2||v1|| � ||A|| ||v|| ||v2|| ||v1||. Thus T is bounded. Moreover,

Tπpgqv � pApπpgqv b v̄2qqpv1q
� pAppπpgq b π̄peqqpv b v̄2qqpv1q
� ppπ1pgq b π̄1peqqpApv b v̄2qqpv1q
� π1pgqApv b v̄2qπ1peq�pv1q
� π1pgqTv.

Thus T P HomGpπ, π1); and since Tv1 � Apv1 b v̄2qpv1q � 0, we see that
HomGpπ, π1q � t0u. ¤

7. Cyclic Representations

We shall see not all unitary representations or representations of � algebras
are discretely decomposable. These representations, however, can be written
as direct sums of smaller (usually nonirreducible) subrepresentations.

Definition 6.78. Let π be a nonzero representation of a group G or an
algebra A on a topological vector space V . Then π is a cyclic representation
if there is a vector v such that the smallest closed π invariant subspace of V
containing v is V .

Let S be a subset of a vector space V . By xSy we mean the algebraic
linear span of S; i.e.,

xSy � t
şPF

λss | λs P C, F a finite subset of Su.
Thus π is a cyclic representation if and only if there is a nonzero vector v
such that xπpGqvy is dense in V when dealing with groups G or πpAqv is
dense in V when dealing with algebras A. Any vector v having this property
is said to be a cyclic vector for π.

Lemma 6.79. Let π be a nonzero representation a locally convex topological
vector space. Then π is irreducible if and only if every nonzero vector is
cyclic.

Proof. We argue only the case for a group G. Let π be irreducible and let
v � 0. Then xπpGqvy is closed, nonzero, and invariant. Thus xπpGqvy � V .

Conversely, suppose every nonzero vector v is cyclic. Let W be a nonzero
closed invariant subspace. Choose w � 0 in W . Then H � xπpGqwy � W .
So W � H and we see π is irreducible. ¤
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Theorem 6.80. Let π be a unitary representation of a topological group G
or a nonzero representation of a � algebra on Hilbert space H. Then π is an
internal orthogonal direct sum of cyclic subrepresentations.

Proof. We argue the algebra case. Consider the collection of all families
of pairwise orthogonal closed invariant subspaces of H each having a cyclic
vector. Order this collection by inclusion. Every linearly ordered subset
has an upperbound, namely the union of the families in the subset. Con-
sequently, by Zorn’s Lemma, there is a maximal collection tHα | α P Au
where Hα is invariant and closed and πα � π|Hα is a cyclic representa-
tion. To finish, it suffices to show `Hα � H. If not, Lemma 6.36 implies
K � p`HαqK is a nonzero invariant closed subspace. Hence one can choose
a nonzero vector v P K and set H1 to be the closure of the vector subspace
πpAqv � tπpxqv | x P Au. Clearly H1 is nonzero, H1 K `Hα, and π1 � π|H1
is cyclic. Thus the collection tH1u Y tHα | α P Au is strictly larger than the
maximal collection tHα | α P Au, a contradiction. ¤

Exercise Set 6.4

1. Let U be a bounded linear transformation from a Hilbert space H into
a Hilbert space K. Show U is a partial isometry if and only if E � U�U and
F � UU� are projections. Then show EH � pkerUqK and FK � UpHq.
2. Let V and W be finite dimensional vector spaces. Show that every
bilinear mapping B : V �W Ñ F where F is a vector space can be written
uniquely in the form Bpv, wq � T pvbwq where T is a linear transformation
of V bW into F .

3. Show Schur’s Lemma given in Proposition 6.49 also holds if π and ρ are
representations of � algebras on Hilbert spaces H and K.

4. Let π be a finite dimensional representation of a group G on vector space
V . Let V0 be a subspace of V . Define V K0 to be the subspace of V � consisting
of those f for which

xv0, fy � 0 for all v0 P V0.

(a) Using the identification V �� � V , show pV K0 qK � V0.

(b) Show V0 is π invariant if and only if V K0 is π̌ invariant.

5. Let H be the conjugate Hilbert space to a finite dimensional Hilbert
space H and let A be a linear transformation of H. Show if v1, v2, . . . , vn is
a basis of H, then the matrix of Ā relative to the basis v̄1, v̄2, . . . , v̄n of H is
the conjugate of the matrix of A relative to the basis v1, v2, . . . , vn.

6. Let A,B, U P BpHq where H is a Hilbert space. Show ĀB̄ � AB and U
is unitary if and only if U is unitary.
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7. Let π be a finite dimensional unitary representation. Show π b π̄ and
π b π̌ are equivalent.

8. Let G � SUp2q be the compact group of 2 � 2 unitary matrices. Thus
G � !�

a b�b̄ ā

� | |a|2 � |b|2 � 1
)
. Define π by πpgq � g for g P G.

(a) Determine π̄ as a matrix representation.
(b) Show π and π̄ are unitarily equivalent.

9. Let π be a unitary representation of G on Hilbert space H. Let I be the
identity representation of G defined on Hilbert space H1 whose orthonormal
basis has dimension cardinality n. Show π b I � nπ.

10. Let π be a unitary representation of G. Show A ÞÑ Ā is a conjugate
linear � algebra isomorphism of HomGpπ, πq onto HomGpπ̄, π̄q.
11. Let π1, π2, π3, and π4 be unitary representations of G. Show

HomG�Gpπ1 � π2, π3 � π4q � 0

if and only if HomGpπ1, π3q � t0u or HomGpπ2, π4q � t0u.
12. Let G1 and G2 be locally compact Hausdorff groups and let π1 and π2 be
completely decomposable unitary representations of G1 and G2, respectively.
Show the unitary representation π1 � π2 is completely decomposable and if
π1 and π2 are irreducible unitary representations of G1 and G2, then the
primary projection P pπ1 � π2q is given by P pπ1 � π2q � P pπ1q b P pπ2q.
13. A finite dimensional representation π of a group G is said to be com-
pletely reducible if every invariant subspace has a complementary invari-
ant subspace. Show if π is completely reducible, the contragredient repre-
sentation π̌ is completely reducible.

14. Let π1 be an irreducible representation of a group G1 on a finite di-
mensional complex vector space V1 and let I be the identity representation
of G2 on a finite dimensional complex vector space V2. Show

HomG1�G2pπ1 � I, π1 � Iq � tI bB | B P LpV2qu.
15. Let π1 and π2 be finite dimensional irreducible complex representations
of groups G1 and G2. Show HomG1�G2pπ1 � π2, π1 � π2q � CI.

16. In Exercise 6.4.13, we defined a completely reducible representation. A
group G is said to be completely reducible if every complex finite dimensional
representation of G is completely reducible. Let G be completely reducible.

(a) Show every finite dimensional complex representation of G is a di-
rect sum of irreducible representations.

(b) Show a complex finite dimensional representation π of G is irre-
ducible if and only if HomGpπ, πq � CI.
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17. Let π be a representation on a Hilbert space H having a cyclic vector
v. Let P be a projection of the Hilbert space H onto a closed π invariant
subspace. Show Pv is a cyclic vector for that subrepresentation.

18. Let π be a unitary representation of a topological group G. A vector
v in Hπ is said to be a separating vector for HomGpπ, πq if A � 0 whenever
A P HomGpπ, πq and Av � 0. Show v is a separating vector for HomGpπ, πq
if and only if v is a cyclic vector for π.

19. Let π and π1 be unitary representations of a topological group G with
HomGpπ, π1q � t0u. Show HomGpπ`π1, π`π1q � HomGpπ, πq�HomGpπ1, π1q
as � algebras.

20. Suppose v is a cyclic vector for unitary representation π and v1 is a
cyclic vector for unitary representation π1. If HomGpπ, π1q � t0u, show
v ` v1 is a cyclic vector for π ` π1.
21. Let V be finite dimensional complex vector space with basis e1, . . . , en.
Let GLpn,Cq be the group of invertible n�n matrices under multiplication.

(a) Show there is a one-to-one onto correspondence between the rep-
resentations π of G on V and the continuous homomorphisms Π :
G Ñ GLpn,Cq, (determined from the basis e1, . . . , en). Such Π are
called matrix representations of G.

(b) Show if V is a Hilbert space and e1, . . . , en is an orthonormal basis,
then π is unitary if and only if ΠpGq � Upnq, the group of n � n
unitary matrices.

22. Let π be an irreducible unitary representation. Let n be a natural
number. Show HomGpnπ, nπq � Mn�npCq, the algebra of n by n complex
matrices.

23. Let π be an irreducible unitary representation of finite dimension d.
Show nπ is cyclic if and only if n ¤ d.

24. Let π1, π2, . . . , πs be pairwise inequivalent finite dimensional irreducible
unitary representations of topological group G. Show

sà
j�1

njπj is cyclic if and only if nj ¤ dpπjq for j � 1, 2, . . . .s.

8. The Duals of Rn, Tn, and Zn

One Dimensional Representations of pR,�q.
A one dimensional representation is a continuous homomorphism e of R into
the group of nonzero complex numbers under multiplication. Choose ε ¡ 0
such that epr�ε, εsq � tc | |c � 1|   1u. Define apxq � logpepxqq for |x| ¤ ε.
Note apx � yq � logpepx � yqq � logpepxqepyqq � logpepxqq � logpepyqq �
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apxq � apyq if |x � y| ¤ ε, |x| ¤ ε, and |y| ¤ ε. This implies map ε
nq �

ap ε
nq�ap ε

nq�� � ��ap ε
nq � apm

n εq if |mn | ¤ 1. In particular, nap ε
nq � apεq and

thus apmn εq � m
n apεq for |mn | ¤ 1. By continuity, apxεq � xapεq for |x| ¤ 1.

Thus apyq � y
ε apεq for |y| ¤ ε. This gives epyq � ecy where c � apεq

ε for
|y| ¤ ε. Since e is a homomorphism, ty | epyq � ecyu is a subgroup of R
containing r�ε, εs. But any subgroup of R containing an open subset is open
and closed and thus all of R. So epyq � ecy for all y.

For another argument, we note if F pxq � ³x
0 epsq ds, then F is differen-

tiable and F pxq � 0 for x near 0. Also one has

F px� yq �
» x�y

0
epsq ds �

» y

0
epsq ds�

» x�y

y
epsq ds

�
» y

0
epsq ds�

» x

0
eps� yq ds

�
» y

0
epsq ds�

» x

0
epsqepyq ds.

So F px� yq � F pyq � epyqF pxq. Since F is differentiable, we see by taking
x near 0 that e is differentiable and by differentiating with respect to y, one
obtains

epx� yq � epyq � e1pyqF pxq.
Differentiating this with respect to x gives e1px� yq � e1pyqepxq. So e1pxq �
e1p0qepxq. Take c � e1p0q and let Hpxq � ecx

epxq . Note H is constant since

Hpxq has derivative epxqcecx�ccxe1pxq
epxq2 � 0. But Hp0q � 1. Thus epxq � ecx.

Now e is unitary if cx P Ri for all x P R. So c � 2πiω for some ω P R.
Hence the one dimensional unitary representations of R are given by

eωpxq � e2πiωx.

One Dimensional Representations of pT,�q.
Suppose χ : T Ñ C� is a one dimensional representation of the torus.

Then epxq � χpe2πixq is a one dimensional representation of R and thus there
is a ω P C such that χpe2πixq � e2πiωx. But χpe2πiq � 1 implies e2πiω � 1.
This occurs if and only if ω P Z. Thus the one dimensional representations
of T are given by

enpzq � enpe2πixq � pe2πixqn � zn

for n P Z.
One Dimensional Representations of pZ,�q.

Note if e is a homomorphism of Z into C�, then epnq � ep1�1�� � ��1q �
ep1qn � zn where z � ep1q � 0. If e is unitary, |z| � 1 and so z P T. Because
of these correspondences, it is customary to write pR � R, pT � Z, and pZ � T.
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If e P pRn, then since tj ÞÑ ep0, . . . , tj , 0, . . . , 0q is a representation of R,
we see ept1, t2, . . . , tnq �±

e2πiωjtj � e2πipω�tq for some ω P Rn. So pRn � Rn.
Similarly, a one dimensional unitary representation of Tn is given by

ekpzq � zk1
1 zk2

2 � � � zkn
n

where k P Zn and a one dimensional unitary representation of Zn is given
by

ezpkq � zk1
1 zk2

2 � � � akn
n

where z P Tn. Of course one writes pTn � Zn and pZn � Tn.

Table 1. Duals of Rn, Tn, Zn

Group Dual Identification

R pR � R eω Ø ω P R where eωpxq � e2πiωx

Rn xRn � Rn eω Ø ω P Rn where eωpxq � e2πiω�x
T pT � Z ek Ø k P Z where ekpzq � zk

Tn xTn � Zn ek Ø k P Zn where ekpzq � zk1
1 zk2

2 � � � zkn
n

Z pZ � T ez Ø z P T where ezpkq � zk

Zn xZn � Tn ez Ø z P Tn where ezpkq � zk1
1 zk2

2 � � � zkn
n

9. Continuity of Representations of Banach � Algebras

In defining representations of Banach algebras, there is no continuity con-
dition. At least for Banach � algebras, it turns out norm continuity is
automatic; i.e., if π is a representation of a Banach � algebra B on a Hilbert
space, then ||πpxq|| ¤ ||x|| for each x P B. This turns out to be a consequence
of the spectral radius theorem. We review and state this theorem without
proof here. All functional analysis texts covering the spectral theorem have
some form of this theorem.

Let B be a complex Banach algebra with a multiplicative identity e. If
x P B, the spectrum σpxq is the set of complex numbers λ such that λe�x
has no multiplicative inverse in B. Thus there is no y P B which satisfies

ypλe� xq � pλe� xqy � e.

Theorem 6.81 (Spectral Radius Theorem). Let B be a Banach algebra with
identity and suppose x P B. Then the spectrum σpxq is a nonempty compact
subset of tλ P C | |λ| ¤ ||x||u. Moreover, the spectral radius |x|σ � maxt|λ| |
λ P σpxqu is given by

|x|σ � lim
nÑ8 ||xn|| 1n .
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Banach � algebras with the additional property ||x�x|| � ||x||2 for all
x are known as C� algebras and play a central role in operator algebras.
An important example is the algebra BpHq of bounded linear operators
on a Hilbert space H. Indeed, bounded linear operators A on H satisfy
||A�A|| � ||A||2. Another example is the space of complex valued continuous
functions on a compact Hausdorff space. We look at these spaces in the next
section.

Corollary 6.82. Let A be a C� algebra with identity. Then |x�x|σ � ||x||2
for each x P A.

Proof. Since A is a C� algebra, ||x�x|| � ||x||2 for each x P A. Thus
||px�xq2|| � ||px�xq�px�xq|| � ||x�x||2 � ||x||4. From this we see ||px�xq4|| �
||ppx�xq�px�xqq�ppx�xq�px�xqq|| � ||px�xq�px�xq||2 � p||x�x||2q2 � ||x||8.
Repeating this argument and using induction, one obtains

||px�xq2n || � ||x||2n�1

for all x. Thus |x�x|σ � lim ||px�xq2n ||1{2n � ||x||2. ¤

Proposition 6.83. Let π be a representation of a Banach � algebra B on a
Hilbert space H. Then ||πpxq|| ¤ ||x|| for each x P B.

Proof. By Exercise 6.5.20, if B does not have an identity, we may extend
it to a Banach � algebra with identity, and extend π to be a representation
of this extended � algebra. Thus we may assume B has an identity e. If π is
obtained by extending from B to Be as in Exercise 6.5.20, then πpeq � I. If
not, then since πpeq2 � πpeq and πpe�q � πpeq � πpeq�, πpeq is an orthogonal
projection and since πpyqπpeqH � πpeqπpyqH � πpeqH, the range of πpeq
is a closed invariant subspace. In this case, since ||πpxq|| � ||πpxq|πpeqpHq||
for all x, we may replace π by the subrepresentation x ÞÑ πpxq|πpeqH. This
implies in all instances, we may assume πpeq � I.

Now take x P B and let y � x�x. Note if λ R σpyq, then λ R σpπpyqq.
Indeed, if λ R σpyq, then there is z P B with pλe � yqz � zpλe � yq � e.
Consequently, pλI � πpyqqπpzq � πpzqpλI � πpyqq � πpeq � I, and thus
λ R σpπpyqq. Thus σpπpyqq � σpyq and so |πpyq|σ ¤ |y|σ � |x�x|σ ¤
||x�x||2 ¤ ||x�|| ||x|| � ||x||2. But πpxq P BpHq, which is a C�algebra. By
Corollary 6.82, ||πpxq�πpxq|| � |πpxq�πpxq|σ � |πpx�xq|σ � |πpyq|σ. Thus
||πpxq||2 � ||πpxq�πpxq|| ¤ ||x||2. ¤

10. Representations of CpXq
Let X be a compact Hausdorff space. CpXq is a Banach � algebra with
norm |f |8 � maxt|fpxq| | x P Xu and adjoint defined by f�pxq � fpxq.
This examples shares the important property |f |2 � |f�f | with the Banach �
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algebra BpHq of bounded linear operators on a Hilbert space. This property
makes CpXq a C� algebra.

The Gelfand theory shows that CpXq is the canonical example of com-
mutative C� algebra having an identity. Our intent here is to obtain the
irreducible � representations of CpXq. In some sense which we do not ex-
plore here, representations of � algebras on Hilbert spaces only reflect the
C� algebra qualities of the algebra. Hence in many ways when dealing with
� algebras and their representations, one should restrict oneselves to C�
algebras.

Let π be an irreducible nonzero � representation of CpXq. Since we
are dealing with complex representations, Schur’s Lemma implies π is one
dimensional. Hence π : CpXq Ñ C. Furthermore π is positive; i.e., f ¥ 0
implies πpfq � πp?f �?fq � πp?fqπp?fq ¥ 0. Thus by the Riesz Theorem
6.1, there is a regular Borel measure on X such that πpfq � µpfq � ³

f dµ.
Also if K1 and K2 are disjoint compact subsets then µpK1qµpK2q � 0.
Indeed, it is easy (see Exercise 6.5.18) to find disjoint open subsets U1 and
U2 of X with K1 � U1 and K2 � U2. Then by Proposition 5.23, there
exists fj P CpXq with 0 ¤ fj ¤ 1, fj � 1 on Kj , and supp fj � Uj

for j � 1, 2. Hence 0 ¤ µpK1qµpK2q ¤ p³ f1 dµqp³ f2 dµq � πpf1qπpf2q �
πpf1f2q � πp0q � 0. Next note µpXq � 1 for πp1q2 � πp1q � µpXq and if
πp1q � 0, then πpfq � 0 for all f . We claim if K is a compact subset, then
µpKq � 0 or µpKq � 1. If µpKq   1, by outer regularity, there is an open
subset U � K with µpUq   1. Now choose f P CpXq with 0 ¤ f ¤ 1, f � 1
on K, and supp f � U . Then µpKq ¤ πpfnq � πpfqn Ñ 0 as n Ñ 8 for
πpfq � ³

f dµ ¤ µpUq   1. So µpKq � 0.
Next let K be all the compact subsets K of X with µpKq � 1. We have

X P K. Also if K1,K2 P K, then K1 XK2 P K, for if µpK1 XK2q � 0, then
µpK1 �K1 XK2q � µpK2 �K1 XK2q � 1, which implies µpXq ¥ 2. Thus
K has the finite intersection property. So XK is nonempty. We claim it
consists of one point p. Indeed, if p and p1 are distinct in the intersection,
then there are disjoint compact neighborhoods N and N1 of p and p1. Since
p R N1, N1 R K. Thus µpN1q � 0. Thus X � intpN1q P K. So p1 does
not belong to XKPKK. Thus the intersection has only member p. We claim
µtpu � 1. If not µpX�tpuq ¡ 0 and by regularity there is a compact subset
F of X � tpu such that µpF q ¡ 0. So µpF q � 1, a contradiction. Thus
µ � εp is point mass at p. Hence πppq � fppq.

Theorem 6.84. Let X be a compact Hausdorff space. Then the mapping
p ÞÑ πp where πppfq � fppq is a one-to-one correspondence between X and
the irreducible � representations of CpXq.
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The collection of irreducible � representations of CpXq might under-
standably be called the dual of CpXq. This, however, is not the case. It
is almost universally known as the Gelfand spectrum of CpXq. Indeed,
the Gelfand Theorem, which we state next gives a complete description of
commutative C� algebras with identity.

Theorem 6.85 (Gelfand). Let A be a commutative C� algebra with identity
e. Then the space ∆ of nonzero one-dimensional � representations of A is a
compact Hausdorff subspace of the unit ball of the dual space A� in the weak
� topology. Moreover, x ÞÑ x̂ where x̂pπq � πpxq is a � algebra isometry of
A onto Cp∆q.
11. Regular and Quasi-regular Representations

In this section we give some examples of unitary representations obtained
from the natural symmetries given by actions of the group. Their analysis
as to how these representations decompose is a central aspect of harmonic
analysis. The most natural is the regular representation which we start with
next.

11.1. The regular representation.

Definition 6.86. Let G be a locally compact Hausdorff group with a left
Haar measure m. Let H � L2pG, mq and for g P G, set λpgqfpxq � fpg�1xq.
Then λ is called the left regular representation of G.

Proposition 6.87. λ is a unitary representation of G.

Proof. We know we may take m to be a regular Borel measure. We first
note λpgq is a unitary operator for each g. Indeed, since x ÞÑ g�1x is a
homeomorphism, λpgqmaps Borel measurable functions to Borel measurable
functions. Also

||λpgqf ||2 �
»

G
|fpg�1xq|2 dx �

»
G
|fpxq|2 dx

and hence λpgq is an isometry for each g. Note λpeq � I and

λpg1qλpg2qfpxq � λpg2qfpg�1
1 xq � fpg�1

2 g�1
1 xq

� fppg1g2q�1xq � λpg1g2qfpxq.
Thus λpg1g2q � λpg1qλpg2q and hence λpg�1qλpgq � λpgqλpg�1q � λpeq � I.
Hence λpgq�1 � λpg�1q, and we see λ is a homomorphism of G into UpHq.

To finish we need to show π is strongly continuous at e. Let ε ¡ 0
and let f P L2pG,mq. Choose a compact Gδ neighborhood N0 of e and
f0 P CcpGq with |f � f0|2   ε

3 . Now by Lemma 5.24, f0 is left uniformly
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continuous. Hence there is a compact neighborhood N � N0 of e such that
|f0px�1yq � f0pyq| ¤ ε

3mpN0supppf0qq1{2 if x P N . Thus if x P N ,

|λpxqf0 � f0|22 ¤
»
|f0px�1yq � f0pyq|2 dy

¤
»
supppf0qYxsupppf0q

ε2

9mpN0supppf0qq dy

¤
»

N0supppf0q
ε2

9mpN0supppf0qq dy

� ε2

9
.

Thus for x P N ,

|λpxqf � f |2 ¤ |λpxqf � λpxqf0|2 � |λpxqf0 � f0|2 � |f0 � f |2
  2|f � f0|2 � ε

3  ε.

So λ is strongly continuous at e. ¤

Corollary 6.88. Let U be a Borel subset of G with positive Haar measure.
Then UU�1 contains an open neighborhood of the identity e.

Proof. By shrinking U and using inner regularity, we may assume U has
positive finite measure. Thus χU P L2pGq. Since the regular represen-
tation λ is strongly continuous, χU � χU�1pyq � ³

χU pxqχU�1px�1yq dx �
pχU , λpyqχU q2 is continuous and positive at y � e. So it is positive in an
open neighborhood V of e. Now it is positive at a point y implies there is
an x P U such that x�1y P U�1. So y P xU�1 � UU�1. ¤

Proposition 6.89. Let φ : G Ñ H be a Borel homomorphism of a locally
compact Hausdorff group G into a second countable topological group H.
Then φ is continuous.

Proof. By replacing H by φpGq with the relative topology, we may assume
the mapping φ is onto. Now let W be an open neighborhood of e in H.
Pick an open neighborhood V of e in H such that V �1V � W . Since H is
second countable, the cover txV | x P Hu of H has a countable subcover
xjV for j � 1, 2, . . . and thus the Borel sets φ�1pxjV q cover G. Choose gj

with φpgjq � xj . Then if g P φ�1pxjV q, φpgq � xjv and thus φpg�1
j gq � v.

So g�1
j g P φ�1pV q and we see g P gjφ

�1pV q. Hence the Borel sets gjφ
�1pV q

cover G. This implies φ�1pV q has positive Haar measure. By Corollary 6.88,
φ�1pV q�1φpV q contains an open neighborhood U of e in G. This implies
φpuq P V �1V if u P U . Thus φpUq � W . So φ is continuous at e. ¤
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Example 6.90. In the case G � Rn with its usual topology, one has

λpyqfpxq � fpx� yq
for f P L2pRnq. The measure here is Lebesgue measure λn. We use the
Fourier transform to study this representation. Recall the Fourier transform
F is a unitary mapping of L2pRnq. Thus λ̂ defined by

λ̂pxq � FλpxqF�1

is a unitary representation unitarily equivalent to λ. Note if f P SpRnq,
then by (b) of Lemma 3.3, FpλpxqF�1fq � τpxqFpF�1fq � τpxqf . Thus
λ̂pxqfpyq � e�2πix�yfpyq for f P SpRnq. Now by Proposition 2.55, SpRnq is
dense in L2pRnq. By taking limits, one obtains

(6.12) λ̂pxqfpyq � e�2πix�yfpyq for f P L2pRnq.
11.2. The biregular representation. Let G be a locally compact Haus-
dorff group with a left Haar measure m. The left regular representation
λ is defined on L2pGq by λpgqfpxq � fpg�1xq and by Exercise 6.5.28, one
obtains a unitarily equivalent representation ρ to λ where ρ is defined by
ρpgqfpxq � ∆pgq1{2fpxgq. The representation ρ is known as the right reg-
ular representation of G. We note one has

(6.13) λpg1qρpg2q � ρpg2qλpg1q
for all g1 and g2 in G. Indeed,

λpg1qρpg2qfpxq � ρpg2qfpg�1
1 xq

� ∆pg2q1{2fpg�1
1 xg2q

� ∆pg2q1{2λpg1qfpxg2q
� ρpg2qλpg1qfpxq.

This implies λpg1qρpg2qλpg11qρpg12q � λpg1qλpg11qρpg2qρpg12q � λpg1g2qρpg11g12q;
and thus if we define B by

(6.14)
Bpg1, g2qfpxq � λpg1qρpg2qfpxq

� ∆pg2q1{2fpg�1
1 xg2q,

then B is a homomorphism of G�G into the unitary group of L2pGq. This
unitary homomorphism is called the biregular representation of G.

Proposition 6.91. The biregular representation B of G is a unitary repre-
sentation of G�G.

Proof. Since B is a homomorphism of G�G into UpL2pGqq, we need only
check the strong continuity of pg1, g2q ÞÑ Bpg1, g2q at the identity pe, eq. Let
ε ¡ 0 and f P L2pGq. Using the strong continuity of λ and ρ, there are
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neighborhoods N1 and N2 of e such that |λpgqf � f |2   ε
2 if g P N1 and

|ρpgqf � f |2   ε
2 if g P N2. Thus if pg1, g2q P N1 �N2, then

|Bpg1, g2qf �Bpe, eqf |2 � |λpg1qρpg2qf � f |2
¤ |λpg1qρpg2qf � ρpg2qf |2 � |ρpg2qf � f |2
� |ρpg2qpλpg1qf � fq|2 � |ρpg2qf � f |2
� |λpg1qf � f |2 � |ρpg2qf � f |2
  ε.

So B is strongly continuous. ¤

11.3. The quasi-regular representation. Now suppose H is a closed
subgroup of G. By Lemma 6.16 and Theorem 6.15, we know there is a
continuous rho ρ function on G and a quasi-invariant regular Borel measure
µ on G{H satisfying»

fpx�1yHq dµpyHq �
»

ρpxyq
ρpyq fpyHq dµpyHq

for nonnegative Borel functions f . Recall ρ satisfies ρpxq ¡ 0 and ρpxhq �
∆Hphq
∆Gphq for all x and h.

Take H � L2pG{H, µq and define

(6.15) λpxqfpyHq �
d

ρpx�1yq
ρpyq fpx�1yHq

for f P H and x P G. This turns out to be a unitary representation of G and
is usually referred to as the quasi-regular representation of G on L2pG{Hq.
The use of the specific word ‘the’ in this description is somewhat confusing;
for the representation seems to depend on the choice of ρ or more specifically
the regular quasi-invariant measure on G{H. However, one can show if ν is
any quasi-invariant regular Borel measure on G{H and one defines

(6.16) λ1pxqfpyHq �
c

dpxνq
dν

pyqfpx�1yHq,
then λ and λ1 are unitarily equivalent. Indeed, see Exercise 6.5.33.

Proposition 6.92. The quasi-regular representation λ is a unitary repre-
sentation of G.
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Proof. Note by Theorem 6.15,

|λpxqf |22 �
»

ρpx�1yq
ρpyq |fpx�1yHq|2 dµpyHq

�
»

ρpyq
ρpxyq |fpyHq|2 dµpxyHq

�
»

ρpyq
ρpxyq

ρpxyq
ρpyq |fpyHq|2 dµpyHq

�
»
|fpyHq|2 dµpyHq.

Thus each λpxq is an isometry.
To see λ is a homomorphism we show λpg1g2qf � λpg1qλpg2qf and λpeq �

I. Clearly one has λpeq � I. Also

λpg1qλpg2qfpyHq �
d

ρpg�1
1 yq

ρpyq pλpg2qfqpg�1
1 yHq

�
d

ρpg�1
1 yq

ρpyq
d

ρpg�1
2 g�1

1 yq
ρpg�1

1 yq fpg�1
2 g�1

1 yHq

�
d

ρppg1g2q�1yq
ρpyq fppg1g2q�1yHq

� λpg1g2qfpyHq.
We again need to show λ is strongly continuous. The argument follows

the same type of reasoning as the case for the left regular representation.
Start by choosing f0 to be a continuous function with compact support
satisfying |f � f0|2   ε

3 . Fix a compact neighborhood N of e and let K be
the compact support of f0. Let M be the maximum of |f0|. Pick δ ¡ 0 so
that

δ2   mint ε2

36M2µpNsupppf0qq ,
ε2

36µpNsupppf0qqu.
The uniform left continuity of f0 on G{H implies there is a neighborhood

N1 � N of e such that

|f0px�1yHq � f0pyHq| ¤ δ

for x P N1 and yH P K.

To handle the rho function, we note Rpx, yHq � ρpx�1yq
ρpyq �1 is continuous

on the compact subset N �NK and Rpe, yHq � 0 for all yH P NK. This
implies there is a neighborhood N0 of e contained in N1 such that

|Rpx, yHq| ¤ δ
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if x P N0 and yH P NK.
Now

|λpxqf0 � f0|2 ¤ |λpxqf0 � F0|2 � |F0 � f0|2
where F0pyHq � f0px�1yHq. But if x P N0, then

|λpxqf0 � F0|22 �
»
|
d

ρpx�1yq
ρpyq f0px�1yHq � f0px�1yHq|2 dµpyHq

�
»

xsupppf0q
|f0px�1yHq|2

�����
d

ρpx�1yq
ρpyq � 1

�����2 dµpyHq
¤ δ2M2mpNsupppf0qq
  ε2

36

and

|F0 � f0|22 �
»
|f0px�1yHq � f0pyHq|2 dy

¤
»
supppf0qYxsupppf0q

δ2 dy

¤ µpNsupppf0qqδ2

  ε2

36
.

Consequently, for x P N0 we see |λpxqf0� f0| ¤ |λpxqf0�F0|2� |F0� f0|  
ε
6 � ε

6 � ε
3 , and thus

|λpxqf � f |2 ¤ |λpxqf � λpxqf0|2 � |λpxqf0 � f0|2 � |f0 � f |2   ε.

¤

Remark 6.93. The quasi-regular representation λ defined in (6.15) is the
left quasi-regular representation since it acts on a space of functions on
the left coset space G{H of H. There is a corresponding right quasi-
regular representation ρ of G on L2pHzGq which is unitarily equivalent to
λ. The easiest way to obtain this representation is to define L2pHzGq to
be WL2pG{H, µq where µ is a left quasi-invariant measure obtained from a
continuous rho function φ for H. Here we understand W to be the trans-
formation WfpHxq � fpx�1Hq for functions f on G{H. To work directly
with the rho function φ and functions on G, we recall f̌pxq � fpx�1q for
functions f on G. Then note by Exercise 6.1.6 if φ is a (left) rho function,
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then φ̌ satisfies

(6.17)
φ̌phxq � φpx�1h�1q � φpx�1q∆Hph�1q

∆Gph�1q
� φ̌pxq∆Gphq

∆Hphq � φ̌pxq∆Hphq
∆Gphq

where ∆H and ∆G are the modular functions for right Haar measures on
H and G. A positive Borel function satisfying this is said to be a right rho
function. Now the measure W�µ defined on the Borel subsets of HzG by
W�µpEq � µpW�1pEqq is a right-quasi invariant measure. If dx and dh is
are left Haar measures on G and H, then drx � dx�1 and drh � dh�1 are
right Haar measures on these groups. As in the case for the left coset space
one has each continuous function with compact support on HzG has form
fHpHxq � ³

H fphxq drh � ³
H fph�1xq dh � ³

H f̌px�1hq dh � f̌Hpx�1Hq for
some f P CcpGq. Moreover,»

fHpHxq dW�µpHxq �
»
pf̌qHpx�1Hq dW�µpxHq

�
»
pf̌qHpHxq dµpxHq

�
»

f̌pxqφpxq dx

�
»

fpx�1qφpxqdx

�
»

fpxqφpx�1q drx

�
»

fpxqφ̌pxq drx.

Consequently one has»
fHpHxyq dW�µpHxq �

»
fpxyqφ̌pxq drx

�
»

fpxqφ̌pxq φ̌pxq�1φ̌pxy�1q drx

�
» »

φ̌pxy�1q
φ̌pxq fpxqφ̌pxq drx

�
»

φ̌pxy�1q
φ̌pxq

»
fphxq drh dW�µpHxq

�
»

φ̌pxy�1q
φ̌pxq fHpHxq dW�µpHxq
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and thus

dppW�µqyqpHxq � dW�µpHxy�1q � φ̌pxy�1q
φ̌pxq dW�µpHxq.

We summarize this in the following Proposition; we leave the remaining
details.

Proposition 6.94. Let H be a closed subgroup of a σ-compact locally com-
pact Hausdorff group G. If φ is a continuous right rho function for H, then
there is a unique regular Borel measure ν on HzG such that» »

H
fpxhq drh dνpHxq �

»
fpxqφpxq drx

for f P CcpGq. Moreover, if f P L2pHzG, νq and y P G, then ρpyq defined by

(6.18)
ρpyqfpHxq �

�
φpxyq
φpxq


1{2
fpHxyq

�
�

dpνy�1q
dν

pHxq

1{2

fpHxyq
gives a unitary representation of G unitarily equivalent to the left quasi-
regular representation.

Example 6.95. The ax�b Group: Recall the ax� b group G consists of
all pairs pa, bq P R� � R with multiplication given by

pa, bqpa1, b1q � paa1, b� ab1q.
The subgroup H � tpa, 0q | a ¡ 0u is a closed subgroup and HzG is home-
omorphic to R under the mapping Hpa, bq � Hpa, 0qp1, a�1bq ÞÑ a�1b. The
action of G on R becomes x � pa, bq � a�1px � bq since Hp1, xqpa, bq �
Hpa, x � bq � Hpa, 1qp1, a�1px � bq � Hp1, a�1px � bqq. We find the right
quasi-regular representation of G on L2pHzGq. We start by noting from
Exercise 6.1.8 that left Haar measure on G is given by»

fpgq dg �
» 8
0

»
fpa, bq 1

a2
db da

and the modular function ∆G is given by ∆Gpa, bq � 1
a .

Since H is abelian, ∆Hpa, 0q � 1. Define φ on G by φpa, bq � a�1.
Then φppa1, 0qpa, bqq � paa1q�1 � φpa, bqa1�1 � φpa, bq∆Gpa1,0q

∆Hpa1,0q . Thus φ is a
positive right rho function for H and hence there is a right quasi-invariant
measure ν on HzG � R that is defined in terms of the rho function φ. We
show using the identification Hp1, bq Ø b of HzG with R that this measure
is Lebesgue measure.
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Indeed, if f P CcpRq, and g P CcpR�q satisfies
³
gpaq 1a da � 1, then

F pa, bq � gpaqfp b
aq satisfies

FHpHp1, bqq �
»

F ppa1, 0qp1, bqqda1
a1 �

»
F ppa1, a1bqqda1

a1 � fpbq.
Thus by Proposition 6.94,»

fpbq dνpbq �
»

fpHpa, bqq dνpHpa, bqq
�
»

F pa, bqφpa, bq drpa, bq
�
»

F ppa, bq�1qφppa, bq�1qda

a2
db

�
¼

F pa�1,�a�1bqφpa�1,�a�1bqda

a2
db

�
» 8
0

gpa�1q1
a

da

» 8
�8

fp�bq db

�
» 8
0

gpaq1
a

da

» 8
�8

fpbq db

�
» 8
�8

fpbq db.

Finally using the identification of HzG with R and (6.18), we see

(6.19)

ρpa, bqfpxq �
d

φpp1, xqpa, bqq
φp1, xq fpx � pa, bqq

�
d

φpa, x� bq
φp1, xq fpx� b

a
q

� 1?
a
fpx� b

a
q.

We use this representation in Example 6.160 of Section18.

Exercise Set 6.5

1. Schur’s Lemma 6.48 shows that for unitary or � representations π one has
π is irreducible if and only if Hompπ, πq � CI. There is a finite dimensional
version of Schur’s Lemma.

(a) Show if π is an irreducible complex finite dimensional representation
of a group or an algebra, then Hompπ, πq � CI.

(b) Show the converse to (a) is false. (Hint: Consider the group of
invertible upper triangular 2� 2 matrices in GLp2,Rq.)
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2. Let π be a unitary or � representation. Let π0 be an irreducible unitary
or � representation and let P0 be the π0 primary projection in Hompπ, πq.
Show P0 commutes with every operator in Hompπ, πq. Such a projection is
said to be central.

3. Let π and ρ be unitary representations of a group G. The representations
π and ρ are said to be disjoint if HomGpπ, ρq � t0u. Show HomGpπ, ρq � t0u
if and only if π and ρ have no unitarily equivalent subrepresentations.

4. Let π and ρ be unitary representations of a topological group G. Show
if π and ρ1 and π and ρ2 are disjoint, then π and ρ1 ` ρ2 are disjoint.

5. Let ρ be a discretely decomposable unitary representation. Show if
Hompρ, ρq is commutative, then the multiplicity of any irreducible unitary
representation π in ρ is either 1 or 0.

6. Let ρ be a discretely decomposable unitary representation. Show if the
center of the algebra Hompρ, ρq consists of only the operators cI where c is
complex, then ρ is unitarily equivalent to nπ for some unique π in Ĝc and
some unique cardinal n.

7. Let Ĝ1 be the one dimensional unitary representations of G; i.e., the col-
lection of one-dimensional characters of G. For χ, χ1 P Ĝ1, define pχχ1qpgq �
χpgqχ1pgq. Show with this multiplication Ĝ1 is a group. Next define a
topology on Ĝ1 by defining a nonempty subset U of Ĝ1 to be open if for
each χ0 in U , there is a compact subset K of G and an ε ¡ 0 such that
tx | |χpgq � χ0pgq|   ε for g P Ku � U . Show with this topology Ĝ1 is a
Hausdorff topological group.

8. Show the topologies given in Exercise 6.5.7 for the dual groups of G � R,
G � T, and G � Z where these groups have their usual topologies are the
usual topologies on R, Z, and T, respectively.

9. Let R� be the nonzero reals under multiplication and with relative topol-
ogy. Determine the character group of this abelian group.

10. Determine the character group of the nonzero complex numbers under
multiplication.

11. Let G be the finite cyclic group Z{mZ. Find the character group of G.

12. Let G be a finite group with center ZpGq.
(a) Show the regular representation is faithful; i.e., λpxq � I if and only

if x � e.
(b) Show the central characters on G separate the points of ZpGq; that

is show if g � e is in the center, there is an irreducible unitary rep-
resentation π of G such that the central character χπ for π satisfies
χπpgq � 1.
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13. Let H be a Hilbert space. For A P BpHq, define πpAq � A. Show π is
an irreducible representation.

14. Show all finite dimensional unitary representations of a group G are
discretely decomposable.

15. Recall the ax� b group consists of all pairs pa, bq P R2 with a ¡ 0, the
relative topology, and multiplication defined by pa, bqpa1, b1q � paa1, b� ab1q.
Show every finite dimensional unitary representation of this group is one
dimensional. Hint: Use the discrete decomposability of a finite dimensional
unitary representation on the subgroup x� b � tp1, bq | b P Ru.
16. Show every complex irreducible finite dimensional representation of the
ax�b group is one dimensional and is given by πpa, xq � ac for some complex
number c. In particular, determine the one-dimensional characters for this
group.

17. Let D4 be the dihedral group. Thus D4 has eight elements and two
generators a and b where a2 � b4 � e and aba � b3. Find the center of
D4 and then determine the irreducible unitary representations of D4 which
have trivial central character.

18. Let X be a Hausdorff topological space with disjoint compact subsets
K1 and K2. Show there are disjoint open subsets V1 and V2 with K1 � V1

and K2 � V2.

19. Let A be a bounded linear operator on H. Show ||A�A|| � ||A||2.
20. Let B be a Banach � algebra with no identity.

(a) Define Be to be the set of all expressions of form λe � x for λ P C
and x P B. Define addition, multiplication, involution, and a norm
on Be by pλe�xq�pµe�yq � pλ�µqe�px�yq, pλe�xqpµe�yq �
λµe�pλy�µx�xyq, pλe�xq� � λ̄e�x�, and ||λe�x|| � |λ|�||x||.
Show Be is a Banach � algebra with an identity.

(b) Let π be a representation of the � algebra B on a Hilbert space H.
Show π̃ defined by π̃pλe� xq � λI � πpxq is a representation of the
� algebra Be.

21. Let X be a compact Hausdorff space and let µ be a regular Borel
measure on X. Define ρpfqpφq � fpxqφpxq for f P CpXq and φ P L2pX,µq.

(a) Show ρ is a representation of the � algebra CpXq.
(b) Show the algebra Hompρ, ρq is commutative.

(c) Let p P X and set πpfq � fppq for f P CpXq. Determine the
primary projection P pπq; and in particular, determine when P pπq �
0.
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22. Show the regular representation λ of T is discretely decomposable and
determine all the primary projections for λ. Hint: Use Theorem 1.20.

23. Show the regular representation λ of R is totally continuous; i.e. P pπq �
0 for each irreducible unitary representation of R. Hint: Use the Fourier
transform.

24. Let X be a locally compact Hausdorff space and let C0pXq be the space
of continuous functions f such that tx | |fpxq| ¥ εu is compact for each ε ¡ 0.
With pointwise multiplication and addition and complex complexification
for the adjoint, show C0pXq is a commutative C� algebra when equipped
with norm |f | � maxt|fpxq| | x P Xu. Then determine the irreducible
representations of this � algebra. Note C0pXq has no identity when X is not
compact.

25. Let X be a locally compact Hausdorff space with a regular Borel mea-
sure µ. Show L8pµq is a commutative C� algebra with identity. Next define
a representation π of L8pµq on L2pµq by πpfqpφqpxq � fpxqφpxq if f P L8
and φ P L2. Show φpL8pµqq � Hompπ, πq.
26. Let µ be a regular Borel measure on a locally compact Hausdorff space
X. Let MpX, µq be the measure algebra given by µ. Thus MpX,µq is the
collection of equivalence classes of the equivalence relation defined on the
Borel subsets of X by E1 � E2 if and only if µpE1 � E2q � µpE1 � E2q �
µpE2 � E1q � 0.

(a) Show MpX, µq is a complete metric space under the metric

dprE1s, rE2sq � µpE1 � E2q.
(b) Define a filter F on MpXq to be a nonempty subfamily of subsets

of MpXq with the properties 0 R F , E1XE2 P F if E1 and E2 are in
F , and E2 P F whenever E1 P F , E2 PMpXq, and E1 � E2. Show
every filter F on MpXq is contained in a hyperfilter; i.e., every filter
is contained in a maximal filter.

(c) Let F be a hyperfilter. Define ν on F by νpEq � 0 if E P MpXq�F
and νpEq � 1 if E P F . Show ν is a finitely additive measure on
MpXq with the property νpE1 X E2q � νpE1qνpE2q.

(d) Let ν be the measure defined in (c). Show there is a unique one-
dimensional representation π of L8pµq such that πpχEq � νpEq for
E P MpXq.

(e) Show every representation π in the Gelfand spectrum ∆ of L8pµq
comes from a measure ν defined in terms of a hyperfilter F .

(f) If you know the definition of an ultra filter from point set topology,
what is a hyperfilter?
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27. Find the three one-dimensional characters of the symmetric group S3.

28. Let ρ be the right regular representation on G. Thus ρpaqfpxq �
∆paq1{2fpxaq for f P L2pGq. Show that the map L2pGq Ñ L2pGq, f ÞÑ
∆�1{2f̌ , is an unitary equivalence between the left regular representation λ
and the right regular representation ρ.

29. Let G be a unimodular locally compact Hausdorff group. Let λ and ρ
be the left and right regular representations of G on L2pG,mq where m is
a Haar measure on G. Show that the representation L is irreducible if and
only if G � teu.
30. Let µ be a measure on space X. Show the mapping f ÞÑ f̄ is a unitary
isomorphism of L2pX,µq onto the conjugate Hilbert space L2pX, µq.
31. Show the left regular represenation λ is unitarily equivalent to λ̄.

32. Let π1 and π2 be unitary representations of topological groups G1 and
G2 on the same Hilbert space H. Assume π1pg1qπ2pg2q � π2pg2qπ1pg1q for
all g1, g2 P G. Define π1 � π2 on G1 �G2 by

pπ1 � π2qpg1, g2q � π1pg1qπ2pg2q.
Show π1 � π2 is a unitary representation of G1 �G2.

33. Use Exercise 6.1.34 and the exercises preceding it to show if ν is a
quasi-invariant regular Borel measure on G{H where G is a locally compact
Hausdorff space and H is a closed subgroup, then λ1 defined in (6.16) is
a unitary representation which is unitarily equivalent to the quasi-regular
representation λ defined in (6.15).

34. Find the Fourier transform of the representation L given in (6.19) of
Example 6.95. That is find the representation pa, bq ÞÑ FLpa, bqF�1 of the
ax� b group.

12. The Involutive Banach Algebra MpGq
In Section 7 of Chapter 2 we defined a Banach � algebra and showed under
convolution and the adjoint � that L1pRnq is a Banach � algebra. This
can be done in general for locally compact Hausdorff groups G and more
generally for the space of complex measures on G. Furthermore, Exercise
2.6.5 shows the space of complex Borel measures on R becomes a Banach �
algebra. In this section this exercise is seen to be a specific case of a general
construction.

Before specifics, let us review some basic properties of complex measures.
For references, see [39, Rudin] or [23, Hewitt and Stromberg] or or other
texts on real analysis.



354 Basic Representation Theory

Let X be a locally compact Hausdorff space. A complex Baire measure
µ on X is a countably additive function µ from the Baire subsets of X into
the complex numbers C. The variation |µ| defined by

|µ|pEq � supt¸ |µpEiq| | E1, E2, . . . , Ek are disjoint Borel,YEi � Eu
is a finite Baire measure. Moreover, µ � Reµ � iImµ where Reµ and Imµ
are signed measure having Hahn decompositions Reµ � µ1 � µ2, Imµ �
µ3 � µ4. We say µ is a Radon measure if |µ| is inner regular and thus
µpEq � suptµpKq | K � E, K is a compact Gδu. This is equivalent to each
of the measures µj being Radon.

We now set MpXq to be the space of complex Radon measures on X.
Clearly MpXq is a vector space. We define ||µ|| � |µ|pXq. It is easy to check
MpXq is a vector space with addition and scalar multiplication defined by
pµ1 � µ2qpEq � µ1pEq � µ2pEq and pcµqpEq � cµpEq for Baire sets E and
complex scalars c. Clearly ||µ|| � 0 if and only if µ � 0 and ||cµ|| � |c| ||µ||.
Now if X � E1 Y E2 Y � � � Y Ek where the Ej are disjoint Baire subsets of
X, then¸ |pµ1 � µ2q|pEjq ¤

ķ

j�1

|µ1pEjq| �
ķ

j�1

|µ2pEjq| ¤ |µ1|pXq � |µ2|pXq

implies

||µ1 � µ2|| ¤ ||µ1|| � ||µ2||.
So || � || is a norm.

Proposition 6.96. MpXq with norm || � || is a Banach space.

Proof. Let µn be Cauchy in MpXq. Since |µ|pEq ¤ |µ|pXq � ||µ|| for
every Baire subset E of X and complex measure µ, one has ||µm|pEq �|µn|pEq| ¤ ||µm � µn|| Ñ 0 for all Baire subsets E. Thus |µn|pEq Ñ|µ|pEq P C. We need to show |µ| is a measure. Clearly |µ|pHq � 0. We
show |µ| is countably additive. Let Ek be a sequence of disjoint Baire sets.
Then |µ|pEq ¥ limn |µn|pYk

j�1Ejq � limn
°k

j�1 |µn|pEjq ¥ °k
j�1 |µ|pEjq

for all k. So |µ|pEq ¥ °8
j�1 |µ|pEjq. Now |µ|pEq � limn |µn|pYEjq �

limn
°8

j�1 |µn|pEjq � limn
°k

j�1 |µn|pEjq � |µn|pY8j�k�1Ejq. Take ε ¡ 0.
Pick N with ||µn�µN || ¤ ε for n ¥ N . Then for n ¥ N , |µn|pY8j�k�1Ejq ¤|µN |pY8j�k�1Ejq � ε. Now take k large so that |µN |pY8j�k�1Ejq   ε. Thus
|µ|pEq ¤ °k

j�1 |µ|pEjq�µN pY8j�k�1Ejq�ε ¤ °8
j�1 |µ|pEjq�2ε. So |µ|pEq ¤° |µ|pEjq and we see |µ| is a measure.
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We also have |µmpEq �µnpEq| ¤ ||µm�µn|| and so µnpEq Ñ µpEq P C.
To see µ is a complex measure, note if Ej are disjoint, then

|µpYEjq �
ķ

j�1

µpEjq| � |µpY8j�1Ejq � µpYk
j�1Ejq|

� |µpY8j�k�1Ejq|
� lim

n
|µnpY8j�k�1Ejq|

¤ lim
n
|µn|pY8j�k�1Ejq

� |µ|pY8j�k�1Ejq Ñ 0

as k Ñ 8 for |µ| is a finite measure. Thus µ is a measure. Now if
E1, E2, . . . , Ek are disjoint Baire sets with union X, then

°k
j�1 |pµm�µqpEjq| �

limn
°k

j�1 |pµm � µnqpEjq| ¤ lim supn ||µm � µn||. This implies ||µm � µ|| ¤
lim supn ||µm � µn|| and since µm is Cauchy, we have ||µm � µ|| Ñ 0 as
mÑ8.

Finally, we need to show the finite measure |µ| is inner regular. Suppose
E is a Baire set and let ε ¡ 0. Choose n so that || |µn| � |µ| ||   ε

4 . Thus
|µn|pW q � ε

4   |µ|pW q   |µn|pW q � ε
4 for all Baire subsets W of G. Since

|µn| is inner regular, we can choose a compact Gδ subset K of E with
|µn|pEq   |µn|pKq � ε

2 . Then

|µ|pEq � |µ|pKq   |µn|pEq � ε

4
� |µn|pKq � ε

4
� ε

2
� |µn|pEq � |µn|pKq

  ε.

Thus |µ|pEq � |µ|pKq   ε.
¤

The following theorem can be derived from the Riesz Theorem 6.1; see
Exercises 6.6.5 to 6.6.8. It can also be found in some of the references
mentioned earlier. If X is a locally compact Hausdorff space, we shall use
both |f | and ||f ||8 for the norm of a function f in CcpXq. Thus |f | �
||f ||8 � maxt|fpxq| | x P Xu.
Theorem 6.97. Let X be a locally compact Hausdorff space. Then the dual
of the normed linear space CcpXq is isometrically isomorphic to MpXq; i.e.,
µ ÞÑ Iµ where Iµpfq � ³

f dµ for f P CcpXq is a vector space isomorphism
of MpXq onto CcpXq� and ||Iµ|| � ||µ|| � |µpXq| for each µ.

Now let G be a locally compact Hausdorff topological group. All mea-
sures will be assumed to be Radon and thus are inner regular Baire measures.
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We fix a left Haar measure λ. Let µ and ν be in MpGq. We would like to
define I on CcpGq by

(6.20) Ipfq �
¼

G�G

fpxyq dpµ� νqpx, yq.
This can be done but one would have to continually work out measure
theoretic dexifficulties; namely one could go to countable unions X and Y
of Gδ compact subsets which are conull in G with respect to the measures
|µ| and |ν|. To avoid this, we will for the most part be assuming our locally
compact Hausdorff groups are σ-compact.

To deal with Baire sets in the σ-compact case, we begin with some
notation and recall how product spaces are well behaved in this situation.

If X is a locally compact Hausdorff space, let BApXq denote the σ-
algebra of Baire subsets of X. Using Proposition 6.12, we know if X � Y
has the product topology and either X or Y is σ-compact, then BApX�Y q �
BApXq � BApY q. Furthermore, by Proposition 6.7, if X is σ-compact, any
complex measure or any measure which is finite on the compact Gδ subsets
of X is inner regular and thus is a Radon measure.

Lemma 6.98. Let G be a σ-compact locally compact Hausdorff group. Let
µ and ν be in MpGq. Then:

(a) µ� ν PMpG�Gq;
(b) px, yq ÞÑ fpxyq is Baire measurable on G � G for each Baire mea-

surable function f on G;
(c) If E is a Baire measurable subset of G, then tpx, yq | xy P Eu is a

Baire measurable subset of G � G, and x�1E and Ex�1 are Baire
subsets of G for all x. Moreover, x ÞÑ νpx�1Eq and y ÞÑ µpEy�1q
are Baire measurable, and
pµ� νqtpx, yq | xy P Eu � ³

νpx�1Eq dµpxq � ³
µpEy�1q dνpyq.

Proof. We know BApG � Gq � BApGq � BApGq. So µ � ν is a complex
Baire measure and since G�G is σ-compact, we know |µ�ν| is inner regular
and thus Radon. This gives (a). By Lemma 6.13, we know P : px, yq ÞÑ xy is
Baire measurable. Thus if U is a Borel subset of C, one has pf �P q�1pUq �
P�1pf�1pUqq P BapG � Gq for f�1pUq P BApGq. So we have (b). Now
(c) follows from this and Fubini’s Theorem. Specifically χE � P is Baire
measurable on G�G. Thus tpx, yq | xy P Eu � P�1pEq � pχE � P q�1p1q is
a Baire subset of G�G. Moreover, by Fubini’s Theorem: For each x and y, the functions y ÞÑ χE�P px, yq and x ÞÑ χE�P px, yq

are Baire measurable. The functions x ÞÑ ³
χE � P px, yq dνpyq and y ÞÑ ³

χE � P px, yq dµpxq
are Baire measurable.
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 ´
χE � P px, yq dνpyq dµpxq � ´

χE � P px, yq dµpxq dνpyq � ´
χE �

P px, yq dpµ� νqpx, yq.
Putting these together with

pχE � P qpx, yq � χx�1Epyq � χEy�1pxq � χP�1pEqpx, yq
gives the result. ¤

Now if G is σ-compact, using this lemma we see the integral given in
(6.20) is defined for f P CcpGq for by Lemma 6.11, continuous functions
are Baire measurable. Moreover, I is a continuous linear functional for
|Ipfq| ¤ |f | ³ ³ d|µ| d|ν| ¤ |f | |µ|pGq |ν|pGq � ||µ|| ||ν|| |f |. Thus by Theorem
6.97, there is a unique measure µ � ν in MpGq with ||µ � ν|| ¤ ||µ|| ||ν|| such
that

(6.21)

»
f dpµ � νq �

¼
G�G

fpxyq dpµ� νqpx, yq

�
»

G

»
G

fpxyq dµpxq dνpyq
�
»

G

»
G

fpxyq dνpyq dµpxq
for f P CcpGq. This measure µ�ν is called the convolution of the measures
µ and ν.

Corollary 6.99. Let G be a σ-compact locally compact Hausdorff group and
suppose µ, ν P MpGq. Then the measure µ � ν satisfies

µ � νpEq �
»

G
νpx�1Eq dµpxq �

»
G

µpEy�1q dνpyq
for all Baire subsets E of G. Moreover, if f is any bounded Baire function
or more specifically, any bounded continuous function, then»

G
f dpµ � νq �

¼
fpxyq dpµ� νqpx, yq.

Proof. Let P px, yq � xy. Define a complex measure ρ on BApGq by ρpEq �
pµ� νqpP�1pEqq. Using the Baire measurability of P given in Lemma 6.13,
ρ is a complex Baire measure. By the σ-compactness of G, we have ρ P
MpGq. Moreover, ρpEq � pµ � νqpEq is equivalent to

´
χEpxyq dpµ � νq �³

χEpgq dρpgq for all Baire subsets E of G. Hence
´

fpxyq dpµ � νqpx, yq �³
fpgq dρpgq for all simple Baire functions f . Since µ � ν is complex and

hence its component are all finite measures, this implies¼
fpxyq dpµ� νqpx, yq �

»
fpgq dρpgq
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for all bounded Baire measurable functions f . Since continuous functions on
G are Baire, we obtain

´
fpxyq dpµ�νqpx, yq � ³

fpgq dρpgq for all f P CcpGq.
Consequently, ρ � µ � ν. ¤

Throughout the rest of this section, we assume G to be a σ-compact
locally compact Hausdorff group. Recall for a measure µ on G, we have
defined pxµqpEq � µpx�1Eq and pµxqpEq � µpEx�1q. Then xµ and µx
are in MpGq when µ P MpGq and pxyqµ � xpyµq and µpxyq � pµxqy.
These measures are called the left and right translates of the measure µ.
Also for a P G, the point mass εa at a is the measure satisfying εapfq �³
fpxq dεapxq � fpaq for f P CcpGq. Thus εapEq � χapEq which is 1 if a P E

and 0 if a R E.

Proposition 6.100. The mapping

MpGq �MpGq Q pµ, νq ÞÑ µ � ν PMpGq

is bilinear, satisfies ||µ � ν|| ¤ ||µ|| ||ν||, and has the following properties:

(a) pµ � νq � σ � µ � pν � σq
(b) Let εa be the point mass at a. Then εa � ν � aν and ν � εa � νa.

In particular, εa � εb � εab and εe � ν � ν � εe � ν.

(c) If µ and ν are real, then µ � ν is real.

(d) If both µ and ν are positive, then µ � ν is positive.

Proof. For the first part we need only show bilinearity. If suffices thus to
show pµ, νq Ñ Iµ�ν is bilinear from MpGq �MpGq into CcpGq�. But

Ipaµ1�bµ2q�νpfq �
¼

fpxyq dpaµ1 � bµ2qpxq dνpyq
� a

¼
fpxyq dµ1pxq dνpyq � b

¼
fpxyqdµ2pxq dνpyq

� aIµ1�νpfq � bIµ2�νpfq,

and similarly Iµ�paν1�bν2q � aIµ�ν1 � bIµ�ν2 .
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Now (a) follows by Fubini’s Theorem for

Ipµ�νq�σpfq �
¼

fpxzq dpµ � νqpxq dσpzq
�
» » »

fpxyzq dµpxq dνpyq dσpzq
�
» �» »

fpxyzq dνpyq dσpzq



dµpxq
�
» »

fpxwq dpν � σqpwq dµpxq
�
» »

fpxwq dµpxq dpν � σqpwq
� Iµ�pν�σqpfq.

For (b), note

εa � µpfq �
» »

fpxyq dεapxq dµpyq �
»

fpayq dµpyq
�
»

fpyq dµpa�1yq �
»

fpyq dpaµqpyq.
So εa � µ � aµ. Similarly, µ � εa � µa. Consequently, εa � εb � aεb � εab.
Finally (c) and (d) follow immediately from the definition. ¤

Definition 6.101. Let µ PMpGq. Then the adjoint µ� of the measure µ is
the measure in MpGq satisfying

µ�pfq :�
»

fpxq dµ�pxq �
»

f̄px�1q dµpxq
for f P CcpGq.
Lemma 6.102. Let µ, ν PMpGq. Then µ� PMpGq and the following holds:

(a) µ�� � µ

(b) ||µ�|| � ||µ||,
(c) µ ÞÑ µ� is conjugate linear.

(d) pµ � νq� � ν� � µ�;
(e) µ�pEq � µpE�1q for all Baire subsets E of G.

Proof. Obviously µ�� � µ and µ ÞÑ µ� is complex linear. Furthermore µ�
is linear and |µ�pfq| ¤ ||f ||8||µ||. Hence µ� P MpGq and ||µ�|| ¤ ||µ||. As
µ�� � µ it follows that ||µ�|| � ||µ||. Let f P CcpGq. Then using Fubini’s
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Theorem, one has

pµ � νq�pfq �
»

fpu�1q dpµ � νqpuq �
¼

fppxyq�1q dµpxq dνpyq
�
¼

fpy�1x�1q dµpxq dνpyq �
» »

fpy�1x�1q dµpxq dν̄pyq
�
» »

fpy�1xq dµ�pxq dν̄pyq �
» »

fpy�1xq dν̄pyq dµ�pxq
�
» »

fpy�1xq dνpyq dµ�pxq �
» »

fpyxq dν�pyq dµ�pxq
�
»

fpuq dpν� � µ�qpuq
Finally, define a complex Baire measure ρ by ρpEq � µpE�1q. Since G is
σ-compact, |ρ| is inner regular and thus ρ P MpGq. Moreover, it is easy
to check

³
f dρ � ³

fpx�1q dµpxq for simple Baire functions f and hence by
taking limits for all bounded complex Baire functions. Since continuous
functions with compact support are Baire, we see ρ must be µ�. ¤

We end this section about MpGq with the following simple consequence
of (b) from Proposition 6.100.

Proposition 6.103. Let G be a locally compact Hausdorff group. Then
MpGq is abelian if and only if G is abelian.

Proof. Assume first that G is abelian. Then fpxyq � fpyxq for all f P
CcpGq and x, y P G. This implies that µ � ν � ν � µ for all µ, ν P MpGq.
Assume now that MpGq is abelian. Then εxy � εx � εy � εy � εx � εyx. If
G is not commutative we can find x, y P G such that xy �� yx. But txyu is
compact. Hence there is a f P CcpGq such that fpxyq �� fpyxq which implies
that εxypfq �� εyxpfq. Thus G is abelian. ¤

Exercise Set 6.6

1. Let µ � Reµ�iImµ be a complex Borel measure on a space X where Reµ
and Imµ are signed measure having Hahn decompositions Reµ � µ1 � µ2

and Imµ � µ3 � µ4. Show |µ| is regular if and only if each of the measures
µj are regular.

2. Let X be a locally compact Hausdorff space. Exercise 6.1.11 shows
C0pXq, the space of complex valued continuous functions on X vanishing
at 8 is a Banach � algebra (actually a C� algebra). Show C0pXq is the
completion of CcpXq.
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3. Let X be a locally compact Hausdorff space. Show every function f P
C0pXq is Baire measurable on X.

4. Use Lemma 6.4 and Proposition 6.7 to show that every complex Borel
measure on a second countable locally compact Hausdorff space is regular.

5. Let X be a locally compact Hausdorff space. Let I be a positive bounded
integral on CcpXq. Show the unique Radon measure µ on X with Ipfq �³
f dµ is finite and ||I|| � µpXq.

6. Let X be a locally compact Hausdorff space and let I : CcpXq Ñ C be
a bounded linear functional which is real valued on real valued functions.

(a) Define I� on the positive functions f in CcpXq by

I�pfq � sup
0¤g¤f

Ipfq.

Show I�pcfq � cI�pfq and I�pf1 � f2q � I�pf1q � I�pfq when
c ¥ 0 and f, f1 and f2 are all nonnegative.

(b) Define I�pfq � I�pf�q � I�pf�q for f a real valued function on
X. Show I� is positive and linear and bounded on the real valued
functions.

(c) Let f be real valued. Define I�pfq � �pIpfq � Ipf�qq. Then
I � I��I�. Show I� is positive and linear and ||I|| � ||I�||�||I�||.

7. Show if µ1 and µ2 are finite positive measures on a locally compact
Hausdorff space X and I defined on CcpXq by Ipfq � ³

f dµ1 � ³
f dµ2 has

norm ||I|| � µ1pXq � µ2pXq, then the measures µ1 and µ2 are disjoint and
thus µ � µ1 � µ2 is the Hahn decomposition of µ.

8. Let X be a locally compact Hausdorff space. Using the previous exer-
cises, show the dual of CcpXq is MpXq; i.e., every bounded complex linear
functional I on CcpXq is given by a unique complex Radon measure µ by

Ipfq �
»

f dµ.

Moreover, ||I|| � ||µ|| � |µ|pXq.
9. Let G be a locally compact Hausdorff group. Show the mappings µ ÞÑ xµ
and µ ÞÑ µx are linear isometries of MpGq.
10. Show x ÞÑ xµ and x ÞÑ µx are continuous from G into MpGq where
MpGq � CcpGq� has the weak � topology.

11. Show if µ and ν are regular complex Borel measures on G, and E is a
countable union of compact Gδ sets, then x ÞÑ νpx�1Eq and y ÞÑ µpEy�1q
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are Borel measurable and

µ � νpEq �
»

νpx�1Eq dµpxq �
»

µpEy�1q dνpyq.
12. Show if µ is a regular complex Borel measure on a locally compact
Hausdorff group, then the measure E ÞÑ µpE�1q is a regular Borel measure.

13. Let X be a locally compact Hausdorff space. Let FpXq be the vec-
tor space of all bounded complex Borel functions on X and define ||f || �
supt|fpxq| | x P Xu for f P FpXq.

(a) Show FpXq is a Banach space.
(b) Show the dual space of FpXq is the space of all finitely additive

complex Borel measures on X; i.e., show each continuous linear
functional I on FpXq has form Ipfq � ³

f dµ for a unique finitely
additive measure. (Here one needs to define

³
f dµ appropriately.)

(c) Show if Ipfq � ³
f dµ where µ is finitely additive, then ||I|| �

supt°m
k�1 |µpEkq| | E1, E2, . . . , Em are disjoint and have union Xu.

13. The Banach Algebra L1pGq
In this section G will remain a locally compact Hausdorff topological group
which is σ-compact and has a fixed left Haar measure λ. For f P L1pG,λq,
define a complex Baire measure λf by

(6.22) λf pEq �
»

E
f dλ.

Since G is σ-compact, we know by Proposition 6.7 that λf is a Radon
measure and so λf P MpGq. We let Λ be the linear mapping f ÞÑ λf from
L1pG,λq into MpGq. Since λf1 � λf2 implies f1 � f2, the mapping Λ is
one-to-one. In fact, ||Λpfq|| � ||λf || � |λf |pGq � ³ |fpxq| dλpxq and thus Λ
is an isometry. We now show L1pGq has a convolution and an involution
with the properties Λpf � gq � Λpfq � Λpgq and Λpf�q � Λpfq�. In the
case when G is R with Lebesgue measure, one obtains the convolution and
involution discussed in Section 7 of Chapter 2. We shall see the existence
of these operations depends on the invariance properties of the left Haar
measure λ. Because of their use in these arguments we list them here. They
follow from (c), (e), and (g) of Proposition 6.3.»

fpxyq dλpyq �
»

fpyq dpxλqpyq �
»

fpyq dλpyq(6.23) »
fpyxq dλpyq �

»
fpyq dpλxqpyq � ∆px�1q

»
fpyq dλpyq(6.24) »

fpyq dλpyq �
»

fpy�1q∆py�1q dλpyq(6.25)



The Banach Algebra L1pGq 363

where the function f is either λ-integrable or nonnegative and Baire mea-
surable.

Proposition 6.104. Let µ P MpGq and f P L1pλq. Then µ � λf , λf � µ,
and pλf q� are in ΛpL1pλqq. More specifically the functions µ � f , f � µ, and
f� defined by

µ � fpxq �
»

fpyq dµpy�1xq �
»

fpy�1xq dµpyq
f � µpxq �

»
fpxy�1q∆py�1q dµpyq and

f�pxq � fpx�1q∆px�1q
are in L1pλq and

µ � λf � λµ�f ,

λf � µ � λf�µ and

pλf q� � λf� .

Proof. Let f P L1pλq and φ P CcpGq. Note
´ |φpyxqfpxq| dp|µ| � λqpy, xq ¤

||φ||8 ³ |fpxq| dλpxq ³ d|µ|pyq ¤ ||φ||8|f |1||µ||. Thus by Fubini and (6.23), we
have

µ � λf pφq �
» »

φpyxq dµpyq fpxq dλpxq
�
» »

φpxqfpy�1xq dλpxq dµpyq
�
»

φpxq
»

fpy�1xq dµpyq dλpxq
and µ�f defined by µ�fpxq � ³

fpy�1xq dµpyq is finite for λ a.e. x. Moreover,
since

´ |fpy�1xq dµpyq| dx ¤ ´ |fpy�1xq| dx d|µ|pyq| � |f |1||µ||, µ � f is an
integrable Baire function. Thus µ � λf pφq � λµ�f pφq for all φ P CcpGq.

Similarly, px, yq ÞÑ φpxyqfpxq is λ � |µ| integrable. Moreover, using
Fubini and (6.24)

λf � µpφq �
¼

φpxyq dλf pxq dµpyq �
¼

φpxyqfpxq dλpxq dµpyq
�
¼

φpxqfpxy�1q∆py�1q dλpxq dµpyq
�
»

φpxq
»

fpxy�1q∆py�1q dµpyq dλpxq,
we have f � µ defined by f � µpxq � ³

fpxy�1q∆py�1q dµpyq is Baire and
integrable and

λf � µpφq � λf�µpφq for φ P CcpGq.
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Finally, by (6.24), f� defined by f�pxq � fpx�1q∆px�1q is integrable
and for φ P CcpGq, one has

pλf q�pφq �
»

φpx�1q dλf pxq
�
»

φpx�1q fpxq dλpxq
�
»

φpxqfpx�1q∆px�1q dλpxq
�
»

φpxqfpx�1q∆px�1q dλpxq
�
»

φpxqf�pxq dλpxq
� λf�pφq.

¤

For f P L1pλq and µ PMpGq, the L1 functions f �µ and µ � f are called
the convolutions of f and µ. An immediate consequence of Proposition 6.104
is that for f, g P L1pGq, one has f � λg and λf � g are in L1pλq and

λf � λg � λf�λg � λλf�g.
We hence define the convolution of two L1pλq functions f and g by f � g �
f � λg � λf � g. We then have λf�g � λf � λg and |f � g|1 � ||λf � λg|| ¤||λf | | ||λg|| � |f |1|g|1.

From Proposition 6.104 we see λf � gpxq � ³
gpy�1xq dλf pyq and thus

convolution is given by:

(6.26) f � gpxq �
»

fpyqgpy�1xq dy.

One could also use f � gpxq � f � λgpxq � ³
fpxy�1q∆py�1qgpyq dy. This

suggests the following general definition.

Definition 6.105. Suppose f and g are complex Baire measurable functions
or more generally Borel functions such that y ÞÑ fpyqgpy�1xq is integrable
for λ a.e. x. Then f � g defined a.e. by f � gpxq � ³

fpyqgpy�1xq dλpyq is the
convolution of f and g.

With this definition, convolution has many of the properties as convo-
lution on Rn. These include (b) of Lemma 2.75 and Lemmas 2.76 and 2.77
from Chapter 2 and make up some of the exercises at the end of this section.
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Returning to the case where f and g are integrable we note

λpf�gq� � pλf�gq� � pλf � λgq� � pλgq� � pλf q�
� λg� � λf�
� λg��f� .

Hence pf �gq� � pg�q�pf�q. Furthermore, involution satisfies pf�q� � f and
|f�|1 � |f |. Thus the mapping pf, gq ÞÑ f � g is bilinear on L1pλq � L1pλq,
f ÞÑ f� is conjugate linear on L1pλq and for f, g P L1pλq, one has

|f � g|1 ¤ |f |1|g|1(6.27)

|f�|1 � |f |1(6.28)

pf � gq� � g� � f�.(6.29)

Hence in the σ-compact case we have shown:

Proposition 6.106. With convolution and involution, L1pG,λq is a Ba-
nach � algebra. Moreover, the mapping f ÞÑ λf is a involutive isometric
homomorphism of L1pGq into MpGq whose range is an ideal.

Exercise Set 6.7

In the following exercises G will always denote a σ-compact locally com-
pact Hausdorff group and λ will be a left-invariant Haar measure on the
locally compact Hausdorff topological group G.

1. Let 1 ¤ p   8. If f P LppGq and µ P MpGq then f � µ, µ � f P LppGq
and

||f � µ||p ¤ ||f ||p||µ|| and ||µ � f ||p ¤ ||f ||p||µ|| .
2. Let f , g, and h be complex Borel functions on G. Show if f � g and
pf �gq �h are defined a.e. λ, then f � pg �hq is defined a.e. λ and pf �gq �h �
f � pg � hq a.e. λ.

3. Suppose f � g and f � h are defined a.e. λ and a and b are complex
numbers. Show f � pag � bhq � apf � gq � bpf � hq.
4. Let 1 ¤ p ¤ 8 and 1 ¤ q ¤ 8 with 1

p � 1
q � 1. Show if f P Lppλq and

g P Lqpλq, then f � g is a continuous function and satisfies |pf � gqpxq| ¤
|f |p|g|q for all x.

5. Suppose f P L1
locpλq and g P CcpGq. Show f � g P CpGq.

6. Let f and g be complex Borel functions such that f � gpwq exists for λ
a.e. w. Let Lxfpyq � fpx�1yq. Show pLxfq � gpwq � Lxpf � gqpwq a.e. w.

7. Let H be a closed subgroup of G and let X � G{H. Assume that
µ is a positive, G-invariant measure on X. Show that if f P L1pGq and
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g P L1pX, µq then
G Q a ÞÑ fpaqgpa�1xq P C

is integrable with respect to λ for µ-almost all x P X. Furthermore

(a) X Q y ÞÑ f � gpxq :� ³
fpaqgpa�1xq dλ is integrable with respect to

µ

(b) ||f � g||1 ¤ ||f ||1||g||1.
8. Let 1 ¤ p   8. Show that the map L : G Ñ BpLppGqq, Lafpbq :�
fpa�1bq is strongly continuous, i.e.,

lim
aÑb

||Laf � Lbf ||p � 0

for all f P LppGq.
9. Let f, g P L2pGq. Show f � g is defined and f � g P C0pGq.
10. Assume that there exists a sequence of open set Un P N peq, n P N, such
that XUn � teu. We can then assume that Un�1 � Un. Show the following:

(a) There exists a sequence of compactly supported functions tfnunPN
such that supppfq � Un and

³
fn dλ � 1.

(b) Let f P L1pGq then

lim
nÑ8 fn � f � f .

14. The Representations of L1pGq
Again we continue to let G be a σ-compact locally compact Hausdorff group.
We shall use dg for a fixed left Haar measure on G and return to using λ for
the left regular representation of G. Our goal in this section is to show the
unitary representations of G can be used to obtain all the representations
of the � algebra L1pGq. We start by showing each unitary representation
integrates to give a representation of the � algebra MpGq. First we present
some preliminaries.

A representation π of an algebra A on a topological vector space V is
said to be nondegenerate if the linear span of the vectors πpaqv where
a P A and v P V is dense in V . If π is a � representation of a � algebra A
on a Hilbert space H, Exercise 6.8.1 shows π is nondegenerate if and only if
the only vector v with πpaqv � 0 for all a P A is 0.

Theorem 6.107. Let π be a unitary representation of G on a Hilbert space
H. Then there is a representation Π of the � algebra MpGq on H satisfying

pΠpµqv, wqH �
»
pπpgqv, wqH dµpgq

for all v, w P H. Furthermore, ||Πpµq|| ¤ ||µ|| for µ PMpGq.
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Proof. The σ-compactness of G and Lemma 6.11 imply the continuous
functions g ÞÑ pπpgqv, wqH are Baire measurable. Since |pπpgqv, wqH| ¤||v|| ||w|| for all g, the sesquilinear form Bµpv, wq :� ³pπpgqv, wqH dµpgq is
finite and satisfies

|Bµpv, wq| ¤ supt|pπpgqv, wqH| | g P Gu||µ|| ¤ ||v||H||w||H ||µ||.
By the Riesz Theorem, there exists a unique linear operator Πpµq on H with
||Πpµq|| ¤ ||µ|| and

pΠpµqv, wqH �
»
pπpgqv, wqH dµpgq

for all v and w in H. Since µ ÞÑ Bµ is linear, µ ÞÑ Πpµq is linear. To finish
we need to show Πpµ�νq � ΠpµqΠpνq and Πpµ�q � Πpµq�. Note by Fubini’s
Theorem and Lemma 6.99

pΠpµ � νqv, wqH �
»
pπpgqv, wqH dpµ � νqpgq

�
¼
pπpxyqv, wqH dpµ� νqpx, yq

�
¼
pπpyqv, πpx�1qwqH dνpyq dµpxq

�
»
pΠpνqv, πpx�1qwqH dµpxq

�
»
pπpxqΠpνqv, wqH dµpxq

� pΠpµqΠpνqv, wqH
for all v and w. Hence Πpµ � νq � ΠpµqΠpνq. Also using Definition 6.101,
one has

pΠpµ�qv, wqH �
»
pπpgqv, wqH dµ�pgq

�
»
pπpg�1qv, wqH dµpgq

�
»
pv, πpgqwqH dµpgq

�
»
pπpgqw, vqH dµpgq

� pΠpµqw, vqH
� pv, ΠpµqwqH.

This implies Πpµ�q � Πpµq. ¤
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The representation Π is called the integrated representation on MpGq
obtained from π. It is customary to use π instead of Π for the integrated
representation. One also uses the shorthand»

πpgq dµpgq
to denote the operator Πpµq. Thus πpµq � ³

πpgq dµpgq and

pπpµqv, wqH �
»
pπpgqv, wqH dµpgq.

Corollary 6.108. Let π be a unitary representation of G on Hilbert space
H. Then π : L1pGq Ñ BpHq defined by πpfq � Πpλf q is a nondegenerate
� representation of L1pGq satisfying ||πpfq|| ¤ |f |1 for each f P L1pGq. In
particular, πpfq is the unique linear operator satisfying

pπpfqv, wqH �
»

fpgqpπpgqv, wqH dg

for v, w P H.

Proof. By Proposition 6.106, f ÞÑ λf is a � isometric isomorphism of L1pGq
into MpGq. This implies f ÞÑ πpλf q is a � representation of L1pGq and||πpfq|| ¤ |f |1. Note

pπpfqv, wqH � pΠpλf qv, wqH �
»
pπpgqv, wqH dλf pgq �

»
fpgqpπpgqv, wqH dg.

Thus to finish, we need only show π is nondegenerate. Assume πpfqv �
0 for all f P L1pGq. Then

³
fpgqpπpgqv, vqH dg � 0 for all f P L1pGq.

Since π is strongly continuous, there is a neighborhood U of e such that
Repπpgqv, vqH ¡ 0 for g P U . Now choose a nonnegative continuous function
f with compact support in U satisfying fpeq � 1. Define F by F pgq �
Repfpgqpπpgqv, vqHq. Note F ¥ 0 and if F peq ¡ 0, then (a) of Proposition
6.3 gives

³
F pgq dg ¡ 0. But

³
F pgq dg � Re

�³
fpgqpπpgqv, vqH dg

� � 0. So
F peq � pv, vqH � 0. ¤

This corollary has a converse.

Theorem 6.109. Let Π be a nondegenerate representation of the � algebra
L1pGq on a Hilbert H. Then there is a unitary representation π of G on H
such that Πpfq � ³

fpgqπpgq dg for all f P L1pGq.
Proof. Define πpxq on xtΠpfqv | f P L1pGq, v P Hy by

πpxq m̧

k�1

Πpfkqvk �
m̧

k�1

ΠpLpxqfkqvk
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where Lpxqfpyq � fpx�1yq. We need to show πpxq is well defined. Since
πpxq would be linear if it is well defined, it suffices to show

πpxq¸Πpfkqvk � 0 whenever
¸

Πpfkqvk � 0.

Now

p m̧

k�1

pΠpLpxqfkqvk,
m̧

j�1

ΠpLpxqfjqvjq �
j̧,k

pvk,ΠppLpxqfkq�ΠppLpxqfjqvjq
�

ķ j̧

pvk, ΠppLpxqfkq� � pLpxqfjqvjq.
But

pLpxqfkq� � pLpxqfjqpyq �
»
pLpxqfkq�puqpLpxqfjqpu�1yq du

�
»

∆pu�1qLpxqfkpu�1q fjpx�1u�1yq du

�
»

∆pu�1qfkpx�1u�1q fjpx�1u�1yq du

�
»

fkpx�1uqfjpx�1uyq du

�
»

fkpuqfjpuyq du

�
»

∆pu�1qfkpu�1qfjpu�1yq du

�
»

f�k puqfjpu�1yq du

� f�k � fjpyq.
Thus

p m̧

k�1

pΠpLpxqfkqvk,
m̧

j�1

ΠpLpxqfjqvjq �
ķ,j

pvk, ΠppLpxqfkq� � pLpxqfjqvjq
�

ķ,j

pvk, Πpf�k � fjqvjq
�

ķ,j

pΠpfkqvk,Πpfjqvjq
� p

ķ

Πpfkqvk,
j̧

Πpfjqvjq.
This implies ||°k ΠpLpxqfkqvk||2 � ||°k Πpfkqvk||2. So πpxq is well defined
and is an isometry. By the nondegeneracy of Π, the domain of definition
of πpxq is dense in H. Thus πpxq extends to a linear isometry of H into
H. Clearly πpeq � I. Now πpxyqΠpfqv � ΠpLpxyqfqv � ΠpLpxqLpyqfqv �
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πpxqΠpLpyqfqv � πpxqπpyqΠpfqv implies πpxyq � πpxqπpyq. Consequently
πpx�1qπpxq � πpxqπpx�1q � πpeq � I and we see πpxq is onto and hence is
a unitary operator for each x P G.

By Proposition 6.83, ||Πpfq|| ¤ |f |1 for f P L1pGq. Hence ||Πpfqv||H ¤|f |1||v||H for each v P H and f P L1pGq. Since by Exercise 6.7.8, x ÞÑ
Lpxqf is continuous from G into L1pGq, we see that if ε ¡ 0 and w P H
has form w � °m

k�1 Πpfkqvk, we can choose a neighborhood N of e with
||ΠpLpxqfkqvk �Πpfkqvk|| ¤ ε

m if x P N and k � 1, 2, . . . ,m. Thus

||πpxq m̧

k�1

Πpfkqvk �
m̧

k�1

Πpfkqvk|| ¤
m̧

k�1

||ΠpLpxqΠpfkqvk �Πpfkqvk|| ¤ ε

if x P N . Since the space of such w is dense in H, if v P H and ε ¡ 0, we
can pick a w of form

°m
k�1 Πpfkqvk with ||v � w||H   ε

3 . For this w, pick a
neighborhood N of e with ||πpxqw � w||H ¤ ε

3 if x P N . Thus for x P N ,

||πpxqv � v||H ¤ ||πpxqv � πpxqw||H � ||πpxqw � w||H � ||w � v||H
¤ ||v � w||H � ε

3
� ||w � v||H

  ε.

So the homomorphism π is strongly continuous at e. We hence see that π
is a unitary representation.

Assume f, h P CcpGq. Now f � h is an L1 limit of sums of terms of form
fpxjqLpxjhqλpEjq for f �hpyq � ³

fpxqLpxqhpyq dx. Thus Πpf �hq is a norm
limit of sums of form

°
fpxjqπpxjqΠphqλpEjq and these converge in BpHq to³

fpxqπpxqΠphq dx. This implies pΠpf�hqv, wqH � ³
fpxqpπpxqΠphqv, wqH dx

for all v and w. So pΠpfqΠphqv, wqH � pπpfqΠphqv, wqH for all v and w.
Thus ΠpfqΠphq � πpfΠphq. By the continuity of π and Π from L1pGq into
BpHq and the density of CcpGq in L1pGq, we see ΠpfqΠphq � πpfqΠphq for
all f, h P L1pGq. Since the linear span of the ranges of all Πphq for h P L1pGq
is dense in H, we have Πpfq � πpfq for all f P L1pGq. ¤

In the case whenH is a separable Hilbert space, one can show the integral³
πpxqv dµpxq exists as a limit in H of finite sums of form

°
πpxiqv µpEiq.

Corollary 6.110. HomGpπ, πq � HomL1pGqpΠ, Πq.
Proof. A P HomGpπ, πq if and only if Aπpxq � πpxqA for all x P G. But this
occurs if and only if pπpxqv, A�wqH � pAπpxqv, wqH � pπpxqAv, wqH for all
x P G and v, w P H. But since x ÞÑ pπpxqAv, wqH and x ÞÑ pπpxqv,A�wqH
are continuous and bounded, we see by Exercise 6.8.3 that this occurs if and
only if

³
fpxqpπpxqv, A�wqH dx � ³

fpxqpπpxqAv, wqH dx for all f P CcpGq
and v, w P H. This is equivalent to pΠpfqv, A�wqH � pΠpfqAv,wq for all v
and w. So A P HomGpπ, πq if and only if AΠpfq � ΠpfqA for all f P CcpGq.
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But since CcpGq is dense in L1pGq and ||Πpfq|| ¤ |f |1 for f P L1pGq, we see
by taking limits that HomGpπ, πq � HomL1pGqpΠ, Πq. ¤

Corollary 6.111. A closed subspace of H is invariant under π if and only
if it is invariant under Π. Consequently, π is irreducible if and only if Π is
irreducible.

Proof. Note a closed subspace H0 of H is invariant under π if and only if
the orthogonal projection P of H onto H0 is in HomGpπ, πq if and only if P
is in HomL1pGqpΠ, Πq if and only if the range H0 of P is invariant under the
representation Π. ¤

Example 6.112. For ω P Rn, let eω be the one dimensional unitary repre-
sentation given by eωpxq � e2πix�ω. Then eω integrates to L1pRnq. Indeed,
operators on the Hilbert space C are just complex numbers and if f P L1pRnq,
then

(6.30)

eωpfq �
»
Rn

fpxqeωpxq dx

�
»
Rn

fpxqe2πix�ω dx

� f̂p�ωq.
Example 6.113. Let λ be the left regular representation of G and suppose
f P L1pGq. Then for g, h P L2pGq, one can show the integrability of the
function px, yq ÞÑ fpxqgpx�1yqhpyq and thus by Fubini’s Theorem one has

pλpfqg, hq2 �
»

fpxqpλpxqg, hq2 dx

�
»

fpxq
»

λpxqgpyqhpyq dy dx

�
» »

fpxqgpx�1yqhpyq dy dx

�
» �»

fpxqgpx�1yq dx



hpyq dy

�
»
pf � gqpyqhpyq dy

� pf � g, hq2
when f P L1pGq. Thus λpfqpgq � f � g.

In order to determine λpµq for µ P MpGq, we first note if f P CcpGq,
then µ � f is defined and is given in Proposition 6.104 by

µ � fpxq �
»

fpy�1xq dµpyq.
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Thus for f, h P CcpGq, Fubini’s Theorem can be used to show:

pλpµqf, hq2 �
»
pλpyqf, hq2 dµpyq

�
» »

fpy�1xqhpxq dx dµpyq
�
» »

fpy�1xq dµpyqhpxq dy

�
»
pµ � fqpxqhpxq dy.

So we see λpµqf � µ � f if f P CcpGq. Now ||λpµq|| ¤ ||µ|| and thus
||µ � f ||2 ¤ ||µ|| ||f ||2 for f P CcpGq. Consequently, if fn P CcpGq converges
to f in L2pGq, we see µ � fn is Cauchy in L2pGq. Thus one can define µ � f
by taking a sequence fn P CcpGq converging to f in L2pGq and setting:

(6.31) µ � f :� lim
nÑ8µ � fn in L2pGq.

Thus with this definition one has:

λpµqf � µ � f for µ P MpGq and f P L2pGq.
15. Invariant Subspaces of the Regular Representation of Rn

In the case of Rn, we showed in Example 6.90 that the representation λ̂
defined by λ̂pxq � FλpxqF�1 is given on L2pRnq by λ̂pxqfpyq � e�2πix�yfpyq.
Now we have just shown λphqf � h � f for h P L1pRnq and f P L2pRnq. We
now determine λ̂phq for h P L1pRnq. One can do this two ways. First, one
has λ̂phq � FλphqF�1. Thus λ̂phqf � FpλphqF�1fq � Fph � F�1fq. Now
using Exercise 3.3.2, Fph � F�1fq � ĥf . So λ̂phqf � ĥf . We can also
determine λ̂phq by using Corollary 6.108. Namely, using the integrability of
px, yq ÞÑ hpxqe�2πix�yfpyqgpyq and Fubini’s Theorem, one has

(6.32)

pλ̂phqf, gq2 �
»

hpxqpλ̂pxqf, gq2 dx

�
»

hpxq
»

e�2πix�yfpyqgpyq dy dx

�
» �»

hpxqe�2πix�y dx



fpyqgpyq dy

�
»

ĥpyqfpyqgpyq dy

� pĥf, gq2.
Thus λ̂phqf � ĥf for h P L1pRnq and f P L2pRnq.
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We now determine Hompλ̂, λ̂q. First note if A P HomL1pRnqpλ̂, λ̂q, then
by (6.32) and Theorem 3.10, that Aphfq � hApfq for all h P SpRnq. Now by
(2.10) of Chapter 2, if Q is a rectangle in Rn, there is a Schwartz function
h of compact support with 0 ¤ h ¤ 1 and h�1p1q � Q. Thus hn Ñ χQ

pointwise. Consequently hnf Ñ χQf and hnApfq Ñ χQApfq in L2. This
implies Aphnfq Ñ ApχQfq and thus ApχQfq � χQAf for f P L2pRnq. Thus
AχQf � χQAf for every step function f ; i.e., for every function f of form°m

k�1 akχQk
where Qk is a bounded rectangle.

Let Q � r0, 1qn. Define h on Q� k where k P Zn by hpxq � ApχQ�kqpxq
for x P Q � k. Thus if f is a step function, Af � °

kPZn ApχQ�kfq �°
χQ�kApχQ�kfq � °

fχQ�kApχQ�kq. So Af � fh whenever f is a step
function. Since the step functions are dense in L2pRnq and A is continuous,
by taking limits of step functions which converge both pointwise a.e. and
in L2, we see Af � hf for all L2 functions f . We claim |h|8 ¤ ||A||.
If not, there is an M ¡ ||A|| such that tx | |hpxq| ¥ Mu has a subset
E of finite positive measure. Set f � h|h|λnpEq�1{2χE . Note |f |2 � 1
and |Af |22 � ³ |h|λnpEq�1χEpxq dλnpxq ¥ M . So ||A|| ¥ M ¡ ||A||, a
contradiction.

Define for h P L8pRnq, the bounded linear operator Mh on L2pRnq by

Mhf � hf.

Note the prior argument shows ||Mh|| ¤ |h|8 and by Exercise 6.8.6, L8pRnq
is a C� algebra and the mapping h ÞÑMh is a � algebraic isometry of L8pRnq
onto its range.

Theorem 6.114. Let λ be the left regular representation of Rn. Then the C�
algebras L8pRnq and Hompλ, λq are � algebraically isometrically isomorphic
under the correspondence h ÞÑ F�1MhF .

Proof. We have just seen if A P Hompλ̂, λ̂q, then there is an h P L8pRnq
such that A � Mh. Now λ̂pxq � FλpxqF�1. This implies Hompλ̂, λ̂q �
FHompλ, λqF�1. Thus Hompλ, λq � F�1Hompλ̂, λ̂qF � tF�1MhF | h P
L8pRnqu. ¤

Corollary 6.115. The invariant subspaces of the left regular representation
λ of Rn are precisely the subspaces F�1pMχAL2pRnqq where A is a measur-
able subset of Rn.

Proof. A closed subspace H0 of L2pRnq is invariant under λ if and only if
λpxqH0 � H0 for all x if and only if FλpxqF�1FH0 � FH0 for all x if and
only if λ̂pxqFH0 � FH0 for all x if and only if the orthogonal projection
P onto FH0 is in Hompλ̂, λ̂q. But each P in Hompλ̂, λ̂q has form Mh for
h P L8pRnq. Now M�

h �Mh̄ and Mh2 �MhMh implies Mh is an orthogonal
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projection if and only if h is real valued and h � h2. Thus h � 0 or h � 1
a.e. x. So h � χA for some measurable set A. We hence see H0 is invariant
under λ if and only if FH0 � MχApL2pRnqq for some measurable subset A
of Rn. ¤

We thus have seen P is an orthogonal projection onto an invariant sub-
space of λ if and only if there is a Borel subset A such that

(6.33) Pf � F�1pχAFpfqq.
Corollary 6.116. Let A be a Borel subset of Rn with positive Lebesgue
measure and let λA be the subrepresentation of the left regular represen-
tation λ obtained by restricting λ to F�1pχAL2pRnqq. Then a function
f P F�1pχAL2pRnqq is a cyclic vector for λA if and only if f̂pyq � 0 a.e.
y P A.

Proof. Set L2
ApRnq � F�1pχAL2pRnqq. Assume f P L2

ApRnq. Then f is
cyclic for λA if and only if there is no nonzero g P L2

ApRnq with pλApxqf, gq2 �
0 for all x P Rn. This occurs if and only if there is no nonzero g P L2

ApRnq
with ppFλpxqF�1qFf,Fgq2 � 0 for all x, and hence if and only if there is
no nonzero g P L2

ApRnq with pλ̂pxqFf,Fgq2 � 0 for all x P Rn. Now f̂pyq
and ĝpyq are 0 a.e. off A. Thus f is cyclic for λA if and only if there is no
nonzero function g in L2pRnq whose Fourier transform vanishes off A such
that

Fpf̂ ĝqpxq �
»

e�2πix�yf̂pyqĝpyq dy � 0.

But by Corollary 3.8, the Fourier transform is one-to-one on L1pRnq and
since f̂ ĝ P L1pRnq, we see f̂ is cyclic for λA if and only if there is no nonzero
g P L2 with ĝ vanishing off A such that f̂ ĝ � 0 in L2. But this occurs if and
only if f̂pyq is not 0 a.e. y P A. ¤

Exercise Set 6.8

In the following exercises G unless otherwise stated will be a σ-compact
locally compact Hausdorff group.

1. Show a representation π on a � algebra A is nondegenerate if and only
if there is no nonzero vector v with πpxqv � 0 for all x P A.

2. Let π be a nondegenerate representation of a Banach � algebra having
an identity e. Show πpeq � I.

3. Suppose Upxq and V pxq are bounded continuous functions and µ is a
Radon measure on a locally compact Hausdorff space X with the prop-
erty µpOq ¡ 0 for every nonempty open Baire subset O of X. Show if
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³
fpxqUpxq dµpxq � ³

fpxqV pxq dµpxq for every f P CcpXq, then Upxq �
V pxq for all x.

4. Let f P L1pGq and for a, b P G, define afb by afbpxq � fpa�1xbq∆pbq
where ∆ is the modular function for G. Show

(a) f ÞÑafb is a linear isometry of L1pGq onto L1pGq.
(b) Show pafbq� �bpf�qa and pafbq � pbgcq �apf � gqc for a, b, c P G and

f, g P L1pGq.
(c) Show if π is a unitary representation of G, then

πpafbq � πpaqπpfqπpb�1q
5. Let G be a nondiscrete locally compact Hausdorff group. Show there is
a representation of MpGq which is nonzero and whose restriction to L1pGq
is trivial. (Hint: Show the atom free measures in MpGq form an ideal in
MpGq.)
6. Show L8pRnq is a C� algebra under pointwise multiplication and ad-
dition, adjoint h ÞÑ h̄, and norm ||h|| � |h|8. Then show the mapping
h ÞÑ Mh is an isometric � isomorphism of the algebra L8pRnq onto a norm
closed � subalgebra of BpL2pRnqq.

In the following 5 exercises µ and ν are regular Borel measures on Rn

and λn is Lebesgue measure on Rn.

7. Define for each x, an operator πµpxq on L2pRn, µq by πµpxqfpyq �
e�2πix�yfpyq.

(a) Show πµ is a unitary representation of Rn.

(b) Find πµpfq for f P L1pRnq.
(c) Show πµ is unitarily equivalent to πν if and only if µ and ν are

equivalent measures.

8. Show πµ is unitarily equivalent to a subrepresentation of the left regular
representation of Rn if and only if µ   λn.

9. Show πµ is always a cyclic representation. (Hint: Use Exercise 3.1.3.)

10. Show Hompπµ, πµq � tMf | f P L8pµqu where Mfh � fh for h P L2pµq.
11. Show Hompπµ, πµq is maximal abelian, i.e., show if A P BpL2pµqq and
AB � BA for all B P Hompπµ, πµq, then B P Hompπµ, πµq.
12. A function ϕ : GÑ C is called positive definite if for all x1, . . . , xn P
G the matrix pϕpx�1

i xjqq is positive semi-definite. Show the following:

(a) The function ϕ is positive definite if and only if
°n

i,j�1 cicjϕpx�1
i xjq ¥

0 for all x1, . . . , xn P G and all c1, . . . , cn P C.
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(b) Let E be the space of functions f : G Ñ C of the form f �°n
j�1 cjLpxjqϕ. Define a bilinear form p� , �q on E by

p ņ

i�1

ciLpxiqϕ,
ķ

j�1

djLpyjqϕq :�
i̧,j

cid̄jϕpy�1
j xiq .

Show that pf, fq ¥ 0 for all f P E.

(c) Let N � tf P E | pf, fq � 0u. Then p�, �q defines an inner product
on E{N . Let || � || be the corresponding norm on E{N .

(d) For f P E and x P G let πpxqfpyq � fpx�1yq. Then πpGqN � N .

(e) Define πϕpxq : E{N Ñ E{N by πϕpxqrf s :� rπpxqf s where rf s
denotes the equivalence class of f . Then ||πϕpxqf || � ||f ||. In
particular πϕ extends to a continuous map on V , the completion of
E{N in the norm || � ||, to V . Show if ϕ is continuous, then πϕ is a
unitary representation of G.

16. Central Functions

In this section G is a locally compact Hausdorff group with left Haar measure
m.

Definition 6.117. A complex function f on a group G is central if fpxyq �
fpyxq for all x and y in G.

We note f is central if and only if f is constant on conjugacy classes;
i.e., fpyxy�1q � fpxq for all x and y. Many times we will have a measurable
function which is “almost central”. We would like to replace it by a mea-
surable central function. The following lemma addresses this situation. To
do this we will need to know the measurability of the functions px, yq ÞÑ xy
and px, yq ÞÑ yx. This was established in Lemma 6.13 when G is σ-compact.

Lemma 6.118. Assume G is a σ-compact locally compact Hausdorff group.
Let f be a complex valued Baire measurable function f such that fpxyq �
fpyxq for m � m a.e. px, yq. Then f equals a central Baire measurable
function almost everywhere.

Proof. We recall since G is σ-compact, by Proposition 6.12, BApG�Gq �
BApGq �BApGq and BApG�G�Gq � BApGq �BApGq �BApGq and one
can apply Fubini’s Theorem to the measures m�m and m�m�m on these
σ-algebras.

Let E � tpx, yq | fpxyq � fpyxqu. By Lemma 6.13 and the Baire
measurability of f , E is a Baire subset of G � G and we are assuming
pm�mqpEcq � 0.
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Define Φ : G�GÑ G�G by Φpx, yq � pxy, yq. Then Φ and Φ�1 given
by Φ�1px, yq � pxy�1, yq are Baire measurable functions. Thus Φ�1pEq �
tpx, yq | fpxq � fpyxy�1qu and Φ�1pEcq � tpx, yq | fpxq � fpyxy�1qu
are Baire subsets of G � G. Moreover, Φ�1pEcq has measure 0. Indeed,
pm � mqpΦ�1pEcqq � ³

mty | fpxq � fpyxy�1qu dmpxq � 0 if and only if
mtx | fpxq � fpyxy�1u � 0 for m a.e. y if and only if mtxy | fpxyq �
fpyxqu � 0 for m a.e. y if and only if pm�mqpEcq � 0. Thus W � tpx, yq |
fpyxy�1q � fpxqu is a Baire subset whose complement has measure 0.

Now consider V � tpx, y1, y2q | fpy1xy�1
1 q � fpy2xy�1

2 qu. Then V is
a Baire subset of G � G � G. We claim its complement relative to m �
m � m has measure 0. It suffices to show for m a.e. x, the set V c

x given
by V c

x � tpy1, y2q | fpy1xy�1
1 q � fpy2xy�1

2 qu has m � m measure 0. But
for a.e. x, fpy1xy�1

1 q � fpxq a.e. y1 and for a.e. x, fpy2xy�1
2 q � fpxq a.e.

y2. This implies for a.e. x, fpy1xy�1
1 q � fpy2xy�1

2 q for m �m a.e. py1, y2q.
Consequently, V c

x has measure 0. By Fubini’s Theorem, we then obtain
pm � m � mqpV cq � ³pm � mqpV c

x q dmpxq � 0. Now let U be the set of
x such that pm �mqpV c

x q � 0. Again, using Fubini, x ÞÑ pm �mqpV c
x q is

Baire measurable, and thus U is a Baire subset of G whose complement has
measure 0. We note U is invariant under conjugation for right translates of
sets of Haar measure 0 in G have Haar measure 0; and thus if fpy1xy�1

1 q �
fpy2xy�1

2 q a.e. py1, y2q, then given any y, fpy1yxy�1y�1
1 q � fpy2xy�1

2 q a.e.
py1, y2q and again right translating, fpy1yxy�1y�1

1 q � fpy2yxy�1y�1
2 q a.e.

py1, y2q.
Define a function F by F pxq � 0 if x P U c and F is the a.e. constant of

the function py1, y2q ÞÑ fpy1xy�1
1 q � fpy2xy�1

2 q. Again using right translates
of sets of Haar measure have Haar measure 0, one sees F pyxy�1q � F pxq
for x P U and since U c is invariant under inner conjugation F pyxy�1q �
F pxq � 0 for x P U c.

To see F is Baire measurable, we take a probability measure µ on
BApGq which is equivalent to Haar measure. For x P U , we note F pxq �³
fpy1xy�1

1 q dµpy1q. The function F is Baire measurable by Fubini.

Finally, since for a.e. x, fpy1xy�1
1 q � fpxq a.e. y1 and fpy�1

2 xy�1
2 q � fpxq

a.e. y2, we see F pxq � fpxq for a.e. x P G. ¤

For measurable functions, being central will mean being equal almost
everywhere to a central measurable function.

Lemma 6.119. Let G be σ-compact. An L1 function on a unimodular group
is central if and only if πpfq P HomGpπ, πq for every unitary representation
π of G.
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Proof. Let f be central. Then

pπpfqπpgqv, wq �
»

fpxqpπpxqπpgqv, wq dx

�
»

fpxqpπpxgqv, wq dx

�
»

fpxg�1qpπpxqv, wq dx

�
»

fpg�1xqpπpxqv, wq dx

�
»

fpxqpπpgxqv, wq dx

�
»

fpxqpπpxqv, πpg�1qwq dx

� pπpfqv, πpg�1qwq
� pπpgqπpfqv, wq

for all v, w and g. Thus πpfqπpgq � πpgqπpfq for all g.
Conversely, let πpfq P HomGpπ, πq for all π. Then λpfq P HomGpλ, λq

where λ is the left regular representation. This implies as seen above working
from both sides to the middle that»

fpxg�1qpλpxqφ, ψq2 dx �
»

fpg�1xqpλpxqφ, ψq2 dx

for any φ and ψ in L2pGq. Thus:» »
fpxg�1qφpx�1yqψ̄pyq dy dx �

» »
fpg�1xqφpx�1yqψ̄pyq dy dx.

Hence:» »
fpyxg�1qφpx�1qψ̄pyq dx dy �

» »
fpg�1yxqφpx�1qψ̄pyq dy dx.

Replacing φpx�1q by φpxq and taking φpxq � χE and ψ � χF where E and
F have finite Haar measure, one sees¼

E�F

fpyxg�1q dpm�mqpx, yq �
¼

E�F

fpg�1xyq dpm�mqpx, yq.

This yields fpyxg�1q � fpg�1yxq for m �m a.e. px, yq for each g. Conse-
quently, fpxgq � fpxgq a.e. x and g. Now apply Lemma 6.118. ¤

Definition 6.120. Let π be a finite dimensional representation of a group
G. Then the character χπ is the function on G given by

χπpgq � Trpπpgqq.
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Note since Trpπpxyqq � Trpπpxqπpyqq � Trpπpyqπpxqq � Trpπpyxqq, the
character χπ is a central continuous function on G. We note if π and ρ
are equivalent finite dimensional representations of G, then χπ � χρ for if
A : Vπ Ñ Vρ gives the equivalence, then AπpgqA�1 � ρpgq for each g P G.
Consequently,

xρpgq � TrpAπpgqA�1q � Trpπpgqq � χπpgq.
We show a partial converse holds.

Theorem 6.121 (Burnside). Let π be a finite dimensional unitary repre-
sentation of a group G on a Hilbert space H. Then the linear span of the
operators πpgq for g P G is the space of all linear transformations on H.

Proof. Note if we give G the discrete topology, then π is still irreducible.
Moreover, by Corollary 6.76, π � π̄ on BpHq � HbH is irreducible. Let A
be the subspace of BpHq spanned by the operators πpgq for g P G. We note
A is finite dimensional and is nonzero. Moreover, since pπ � π̄qpg1, g2qA �
πpg1qAπpg�1

2 q for A P H b H and πpg1qπpgqπpg�1
2 q � πpg1gg�1

2 q, we see
A is invariant. Since A is closed and π � π̄ is irreducible, we conclude
A � HbH. ¤

Lemma 6.122. Let H be a finite dimensional Hilbert space and suppose
Φ is a � algebra isomorphism of BpHq satisfying TrpΦpAqq � TrpAq for
A P BpHq. Then there is an unitary transformation U of H with

ΦpT q � UTU� for T P BpHq.

Proof. Let e1, e2, . . . , en be an orthonormal basis of H. Now T � e1 b ē1

is an orthogonal rank one projection. Since ΦpT q � ΦpT 2q � ΦpT q2 and
ΦpT q� � ΦpT �q � ΦpT q, we see ΦpT q is an orthogonal projection. Moreover,
TrpΦpT qq � TrpT q � 1. Consequently, ΦpT q is an orthogonal rank one
projection. Hence we can choose f1, a unit vector, with Φpe1b ē1q � f1b f̄1.
We next claim for 1   j ¤ n, Φpe1 b ējq � f1 b f̄j for a unique vector fj .
Indeed, the operator Φpe1 b ējq is nonzero and since
Φpe1 b ējqΦpe1 b ējq� � Φpe1 b ē1q � f1 b f̄1 and the range of Φpe1 b ējq�
is the orthogonal complement of the kernel of Φpe1 b ējq, we see Φpe1 b ējq
has range the linear span of the vector f1. Using the Riesz representation
theorem, this implies Φpe1b ējq has form f1b f̄j for a unique vector fj in H.
We claim the vectors f1, f2, . . . , fn form an orthonormal basis of H. Indeed,
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note

pfi, fjq � pfi, fjqpf1, f1q � pfi b f̄1, fj b f̄1q2
� Trppfi b f̄1qpfj b f̄1q�q � Trppf1 b f̄iq�pf1 b f̄jqq
� TrpΦpe1 b ēiq�Φpe1 b ējqq � TrpΦpei b ē1qΦpe1 b ējqq
� TrpΦpe1 b ējq � pei b ē1qqq � Trppei, ejqe1 b ē1q
� pei, ejq � δi,j .

Define U by Uei � fi for i � 1, 2, . . . , n. Then U is unitary. Also

Φpei b ējq � Φppe1 b ēiq� � pe1 b ējqq
� pf1 b f̄iq� � pf1 b f̄jq
� pfi b f̄1q � pf1 b f̄jq
� pf1, f1qfi b f̄j

� fi b f̄j

� Uei b Uej

� Upei b ējqU�.
Since the eib ēj for 1 ¤ i, j ¤ n form a basis for BpHq, we see ΦpT q � UTU�
for all T in BpHq. ¤

Theorem 6.123. Let π and ρ be finite dimensional irreducible unitary rep-
resentations of a topological Hausdorff group G having equal characters.
Then π and ρ are unitarily equivalent.

Proof. Note dimHπ � χπpeq � χρpeq � dimHρ. Consequently, we may
assume Hπ � Hρ � H for Hilbert spaces of the same dimension are unitarily
isomorphic. Let n � dimH. Next note χπpgq � n if and only if Trpπpgqq �
n. But the only unitary n� n matrix with trace n is I. Thus χπpgq � n if
and only if πpgq � I. Since χπpgq � χρpgq for all g, we see the kerπ � ker ρ.
Let N be this common kernel. Then π and ρ factor to G{N to give faithful
irreducible unitary representations π1 and ρ1 of G{N on Hilbert space H.

Consider the ranges A1 � π1pG{Nq and A2 � ρ1pG{Nq. Define a map-
ping Φ : A1 Ñ A2 by Φpπ1pgNqq � ρ1pgNq. Note Φ satisfies ΦpA1A2q �
A1A2 and ΦpA�1q � ΦpA1q�. Also we have TrpΦpAqq � TrpAq for each
A P A1. We extend Φ to the linear space xA1y by Φp° ciAiq � °

ciΦpAiq.
To see Φ is well defined, note if B � °k

i�1 ciAi � 0, then B�B � 0. Hence
TrpB�Bq � °

i,j c̄icjTrpA�i Ajq � 0. So
°

i,j c̄icjTrpΦpAiq�ΦpAjqq � 0. We
thence have

Tr

��
ķ

i�1

ciΦpAiq
��

ķ

i�1

ciΦpAiq
���

� 0
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and so
°

ciΦpAiq � 0. Note since π and ρ are irreducible, the Burnside The-
orem 6.121 gives BpHq � xA1y � xA2y. Thus Φ is a � algebra isomorphism
of BpHq satisfying TrpΦpT qq � TrpT q for T P BpHq. By Lemma 6.122, we
see there is a unitary transformation U of H such that ΦpT q � UTU for
T P BpHq. Hence

ρpgq � ρ1pgNq � Φpπ1pgNqq � Uπ1pgNqU� � UπpgqU�
and see π and ρ are unitarily equivalent. ¤

Definition 6.124. Let π be a unitary representation of a locally compact
σ-compact Hausdorff group G on a Hilbert space H. Integrate π to L1pGq to
obtain a � representation on H. Define L1pGqT to be the set of all f P L1pGq
such that πpfq is a trace class operator. Define the character Θπ of π to be
the linear functional on L1pGqT defined by

Θπpfq � Trpπpfqq.
Then Θπ is called the character of the representation π.

Exercise Set 6.9

1. Let H bH be the � algebra of Hilbert-Schmidt operators on a Hilbert
spaceH. Show if Φ is a � algebra onto isomorphism ofHbH which preserves
inner products, then there is a unitary operator U on H such that ΦpT q �
UTU� for T P Hb H̄.

2. Show L1pGqT is a � ideal in L1pGq.
3. Show if π is finite dimensional, then

Θπpfq �
»

G
fpxqχπpxq dx

where χπ is the character function for π.

4. Burnside Theorem: Let G be a completely reducible group (see Ex-
ercise 4.16) with an irreducible representation π on a finite dimensional
complex vector space V . Show the linear span of the πpgq for g P G is LpV q.
(Hint: Use Exercise 6.4.15 and the irreducibility of π̌.)

5. Assume π and ρ are unitary representations such that πpfq and ρpfq
are Hilbert-Schmidt for all f P CcpGq. Show if Θπpf� � fq � Θρpf� � fq for
f P CcpGq, then HomGpπ, ρq � t0u. In particular, if π and ρ are irreducible,
then they are unitarily equivalent.

17. Induced Representations

The notion of an induced representation was invented by Frobenius in about
1897 for finite groups and then extended to infinite locally compact groups by
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Mackey in the 1950’s. In algebraic language, one starts with a group algebra
module V for a subgroup H and one forms the tensor module CpGqbCpHq V
which is a module for the group algebra CpGq. We follow this construction
for compact groups and then use that for a model in the general case.

We start with a compact Hausdorff group G and a unitary representation
π of a closed subgroup H of G on a Hilbert space H. We take Haar measure
m so that mpGq � 1. We then have the left regular and right regular
representations λ and ρ of G on L2pGq given by

λpxqfpyq � fpx�1yq and ρpxqfpyq � fpyxq.
As seen in (6.13), λpxqρpyq � ρpyqλpxq for all x and y in G. Now L2pGqbH
is the Hilbert space of Hilbert-Schmidt operators from H̄ to L2pGq and λbI
is a unitary representation of G on this Hilbert space. Consider the subspace
S spanned by the rank 2 operators ρphqf b v � f b πph�1qv where h is in
H and v P H and f P L2pGq. This subspace is invariant under λb I for

pλpgq b Iqpρphqf b v � f b πph�1qvq � pλpgqρphqf b v � λpgqf b πph�1qv
� pρphqλpgqf b v � λpgqf b πph�1qv.

Since λ b I is a unitary representation that leaves S invariant, it leaves
invariant the closed subspace SK. The restriction of λ b I to SK is the
representation induced by π. It will be denoted by πG or by indG

Hπ. This
definition will not work in the general case because in the non compact case
SK may be t0u. We start by describing this representation. It is easiest to
do in the case when the Hilbert space H is separable.

Proposition 6.125. Let H be a separable Hilbert space and X be a locally
compact Hausdorff space with a regular Borel measure µ. Set L2pX,Hq to be
the space of Borel functions f from X into H such that

³ ||fpxq||2H dµpxq  
8; any two identified if they are equal a.e. µ. Then L2pX,Hq is a Hilbert
space unitarily isomorphic to L2pXq bH under a mapping that sends fv ÞÑ
f b v for f P L2pGq and v P H. Moreover, the inner product on L2pX,Hq
is given by

pf1, f2q2 �
»

X
pf1pxq, f2pxqqH dµpxq.

Proof. It is clear that L2pX,Hq is a vector space and if

|f |22 �
»
||fpxq||2H dµpxq,

then |f |2 � 0 if and only if f � 0 a.e. µ, |cf |2 � |c| |f |2, and |f � g|2 ¤|f |2 � |g|2. Now since H is separable, then there is a orthonormal basis
teku8k�1, and we see

(6.34) pf1pxq, f2pxqqH �
ķ

pf1pxq, ekqHpek, f2pxqqH
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is Borel function. Hence pf1, f2q2 is defined for

|pf1pxqf2pxqqH| ¤ ||f1pxq||H||f2pxq||H
which by Cauchy-Schwarz is integrable in x. We hence see that L2pX,Hq is
an inner product space.

We claim it is complete. Let fn be Cauchy in L2pX,Hq. Then pfn, ekqH is
Cauchy in L2pXq for each k. Indeed,

³ |pfmpxq, ekqH�pfnpxq, ekqH|2 dµpxq ¤³ |fmpxq � fnpxq|2H dµpxq. Since L2pXq is complete, for each k there is a
Borel measurable complex function akp�q such that pfnpxq, ekqH Ñ akpxq in
L2pXq. Define fpxq by fpxq � °

k akpxqek. We show this exists in L2pX,Hq
and fn Ñ f . We note since fn is Cauchy, there is an M ¡ 0 such that³ ||fnpxq||2H dµpxq ¤ M2 for all n. Thus

³ °
kpfnpxq, ekqH|2 dµpxq ¤ M2 for

all n. Using Fatou’s Lemma, and letting n Ñ 8, gives
³ ° |akpxq|2 dµpxq ¤

M2. Thus
°

k |akpxq|2   8 for µ a.e. x and we see fpxq P H for µ a.e. x and
we have

³ ||fpxq||2H dµpxq ¤ M2. So f P L2pX, µq.
Next we show fn Ñ f in L2pX,Hq. In fact if ε ¡ 0, we can choose N

such that for m, n ¥ N , then
³ ||fmpxq�fnpxq||2H dµpxq ¤ ε. Thus if m ¥ N ,

again by Fatou’s Lemma,
³ ||fmpxq� fpxq||2H dµpxq ¤ lim infnÑ8

³ ||fmpxq�
fnpxq||2H dµpxq ¤ ε. Thus fm Ñ f in L2pX,Hq as m Ñ8.

Now for each f P L2pX, µq, we define an operator Af : H̄Ñ L2pXq by

(6.35) Af pv̄qpxq � pfpxq, vqH.

It is easy to see this is a bounded operator from H̄ into L2pXq. It is also
Hilbert-Schmidt. Indeed, using the orthonormal basis teku of H, we have

ķ

|Af pēkq|22 �
ķ

»
|pfpxq, ekqH|2 dµpxq

�
»

ķ

|pfpxq, ekqH|2 dµpxq
�
»
||fpxq||2H dµpxq

� |f |22
and thus f ÞÑ Af is an isometry from L2pX,Hq into L2pXq bH. It is onto
for if f P L2pXq and v P H, then

Afvpw̄qpxq � pfpxqv, wqH � fpxqpv, wqH for a.e. x.

So
Afvpw̄q � pf b vqpw̄q

and we see the range contains the finite rank operators and thus is dense in
the space of Hilbert-Schmidt operators. ¤
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Using this proposition, we see that if H is separable and G is compact,
then L2pG,Hq is unitarily isomorphic to L2pGq b H under the mapping
f ÞÑ Af P B2pH̄, L2pGqq. Moreover, if λ̃ is left translation on L2pG,Hq; i.e.,
λ̃pxqfpyq � fpx�1yq, then

Aλ̃pxqf � pλpxq b IpxqqAf for f P L2pG,Hq.
Theorem 6.126. Let π be a unitary representation of a closed subgroup
H of a compact Hausdorff group G on a separable Hilbert space H. Un-
der the unitary isomorphism f ÞÑ Af from L2pG,Hq onto L2pGq b H,
A�1pSKq � tf P L2pG,Hq | fpghq � πph�1qfpgq a.e. g for each hu. Hence
πG is unitarily equivalent to the representation π̃G given on L2

πpG,Hq �
tf P L2pG,Hq | fpxhq � πph�1qfpxq for a.e. x for each h P Hu by

π̃pgqfpxq � fpg�1xq.
Proof. If H is separable, then using A to identify L2pG,Hq and L2pGqbH,
the tensor f b πph�1qv � ρphqf b v is the function Spxq � fpxqπph�1qv �
ρphqfpxqv � fpxqπph�1qv � fpxhqv. Thus a function F P L2pG,Hq is per-
pendicular to S if»

fpxqpπph�1qv, F pxqqH dx �
»

fpxhqpv, F pxqqH dx.

This is equivalent to»
fpxqpv, πphqF pxqq dx �

»
fpxqpv, F pxh�1qq dx

�
»

fpxqpv, F pxh�1qq dx.

This will hold for all S if and only if πphqF pxq � F pxh�1q a.e. x for each
h. Thus F pxhq � πph�1qF pxq a.e. x P G for each h P H. Also under
the correspondence, f ÞÑ Af , the operator λ̃pxq is mapped to the operator
λpxq b I. Thus we see πG is unitarily equivalent to the representation π̃G

on L2
πpGq defined by

π̃Gpxqfpyq � fpy�1xq.
¤

We thus make the following definition. Note that we replaced fpxhq �
πph�1qfpxq a.e. x for each h with fpxq � πph�1qfpxq for all h a.e. x. This
change can be made if one can use Fubini’s Theorem; for instance when G
is σ-compact or second countable.



Induced Representations 385

Definition 6.127. Let π be a unitary representation of a closed subgroup
of a compact group G on a separable Hilbert space H. Then the repre-
sentation πG or indG

Hπ defined on L2
πpGq � tf P L2pG,Hq | fpghq �

πph�1qfpgq for all h P H a.e. gu by

πGpxqfpyq � fpx�1yq
is the representation induced by π from H to G.

As we have seen, πG is a unitary representation of the compact group G.
Any representation unitarily equivalent to πG will also be loosely denoted
as the representation of G induced from π.

When H is nonseparable, we can still make L2pX,Hq into a Hilbert
space. We only sketch the process and use the density of CcpX,Hq in
L2pX,Hq. Let F P CcpX,Hq. Then the range of F is a compact subset of H
and thus is separable. Now let F P L2pX,Hq. We can choose Fn P CcpX,Hq
such that Fn Ñ F in L2pX,Hq. Now the range of each Fn is contained in a
separable subspace Hn of H. The smallest closed subspace H8 containing
all the subspaces Hn is then separable. Thus any F P L2pX,Hq may be
assumed to have range in a separable Hilbert subspace of H.

Now let F1, F2 P L2pX,Hq. As we have seen we may suppose the ranges
of F1 and F2 are contained in a separable closed subspaces H1 and H2 of
H. Then the smallest closed subspace H0 containing both H1 and H2 is
separable, and using a countable orthonormal basis as in (6.34), one then
has x ÞÑ pF1pxq, F2pxqqH0 is measurable. So we can define pF1, F2q2 �³pF1pxq, F2pxqq dµpxq. One can then redo the arguments in the proofs of
Proposition 6.125 and Theorem 6.126 and show they hold without the as-
sumption that H is separable. Because of this one can remove the separa-
bility assumption in Definition 6.127. Thus if π is a unitary representation
of a closed subgroup H of a compact Hausdorff group G, then πG is unitary
representation defined by

(6.36) πGpxqfpyq � fpx�1yq
where f is in the space of Borel measurable functions from G into H satis-
fying fpxhq � πph�1qfpxq for all h P H a.e. x and

³ ||fpxq||2H dµpxq   8.

The noncompact case. To discuss induced representation for noncompact
groups, we need to generalize Lemma 6.14 to the case where we are dealing
with continuous functions f : G Ñ H satisfying fpxhq � πph�1qfpxq for
x P G and h P H. Before stating this generalization, we set up its context.
We start with a locally compact Hausdorff group G, a closed subgroup H,
and a unitary representation π of H on a Hilbert space H. The mapping κ
is the open continuous mapping x ÞÑ xH from G onto G{H.
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If W is a compact subset of G{H, we define CW pG, πq to be the space
of all continuous functions f : GÑ H with the following properties:

(6.37)
fpxhq � πph�1qfpxq for all x P G and h P H,

fpxq � 0 if x R κ�1pW q.
For a compact subset K of G, CKpG,Hq is taken to be the space of all
continuous functions f : GÑ H such that fpxq � 0 for x R K.

Lemma 6.128. The mapping f ÞÑ fH where

fHpxq �
»

πphqfpxhq dh

maps CcpG,Hq onto the space of all the continuous functions F : G Ñ H
satisfying F pxhq � πph�1qF pxq for x P G and h P H and F vanishes off
κ�1pW q for some compact subset W of G{H. Moreover, if W is a com-
pact subset of G{H, there is a compact subset �W of G with W � κp�W q
and a linear mapping TW from CW pG, πq into C�W pG,Hq such that fpxq �³
H πphqTW fpxhq dh for f P CW pG, πq.

Proof. Let m be a left Haar measure on H and let f P CcpG,Hq. We show
fH on G defined by fHpxq � ³

H πphqfpxhq dh is continuous.
Let ε ¡ 0 and fix a compact neighborhood of e. By left uniform con-

tinuity of f , we can choose a neighborhood N 1 of e contained in N such
that

|fpnyq � fpyq| ¤ ε

mpH X x�1N�1supp fq for all y P G for n P N 1.

Hence if n P N 1, then fpnxhq � 0 and fpxhq � 0 for h R H Xx�1N�1supp f
and we see:

||fHpnxq � fHpxq||H ¤
»

H
||πphqfpnxhq � πphqfpxhq||H dh

¤
»

HXx�1N�1supp f

ε

mpH X x�1N�1supp fq dh

� ε.

Therefore, fH is continuous. It clearly vanishes off psuppfqH.
Now fix a compact subset W of G{H. Then there is an open set V with

V̄ compact and κpV q � W . We set �W � V̄ . By Proposition 5.23, we can
find a function t P CcpGq such that t ¥ 0 and t � 1 on V . Following Lemma
6.14 and its proof, we take t̃pxHq � ³

tpxhq dh and for f P CW pG, πq we
define TW fpxq � tpxq

t̃pxHqfpxq where 0
0 � 0. The same argument used in the
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proof of Lemma 6.14 shows TW f is continuous and

pTW fqHpxq �
»

πphq tpxhq
t̃pxHqfpxhq dh

�
»

πphq tpxhq
t̃pxHqπph�1qfpxq dh

� fpxq
t̃pxHq

»
H

tpxhq dh

� fpxq.
¤

Lemma 6.129. Let f be a bounded Borel function from G into H satisfying
fpxq � 0 off κ�1pW q for some compact subset W of G{H and fpxhq �
πph�1qfpxq for all h for a.e. x. Then there is a bounded Borel function F

on G into H which vanishes off a compact subset �W of G such that

FHpxq �
»

πphqF pxhq dh for a.e. x.

Proof. Follow the proof of the second part of Lemma 6.128; i.e., define
F pxq � tpxq

t̃pxHqfpxq. This is a Borel function with the desired properties. ¤

Proposition 6.130. Let H be a closed subgroup of a σ-compact, locally
compact Hausdorff group G and let ρ be a continuous positive rho function
on G with corresponding regular quasi-invariant measure µ on G{H. If π is a
unitary representation of H on a separable Hilbert space H, define L2

πpG,Hq
to be the space of Borel functions f : GÑ H such that fpxhq � πph�1qfpxq
for all h P H a.e. x P G and

³ ||fpxq||2H dµpxHq   8. Then with inner
product

pf1, f2q2 �
»

G{H
pf1pxq, f2pxqqH dµpxHq,

L2
πpG,Hq is a Hilbert space and the continuous functions f in L2

πpG,Hq
such that there is a compact subset K of G{H such that f vanishes off
κ�1pKq � KH are dense in L2

πpG,Hq.
Proof. We show L2

πpG,Hq is a Hilbert space. We note if teku8k�1 is an
orthonormal basis of H, then pf1pxq, f2pxqq � °8

k�1pf1pxq, ekqHpek, f2pxqqH
is Borel and by following of the first part of the proof of Proposition 6.125,
L2

πpG,Hq is an inner product space. We show completeness. Let Fn be a
sequence with

°
n |Fn|2   8. We need to show

°
Fn converges in L2

πpG,Hq.
Let fnpκpxqq � ||Fnpxq||H. We note if sn � °n

k�1 fk and M � °8
k�1 ||Fk||2,
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then

|sn|2 � |f1 � f2 � � � � � fn|2
¤ |f1|2 � |f2| � � � � � |fn|2
� ||F1||2 � ||F2||2 � � � � ||Fn||2
¤M.

Thus
³
s2
npxHq dµpxHq ¤ M2 for all n. By Fatou’s Lemma, if spxHq �°8

k�1 fkpxHq, then
³
spxHq2 dµpxHq ¤ M2. Thus spxHq is finite for µ a.e.

xH in G{H. By Corollary 6.25,
° ||Fnpxq||H   8 for a.e. x in G. We also

note if this sum is finite, so is
° ||Fnpxhq|| for each h P H.

Thus
° ||Fnpxq|| is finite for a.e. x and if it is finite for a particular x,

it is finite for all xh where h P H. For those x P G for which spxq is finite,
we have

°
k Fkpxq converges in H. Set Spxq to be this sum. For all the

remaining x in G, set Spxq � 0. Note since Fnpxhq � πph�1qFnpxq for all h
for a.e. x, we have Spxhq � πph�1qSpxq for all h for a.e. x. Since

»
G{H

||Spxq||2H dµpxHq �
»

G{H
|| lim

nÑ8
ņ

k�1

Fkpxq||2H dµpxHq

�
»

G{H
lim

nÑ8 ||
ņ

k�1

Fkpxq||2H dµpxq

¤
»

lim
nÑ8 |

ņ

k�1

||Fkpxq||H|2 dµpxq

�
»

lim
nÑ8 |

ņ

k�1

fkpxq|2 dµpxHq
¤M2,

we see S P L2
πpG,Hq. Also since s2 is integrable and for a.e. xH

� 8̧

k�n�1

fkpxHq
�2

¤ spxHq2,
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the Lebesgue dominated convergence theorem implies

lim
nÑ8 |S �

ņ

k�1

Fk|22 � lim
nÑ8 |

8̧

k�n�1

Fk|22

� lim
nÑ8

»
|| 8̧

k�n�1

FkpxHq||2H dµpxHq

¤ lim
nÑ8

» � 8̧

k�n�1

fkpxHq
�2

dµpxHq

�
»

lim
nÑ8

� 8̧

k�n�1

fkpxHq
�2

dµpxHq
� 0.

Let f P L2
πpG,Hq. We now show how to approximate f . First note by

redefining f on a set of measure 0, we may assume fpxhq � πph�1qfpxq for
all x and h.

Let ε ¡ 0. Since f P L2
πpG,Hq, txH | ||fpxhq||H � 0u is σ-finite relative

to the measure µ and hence can be written as a countable union of Borel sets
Ek � G{H of finite measure. By taking finite unions, we may assume Ek �
Ek�1 for all k. Now fχEk

�κ P L2
πpG,Hq and fχEk

�κ Ñ f in L2
πpG,Hq. Since

µ is inner regular, for a fixed k, there is an increasing sequence Kn of compact
subsets of Ek, such that µpEk�Knq Ñ 0 as n Ñ8. This implies fχKn �κÑ
fχEk

in L2
πpG,Hq. Now for each m, let Sm � tx P G | ||fpxq||H ¤ mu is

a Borel subset of G. Since fpxhq � πph�1qfpxq, we see χSmpxhq � χSmpxq
for all x and h. Consequently, χSmfχKn � κ Ñ fχKn � κ in L2

πpG,Hq as
m Ñ 8. Putting all this together, we have ||χSmfχKn � κ � f ||2   ε

3 for
some m and n. Thus we have found a bounded Borel function f0 in L2

πpG,Hq
which vanishes off κ�1pW q for some compact subset W of G{H such that
|f � f0|2   ε

3 . Furthermore, this f0 satisfies fpxhq � πph�1qfpxq for all x
and h.

By Lemma 6.129, there is a bounded Borel function F : G Ñ H which
vanishes off a compact subset �W of G with FH � f0. Then ak � pF, ekq
are bounded complex Borel functions on G vanishing off �W . Set Fn �°n

k�1 akek. Then since ||Fnpxq||H ¤ ||F pxq||H, the Fn for n ¥ 1 are uni-
formly bounded Borel functions and clearly Fnpxq Ñ F pxq as n Ñ 8 for
all x. So pFnqH Ñ FH in L2

πpG,Hq. Indeed, each pFnqH vanishes off the
compact subset κp�W q and if M is an upper bound for both all Fn and F ,
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then if x P �W , one has

||pFnqHpxq|| ¤
»
||Fnpxhq|| dh

�
»

x�1�WXH
||Fnpxhq||H dh

¤
»
�W�1�WXH

M dh

¤ mp�W�1�W XHqM.

Set M 1 � mp�W�1�W X Hq. Since ||pFnqHpxhq|| � ||pFnqHpxq|| for x P �W
and and pFnqHpxq � 0 off �WH, we have ||pFnqHpxq|| ¤ M 1 for all x and
n. Similarly ||FHpxq|| ¤ M 1 for all x. So xH ÞÑ ||pFnqHpxq � FHpxq|| ¤
2M 1χ

κp�W qpxHq. By the Lebesgue Dominated Convergence Theorem,

»
G{H

||pFnqHpxq � FHpxq||2H dµpxHq Ñ 0 as n Ñ8.

So can choose n with |pFnqH�FH |2 � |pFnqH�f0|2   ε
3 . We also have each

Fn is bounded by M and pFnqH are bounded by M 1. So
°n

k�1 |akpxq|2 �||Fnpxq||2H ¤M2. So |akpxq| ¤M for all x and each k � 1, 2, . . . , n.

Now fix a precompact open set V with V � �W . Since ak vanishes off �W
and are bounded by M , we can find continuous functions bk with supports
in V that satisfy |bkpxq| ¤M for all x and

»
|akpxq � bkpxq| ρpxq dx   ε

3npn� 1qMmpV �1V XHq for k � 1, 2, . . . , n.

Set gpxq � °n
k�1 bkpxqek. Then ||gpxq||H ¤ nM for all x, has compact

support inside V , and

»
||gpxq � Fnpxq||Hρpxq dx ¤ ņ

k�1

»
|akpxq � bkpxq|ρpxq dx

  ε

3pn� 1qMmpV �1V XHq .
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Using Hölder’s inequality and Theorem 6.15, we see»
||pg�FnqHpxq||2 dµpxHq �

»
||
»

H
pg � Fnqpxhq dh||2 dµpxHq

¤
» �»

||pg � Fnqpxhq|| dh


2

dµpxHq
¤
» �»

V �1VXH
ppn� 1qMq1{2||pg � Fnqpxhq|| 1{2dh


2

dµpxHq
¤
» »

V �1VXH
pn� 1qM dh

»
V �1VXH

||pg � Fnqpxhq||Hdh dµpxHq
¤ mpV �1V XHqpn� 1qM

»
||pg � Fnqpxhq||H dh dµpxHq

¤ mpV �1V XHqpn� 1qM
»
||pg � Fnqpxq||H ρpxq dx

  ε

3
.

So |gH�f |2 ¤ |gH�pFnqH |2�|pFnqH�FH |2�|f0�f |2   ε
3 � ε

3 � ε
3 � ε ¤

With some extra care one need not assume G is σ-compact in the state-
ment of Proposition 6.130. Indeed, see Exercise 6.10.1.

In the following theorem, we assume we have the Hilbert space L2
πpG,Hq

of Proposition 6.130 The measure µ is the regular Borel measure on G{H
obtained from the Radon measure given in Theorem 6.15. It satisfies

(6.38)
» »

fpxhq dh dµpxHq �
»

fpxqρpxq dx

for bounded Borel functions f on G which vanish off a compact subset of
G. It is quasi-invariant and satisfies dµpxyHq � ρpxyq

ρpyq dµpyHq where ρ is a
positive continuous rho function on G.

Theorem 6.131. Define πG on L2
πpG,Hq by πGpxqfpyq �b

ρpx�1yq
ρpyq fpx�1yq.

Then πG is a unitary representation of G.

Proof. It is easy to check πGpxqfpyhq � πph�1qπGpxqfpyq for all h for a.e.
y and one clearly has πGpeq � I.
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Also

πGpxqπGpyqfpzq �
d

ρpx�1zq
ρpzq πGpyqfpx�1zq

�
d

ρpx�1zqρpy�1x�1zq
ρpzqρpx�1zq fpy�1x�1zq

�
d

ρppxyq�1zq
ρpzq fppxyq�1zq

� πGpxyqfpzq
and

|πGpxqf |22 �
»

G{H
||πGpxqfpyq||2H dµpyHq

�
»

ρpx�1yq
ρpyq ||fpx�1yq||2H dµpyHq

�
»

ρpyq
ρpxyq ||fpyq||2H dµpxyHq

�
»

ρpyq
ρpxyq ||fpyq||2H

ρpxyq
ρpyq dµpyHq

� |f |22.
Thus πG is a homomorphism of G into the unitary group of L2

πpG,Hq. We
thus need only show πG is strongly continuous at e.

Let f P L2
πpG,Hq and suppose ε ¡ 0. By Proposition 6.130, we can

pick a continuous function f0 in L2
πpG,Hq which vanishes off κ�1pW q for

some compact subset W of G{H such that |f � f0|2   ε
3 . Fix a compact

symmetric neighborhood N 1 of e. Now because of π covariance f0pzhq �
πph�1qf0pzq for all h and z, for each yH P N 1W , we can pick a neighborhood
Npyq of e contained in N 1 and an open neighborhood Upyq of yH such that

||bρpx�1yq
ρpyq f0px�1yq � f0pyq||H ¤ ε

3
?

µpN 1W q if x P Npyq and yH P Upyq.
Now the Upyq cover the compact set N 1W � G{H. Using the compactness
of N 1W , we can find a finite subcover Upy1q, Upy2q, . . . , Upynq of N 1W . Set
N � Xn

k�1Npykq. Now if yH PW and x P N we have ||f0px�1yq�f0pyq||H ¤
ε

3
?

µpN 1W q ; if x�1yH P W , then xyH P xW P N 1W . So xyH P Upyjq
for some j. Thus ||f0px�1xyHq � f0pxyHq|| ¤ ε

3
?

µpN 1W q . Finally if both

x�1yH R W and yH R W , then f0px�1yq � f0pyq � 0. Hence we see
||f0px�1yq � f0pyq||H ¤ ε

3
?

µpN 1W q for any yH PW and x P N . This implies
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if x P N , then

|πGpxqf0 � f0|22 �
»
||
d

ρpx�1yq
ρpyq f0px�1yq � f0pyq||2H dµpyHq

�
»

N 1W
||
d

ρpx�1yq
ρpyq f0px�1yq � fpyq||2H dµpyHq

¤
»

N 1W
ε2

9µpN 1W q dµpyHq
� ε2

9
.

Thus for x P N ,

|πGpxqf � f |2 ¤ |πGpxqf � πGpxqf0|2 � |πGpxqf0 � f0|2 � |f0 � f |2
� 2|f � f0|2 � |πGpxqf0 � f0|2
  2ε

3
� ε

3
� ε.

So πG is strongly continuous at e and we see πG is a unitary representation
of G. ¤

Using this theorem, we make the following definition.

Definition 6.132. Let π be a unitary representation of a closed subgroup
H of a σ-compact locally compact Hausdorff group G on a separable Hilbert
space H. Let ρ be a positive continuous rho function for H which defines a
regular quasi-invariant measure µ on G{H. Then any unitary representation
unitarily equivalent to the unitary representation πG on L2

πpG,Hq defined by

πGpxqfpyq �
d

ρpx�1yq
ρpyq fpx�1yq

is called the unitary representation of G induced by the representation π of
H.

We remark that Exercise 6.10.2 shows if µ is any regular quasi-invariant
measure on G{H, then the representation L defined on the Hilbert space of
Borel functions f : G Ñ H satisfying fpxhq � πphq�1fpxq for all h for a.e.
x where |f |2 � �³ ||fpyq||2 dµpyHq�1{2 by

Lpxqfpyq �
�

dpxµq
dµ

pyHq

1{2

fpx�1yq
is unitarily equivalent to πG and thus is induced from π.



394 Basic Representation Theory

Example 6.133. (Regular Representations) It is an easy exercise to
show if H is a closed subgroup of a locally compact Hausdorff group G, then
indG

H1 is the left quasi-regular representation of G on G{H. In particular,
when H � teu, one obtains the left regular representation of G.

Definition 6.134. Let G be a topological group containing a closed normal
subgroup H and a closed subgroup K. If the mapping pk, hq ÞÑ kh is a
homeomorphism of K�H onto G, then G is said to be a semi-direct product
of K and H. This is denoted by G � K 
H.

Suppose we have a σ-compact locally compact Hausdorff group G and
G � K 
 H. Since H is normal and closed, Lemmas 5.13 and 5.16 imply
G{H is a locally compact Hausdorff group. Moreover, the mapping k ÞÑ kH
is one-to-one and onto G{H. It is continuous since g ÞÑ gH is a continuous
mapping. Also if U is an open subset of K, then UH is an open subset of
G for the mapping pk, hq ÞÑ kh is a homeomorphism. Since κ is an open
mapping UH � pUHqH � κpUHq is open. Hence the mapping k ÞÑ kH is
a group homeomorphism of K onto G{H.

Now note that left Haar measure on G is given by

Ipfq �
»

K

»
H

fpkhq dh dk

for positive Borel functions f . Indeed, note Ipλpk0qfq � Ipfq for any k0 P K.
Now for h0 P H,

Ipλph0qfq �
»

K

»
H

fph0khq dh dk

�
»

K

»
H

fpkpk�1h0kqhq dh dk.

To find a continuous rho function we determine the modular function
∆G on H. From»

K

»
H

fpkhh0q dh dk �
» »

∆Hph�1
0 qfpkhq dh dk ,

we see
∆Gph0q � ∆Hph0q.

Hence the function ρpkhq � ∆Hphq{∆Gphq � 1 satisfies

ρpkhh1q � ρpkhq∆Hph1q
∆Gph1q .

Hence there is a regular quasi-invariant measure µ on G{H satisfying» »
fpyhq dh dµpyHq �

»
fpxq dx
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for positive Borel functions f . This measure satisfies

dµpxyHq � dµpyHq.
Now assume x P K and yH � kH, then dµpxyHq � ρpxkq

ρpxq dµpyHq � dµpyHq.
This implies the measure µ is left invariant under K. Since mapping Φ :
K Ñ G{H given by Φpkq � kH is topological group isomorphism, the
measure ν on K defined by νpEq � µpΦpEqq � µpEHq is a left Haar measure
on K.

Theorem 6.135. Let G � K
H be a σ-compact locally compact Hausdorff
semi-direct product group and let π be a unitary representation of H on a
separable Hilbert space H. Then πG is unitarily equivalent to the represen-
tation L defined on L2pK,Hq by

Lpk0h0qfpkq � πppk�1
0 kq�1h0pk�1

0 kqqfpk�1
0 kq.

Proof. Define T : L2
πpG,Hq Ñ L2pK,Hq by Tfpkq � fpkq. It is clearly

linear and well defined. Moreover,

|Tf |22 �
»
||fpkq||2H dνpkq �

»
||fpkq||2H dµpΦpkqq,

and thus T is an isometry. It is onto for if f P L2pK,Hq, define f0 de-
fined on G by fpkhq � πph�1qfpkq. Note f0pxhq � πph�1qf0pxq for all h
a.e. x. Also if teju8j�1 is an orthonormal basis of H, then πph�1qfpkq �°pfpkq, πphqejqHej . Thus x ÞÑ f0pxq is Borel if pk, hq ÞÑ pfpkq, πphqejqH
is Borel for each j. But this is Borel if pk, hq ÞÑ pfpkq, πphqejq P H �H is
Borel. Note this is clearly the case. One has |f0|2 � |f |2 and Tf0 � f . Thus
T is onto.

Finally we calculate TπGpk0h0qT�1. Namely,

TπGpk0h0qT�1fpkq � πGpk0h0qT�1fpkq
� T�1fph�1

0 k�1
0 kq

� T�1fpk�1
0 kpk�1

0 kq�1h�1
0 pk�1

0 kqq
� πppk�1

0 kq�1h0pk�1
0 kqqfpk�1

0 kq.
¤

Example 6.136. (The Heisenberg Group) Recall from Example 5.9
that if V is a finite dimensional real vector space and B is an alternating
nondegenerate bilinear form on V then the Heisenberg group is the space
V �R with multiplication defined by pv, sqpw, tq � pv�w, t� s� 1

2Bpv, wqq.
In Chapter 7, we take V � Rn � Rn and Bppx, yq, px1, y1qq � °pxiy

1
i �

yix
1
iq � x � y1 � y � x1. Then with the product topology, G � V � R is a

second countable locally compact Hausdorff group and one has G � K 
H
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where H � tpp0, yq, tq | x P Rn, t P Ru and K � tppx, 0q, 0q | x P Rnu.
One can check H is a normal subgroup and the mapping pk, hq ÞÑ kh is a
homeomorphism of K � H onto G. Let π be the one-dimensional unitary
representation of H defined by

πpp0, yq, tq � eiλt

where λ is a nonzero real number. Then if k0 � ppx, 0q, 0q, k � ppw, 0q, 0q
and h0 � pp0, yq, tq, then k�1

0 k � ppw � x, 0q, 0q, and

pk�1
0 kq�1h0pk�1

0 kq � ppx� w, 0q, 0qpp0, yq, tqqppw � x, 0q, 0q
� ppx� w, yq, t� 1

2
ppx� wq � yqppw � x, 0q, 0q

� pp0, yq, t� 1
2
ppx� wq � y � 1

2
y � pw � xqq

� pp0, yq, t� x � y � w � yq.
Thus

πppk�1
0 kq�1h0pk�1

0 kqqfpk�1
0 kq � eiλpt�x�y�w�yqfppw � x, 0q, 0q

for f P L2pKq.
Now K and Rn are topologically isomorphic groups and thus we may

identify L2pKq with L2pRnq and since k0h0 � ppx, 0q, 0qpp0, yq, tq � ppx, yq, t�
1
2x � yq, we see πG is unitarily equivalent to the unitary representation πλ

defined by

πλppx, yq, t� 1
2
x � yqfpwq � eiλt eiλx�ye�λw�yfpw � xq.

By replacing t with t� 1
2x � y, we obtain the formula:

πλppx, yq, tqfpwq � eiλt e.5λix�ye�iλw�yfpw � xq.
Compare this with formula (7.13) in Chapter 7. The πλ turn out to be all

the irreducible infinite dimensional unitary representations of the Heisenberg
group G.

Example 6.137. The ax� b Group: Recall the ax� b group G consists
of all pairs pa, bq P R� � R with multiplication given by

pa, bqpa1, b1q � paa1, b� ab1q.
The subgroup H � tp1, bq | b P Ru is a closed normal subgroup and G is
homeomorphic to K �H under the mapping ppa, 0q, p1, bqq ÞÑ pa, 0qp1, bq �
pa, abq. Hence G � K 
H. The group K is isomorphic to R� and by 1.7,
we know Haar measure on R� is given by dx

x . We can identify L2pKq with
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L2pR�, dx
x q by the correspondence pa, bqK Ø a. Now let π be the representa-

tion of H given by πp1, bq � e2πib. Take k0 � pa, 0q, k � px, 0q where x ¡ 0,
and h0 � p1, bq. Then k0h0 � pa, abq and

pk�1
0 kq�1h0pk�1

0 kq � pax�1, 0qp1, bqpa�1x, 0qq
� pax�1, ax�1bqpa�1x, 0q
� p1, ax�1bq.

These imply

Lppa, 0qp1, bqqfpxq � πp1, ax�1bqfpa�1xq � e2πiax�1bfpa�1xq.
So Lpa, abqfpxq � eiax�1bfpa�1xq. Replacing b by b{a gives

Lpa, bqfpxq � e2πix�1bfpa�1xq
where f P L2pR�, dx

x q. If one takes the unitary transformation W given by
Wfpxq � fpx�1q on L2pR�, dx

x q, then

(6.39)

WLpa, bqW�1fpxq � Lpa, bqW�1fpx�1q
� e2πixbW�1fpa�1x�1q
� e2πixbfpaxq.

If instead of the measure dx
x on R�, one wants Lebesgue measure, we could

take the unitary transformation T : L2pR�, dx
x q Ñ L2pR�, dtq given by

Tfptq � 1?
t
fptq.

Then T�1fpxq � ?xfpxq and so

TWLpa, bqW�1T�1fptq � 1?
t
WLpa, bqW�1T�1fptq

� 1?
t
e2πibtT�1fpatq

� 1?
t
e2πibt

?
atfpatq

� ?ae�πibtfpatq.
Thus the representation xπ� defined on the ax� b group on L2pR�, dtq by

(6.40) xπ�pa, bqfptq � ?ae2πibtfpatq
is induced from the character p1, bq ÞÑ e�2πib on the subgroup H. Exercise
6.10.9 shows it is an irreducible representation. If instead of taking the
representation π of H to be πp1, bq � e2πib, one takes πp1, bq � e�2πib, then
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πG is unitarily equivalent to the unitary representation xπ� on L2pR�, dtq
where

(6.41) xπ�pa, bqfptq � ?ae2πibtfpatq.
This representation is also irreducible.

We leave the proof of the following proposition as an exercise.

Proposition 6.138. Let G be a second countable locally compact Hausdorff
group with a closed subgroup H. Let ρ be a continuous rho function for
H and let µ be the corresponding regular quasi-invariant measure on G{H.
Suppose π is a unitary representation of H on a separable Hilbert space H.
If there is a Borel mapping σ : G{H Ñ G satisfying σpxHqH � xH for
all xH, then the unitary representation πG is unitarily equivalent to the
representation L on L2pG{H,Hq defined by

LpxqfpyHq �
d

ρpx�1yq
ρpyq πpσpyHq�1xσpx�1yHqqfpx�1yHq.

Borel mappings σ : G{H Ñ G satisfying σpxHqH � xH for all xH are
known as Borel cross sections. A result of Mackey (see [32, Lemma 1.1])
show they always exist. Each σ selects in a Borel measurable manner a
member of the coset xH. We note xσpx�1yHqH � yH � σpyHqH and thus
σpyHq�1xσpx�1yHq P H.

Example 6.139. The AX � B group is an n dimensional analogue of the
ax � b group. Our intent here is to give an example directly related to the
continuous wavelet transform discussed in Section 12 of Chapter 4. Let G
be pR�qn � Rn with product topology and multiplication defined by

pa, xqpb, yq � pab, x� ayq
where ab and ay are defined coordinatewise; i.e., pabqi � aibi and payqi �
aiyi for i � 1, 2, . . . , n. We note G � H 
 K where H � pRnq� � t0u
and K � t1u � Rn are closed subgroups. We describe the representation
π � indG

H1. To do this we start by constructing a quasi-invariant mea-
sure µ on Rn which we identify with G{H by pa, yqH � p1, yqpa, 0qH �
p1, yqH under the mapping pa, yqH Ø y. We note one can check Haar
measure on H is given by da1�da2�����dan|a1a2���an| and being abelian, this group is
unimodular. For a � pa1, a2, . . . , anq, we take det a � ±

aj and da to
be Lebesgue measure. Let dy be Lebesgue measure on Rn. Then a left
Haar measure on G is given by dg � dpa, yq � da|det a|2 � dy. The modu-
lar function ∆G can be shown to be ∆Gpb, xq � 1|det b| and thus ρpa, yq �
|det a| is a rho function for H for ρppa, yqpb, 0qq � ρpab, yq � |detpabq| �
ρpa, yq 1

∆Gpb,0q � ρpa, yq∆Hpb,1q
∆Gpb,1q . Now choose a function k P CcpHq with
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k ¥ 0 and
³
H kphq dh � ³

pR�qn kpa, 0q da|det a| � 1 and suppose f P CcpRnq.
Then the function F pa, yq � kpa, 0qfpyq is in CcpGq and FHpp1, yqHq �³
kpa, 0qfpyq da|det a| � fpyq. Consequently, if µ is the left quasi-invariant

measure given by ρ on G{H, we have»
fpyq dµpyq �

»
G

F pgqρpgq dg

�
»
pR�qn

»
Rn

kpa, 0qfpyq|det a| da

| det a|2 dy

�
»

fpyq dy.

So the measure µ is Lebesgue measure. Now either using the formula (6.15)
giving the quasi-regular representation or Proposition 6.138 with Borel sec-
tion σ : G{H Ñ G given by σppa, xqHq � p1, xq, we obtain π is the repre-
sentation of G on L2pRnq given by

(6.42)

πpa, xqfpyq �
d

ρppa, xq�1p1, yqq
ρp1, yq fppa, xq�1p1, yqHq

� | det a|�1{2fppa�1,�a�1xqp1, yqHq
� | det a|�1{2fppa�1,�a�1x� a�1yqHq
� | det a|�1{2fpp1,�a�1x� a�1yqHq
� | det a|�1{2fpa�1py � xqq.

Our next goal will be to show this unitary representation is irreducible.
To do this we let π̂pgq � FπpgqF�1 where F is the Fourier transform
Ffpξq � ³

fpyqe�2πiξ�y dy. We note

Fπpa, xqfpξq �
»

πpa, xqfpyqe�2πiξ�y dy

�
»
|det a|�1{2fpa�1py � xqq e�2πiξ�y dy

�
»
|det a|�1{2fpa�1yqe�2πiξ�py�xq dy

� e�2πiξ�x
»
|det a|�1{2fpyqe�2πiaξ�y dpayq

� |det a|1{2e�2πiξ�xFfpaξq.
This implies π̂ is defined on L2pRnq by

(6.43) π̂pa, xqfpyq � | det a|1{2e�2πix�yfpayq.
To see π is irreducible, it suffices to show Hompπ̂, π̂q contains no proper
orthogonal projections. But since π̂p1, xqfpyq � e�2πix�yfpyq, we have seen
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in the proof of Corollary 6.115 that if P P Hompπ̂, π̂q is a projection whose
range is invariant under all πp1, xq, then there is a Borel subset E of Rn

such that Pf � χEf for all f P Rn. But since π̂pa, 0q commutes with P , we
see Pπ̂pa, 0qf � π̂pa, 0qPf or χEpyqfpayq � χEpayqfpayq a.e. y for each a.
Now this occurs for all f P L2pRnq if and only if χEpayq � χEpyq a.e. y for
each a P pR�qn. This implies a�1E and E are the same sets in the measure
algebra of Lebesgue measure. Take a probability measure λ0 on Rn equivalent
to Lebesgue measure. Define Hpxq � ³

χEpaxq dλ0paq. H is a Borel function
and for a.e. x P E, we have Hpxq � 1 a.e. x P E and Hpxq � 0 a.e. x P Ec.
Thus E0 � H�1p1q is a Borel set equal to E in the measure algebra. Since
χEpaxq � 1 a.e. a implies χEpaa1xq � 1 a.e. a, we see H has the property,
Hpaxq � Hpxq for all a P pR�qn and x P Rn. This implies aE0 � E0 are
the same sets for all a. Now if E0 has measure 0, P � 0 while if E0 has
positive Lebesgue measure, there is a point x � px1, x2, . . . , xnq P E0 with all
xj � 0. Consequently if y P Rn has all yj � 0, we see y � ax where aj � yj

xj

for j � 1, 2, . . . , n. Thus E0 contains all such y and thus is conull in Rn.
We thus have P � I.

Proposition 6.140. The unitary representation π defined on L2pRnq by

πpa, xqfpyq � | det a|�1{2fpa�1py � xqq
for a P pR�qn and x P Rn is irreducible.

Exercise Set 6.10

1. Show one need not assume G is σ-compact in the Proposition 6.130.
(Hint: Use Exercises 6.1.31, 6.1.32, and 6.1.34.)

2. Let G be a σ-compact locally compact Hausdorff space with a closed
subgroup H. Suppose ρ is a continuous rho function defining a corresponding
quasi-invariant measure µ on G{H. Show if π is a unitary representation of
H on a separable Hilbert space H and ν is a regular quasi-invariant measure
on G{H, then πG is unitarily equivalent to the representation L defined by

Lpxqfpyq �
d

dpxµq
dµ

pyHqfpx�1yq
on the Hilbert space of Borel functions f on G satisfying fpxhq � πph�1qfpxq
for all h P H for a.e. x and

³ ||fpyq||2H dνpyHq   8.

3. Suppose G is a second countable locally compact Hausdorff group with
a closed subgroup H and a continuous rho function ρ. Let µ be the corre-
sponding quasi-invariant measure on G{H. Assume there is a Borel function
σ : G{H Ñ G satisfying σpxHqH � xH for all x in G. Show if π is a uni-
tary representation of H on a separable Hilbert spaceH, then πG is unitarily
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equivalent to the representation L defined on L2pG{H,Hq by

LpxqfpyHq �
d

ρpx�1yq
ρpyq πpσpyHq�1xσpx�1yHqqfpx�1yHq.

4. Let G be a second countable locally compact Hausdorff group acting
continuously on a second countable locally compact Hausdorff space X with
a quasi-invariant measure µ. Assume rEs is in the measure algebra of µ and
rgEs � rEs for all g in G. Show there is a G invariant Borel subset W such
that rW s � rEs. (Hint: Take a probability measure λ equivalent to Haar
measure on G and consider Hpxq � ³

G χEpgxq dλpgq.)
5. Let E be a Borel subset of R and suppose one has a � E � E in the
measure algebra given by Lebesgue measure for all a P R. Show E or its
complement has measure 0.

6. Let φ : Rn Ñ Rn be a homeomorphism of Rn and let λ be Lebesgue
measure on Rn. Define a Borel measure φ�λ by φ�λpEq � λpφ�1pEqq and a
representation π on L2pRn, λq by

πpxqfpyq � e�2πix�φpyqfpyq.
Assume φ�λ and λ are equivalent measures.

(a) Show π and λ̂ are unitarily equivalent.
(b) Show Hompπ, πq � tMh | h P L8pRnqu.

Then determine π when φ is given by:

(c) φpyq � �y;
(d) φpyq � y

2π ;

(e) φpyq � y3.

7. Let π be a unitary representation of a locally compact Hausdorff group G
and let π0 be a subrepresentation on the invariant subspace PH where P is
an orthogonal projection in Hompπ, πq. Show Hompπ0, π0q � PHompπ, πqP .

8. Let X be a Borel subset of Rn with positive Lebesgue measure. Let π be
the unitary representation of Rn on L2pXq given by πpxqfpyq � eix�yfpyq.
Show Hompπ, πq � tMh | h P L8pXqu where Mhf � hf .

9. Show the representation xπ� given in (6.40) of Example 6.137 of the ax�b
group is irreducible.

10. Let G be the ax � b group. Let xπ� and xπ� be the unitary represen-
tation given in Equations (6.40) and (6.41). Show if in Example 6.137, one
takes πp1, bq � eiλb where λ P R, then πG is unitarily equivalent to the
representation xπ� if λ ¡ 0 and is unitarily equivalent to xπ� when λ   0.
(Hint: Find a formula for πG and consider Exercise 6.10.6.)
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11. Let G be the ax�b group and consider the quasi-regular representation
L given in Equation (6.19) of Example 6.95. Show L and xπ� ` xπ� are
unitarily equivalent. (Hint: Use a Fourier transform.)

12. Show the representation xπ� is the conjugate representation to the rep-
resentation xπ� of the ax� b group.

13. Show if λ1 and λ2 are nonzero real numbers, the unitary representations
πλ1 and πλ2 given in Example 6.136 are not equivalent.

14. Show the unitary representation πλ of the Heisenberg group given in
Example 6.136 is irreducible.

15. Let X be a locally compact Hausdorff space with a regular measure µ
and let H be a separable Hilbert space. A function x ÞÑ T pxq from X into
BpHq is strongly Borel if x ÞÑ T pxqv is Borel for each v P H.

(a) Show T is strongly Borel if and only if x ÞÑ pT pxqv, wqH is Borel
for any v, w P H.

(b) Show x ÞÑ ||T pxq|| is Borel if T is strongly Borel.

(c) If T is strongly Borel, define ||T ||8 � infta ¥ 0 | µtx | ||T pxq|| ¡
au � 0u. Show if L8pX,BpHqq is the space of all strongly Borel
functions T with ||T ||8   8, then L8pX,BpHqq with pointwise
addition and multiplication, adjoint T �pxq � T pxq�, and norm || � ||
is a C� algebra with identity.

(d) Define a representation ρ of L8pX,BpHqq on L2pX,Hq by

pρpT qfqpxq � T pxqfpxq.
Show ρ is a representation of the C� algebra L8pX,BpHqq and the
mapping T ÞÑ ρpT q is an isometric � algebra homomorphism onto
its range.

16. Let X be a locally compact Hausdorff space with a regular Borel mea-
sure µ. Suppose H is a separable Hilbert space. Let π the representation
of L8pX, µq on L2pX,Hq given by πpfqh � fh. Show if A P Hompπ, πq,
then there is an essentially bounded strongly Borel function T : X Ñ BpHq
such that Ahpxq � T pxqfpxq a.e. x for each f P L2pX,Hq. (Hint: Take a
countable dense Q�iQ linear subspace V of H and show Av,wpxq : L2pXq Ñ
L2pXq defined a.e. x on V � V by Av,wfpxq � pApfvqpxq, wqH extends a.e.
from V � V to a bounded sesquilinear form on H. Then apply Exercise
6.5.25.)

17. Let G be a σ-compact locally compact Hausdorff group and let H be
a closed subgroup of G having a unitary representation π on a separable
Hilbert space H. Let ρ be a continuous rho function for H and let µ be the
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corresponding quasi-invariant measure on G{H. Let M be the representa-
tion of L8pG{H,µq on L2

πpG,Hq given by

Mphqf � ph � κqf for h P L8pG{Hq and f P L2
πpG,Hq.

For each A P Hompπ, πq, define TA : L2
πpG,Hq Ñ L2

πpG,Hq by

TAfpxq � Afpxq.
Show A ÞÑ TA is a � algebra isomorphism of the C� algebra Hompπ, πq
onto the C� algebra HompπG, πGqXHompM, Mq. Consequently, show πG is
irreducible if and only if π is irreducible and HompπG, πGq � HompM, Mq.
(Hint: Use the argument suggested in the previous exercise to show if
B P HompM, Mq, then there is a an essentially bounded strongly Borel
function g ÞÑ Bpgq P BpHq such that Bfpgq � Bpgqfpgq for f P L2

πpG,Hq.)
18. Let G be the group SLp2,Rq of 2 � 2 matrices of determinant 1. Let
A be the subgroup of matrices of form aptq � �

et 0
0 e�t

	
where t P R and let

N be the subgroup consisting of the matrices npxq � p 1 x
0 1 q where x P R.

By Corollary 5.26, the mapping pk, a, nq ÞÑ kan from SOp2q � A �N to G
given by pk, a, nq ÞÑ kan is a homeomorphism. Let M be the two element
subgroup consisting of the matrices I and �I.

(a) Show P �MAN is a closed subgroup of G.

(b) Find a left Haar measure for P and find the modular function for
P .

(c) Find a Haar measure for G and show G is unimodular.

(d) Find a rho function for the subgroup P .

(e) Let π be the unitary representation of P defined by πp�Iaptqnpxqq �
ε�p�Iqeiλt where λ P R and ε�pIq � ε�p�Iq � ε�pIq � 1 and
ε�p�Iq � �1. Find ρ�,λ � πG.

It is known ρ�,λ is irreducible for all λ P R and ρ�,λ is irreducible for
nonzero λ P R. These representation are known as the unitary principal
series of SLp2,Rq.
18. Square Integrable Representations and Wavelets

In Chapter 4 we considered the windowed Fourier transform and introduced
continuous wavelet transforms. We mentioned their basis fits in nicely and is
understood best in terms of representation theory. A central concept is the
notion of a square integrable representation and indeed, the representations
πλ of the Heisenberg group and π of the general AX � B group given in
Proposition 6.140 fit into this category. We give the definition next and then
develop the important properties these representations possess.
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If G is a locally compact Hausdorff group, we recall ∆G denotes the
modular function for G and dg will be a left Haar measure. One has the fol-
lowing mnemonics which organize the invariance properties for the measure
dg.

(6.44)

dpxgq � dg for x P G,

dpgxq � ∆Gpxqdg for x P G,

dg�1 � dg

∆Gpgq is right Haar measure.

We recall from Corollary 6.50 that if π is an irreducible unitary repre-
sentation of G and Z is the center, then π has a central character χ. This is
the one-dimensional unitary representation χ of Z satisfying πpξq � χpξqI
for ξ P Z. We use the locally compact quotient group G{Z. Note since
∆Gpξq � ∆Zpξq � 1 for ξ P Z, ρ � 1 is a rho function for Z and left Haar
measure dpgZq on G{Z satisfies

(6.45)
»

G{Z
fZpgZq dpgZq �

»
G

fpgq dg

where fZpgZq � ³
Z fpgξq dξ and dξ is a left Haar measure on Z. We also

remark the modular function for G{Z is given by ∆G{ZpgHq � ∆Gpgq for
fZpgZxZq � ³

Z fpgxξq dξ � ³
Z fpgξxq dξ and thus

³
G{Z fZpgZxZq dpgZq �³

G fpgxq dg � ∆Gpx�1q ³G fpgq dg � ∆Gpx�1q ³G{Z fZpgZq dpgZq. In partic-
ular, G{Z is unimodular if and only if G is unimodular.

Note if π is an irreducible unitary representation on a Hilbert space
H with central character χ, then |pw, πpgξqvqH| � |χ�1pξq| |pw, πpgqvqH| �|pw, πpgqvqH| and thus defines a continuous function on G{Z.

Definition 6.141. Let π be a irreducible unitary representation of a locally
compact Hausdorff group G on a Hilbert space H. We say π is square-
integrable (modulo the center) if there is a nonzero vector v with»

G{Z
|pv, πpgqvqH|2 dpgZq   8

where dpgZq is a left Haar measure on G{Z. Any vector for which this is
true is said to be admissible.

We shall use the term square integrable in the sense of the above defini-
tion. Sometimes, one defines square integrable to mean the square integra-
bility of g ÞÑ pv, πpgqvqH on G for some nonzero v. However, the definition
we have given is broader as can be seen in Exercise 6.11.9.

Theorem 6.142. Suppose π is a square integrable unitary representation
of a locally compact Hausdorff group G on a Hilbert space H. Let χ be the
central character of π, and suppose v is a nonzero admissible vector. Then:
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(a) tw P H | gZ ÞÑ pw, πpgqvqH is in L2
χpGqu � H;

(b) If θ : H Ñ L2
χpGq is defined by θwpgq � pw, πpgqvqH, then θ is

an intertwining operator between π on H and indG
Z pχq on L2

χpGq.
Moreover, θ satisfies ||θw||2 � A2||w||2 for all w where

A2 � ||v||�2

»
G{Z

|pv, πpgqvqH|2 dpgZq.
(c) If w, w1 P H, then

pw, w1qH � 1
A2

»
G{Z
pw, πpgqvqHpπpgqv, w1qH dpgZq.

Proof. Let D � tw P H | ³ |pw, πpgqvqH|2 dpgZq   8u. Note D is a linear
subspace containing the nonzero vector v. Moreover, if w P D and x P G,
then »

|pπpxqw, πpgqvqH|2 cdpgZq �
»
|pw, πpx�1gqvqH|2 dpgZq

�
»
|pw, πpgqvqH|2 dpgZq   8.

So D is invariant under π. Since π is irreducible, D is a dense linear subspace
of H.

For w P D, set θwpgq � pw, πpgqvqH. Note θwpgξq � pw, πpgξqvqH �
pw, πpgqπpξqvqH � χpξ�1qpw, πpgqvqH. This implies θv P L2

χpGq. Clearly
θ is linear. We claim θ is a closed operator. Indeed, suppose wn Ñ w
and fn � θpwnq converges in L2

χpGq to f . By taking a subsequence, we
may assume fn converges pointwise a.e. to f . But fnpgq � pwn, πpgqvqH
converges pointwise to pw, πpgqvqH. Hence fpgq � pw, πpgqvqH a.e. g. So
f � θw and θ is a closed operator. Furthermore,

θpπpxqwqpgq � pπpxqw, πpgqvqH � pw, πpx�1gqvqH
� θpwqpx�1gq � indG

Z pχqpxqθpwqpgq.
Hence if w P D, then πpxqw P D and θπpxqw � indG

Z pxqθw. So θ inter-
twines π on D and indξ on L2

ξpGq. By the strong version of Schur’s Lemma
(Proposition 6.49), θ is bounded, D � H, and θ�θ � A2I where A ¡ 0.
Since A2pv, vqH � pθv, θvq2 � ³ |pv, πpgqvqH|2 dpgZq, we see

θ�θ �
³ |pv, πpgqvqH|2 dpgZq

||v||2 I.

Hence ||θv||22||v||2 pw, wqH � pθ�θw, wqH � pθw, θwq2 for all w P H. We thus have
(a) and (b).
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To see (c), note since p 1
Aθw, 1

Aθw1q2 � 1
A2 pθ�θw,w1qH � pw, w1qH, one

has
1

A2

»
pw, πpgqvqHpπpgqv, w1qH dpgZq � pw,w1qH.

¤

Corollary 6.143. Let π be an irreducible unitary representation on a Hilbert
space H. Then the set of admissible vectors is a linear invariant subspace of
H. Thus the space of admissible vectors is either t0u or is dense in H.

Proof. Let v be admissible. Then»
|pπpxqv, πpgqπpxqvqH|2 dpgZq �

»
|pv, πpx�1gxqvqH|2 dpgZq

�
»

∆G{Zpx�1Zq|pv, πpgqvqH|2 dpgZq
  8.

Thus the set of admissible vectors is invariant under π. It is also clear
cv is admissible if c P C and v is admissible. Finally, if v1 and v2 are
admissible, then g ÞÑ pv2, πpgqv1qH and g ÞÑ pv1, πpgqv2qH are in L2

χpGq.
Thus g ÞÑ pv1�v2, πpgqpv1�v2qqH is in L2

χpGq and we see the set of admissible
vectors is an invariant linear subspace of H. If this space is nonzero, then
irreducibility of π implies its closure is H. ¤

We mention that Exercises 6.11.2 and 6.11.3 show if G is unimodular
and π is square integrable, then all vectors are admissible.

If v is a nonzero admissible vector, then the mapping θ : Hπ Ñ L2
χpGq

given by
θwpgq � pw, πpgqvqH

is in Hompπ, indχq and satisfies

θ�θ � A2I where A2 � ||θ�θ|| � 1
||v||2

»
G{Z

|pv, πpgqvqH|2 dpgZq.
So

A2||w||2 � ||θw||2 �
»

G{Z
|pw, πpgqvqH|2 dpgZq.

One has the following weak formula version for θ�θ.

(6.46)

θ�θpwq �
»

G{Z
pπpgqw, vqH πpgqv dpgZq

�
»

G{Z
πpgqv b πpgqv pwq dpgZq

� A2w
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where by this formula one means

pA2w, w1qH � pθ�θw, w1qH � pθw, θw1q2 �
»

G{Z
pw, πpgqvqHpπpgqv, w1qH dpgZq

holds for all w,w1 P H.

Proposition 6.144. Let Ha be the dense linear subspace of admissible vec-
tors in H for the irreducible square integrable unitary representation π. Then
there is a sesquilinear form B on Ha such that»

G{Z
pw1, πpgqv2qHpπpgqv1, w2qH dpgZq � Bpv1, v2qpw1, w2qH.

Proof. Let v1 and v2 be admissible vectors. By Theorem 6.142, we know the
mappings θ1 and θ2 defined by θjpwq � pw, πpgqvjqH are in Hompπ, indχq.
Thus θ�1θ2 P Hompπ, πq and by Schur’s Lemma, there is a scalar Bpv1, v2q
such that θ�1θ2pwq � Bpv1, v2qw. This implies

Bpv1, v2qpw1, w2qH � pθ�1θ2w1, w2qH
� pθ2w1, θ1w2q2
�
»

G{Z
θ2w1pgq θ1w2pgq dpgZq

�
»

G{Z
pw1, πpgqv2qHpw2, πpgqv1qH dpgZq

�
»

G{Z
pw1, πpgqv2qpπpgqv1, w2qH dpgZq.

The sesquilinearity of B follows from this formula. ¤

Remark 6.145. If G is unimodular, then Exercises 6.11.3 and 6.11.4 show
Ha � H and B is given by Bpv1, v2q � 1

dpv1, v2qH where d is known as the
formal degree of π. When H is finite dimensional, Exercise 6.11.5 shows d
is the dimension of H.

If G is not unimodular, the sesquilinear form is not continuous. It was
shown in a paper by Duflo-Moore (see [13]) that there is a closed invertible
linear operator D on a dense linear subspace of H having the property that
a vector v is admissible if and only if v is in the domain of D�1{2 and then

Bpv1, v2q � pD�1{2v1, D
�1{2v2qH.

D is called the formal degree operator.

Remark 6.146. The formula»
G{Z
pw1, πpgqv2qHpw2, πpgqv1qH dpgZq � Bpv1, v2qpw1, w2qH.
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can be interpreted as a weak integral decomposition of the operator Tv1,v2

where Tv1,v2 � θ�1θ2. Namely

Tv1,v2 �
»

G{Z
πpgqv1 b πpgqv2 dpgZq � Bpv1, v2qI

weakly; i.e.,

(6.47)

»
G{Z
pπpgqv1 b πpgqv2 qw dpgZq �

»
G{Z
pw, πpgqv2qπpgqv1 dpgZq

� Bpv1, v2qw weakly

or more precisely

pθ�1θ2w, w1qH �
»

G{Z
pw, πpgqv2qHpπpgqv1, w

1qH dpgZq
�
»

G{Z
ppw, πpgqv2qHπpgqv1, w

1qH dpgZq
�
»

G{Z
ppπpgqv1 b πpgqv2qpwq, w1qH dpgZq

� Bpv1, v2qpw, w1qH
� pBpv1, v2qIpwq, w1qH

for all w, w1 P H.

Definition 6.147. Let π be a square integrable irreducible unitary represen-
tation on a Hilbert space H. A wavelet vector is any nonzero admissible
vector v. The wavelet transform for this wavelet vector is the mapping
Wv : HÑ L2

χpGq where Wvwpgq � pw, πpgqvqH.

We thus have Wv is the linear transformation θ given in Theorem 6.142.
Summarizing:

W �
v Wv � Bpv, vqI � |Wvv|22||v||2H(6.48)

||Wv|| � Bpv, vq1{2 � |Wv|2||v||H(6.49)

W �
v1

Wv2 � Bpv1, v2qI if v1 and v2 are wavelet vectors.(6.50)

Moreover, if v is a wavelet vector, the range of Wv is a closed indG
Zχ invariant

linear subspace of L2
χpGq consisting of continuous functions.

Definition 6.148. Let π be a square-integrable unitary representation of G
on H. Let f P L2

χpGq. Then if v P Ha, define πχpfqv weakly by

pπχpfqv, wqH �
»

G{Z
fpgqpπpgqv, wqH dpgZq.
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Note πχpfqv for v � 0 exists by the Riesz Representation Theorem.
Indeed, w ÞÑ ³

G{Z fpgqpπpgqv, wqH dpgZq is continuous since by the Cauchy-
Schwarz inequality and (6.49)�����»G{Z

fpgqpπpgqv, wqHdpgZq
����� � |pf, Wvwq2|
¤ |f |2|Wvw|2
¤ |Wvv|2||v||H |f |2||w||H.

Furthermore, ||πχpfqv||H ¤ |Wvv|2||v||H . Note by Exercises 6.11.3 and 6.11.4, if
G is unimodular, then Ha � H and |Wvv|2 � 1?

d
||v||H where d is the formal

degree of π. Consequently

(6.51) ||πχpfq|| ¤ 1?
d
|f |2 when G is unimodular.

Proposition 6.149. Let v be a wavelet vector for an irreducible square
integrable unitary representation π with central character χ. Then for f P
L2

χpGq, one has
πχpfqv �W �

v pfq.
Proof.

pW �
v pfq, wqH � pf,Wvwq2

�
»

G{Z
fpgqpw, πpgqvqH dpgZq

�
»

G{Z
fpgqpπpgqv, wqH dpgZq

� pπχpfqv, wqH.

¤

We restate many of the prior results in terms of wavelet notation in the
following theorem.

Theorem 6.150. Let π1 and π2 be square integrable irreducible unitary
representations of a locally compact Hausdorff group G on Hilbert spaces H1

and H2 and suppose π1 and π2 have the same central character χ. Let v1

and v2 be wavelet vectors for π1 and π2. Then:

(a) If π1 and π2 are not unitarily equivalent, then Wv1pH1q KWv2pH2q
in L2

χpGq.
(b) Let π1 � π2. Then

pWv1w1,Wv2w2q2 � Bpv2, v1qpw1, w2qH
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for w1, w2 P H.

(c) The image spaces of wavelet transforms are closed subspaces of
L2

χpGq consisting of continuous functions.

(d) If Bpv1, v2q � 0 and π � π1 � π2, then

w � 1
Bpv2, v1q

»
G{Z
pw, πpgqv1qHπpgqv2 dpgZq

� 1
Bpv1, v2q

»
G{Z
pw, πpgqv2qHπpgqv1 dpgZq.

Equivalently:

w � 1
Bpv2, v1qπpWv1pwqqv2 � 1

Bpv1, v2qπpWv2wqv1.

Proof. To see (a), let v1 and v2 be admissible vectors for π1 and π2 and
suppose H1 is the Hilbert space for π1 and H2 is the space for π2. Let
θj be the linear operators given by θjwj � pwj , πjpgqvjqHj for wj P Hj

where j � 1 or 2. Then θj P Hompπj , indG
Zχq and consequently T � θ�2θ1 P

Hompπ1, π2q. By Schur’s Lemma, T � 0 if π1 and π2 are inequivalent. This
implies pθ�2θ1v1, v2qH2 � pθ1v1, θ2v2q2 � 0. So»

G{Z
pv1, π1pgqv1qH1pv2, π2pgqv2qH dpgZq � 0.

Note (b) is just Proposition 6.144 and (c) is immediate for if θ is the mapping
Wv : HÑ L2pGq where v is a wavelet vector, then

θwpgq � pw, πpgqvq2
and by (b), 1

Bpv,vq1{2 θ is an isometry of H into L2
χpGq. Finally (d) is just a

restatement of Proposition 6.144; the second part being Definition 6.148. ¤

Remark 6.151. If v is a nonzero admissible vector for an irreducible rep-
resentation π, we have seen the wavelet transform θ : Hπ Ñ L2

χpGq defined
by

θwpgq � pw, πpgqvq � Wvpwqpgq
has the property that 1

Aθ where A � |θv|2||v||H is an isometry of H onto a closed
subspace of L2

χpGq consisting of continuous functions. Consequently the
mapping θ�1 : θHÑ H is continuous. Thus

θw ÞÑ w ÞÑ pw, πpgqvqH � θwpgq
is a composition of continuous functions and thus is continuous. In conclu-
sion, the space θH is a Hilbert space of continuous functions on G satisfying

f ÞÑ fpgq
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is a continuous function on θH for each g P G. This makes the Hilbert space
θH a reproducing Hilbert space.

Definition 6.152. Let X be a locally compact Hausdorff space. Suppose H
is a Hilbert space where each member is a continuous function from X into
C. If for x P X, the evaluation mapping evx defined by

evxf � fpxq
is a continuous continuous on H, then H is said to be a reproducing kernel
Hilbert space.

We thus see if v is a wavelet vector for a square-integrable representation
π, the closed subspace WvpHπq is a reproducing kernel Hilbert space.

We remark one can extend this definition. Let X be a locally compact
Hausdorff space and let W be a Hilbert space. Then a Hilbert space H of
continuous functions f from X into W is called a reproducing Hilbert space
if

evx : HÑW where evxpfq � fpxq
is a continuous linear transformation of H into W for each x P X.

Theorem 6.153. Let H be a reproducing kernel Hilbert space of continuous
functions on a locally compact Hausdorff space X with values in a Hilbert
space W. Then there is a separately continuous function K : X�X Ñ BpWq
where BpWq has the weak operator topology satisfying

(a) Kpx, yq� � Kpy, xq for all x, y P X;

(b) for each y P X and w P H, the function Kyw defined by Kywpxq �
Kpx, yqw is in H;

(c) pfpyq, wqW � pf,KywqH for f P H, w PW, and y P X;

(d) the linear span of the vectors Kyw where y P X and w PW is dense
in H.

Proof. The linear transformations evxf � fpxq are continuous from H into
W. Thus evxev�y : W Ñ W is a continuous linear transformation from W
into W for each pair px, yq P X�X. We call this operator Kpx, yq. We note
Kpx, yq� � Kpy, xq. Thus

pKpx, yqw1, w2qW � pevxev�yw1, w2qW � ppevyq�w1pxq, w2qW
is continuous in x for fixed y. So x ÞÑ Kpx, yq is continuous into the weak
operator topology. Similarly, since

pKpx, yqw1, w2qW � pw1,Kpy, xqw2qW � pw1, evyev�xw2qW � pw1, ev�xw2pyqqW ,

we have continuity in y.
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Now note ev�y w is a function on X whose value at x is evxev�y w; i.e.,
ev�y wpxq � Kpx, yqw. Thus if Kywpxq � Kpx, yqw, we have

pfpyq, wqW � pevyf, wqW � pf, ev�ywqW � pf, KywqH.

Finally, to see the linear span of the Kyw is dense in H, note if f P H and
f K Kyw for all y and w, then

pfpyq, wqW � pf,KywqH � 0

for all w for each y. So fpyq � 0 for all y. Thus f � 0. ¤

In the case when W � C, K is a function function from X �X into C
and fpyq � Ky where Kypxq � Kpx, yq.
Theorem 6.154. Let v be a wavelet vector for a square-integrable unitary
representation π of G. If χ is the central character of π and θ � Wv is the
wavelet transform of H into L2

χpGq, then the reproducing kernel for θpHq is
given by

Kpg1, g2q � 1
A2

Wvvpg�1
2 g1q � 1

A2
pπpg2qv, πpg1qvqH

where A2 � Bpv, vq � |Wvv|22||v||2 . In particular,

Wvwpgq �
»

G{Z
θwpg1qKpg1, gq dpg1Zq

for g P G and each w P H.

Note K satisfies Kpg1ξ1, g2ξ2q � χpξ1ξ
�1
2 qKpg1, g2q for g1, g2 P G and

ξ1, ξ2 P Z.

Proof. From (c) of Theorem 6.142, we know

πpgqv � 1
A2

»
G{Z
pπpgqv, πpg1qvqπpg1qv dpg1Zq
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weakly in H. So

θwpgq � pw, πpgqvqH
� 1

A2

»
G{Z
pw, pπpgqv, πpg1qvqHπpg1qvqH dpg1Zq

� 1
A2

»
pπpg1qv, πpgqvqHpw, πpg1qvqH dpg1Zq

� 1
A2

»
G{Z
pπpg1qv, πpgqvqHθwpg1q dg1

�
»

Kpg, g1qθwpg1q dg1

�
»

θwpg1qKpg1, gq dg1

� pθw, Kgq.
¤

Example 6.155. The Heisenberg group and the windowed Fourier
transform.

In Section 11 of Chapter 4, we looked at the windowed Fourier transform
Sψ defined in ( 4.21) of that section by

Sψpfqpu, ωq �
»

fpxqψ px� uqe�2πiω�x dx.

We show here this is just a wavelet transform for the representation πλ where
λ � �2π and πλ is the irreducible unitary representation of the Heisenberg
group G given in Section 6.136 by

πλppx, yq, tqfpwq � eiλte.5λix�ye�iλw�yfpw � xq
for f P L2pRnq. We recall the Heisenberg group is unimodular with Haar
measure dg � dx�dy�dt. We note that πλ is irreducible; see either Exercise
6.10.14 or Theorem 7.11.

The fact that πλ is square-integrable and the sesquilinear form B for
πλ are consequences of results obtained in Chapter 7. To start, note that
G{Z can be identified with Rn�Rn under the topological group isomorphism
ppx, yq, tqZ Ø px, yq and under this mapping Haar measure becomes dx�dy.
In Chapter 7, instead of dx for Lebesgue measure on Rn, we use dnx �

1p2πqn{2 dx. Thus by Theorem 7.9,

(6.52)

p2πqn
|λ|n pf, f 1q2ph1, hq2 �

»
G{Z
pf, πλpgqhq2pπλpgqh1, f 1q2 dpgZq

�
¼
pf, πλppx, yq, 0qhq2pπλppx, yq, 0qh1, f 1q2 dx� dy
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for f, f 1, h, h1 P L2pRnq. Thus the sesquilinear form B in Proposition 6.144
is given by

Bph, h1q � p2πqn
|λ|n ph, h1q2

and πλ has formal degree |λ|np2πqn . Hence every vector in L2pRnq is admissible
and for any φ and ψ in L2pRnq where pφ, ψq2 � 0, we have

f � 1
Bpφ, ψq

»
G{Z

WψfpgqπλpgqφdpgZq
where this integral is understood weakly. This can be rewritten as

f � |λ|n
p2πqnpφ, ψq2

¼
Rn�Rn

Wψpfqpu, ωqπλppu, ωq, 0qφdu dω.

Let ψ be nonzero in H � L2pRnq. The wavelet transform Wψ is given
by Wψfppu, ωq, 0q � pf, πλppu, ωq, 0qψq2 � ³

Rn fpxqπλppu, ωq, 0qψpxq dx. So

Wψfppu, ωq, 0q �
»
Rn

fpxqe.5λiu�ωe�iλx�ωψpx� uq dx

� e�.5λiu�ω
»
Rn

fpxqeiλx�ωψpx� uq dx.

For the case when λ � �2π, we obtain

Wψfppu, ωq, 0q � eπiu�ω
»
Rn

fpxqψpx� uqe�2πix�ω dx � eiπu�ωSψpfqpu, ωq
where Sψpfq is the windowed Fourier transform of f . Next note, if λ � �2π,
then Bph, h1q � ph, h1q2.

Writing out (d) of Theorem 6.150 we see

f � 1
Bpφ, ψq

»
G{Z

Wψfpu, ωqπ�2πppu, ωq, 0qφdppu, ωqZq.
So

fpxq � 1
pφ, ψq2

¼
eiu�ωSψpfqpu, ωqe�iu�ωe2πix�ωφpx� uq du dω

� 1
pφ, ψq2

¼
Sψfpu, ωqe2πix�ωφpx� uq du dω

� 1
pφ, ψq2

»
F2Sψfpu,�ωqψpx� uq du

where this holds weakly but can be shown to hold pointwise a.e. x.
This is the inversion formula given in Theorem 4.84 for the windowed

Fourier transform. We also mention that the Plancherel Formula given in
Theorem 4.80 is easily shown to be (6.52) with λ � �2π.
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Before continuing with our examples and showing the wavelet transform
of Section 12 in Chapter 4 is just a transform associated with a square-
integrable representation, we show how we can fit them in to an interesting
family of induced representations.

Let H be a second countable locally compact Hausdorff group with left
Haar measure dh and suppose H acts continuously and linearly on Rn. Thus
Rn is a left H space and x ÞÑ hx is a linear transformation of Rn for each
h P H. To simplify the presentation, we add two assumptions:

(6.53)
hx � x for all x ùñ h � 1

hx � x for all h ùñ x � 0.

We set G � H � Rn with product topology and define a multiplication by

(6.54) ph, xqph1, yq � phh1, x� hyq.
With this multiplication and topology G is a semi-direct product of the
groups tph, 0q | h P Hu and tp1, xq | x P Rnu and we write G � H 
 Rn. As
each h in H gives a linear transformation of Rn we define deth to be the
determinant of this transformation and let ht be its transpose. In particular
one has

(6.55)
dphxq � | deth| dx

phxq � y � x � phtyq
where dx is Lebesgue measure on Rn. We shall use a and b to denote
elements in the group H and x and y to be elements in Rn.

To start, we need to determine the center of G. We note pa, xqpb, yq �
pb, yqpa, xq for all b and y if and only if ab � ba and x� ay � y � bx for all
b, y. Taking b � 1, we see ay � y for all y. Consequently, x � bx for all b.
The simplifying conditions (6.53) were made so that we would have x � 0
and a � 1, and thus the center is trivial.

By Exercises 6.11.11 and 6.11.12, a left Haar measure for G is given by
dph, xq � |deth|�1 dh � dx and the quasi-regular representation indG

H1 can
be taken to be the representation ρ on L2pRnq given by:

(6.56) ρph, xqfpyq � |det h|�1{2fph�1py � xqq
If one lets F be the Fourier transform, then the unitary representation ρ̂
defined by ρ̂pgq � FρpgqF�1 on L2pRnq is given by

(6.57) ρ̂ph, xqf̂pyq � | deth|1{2e2πix�yf̂phtyq.
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To check this we note if f P SpRnq, then

Fρph, xqfpωq �
»

ρph, xqfpyqe�2πiy�ω dy

�
»
| deth|�1{2fph�1py � xqqe�2πiy�ω dy

�
»
| deth|�1{2fph�1yqe�2πipy�xq�ω dy

� e2πix�ω| deth|�1{2
»

fpyqe�2πihy�ω dphyq
� e2πix�y| deth|1{2

»
fpyqe�2πiy�htw dy

� |det h|1{2e2πix�yFfphtωq.
By Exercise 6.11.13, we have the following.

Proposition 6.156. If P is an orthogonal projection onto a nonzero closed
ρ̂ invariant subspace of L2pRq, then Pf � χW f for a Borel subset W of
Rn where W has positive Lebesgue measure and satisfies htW � W for
all h P H. Moreover, the representation ρ̂W obtained by restricting ρ̂ to
PL2pRnq is irreducible if and only if whenever U is a Borel subset of W
which satisfies htU � U in the Lebesgue measure algebra of Rn for all h in
H, then U or its complement in W has measure 0.

Now let S be a Borel subset of Rn which is Ht invariant and has pos-
itive Lebesgue measure and such that the representation ρ̂ on L2

SpRnq is
irreducible. We determine conditions for this representation to be square
integrable and find this representation’s wavelets.

Theorem 6.157. Let π̂ be the irreducible representation ρ̂ restricted to the
invariant subspace L2

SpRnq. Then for each vector ψ̂ P L2
SpRnq there is a

Bpψ̂, ψ̂q P r0,8s such that

Bpψ̂, ψ̂q �
»

H
|ψ̂phtyq|2 dh

for a.e. y P S.
Moreover, the vector ψ̂ is admissible if and only if Bpψ̂, ψ̂q   8. Thus

π is square-integrable if and only if there is a nonzero ψ in L2
SpRnq with

0   Bpψ̂, ψ̂q   8. If φ̂ and ψ̂ are admissible, the sesquilinear form B for π̂
is given by

Bpφ̂, ψ̂q �
»

H
φ̂phtyqψ̂phtyq dh

where the expression
³
H φ̂phtyqψ̂phtyq dh is constant in y a.e. on S.
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Proof. Let ψ̂ and φ̂ and f̂ and ĝ all be in L2
SpRnq.

Set F ph, xq � pf̂ , ρ̂ph, xqψ̂q2 and Gph, xq � pĝ, ρ̂ph, xqφ̂q2. Then:

F ph, xq � pf̂ , ρ̂ph, xqψ̂q2 �
»

f̂pyqρ̂ph, xqψ̂pyq dy

�
»

f̂pyq|det h|1{2e�2πix�yψ̂phtyq dy

and similarly

Gph, xq � pĝ, ρ̂ph, xqφ̂q2 �
»

ĝpyq|deth|1{2e�2πix�yφ̂phtyq dy.

So if integrable, by the Plancherel Theorem we have:

(6.58)

»
F ph, xqGph, xq dx �

»
| deth|

�»
f̂pyqe�2πix�yψ̂phtyq dy



�»

ĝpωqe2πix�ωφ̂phtωq dω



dx

� |deth|
»

F̂hpxqĜhpxq dx

where Fhpyq � f̂pyqψ̂phtyq and Ghpyq � ĝpyq φ̂phtyq. Thus F ph, xqF ph, xq is
integrable on G if and only if»

H
|det h|

»
Rn

F̂hpxq F̂hpxq dx| | det h|�1 dh   8.

This occurs if and only if»
|
»

F̂hpxqF̂hpxq dx| dh   8
and thus by the Plancherel Theorem if and only if» »

FhpxqFhpxqdx dh   8
which is the same as » »

|f̂pyq|2|ψ̂phtyq|2 dy dh   8.

By Fubini, this is equivalent to»
S

»
H
|f̂pyq|2

»
|ψ̂phtyq|2 dh dy   8.

Define a function R on S by Rpyq � ³ |ψ̂phtyq|2 dh. We note Rpbtyq �³ |ψ̂ppbhqtyq|2 dh � ³ |ψ̂phtyq|2 dh by left invariance of the Haar measure dh.
Thus for ψ̂ to be admissible, we would need Rpyq to be finite a.e. y on S.
But for c rational and nonnegative, Sc � ty P S | Rpyq ¥ cu is Ht invariant
and thus has measure 0 or has complement in S with measure 0. If λ is
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Lebesgue measure on Rn, this implies Rpyq � inftc ¡ 0 | λpScq � 0u a.e.
y. Hence we obtain ψ̂ P L2

SpRnq is admissible if and only if there is a finite
nonnegative constant C2 with»

H
|ψ̂phtyq|2 dh � C2 for a.e. y P S.

In particular, if φ̂ is also admissible, Equation (6.58) implies» »
F ph, xqGph, xq|deth|�1 dx|det h| dh �

»
H

»
F̂hpxqĜhpxq dx dh

�
»

H

»
S

f̂pyqψ̂phtyqĝpyqφ̂phtyq dy dh

�
»

S
f̂pyqĝpyq

»
H

ψ̂phtyqφ̂phtyq dh dy

� Bpφ̂, ψ̂q
»

S
f̂pyq ĝpyq dy

where once again y ÞÑ ³
H ψ̂phtyqφ̂phtyq dh is a constant Bpφ̂, ψ̂q a.e. y in

S. ¤

Corollary 6.158. Let S � Hty have positive Lebesgue measure. Then the
irreducible representation π obtained by restricting ρ to F�1L2

SpRnq is square
integrable if and only if the stabilizer Hy � th P H | hty � yu is a compact
subgroup of H. Furthermore, when Hy is compact and for each x, apxqHy

is the coset where papxq�1qty � x, then a nonzero function φ is a wavelet
function for π if and only if»

H
|φ̂phtyq|2 dh   8

which occurs if and only if»
S
|φ̂pxq|2 | detpapxqq|

∆papxqq dx   8.

Moreover, with an appropriate normalization of the left Haar measure dh,
the sesquilinear form B on the vector space of admissible vectors is given by

Bpφ, ψq �
»

H
φ̂phtyqψ̂phtyq dh �

»
S

φ̂pxqψ̂pxq |detpapxqq|
∆papxqq dx.

Finally, one has the inversion formula

f � 1
Bpφ, ψq

¼
H�Rn

|det h|�1Wψpfqph, xqπph, xqφ pdh� dxq

weakly if Bpφ, ψq � 0.
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Proof. Let ρ be a continuous rho function for the subgroup Hy of H and
let ∆ be the modular function for H and ∆y be the modular function for
Hy. Thus ρpaξq � ρpaq∆ypξq

∆pξq for a P H and ξ P Hy and by Theorem 6.15»
H
|φ̂phtyq|2ρphq dh �

»
H{Hy

»
Hy

|φ̂pphξqtyq|2 dξ dphHyq.
Thus»

H
|φ̂phtyq|2 dh �

»
∆phq|φ̂phtyq|2p∆ph�1q dhq

�
»

∆ph�1q|φ̂pph�1qtyq|2 dh

�
»

ρphq�ρphq�1∆ph�1q|φ̂pph�1qtyq|2	 dh

�
»

H{Hy

»
Hy

ρphξq�1∆pξ�1h�1q|φ̂pph�1qtpξ�1qtyq|2 dξ dphHyq
�
»

H{Hy

»
Hy

ρphξq�1∆pξ�1h�1q|φ̂pph�1qtyq|2 dξ dphHyq
�
»

H{Hy

|φ̂pph�1qty|2
»

Hy

ρphξq�1∆phξq�1 dξ dphHyq
�
»

H{Hy

|φ̂pph�1qty|2F phHyq dphHyq
where F phHyq � ³

Hy
pρ∆qphξq�1 dξ. Note

F phHyq �
»

Hy

ρphq�1∆pξq∆ypξq�1∆phq∆pξ�1q dξ

� ρphq�1∆phq
»

Hy

∆ypξ�1q dξ.

So F phHyq � ∆phq
ρphqmypHyq. Thus if mypHyq � 8, π is not square integrable

while if mypHyq is finite, then by Exercise 6.1.13, Hy is compact. This
implies ∆y � 1 and ∆|Hy � 1. Thus we could have taken ρ � 1 and by
Theorem 6.15, we see the measure µy on H{Hy is invariant under the action
of H. We may now assume mypHyq � 1. So F phHyq � ∆phq�1 and thus³
H |φ̂phtyq|2 dh � ³

H{Hy
|φ̂pph�1qty|2∆phq�1 dphHyq.

Now since ppbhq�1qty � pb�1qtph�1qty, the mapping from H{Hy Ñ S
given by hHy ÞÑ ph�1qty is an equivariant continuous one-to-one mapping
onto S � Hty. Since both the measure | deth|�1dphHyq and Lebesgue
measure dx have the same relative invariance; namely»

fppb�1qtxq dx � | detpbq|
»

fpxq dx
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and »
fpbhHyq|det h|�1 dphHyq �

»
fphHyq|detpb�1hq|�1dphHyq

� |det b|
»

fphHyq|deth|�1 dphHyq,
it follows by Corollary 6.18 that there is a constant c so that under this
correspondence c| det h|�1dµyphHyq � dx on S. Adjusting the left Haar
measure dh by multiplying it by 1

c , we may take c � 1. So φ̂ is a wavelet
vector if and only if»

H
|φ̂phtyq|2 dh �

»
H{Hy

|φ̂pph�1qtyq|2∆phq�1 dphHyq
�
»

H{Hy

|φ̂pph�1qtyq|2∆phq�1|det h|| deth|�1 dphHyq
�
»
|φ̂pxq|2 |detpapxqq|

∆papxqq dx   8
where for each x, apxqHy is the element in H{Hy where papxq�1qty � x.
Since S has positive Lebesgue measure, we can find a nonzero φ̂ which van-
ishes off a compact subset in S. So we see π has a wavelet vector. Moreover,
by doing the same integration for the formula giving B in Theorem 6.157,
one sees

Bpφ̂, ψ̂q �
»

H
φ̂phtyqψ̂phtyq dh �

»
φ̂pxqψ̂pxq | detpapxqq|

∆papxqq dx.

¤

Remark 6.159. We note for the group G � H 
Rn, the mapping α : G ÞÑ
G given by αpa, xq � pa,�xq is a topological group isomorphism. Thus
if ρ is the unitary representation of G given by (6.56), then ρ � α is the
representation satisfying

(6.59) ρ � αph, xqfpyq � |det h|�1{2fph�1py � xqq
for f P L2pRnq is a unitary representation of G. Moreover ρ and ρ � α have
the same invariant subspaces. Also, since α preserves Haar measure, we see
closed irreducible subspaces have the same admissible vectors and if φ and
ψ are admissible, then

Bρ�αpφ, ψqpf1, f2q2 �
¼
pf1, ρpαpgqqψq2pρpαpgqqφ, f2q2 dg

�
¼
pf1, ρpgqψq2pρpgqφ, f2q2 dg

� Bρpφ, ψq pf1, f2q2
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and thus Bρ�α � Bρ. Consequently, Proposition 6.156, Theorem 6.157, and
Corollary 6.158 hold as stated with ρ � α replacing ρ and π � α replacing π.
In particular, we have

(6.60)

fpyq � 1
Bpφ, ψq

¼
H�Rn

|det h|�1Wψpfqph, xqpρ � αqph, xqφpyqpdh� dxq

� 1
Bpφ, ψq

¼
H�Rn

|det h|�1Wψpfqph, xq| deth|1{2φphtpy � xqq dh� dx

� 1
Bpφ, ψq

¼
H�Rn

Wψpfqph, xq|det h|φphtpy � xqq dh� dx

where

Wψpfqph, xq � pf, ρ � αph, xqψq2
� |det h|1{2

»
Rn

fpyqψphtpy � xqq dx.

We note the representation ρ � α is the (left) quasi-regular representation
of G on L2pG{H) and ρ is the (right) quasi-regular representation of G on
L2pHzGq.
Example 6.160. In Example 6.137 we constructed the irreducible repre-
sentations xπ� and xπ� of the ax � b group. This example fits well with
the results just established for if we take H � R� under multiplication and
define for each a ¡ 0 the linear transformation x ÞÑ ax, then the group
H
R is the ax� b group. Moreover, there are three orbits under the action
a � x � pa�1qtx; namely, R�, R�, and t0u. In the first two cases we have
stabilizers H1 � H�1 � t1u and in the third, we have stabilizer H. Thus
by Proposition 6.156 and Theorem 6.157 and its corollary, we know the rep-
resentations ρ̂� obtained by restricting ρ̂ to L2pR�q and ρ̂ to L2pR�q are
irreducible and square integrable.

But by the formulas (6.40) and (6.41) we see these are just the represen-
tations xπ� and xπ� obtained in Example 6.137 by inducing; i.e., ρ̂� � xπ� �
indGt1u�Rχ� and xρ� � π̂� � indGt1u�Rχ� where χ� are the one dimensional
characters of t1u � R given by χ�p1, bq � e�2πib.

Let H�
2 and H�

2 be the classical Hardy spaces of functions f P L2pRq
where f̂ |R� � 0 and f̂ |R� � 0.

Theorem 6.161. The subspaces H2� and H2� are invariant and irreducible
and the representations π� and π� obtained by restricting ρ to these sub-
spaces are square integrable. Moreover, a function φ P H�

2 is a wavelet

function for π� if and only if
³
R�

|φ̂pxq|2|x| dx   8 and the sesquilinear form
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B between two wavelets φ and ψ for π� is given by

B�pφ, ψq �
»
R�

φ̂pxqψ̂pxq dx

|x| .
The wavelet transform Wψfpa, bq � pf, ρpa, bqψq2 � pf̂ , ρ̂pa, bqψ̂q2 is given
by

Wψfpa, bq � ?a

»
R�

f̂pxqe�2πibxψ̂paxq dx

and one has

f � 1
B�pφ, ψq

» 8
�8

» 8
0

Wψfpa, bqρpa, bqφda

a2
db

weakly if B�pφ, ψq � 0.

Proof. These results follow from Proposition 6.156, Theorem 6.157 and
Corollary 6.158 for ρ̂pgq � FρpgqF�1 and FH2� � L2pR�q and FH2� �
L2pR�q. Thus ρ̂� � Fπ�F�1 and ρ̂� � Fπ�F�1. Since ρ̂� are square-
integrable, so are π� and π�. Moreover, all conditions for admissibility,
etc. for π� and π� follow from the corresponding conditions on the repre-
sentations ρ̂� and ρ̂�. Thus by Corollary 6.158, using left da

a as the left
Haar measure on H � R� � t0u, we see φ is a wavelet vector for π� if and
only if

³8
0 |φ̂pat1q|2 da

a   8. But this is equivalent to
³
R� |φ̂pxq|2 dx|x|   8.

Furthermore, we know if φ and ψ are wavelet functions, then

B�pφ, ψq � Bρ̂�pφ̂, ψ̂q �
»
R�

φ̂pat1qψ̂pat1q da

a
�
»
R�

φ̂pxqψ̂pxq dx

x

and one has the weak inversion formula

f � 1
B�pφ, ψq

¼
H�R

| det a|�1Wψfpa, xqπ�pa, xqφdpa, xq

where dpa, xq � da
a � dx is a left Haar measure on G. Thus

f � 1
B�pφ, ψq

» 8
�8

» 8
0

Wψfpa, bqρpa, bqφda

a2
db

weakly if B�pφ, ψq � 0. The arguments for π� are verbatim copies. ¤

Example 6.162. The AX � B group G equals H 
 Rn where H � pR�qn
acts linearly on Rn by paxqj � ajxj. So Corollary 6.158 applies. But under
the action a � x � patq�1x � a�1x, there is only one orbit with positive
Lebesgue measure. Namely, H � y where y � p1, 1, � � � , 1q. In this case, H � y
is the open set S consisting of all points x P Rn where all the coordinates of
x are nonzero and the stabilizer Hy of y is trivial and thus by Remark 6.159,
the representations π � ρ � α and π̂ � ρ̂ � α restricted to F�1L2

SpRnq and
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L2
SpRnq are irreducible and square integrable and a function φ̂ in L2

SpRnq is
admissible for π̂ if and only if φ is admissible for π if and only if»

H
|φ̂phtyq|2 dh �

»
Rn

|φ̂px1, x2, . . . , xnq|2 dx

|x1x2 � � �xn|   8.

Moreover, by (6.59), the representation π is the representation given by
(6.42) in Example 6.139 and the condition for a function ψ to be a wavelet
for π is the same as that described in Section 12 of Chapter 4. Furthermore,
the formula (4.28) from Chapter 4 for a wavelet transform is obtained from
Definition 6.147. Indeed,

Wψfpa, bq � pf, πpa, bqψq2 � pf̂ , π̂pa, bqψ̂q2
� pf̂ , ρ̂ � αpa, bqψ̂q2
� |det a|1{2

»
f̂pωqe�2πiω�bψ̂paωq dω

� |det a|1{2
»

f̂pωqe2πiω�bψ̂pMpaqωq dω.

Moreover, since

Bρ�αpφ, ψq �
»
pR�qn

φ̂pxqψ̂pxq dx

|x1x2 � � �xn|
we see the Plancherel Theorem 4.90 of Chapter 4 is just Proposition 6.144
and Theorem 6.142 and since φa,bpxq � |det a|�1{2ψpMpaq�1px � bqq �
πpa, bqψpxq, the inversion formula given in Theorem 4.91 is just the in-
version formula (6.60).

There are many other examples where one can apply Corollary 6.158.
We mention two here, leaving the details of the first to an exercise.

First let H � R� � SOpnq be the product group with product topology
and define pa,Aqy � aAy. Then the orbit of any nonzero point y under the
action pa,Aq � y � ppa,Aq�1qty � a�1Ay is Rnzt0u and the stabilizer Hy of
the point y � p1, 0, � � � , 0q is t1u�SOpn�1q where SOpn�1q is the subgroup
of SOpnq consisting of the A with Ay � y and is isomorphic to the group of
orthogonal pn� 1q� pn� 1q matrices with determinant 1. Exercise 6. 11.14
establishes the following theorem.

Theorem 6.163. Let S � tx P Rn | x � 0u and H � R� � SOpnq. If π is
the unitary representation of H 
 Rn given by

πpa,A, bqfpxq � a�n{2fpa�1A�1px� bqq
for f P L2pRnq, then π is square integrable. Moreover, if Haar measure
dA is chosen on the compact group SOpnq with

³
SOpnq 1 dA � σpSn�1q, the
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surface area of the unit sphere in Rn, then ψ is a wavelet function for π if
and only if ¼

S

|ψ̂pxq|2 1
|x|n dx   8.

Furthermore, if φ and ψ are wavelet functions and

Wψfpa,A, bq � an{2
¼
S

f̂pωqe2πib�ωψ̂paA�1ωq dω

is the wavelet transform and

Bpφ, ψq �
¼
S

φ̂pxqψ̂pxq dx

|x|n � 0,

then

fpxq � 1
Bpφ, ψq

»
Rn

»
SOpnq

»
R�

Wψfpa, A, bqa�n{2φpa�1A�1px� bqq da

an�1
dAdb

weakly in L2pRnq.
As our final example, we let H � R� � SOp1, n � 1q act on Rn by

pa,Aqx � aAx and take y0 � e1 � p1, 0, 0, . . . , 0q. Under the action

pa,Aq � x � pa�1A�1qtx,

the stabilizer H0 of y0 is t1u � SOpn � 1q and thus is compact. Moreover,
the orbit S of y0 under this action is S � tpx, yq P R � Rn�1 | x ¡ 0, x2 �
|y|2 ¡ 0u. This implies Corollary 6.158 applies to the representation π of
G � H 
 Rn given by

πpa,A, bqfpxq � a�n{2fpa�1A�1px� bqq
for f P F�1pL2

SpRnqq. Thus we know π is square integrable and a func-
tion ψ in L2pRnq is a wavelet if and only if

³ |ψ̂paAty0q|2 pda
a � dAq   8.

Now let px, yq be in the orbit S. We wish to find an apx, yq P H with
apx, yq � y0 � px, yq. First take p P R� with p�1 � a

x2 � |y|2. Then
ppx, yq � px1, y1q where x2

1 � |y1|2 � 1. Next choose T P SOpn � 1q so
that T�1y1 � p0, |y1|, 0, 0, � � � , 0q, and then pick t P R with pcoshp�tqx1 �
sinhp�tq |y1|,� sinhp�tqx1 � coshp�tq|y1|q � p1, 0q. Then if we let apx, yq �
pp, T̃ Ãptqq where T̃ px, yq � px, Tyq and Ãptqpx1, x2, zq � pcosh t x1�sinh t x2,
sinh tx1 � cosh t x2, zq for x1, x2 P R and z P Rn�2, then apx, yq � y0 � px, yq.
We note detpapx, yqq � pn � 1px2�|y|2qn{2 . Thus with an appropriate normal-
ization of Haar measure dA on SOp1, n� 1q, one has ψ is a wavelet function
if and only if

´
S |ψ̂px, yq|2 1px2�|y|2qn{2 dx dy   8. Concluding, we have:



Square Integrable Representations and Wavelets 425

Theorem 6.164. Let H � R� � SOp1, n � 1q and let S � tpx, yq P R� �
Rn�1 | x2 � |y|2 ¡ 0u. Let π be the unitary representation of H 
 Rn given
by

πpa,A, bqfpxq � a�n{2fpa�1A�1px� bqq
for f P F�1L2

SpRnq. Then π is square integrable and a function ψ is a
wavelet function for π if and only if¼

S

|ψ̂px, yq|2 1
px2 � |y|2qn{2 dx dy   8.

Furthermore, if φ and ψ are wavelet functions and

Wψfpa,A, bq � an{2
¼
S

f̂pωqe2πib�ωψ̂paAtωq dω

is the wavelet transform and

Bpφ, ψq �
¼
S

φ̂px, yqψ̂px, yq dx dy

px2 � |y|2qn{2 � 0,

then with a proper choice dA for Haar measure on SOp1, n� 1q,
fpxq � 1

Bpφ, ψq
»
Rn

»
SOp1,nq

»
R�

Wψfpa,A, bqa�n{2φpa�1A�1px� bqq da

an�1
dAdb

weakly for all f in F�1L2
SpRnq.
Exercise Set 6.11

1. Define admissibility with respect to a right Haar measure and show if a
vector is admissible with respect to a left Haar measure, then it is admissible
with respect to every right Haar measure.

2. Let π be an irreducible unitary representation of a locally compact Haus-
dorff space. Show a nonzero vector v is admissible if and only if there is a
nonzero vector w such that»

G{Z
|pw, πpgqvqH|2 dpgZq   8.

3. Let G be a unimodular group and let π be an irreducible unitary repre-
sentation of G. Then the linear subspace of admissible vectors is either t0u
or H, the Hilbert space for π.

4. Show if G is unimodular and the irreducible unitary representation π is
square integrable, then there is a d ¡ 0 such that

1
d
pv1, v2qHpw1, w2qH �

»
G{Z
pw1, πpgqv2qHpπpgqv1, w2qH dpgZq



426 Basic Representation Theory

for all v1, v2, w1, w2 P H, the Hilbert space for π. The positive constant d is
called the formal degree of the representation π.

5. Let π be a finite dimensional unitary square integrable representation
of a unimodular group G. Show the formal degree of π is its dimension.
(Hint: Define T by Tw � ³

G{Zpw, πpgqvqHπpgqv dpgZq. Note T � θ�θ �³
G{Zpπpgqv b πpgqvq dpgZq and use this to calculate the trace.)

6. Show the modular function ∆ for G is integrable if and only if G is
compact.

7. Let π be an irreducible square integrable unitary representation. Recall
the formal degree operator is a closed invertible positive operator D on Ha

onto Ha such that

pD�1v1, v2qHpw1, w2qH �
»

G{Z
pw1, πpgqv2qHpπpgqv1, w2qH dpgZq

for all v1, v2 P Ha and w1, w2 P H. Show Dπpgqv � ∆pgqπpgqDv for v P Ha.

8. Let f P L1
χpGq and π be a unitary representation of G with central

character χ. Show πχpfqw exists weakly for all w P Hπ, πχpfq is a linear
operator, and

||πχpfq|| ¤ |f |1 �
»
|fpgq| dpgZq.

9. Let π be an irreducible unitary representation of G. Suppose there is a
nonzero vector v such that g ÞÑ pv, πpgqvqH is in L2pGq. Show the center Z
of G is compact. Now suppose Z is compact. Show

(a) If v is an admissible vector for π, then g ÞÑ pv, πpgqvqH is in L2pGq.
(b) Let χ be a one-dimensional character of Z. Show if dξ is a Haar

measure on Z of total mass 1 and Haar measure on G{Z is given
as in (6.44), then the inclusion mapping L2

χpGq Ñ L2pGq is an
isometry.

(c) Show if χ1 � χ2, then L2
χ1
pGq and L2

χ2
pGq are orthogonal in L2pGq.

(d) Show if v is a wavelet vector for π, then the properties for Wv

given in Theorem 6.150 hold for L2pGq; thus all integrals are over
G instead of G{Z and use dg instead of dpgZq.

10. Suppose π is a unitary representation of a group G on a Hilbert space
H and there is a one-dimensional character χ of the center Z of G such that
πpξq � χpξqI for ξ P Z. Show if there is a dense linear subspace Ha of H
and a sesquilinear form B on Ha such that»

pw1, πpgqv1qHpπpgqv2, w2qH dpgZq � Bpv2, v1qpw1, w2qH
for v1, v2 P Ha and w1, w2 P H, then π is irreducible.
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11. Let G be the group H
Rn with multiplication defined in (6.54). Show
if dh is a left Haar measure for H and dx is Lebesgue measure, then dph�
xq � |det h| pdh � dxq is a left Haar measure for G. Then show if ∆ is the
modular function for H, then the modular function ∆G for G is given by
∆Gpa, yq � |det a|

∆paq .

12. Let G be the group H 
 Rn with multiplication defined by (6.54).
Show the right quasi-regular representation indG

H1 is unitarily equivalent to
the representation ρ defined on L2pRnq by

ρph, xqfpyq � |det h|1{2fph�1py � xqq.
(Hint: Follow the argument in Example 6.95).

13. Let ρ̂ be the representation given in (6.57). Follow the argument in
Example 6.139 to show:

(a) Every closed ρ̂ invariant nonzero subspace of L2pRnq has form

L2
W pRnq � tf P L2pRnq | f � 0 off W u

where W is a Borel subset of Rn of positive Lebesgue measure sat-
isfying htW �W for all h P H.

(b) Let ρ̂W be ρ̂ restricted to L2
W pRnq. Show ρ̂W is irreducible if and

only if every Borel subset E of W satisfying phtEXEcqYpEXphtEqcq
has Lebesgue measure 0 for all h P H has Lebesgue measure 0 or
has complement in W with Lebesgue measure 0. (This says the
action of H on W is ergodic.)

14. Let H be the product group R� � SOpnq with product topology and
G � H
Rn where H acts on Rn by pa,Aqx � aAx. Show the representation
π defined on L2pRnq by

πpa,A, bqfpxq � a�n{2fpa�1A�1px� bqq
is square-integrable and a nonzero function ψ is a wavelet for π if and only
if
³
Rn |ψ̂pxq|2 dx|x|n   8. Let

Wψpfqpa,A, xq � a�n{2
»

fpyqe2πix�yψpa�1A�1py � xqq dy

be the wavelet transform. Show if φ and ψ are wavelet functions and dA is
a Haar measure on SOpnq satisfying

³
SOpnq 1 dA � σpSn�1q, the surface area

of Sn�1, then

fpyq � 1
Bpφ, ψq

» » »
Wψpfqpa,A, xqa�n{2φpa�1A�1py � xqq da

an�1
dAdx

weakly provided

Bpφ, ψq �
»
Rn

φ̂pxqψ̂pxq dx

|x|n � 0.
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15. Let S � tpx, yq P R2 | x ¡ 0 andx2�y2 ¡ 0u. Define a nonzero function

φ in F�1L2
SpR2q to be a wavelet function if Bpφ, φq � ´

S
|φ̂px,yq|2
x2�y2 dx dy   8.

For t P R, let Aptq be the linear transformation of R2 given by
Aptqpx1, x2q � pcosh t x1 � sinh t x2, sinh t x1 � cosh t x2q. Define the wavelet
transform Wψf for f P F�1L2

SpR2q by

Wψfpa, t, yq � a

¼
S

f̂pωqφ̂paAptqωqe2πiy�ω dω

where a ¡ 0, t P R, and y P R2. Show one has the weak formula

fpxq � 1
a4Bpφ, φq

»
R2

»
R

»
R�

Wψfpa, t, bqφpa�1Ap�tqpx� bqqda dt db.

(Hint: Use the Jacobian to show the appropriate measures are equal.)

16. Let G be the group H 
 Rn with multiplication defined in (6.54). As-
sume y P Rn and Hy is the closed subgroup stabilizing y under the action
h � x � ph�1qtx. It is known that the orbit H � y is a Borel subset of Rn

and the mapping φ defined by hHy ÞÑ h � y is a Borel isomorphism. That is
the Borel subsets of H{Hy map under this mapping in a one-to-one manner
onto the Borel subsets of Rn contained in the orbit H � y. Let ρ be a row
function for Hy and let µy be the corresponding quasi-invariant measure on
H{Hy. Let µ be the measure on the Borel subsets of H � y that satisfies»

fpxq dµpxq �
»

H{Hy

fph � yq dµyphHyq
for positive Borel functions f on H � y.

(a) Let χ be defined on the closed subgroup Hy
Rn of G by χph, xq �
eix�y. Show χ is a unitary representation.

(b) Show indχ is unitarily equivalent to the unitary representation π̂
defined on L2pH � y, µq by

π̂ph, x1qfpxq �
�

dph � µq
dµ

px1q

1{2

eix1�xfphtxq.
(c) Show π̂ is irreducible.
(d) Show π̂ is square-integrable if and only if Hy is compact.



Chapter 7

The Heisenberg Group

In this chapter Fourier analysis will be used to do harmonic analysis on the
Heisenberg group. In Chapter 3, the Fourier transform we used was

Ffpyq �
»

fpxqe�2πix�y dx

where dx is Lebesgue measure on Rn. However, from Exercise 3.2.3, one can
use any positive multiple of Lebesgue measure and obtain a corresponding
Fourier transform. As seen in that exercise, if one uses dnx � 1p2πqn{2 dx or

1p2πqn{2 times ordinary Lebesgue measure on Rn, one has Fourier transform

Ffpyq �
»

fpxqe�ix�y dnx

with inverse Fourier transform

F�1fpxq �
»

fpyqeix�y dny.

It will be convenient in this chapter to use the measure dnx and all Lp

norms, all convolutions, and all integrations will be done with respect to
this measure. We shall also use the notation fx for the left translate λpxqf
where λpxqfpyq � fpy�xq and ey for the exponential function eypxq � eix�y.
We recall the following basic facts in regards to this transform for f P SpRnq.

(1) Fpfxq � e�xFpfq
(2) Fpexfq � Fpfqx
(3) FpppDqfqpyq � ppiyqFfpyq
(4) Fppfq � ppiDqFpfq

429
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where in the above p is a polynomial function ppxq � °
|α|¤d cαxα and

ppiyq � °
|α|¤d cαi|α|yα and ppiDq � °

|α|¤d cαi|α|Dα.

1. Group Structure

As we saw in Example 5.9 of Chapter 5, multiplication on a Heisenberg
group involves a symplectic form on a finite dimensional real vector space.
We recall the definition here.

Definition 7.1. Let V be a vector space over R. Then a symplectic form
x�, �y on V is a bilinear real valued mapping on V � V satisfying

(1) xv, wy � �xw, vy for all v, w P V (alternating or skew)
(2) xw, vy � 0 for all v implies w � 0 (nondegeneracy)

Recall a bilinear form on V is alternating if and only if xv, vy � 0 for
all v P V . Indeed, if x�, �y is alternating, then xv, vy � �xv, vy and thus
xv, vy � 0. Conversely if xv, vy � 0 for all v, then xv � w, v � wy � 0 for all
v and w. Hence xv, vy � xv, wy � xw, vy � xw, wy � xv, wy � xw, vy � 0. This
gives xv, wy � �xw, vy.

Lemma 5.41 implies the following structure for symplectic forms x�, �y on
a finite dimensional real vector V .

There is a basis e1, e2, . . . , en, f1, f2, . . . , fn of V satisfying

xei, ejy � xfi, fjy � 0 for all i and j(7.1)

xei, fjy � δi,j for all i and j.(7.2)

A basis e1, e2, . . . , en; f1, f2, . . . , fn with properties 7.1 and 7.2 is called a
symplectic basis while a symplectic vector space is a vector space
with a symplectic form. We thus see finite dimensional symplectic vector
spaces with the same dimension are isomorphic.

Example 7.2. Let px, yq, px1, y1q P Rn � Rn. Define xpx, yq, px1, y1qy � x �
y1 � y � x1. Then x�, �y is a symplectic form.

This symplectic form can be obtained from the usual complex inner
product on Cn under the identification x� iy with px, yq P Rn�Rn. Indeed

xpx, yq, px1, y1qy � �py � x1 � x � y1q � �Impx� iy, x1 � iy1q
where the inner product on Cn is given by

pz, z1q � ņ

j�1

zj z̄
1
j .

We will use this symplectic form throughout this chapter and will identify
in many instances x� iy and the pair px, yq for x, y P Rn.
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Exercise 7.1.1 shows we may always assume a finite dimensional real
symplectic vector space V is a complex vector space with an inner product
where the symplectic form satisfies xw, vy � �Impw, vq.
Definition 7.3. Let x�, �y be a symplectic form on R2n. Set Hn � R2n �R.
Define pw, tq � pv, sq � pw � v, t � s � 1

2xw, vyq. Hn with this multiplication
is called the Heisenberg group of dimension 2n� 1.

On Cn � R, the multiplication would be

pz, tqpw, sq � pz � w, t� s� 1
2
Impz, wqq.

Straight forward calculations show this multiplication is associative, p0, 0q
is the identity and pw, tq�1 � p�w,�tq.
Remark 7.4. This group is very close to being commutative. Indeed, even
though pv, sq � pw, tq � pv � w, s� t� 1

2xv, wyq � pv � w, s� t� 1
2xv, wyq �

pw, tqpv, sq if xv, wy � 0, one may be tempted to write the multiplication as
addition, but one needs to remember this addition is not commutative. We
thus would have

pv, tq � pw, sq � pv � w, t� s� 1
2
xv, wyq.

In particular pv, tq � p�v,�tq � p0, 0q.
Since Hn is R2n�1, one has the usual differential operators on C8pHnq

and all the function spaces defined on Euclidean spaces. In particular, Hn

is a group in which multiplication and inversion are differentiable mappings;
i.e., it is a noncommutative Lie group. Exercise 7.1.2 shows it is a matrix
group.

2. Vector Fields and the Lie Algebra of Hn

We do not wish to discuss in any detail the coordinate free definition of
vectors and vector fields where these are differential operators. Since we
are dealing with the Euclidean space R2n�1 and will be using coordinates
px1, x2, . . . , xn, y1, y2, . . . , yn, tq where the entries here are real, one can define
a vector field on Hn to be a differential operator of form

D � ņ

j�1

pFj
B
Bxj

�Gj
B
Byj
q �H

B
Bt

where the Fj , Gj , and H are real valued functions on Hn. Such a vector
field is said to be C8 if the functions Fj , Gj , and H are C8 functions
on R2n�1. The bracket rD, D1s of two C8 vector fields D and D1 is the
operator defined on C8pHnq by

rD, D1s � D �D1 �D1 �D.
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Exercise 7.1.3 shows the bracket of two C8 vector fields is again a C8 vector
field and one has the following three properties:

pD, D1q ÞÑ rD, D1s is real bilinear(1)

rD, D1s � �rD1, Ds and(2)

rD, rD1, D2ss � rD1, rD2, Dss � rD2, rD, D1ss � 0 (the Jacobi identity).(3)

A vector space with a real bilinear mapping on itself into itself with
properties (2) and (3) is a real Lie algebra. In particular, the vector space
of C8 vector fields on Hn is an infinite dimensional Lie algebra.

There is a natural group method to find C8 vector fields on Hn. Namely,
let w P Cn and c P R. If f P C8pHnq and Φspz, tq � pz, tqpsw, scq, then

f ÞÑ d

ds
|s�0f � Φs

is a differential operator given by a C8 vector field. From Exercise 7.1.4, the
mappings s ÞÑ psw, scq are the one parameter groups in Hn. Essentially what
one is doing here is differentiating f along curves obtained by multiplying
on the right in the group Hn by a one parameter curve. By Exercise 7.1.5,
if Lphqfph1q � fph�1h1q, then these give the vector fields D satisfying

DpLphqfqq � LphqDpfq
for f P C8pHnq and h P Hn. Vector fields with this property are said to be
left invariant. If Rphq is defined on functions on Hn by Rphqfph1q � fph1hq,
then a vector field D is right invariant if DRphq � RphqD on C8pHnq.

To see the specific outcome, let w � pa, bq � a�ib where a, b P Rn. Then
Φspx, y, tq � px, y, tqpsa, sb, scq � px � sa, y � sb, t � sc � 1

2spx � b � y � aqq
Hence

(7.3)
d

ds
|s�0f � Φspx, yq � d

ds
|s�0fpx� sa, y � sb, t� sc� 1

2
spx � b� y � aqq

� ņ

j�1

aj
Bf
Bxj

px, y, tq � bj
Bf
Byj

px, y, tq � pc� 1
2
xpx, yq, pa, bqyqBfBt px, y, tq

�
�

ņ

j�1

ajp BBxj
� 1

2
yj
B
Bt q �

ņ

j�1

bjp BByj
� 1

2
xj
B
Bt q � c

B
Bt
�

fpx, y, tq.
Define vector fields Xj , Yj , and Z by

Xj � B
Bxj

� 1
2
yj
B
Bt(7.4)

Yj � B
Byj

� 1
2
xj
B
Bt(7.5)

Z � B
Bt(7.6)
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where j=1, 2,. . . , n. Thus the vector field given in (7.3) is given by¸
ajXj � bjYj � cZ.

Let a, b P Rn. Define

Xpaq � ņ

j�1

ajXj �
ņ

j�1

ajp BBxj
� 1

2
yj
B
Btq(7.7)

Y pbq � ņ

j�1

bjYj �
ņ

j�1

bjp BByj
� 1

2
xj
B
Btq.(7.8)

In this notation, one has

pXpaq � Y pbq � cZqfpx, y, tq � d

ds
fppx, y, tqpsa, sb, scqq|s�0.

Proposition 7.5. These vector fields satisfy the following bracket rules:

rXj , Xks � rYj , Yks � 0

rXj , Yks � δj,kZ � �rYk, Xjs
rXj , Zs � rYj , Zs � 0.

In particular,

rXpaq, Y pbqs � pa � bqZ and

rXpaq � Y pbq � cZ, Xpa1q � Y pb1q � c1Zs � xpa, bq, pa1, b1qyZ.

We remark that the brackets of the Xpaq � Y pbq � cZ behave as the
symplectic form x�, �y and the Xj and Yk behave analogously to a symplectic
basis.

Proof. The brackets between Xj and Xk and between Yj and Yk are 0 for
these differential operators commute. Similarly rXj , Zs � rYj , Zs � 0 for
all j for BBt commutes with the operators BBxj

� 1
2yj

BBt and BByj
� 1

2xj
BBt . For

rXj , Yks, note

XjYkf � p BBxj
� 1

2
yj
B
Btqp

B
Byk

� 1
2
xk
B
Btqf

�
� B2

BxjByk
� 1

2
δj,k

B
Bt �

1
2
xk

B2

BxjBt �
1
2
yj

B2

Bt Byk
� 1

4
xkyk

B2

Bt2



f

and similarly

YkXjf �
� B2

BykBxj
� 1

2
δj,k

B
Bt �

1
2
yj

B2

Bt Byk
� 1

2
xk

B2

Bt Bxj
� 1

4
xkyj

B2

Bt2



f

Subtracting gives

rXj , Yksf � δj,k
B
Btf � δj,kZ f.



434 The Heisenberg Group

Hence,

rXpaq, Y pbqs �
j̧,k

ajbkrXj , Yks
�

j̧,k

δj,kajbkZ

�
j̧

ajbjZ

� pa � bqZ
and

rXpaq � Y pbq � cZ, Xpa1q � Y pb1q � c1Zs � rXpaq, Y pb1qs � rY pbq, Xpa1qs
� rXpaq, Y pb1qs � rXpa1q, Y pbqs

� pa � b1 � b � a1qZ
� xpa, bq, pa1, b1qyZ.

¤

Thus the vector space consisting of all vector fields Xpaq � Y pbq � cZ
where a, b P Rn and c P R is a 2n � 1 dimensional Lie algebra. It is called
the Lie algebra of Hn and will be denoted by hn. We make an identification
between the vector space hn and Cn`R � R2n`Rn using the correspondence
Xpaq � Y pbq � cZ Ø pa� ib, cq Ø pa, b, cq where a, b P Rn and c P R. Under
this correspondence, Proposition 7.5 says the Lie bracket on hn satisfies:

(7.9) rpa, b, cq, pa1, b1, c1qs � p0, 0, xpa, bq, pa1, b1qyq.
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Exercise Set 7.1

1. Let x�, �y be a symplectic form on a real finite dimensional vector space
V . Show that V may be turned into a complex vector space with a complex
inner product p�, �q satisfying

xv, wy � �Impv, wq for all v, w P V.

2. Let H be the collection of all matrices of form��1 x t
0 In yt

0 0 1

��
where x, y P Rn, In is the n � n identity matrix and t P R. Show H is a
group and find an isomorphism of Hn onto H.

3. A C8 vector field on Rn is a differential operator of form

X � ņ

j�1

Fj
B
Bxj

where Fj P C8pRnq.
(a) Suppose X � °

Fj
BBxj

and X 1 � °
F 1j BBxj

are C8 vector fields on
Rn. Show the bracket rX, X 1s � XX 1�X 1X is the C8 vector field¸

Hk
B
Bxk

where Hk � °
j

�
Fj
BF 1kBxj

� F 1j BFkBxj

	
.

(b) Show pX, X 1q ÞÑ rX, X 1s is real bilinear on the vector space of C8
vector fields.

(c) Show rX,X 1s � �rX 1, Xs if X and X 1 are C8 vector fields.
(d) Show rX, rX 1, X2ss�rX 1, rX2, Xss�rX2, rX,X 1ss � 0 for C8 vector

fields X, X 1, and X.

4. A one parameter group in Hn is a continuous homomorphism from pR,�q
into Hn. Show a one parameter group φ satisfies

φptq � tφp1q � ptv, tsq
where φp1q � pv, sq.
5. Show a vector field D on Hn has form

D �
j̧

pajp BBxj
� 1

2
yj
B
Btq � bjp BByj

� 1
2
xj
B
Btqq � c

B
Bt

if and only if it is left invariant on Hn; i.e.,

LhpDfq � DpLhfq
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for all h P Hn and f P C8pHnq.
6. If D is a C8 vector field on Hn, then Ď is the vector field defined on Hn

by f̌ � Ďpfq � ~Dpf̌q for f P C8pHnq.
(a) Show Ď is a C8 vector field.

(b) Show D ÞÑ Ď is linear and ˇ̌D � D.

(c) Show D is right invariant if and only if the the vector field Ď is left
invariant.

(b) Show �rD1, D2s is rĎ1, Ď2s for any pair D1, D2 of C8 vector fields
on Hn.

(d) Find Ž, and X̌j and Y̌j for j � 1, . . . , n.

(e) Show rX̌paq � Y̌ pbq � cŽ, X̌pa1q � Y̌ pb1q � c1Žs � xpa, bq, pa1, b1qyŽ.

(f) Show if D � Xpaq � Y pbq � cZ, then

Ďfpx, y, tq � d

ds
|s�0fpp�sa,�sb,�scqpx, y, tqq.

7. Let hn � R2n � R be the Lie algebra of the Heisenberg group Hn.

(a) Show all triple Lie brackets are 0 in hn.

(b) Suppose N is a finite dimensional Lie algebra having the property
that all triple Lie brackets are 0. Define a multiplication in N by
x � y � x� y � 1

2 rx, ys. Show N is a group.

8. Consider the vector fields X 1 � BBx , Y 1 � BBy � x BBt , and Z 1 � BBt on
R3 � tpx, y, tq | x, y, t P Ru. Show X 1, Y 1, Z 1 satisfy the same brackets as
X � BBx � 1

2y BBt , Y � BBy � 1
2x BBt , Z � BBt , a basis for h1.

Determine a multiplication � on R3 such that

(a) X 1fpx, y, tq � d
dsfppx, y, tq � ps, 0, 0qq|s�0

(b) Y 1fpx, y, tq � d
dsfppx, y, tq � p0, s, 0qq|s�0

(c) Z 1fpx, y, tq � d
dsfppx, y, tq � p0, 0, sqq|s�0.

Then show this group is isomorphic to the group H1. How does this
relate to Exercise 7.1.2?

9. Let R4 � tpw, x, y, zq | w, x, y, z P Ru. Then consider the C8 vector
fields W � BBw , X � BBx � w BBy � wx BBz , Y � BBy � x BBz , and Z � BBz . Show
rW,Xs � Y , rX,Y s � Z, rW,Y s � 0, rW,Zs � 0, rX,Zs � 0, rY, Zs � 0.
Thus the linear span of W , X, Y , Z form a four dimensional Lie algebra
of C8 vector fields on R4 � tpw, x, y, zq | w, x, y, z P Ru. Find a group
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multiplication on R4 such that for f P C8pR4q one has

d

dt
|t�0fppw, x, y, zq � sekq �

$''''&''''%
Wfpw, x, y, zq when k � 1
Xfpw, x, y, zq when k � 2
Y fpw, x, y, zq when k � 3
Zfpw, x, y, zq when k � 4.

3. Quantum Mechanics and Representations of Hn

In classical mechanics, a state of a system is determined by the positions
and momentums of the particles in the system. The position coordinates
are usually called q’s and the momentum coordinates p’s. Associated with
such a system are a Hamiltonian system. We will not go into this here,
but when the particles are free of external forces, there is an associated
symplectic form on Rn �Rn where n is the number of position coordinates.
It is given by xpq, pq, pq1, p1qy � q � p1 � p � q1. To obtain a symplectic basis,
let e1, e2, . . . , en be the standard basis of Rn. Then pej , 0q and p0, ejq are
vectors in Rn � Rn which form a symplectic basis of R2n.

If one uses the coordinates pq1, q2, � � � , qn, p1, p2, . . . , pn, tq on R2n�1 in-
stead of the coordinates px1, x2, . . . , xn, y1, y2, . . . , yn, tq, one sees using equa-
tions 7.4–7.6 that

Xj � B
Bqj

� 1
2
pj
B
Bt

Yj � B
Bpj

� 1
2
qj
B
Bt

Z � B
Bt

form a basis of the left invariant vector fields on Hn and the corresponding
vectors Xj Ø pej , 0q Yj Ø p0, ejq for j � 1, 2, . . . , n form a symplectic basis
of Rn � Rn.

In quantum mechanics, the states of a system of free particles are given
by one dimensional vector subspaces of L2pRnq where n is the number of
position coordinates. There are self adjoint operators Qj and Pj correspond-
ing to the position and momentum coordinates of the particles. It is known
that they are given by

Qjfpxq � xjfpxq
Pjfpxq � �ih

B
Bxj

fpxq
where h is Planck’s constant. The commutators of these two groups of
operators are the Heisenberg commutation relations. Namely, rQj , Pks �
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δj,kihI. Indeed,

rQj , Pkspfqpxq � QjPkfpxq � PkQjfpxq
� xjPkfpxq � ih

B
Bxk

pQjfpxqq
� �ihxj

B
Bxk

fpxq � ih
B
Bxk

pxjfpxqq
� �ihxj

B
Bxk

fpxq � ihδj,kfpxq � ihxj
B
Bxk

fpxq
� ihδj,kfpxq.

These operators will be shown to generate an irreducible unitary represen-
tation of the Heisenberg group Hn on the Hilbert space L2pRnq.
3.1. Obtaining representations. We construct 2n�1 self adjoint opera-
tors (unbounded linear operators) on L2pRnq that essentially satisfy the com-
mutation relations of the Heisenberg Lie algebra; namely rXj , Yks � δj,kZ.
We set

Pjfpwq � i
B
Bwj

fpwq � iDejfpwq
Qkfpwq � �λwkfpwq

Rfpwq � λfpwq
The operators Pj and Qj are except for scaling the momentum and position
operators in quantum mechanics.

Note

rPj , Qksfpwq � Pjp�λwkfqpwq �Qkpi BBwj
fpwqq

� �iλδj,kfpwq � iλwk
B
Bwj

fpwq � iλwk
B
Bwj

fpwq
� �δj,kiR.

To make them satisfy the bracket formulas for the Heisenberg Lie alge-
bra, we take instead iPj , iQk, and iR. These operators are

iPjfpwq � � B
Bwj

fpwq, iQkfpwq � �iλwkfpwq, iRfpwq � iλfpwq.
Now we have

riPj , iQks � δj,kpiRq.
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To be more general, we define for a, b P Rn operators

(7.10) Pa �¸
ajPj , Qb �

j̧

bjQj .

Then

rPa, Qbs �
j̧,k

rajPj , bkQks
� �

j̧

ajbjpiRq
� �a � bpiRq

and similarly

riPa, iQbs � pa � bqpiRq.
We remark the brackets of these operators behave exactly as the brackets

of
°

ajXj ,
°

bjYj , and Z.
Our Heisenberg group Hn consists of pairs px�iy, tq where multiplication

is defined by

pz, tqpz1, t1q � pz � z1, t� t1 � 1
2
Impz, z1qq

We define operators formally on L2pRnq by

πλpx, 0q � exppiPxq, πλpiy, 0q � exppiQyq, πλp0, tq � exppitRq.
We calculate formally:

πλpx, 0qfpwq �¸ 1
k!
piPxqkfpwq

�
ķ

1
k!
p�x1D1 � x2D2 � � � � � xnDnqkfpwq

� fpw � xq (here we are using a formal Taylor series)

πλpiy, 0qfpwq �
ķ

1
k!
piQyqkfpwq

�
ķ

1
k!
p�iλy � wqkfpwq

� e�iλy�wfpwq
and finally

πλp0, tqfpwq �
ķ

1
k!
pitRqkfpwq �

ķ

1
k!
piλtqkfpwq � eiλtfpwq.
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The argument for πλpx, 0q above can be made using the Fourier trans-
form. Note

F piPxfqpξq � F p
j̧

�xj
B
Bxj

fqpξq �
j̧

�xjpiξjqf̂pξq � �ipx � ξqf̂pξq.
Thus

F pπpx, 0qfqpξq �
ķ

p�ix � ξqk
k!

f̂pξq � e�ix�ξ f̂pξq.
Hence

πpx, 0qfpwq � F�1pe�xf̂qpwq
� F pe�xf̂qp�wq
� pλp�xqf̌qp�wq
� f̌p�w � xq
� fpx� wq.

Proposition 7.6. The operators πλpx, 0q, πλpiy, 0q, and πλp0, tq are unitary
operators on L2pRnq. Moreover,

px� iy, tq ÞÑ πλpx� iy, tq :� πλp0,
1
2
x � yqπλpiy, 0qπλpx, 0qπλp0, tq

is a unitary representation of Hn on the Hilbert space L2pRnq.
Proof.

πλpx� iy, tqfpwq � eiλte
1
2
iλpx,yqe�iλpy,wqfpw � xq.

We check it is a homomorphism. Note πλp0, 0q � I and

πλpx� iy, tqπpa� ib, sqfpwq � eiλte
1
2
iλpx,yqe�iλpy,wqπpa� ib, sqfpw � xq

� eiλte
1
2
iλpx,yqe�iλpy,wqeiλse

1
2
iλpa,bqe�iλpb,w�xqfpw � x� aq

� eiλpt�sqe 1
2
iλppx,bq�py,aqqe 1

2
iλppx,yq�px,bq�pa,yq�pa,bqq

� e�iλpy�b,wqfpw � x� aq
� πλpx� a� ipy � bq, t� s� 1

2
px � b� y � aqqfpwq

� πλppx� iy, tqpa� ib, sqqfpwq.
Thus πλ is a homomorphism. To see it is strongly continuous, note if f0 P
CcpRnq, then πλpx� iy, tqf0 Ñ f0 in L2 as px� iy, tq Ñ 0 by the dominated
convergence theorem. In general, if f P L2 and ε ¡ 0, one can choose an
f0 P CcpRnq such that

||f � f0||2   ε

3
.
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Hence

||πλphqf � f || ¤ ||πλphqf � πλphqf0|| � ||πλphqf0 � f0|| � ||f0 � f ||
  2ε

3
� ||πλphqf0 � f0||2   ε

if h is close to p0, 0q in Hn. Thus πλ is continuous at the identity. Since πλ

is a homomorphism, Proposition 6.32 and Lemma 5.10 imply πλ is strongly
continuous everywhere on Hn. ¤

We check that πλ satisfies:

πλpxqπλpiyq � eiλpx,yqπλpiyqπλpxq(7.11)

πpx� iy, tq � eiλte
1
2
iλpx,yqπλpiyqπλpxq � eiλte� 1

2
iλpx,yqπλpxqπλpiyq.(7.12)

Indeed, note πλpxqfpwq � fpw � xq and πλpiyqfpwq � e�iλpy,wqfpwq.
Thus

πλpxqπλpiyqfpwq � πλpiyqfpw � xq
� e�iλpy,w�xqfpw � xq
� eiλpx,yqe�iλpy,wqπλpxqfpwq
� eiλpx,yqπλpiyqπλpxqfpwq

and

(7.13)

πλpx� iy, tqfpwq � eiλte
1
2
iλpx,yqe�iλpy,wqfpw � xq

� eiλte
1
2
iλpx,yqπλpiyqπλpxqfpwq

� eiλte� 1
2
iλpx,yqπλpxqπλpiyqfpwq.

We will show πλ is irreducible.

4. The Orthogonality Relations

Let f P SpRn�Rnq. As seen by Theorem 3.11 and Exercises 3.2.1 and 3.2.2,
the partial Fourier transform defined by

F2pfqpx, ωq �
»

fpx, yqe�iω�y dny

is a linear homeomorphism of SpRn�Rnq onto SpRn�Rnq with all the same
properties as the full Fourier transform.

Let F be a Schwartz function on Rn�Rn. Define a linear operator πλpF q
on L2pRnq by

(7.14) πλpF qkpxq �
¼

F pu, vqπλpu, v, 0qkpxq dnu dnv.
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Note this makes sense for

πλpF qkpxq �
¼

F pu, vqe 1
2
iλu�ve�iλx�vkpx� uq dnu dnv

�
¼

F pu� x, vqe 1
2
iλpu�xq�ve�iλx�vkp�uq dnu dnv

�
¼

F px� u, vqe 1
2
iλp�x�uq�vkpuq dnv dnu

�
»
F2F px� u,

1
2
λpx� uqqkpuq dnu.

Hence πλpF q is an integral operator with kernel

Kλ,F px, yq �
»

F px� y, wqe�i λ
2
px�y,wq dnw.

Consequently,

(7.15) Kλ,F px, yq � F2F px� y,
λ

2
px� yqq.

Hence the kernel of πλpF q is given by

Kλ,F px, yq � pF2F q � Φpx, yq where(7.16)

Φpx, yq � px� y,
λ

2
px� yqq.(7.17)

Note Φ is an invertible linear transformation with inverse given by

(7.18) Φ�1px, yq � px
2
� y

λ
,�x

2
� y

λ
q.

Since Φ and Φ�1 are invertible linear transformations on Rn � Rn we
have ¼

F � Φpx, yq dnx dny � 1
|λ|n

¼
F px, yq dnx dny and(7.19) ¼

F � Φ�1px, yq dnx dny � |λ|n
¼

F px, yq dnx dny(7.20)

for F P L1pRn�Rnq. Indeed, this is a direct consequence of Corollary 2.23,
or one can argue as in the following sequence of equalities:¼

F pΦpx, yqq dnx dny �
¼

F px� y,
λ

2
px� yqq dnx dny

�
¼

F px,
λ

2
x� λyq dnx dny

� 1
|λ|n

¼
F px,

λ

2
x� yq dny dnx

� 1
|λ|n

¼
F px, yq dny dnx.
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Now from the fact that F2 carries Schwartz functions to Schwartz func-
tions and since by Proposition 2.62, the composition of Schwartz functions
with invertible linear transformations are Schwartz, we see that F2pF q�Φ is
Schwartz if F is Schwartz. Thus the operator πλpF q has a Schwartz kernel.
Moreover,

||Kλ,F ||22 �
»
|Kλ,F px, yq|2 dnx dny

�
¼
|pF2F q � Φpx, yq|2 dnx dny

� 1
|λ|n

¼
|F px, yq|2 dny dnx

and thus:

(7.21) ||Kλ,F ||2 � 1
|λ|n{2 ||F ||2

Since
Kλ,F � Φ�1 � F2pF q,

we see
F � F�1

2 pKλ,F � Φ�1q
and so

(7.22) F px, yq �
»

Kλ,F px2 �
ω

λ
,�x

2
� ω

λ
qeiy�w dnw.

Lemma 7.7. Let f, h P SpRnq. Then px, yq ÞÑ pf, πλpx � iy, 0qhq2 is the
Schwartz function on Rn � Rn given by

pf, πλpx� iy, 0qhq2 � 1
|λ|nF�1

2

�pf b h̄q � Φ�1
� px, yq.

Proof. By Theorem 2.85 and Proposition 2.62 we know pf b h̄q � Φ�1 is a
Schwartz function. Consequently, F�1

2

�pf b h̄q � Φ�1
�

is also Schwartz.

Since Φ�1 is given by Φ�1px, yq � px2 � y
λ ,�x

2 � y
λq, we see

pf, πλpx� iyqhq �
»

e� 1
2
iλpx,yqeiλpy,wqfpwqh̄pw � xq dnw

� e� 1
2
iλpx,yq

»
fpw � x{2qh̄pw � x{2q eiλpy,w�x{2q dnw

�
»

fpx
2
� wqh̄p�x

2
� wqeiλpy,wq dnw

� 1
|λ|n

»
fpx

2
� w

λ
qh̄p�x

2
� w

λ
qeipy,wq dnw

� 1
|λ|nF�1

2

�pf b h̄q � Φ�1
� px, yq.
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¤

Corollary 7.8. pπλpx� iy, 0qf, hq2 � 1|λ|nF�1
2

�pf b h̄q � Φ�1
� p�x,�yq.

Proof. pπλpx� iy, 0qf, hq2 � pf, πλp�x� iy, 0qhq2. ¤

The function z ÞÑ pf, πλpz, 0qhq is a matrix coefficient of the representa-
tion πλ. These were used in Chapter 6 and arise frequently in representation
theory, and one needs a useful notation for these functions. The notation
Mf,hpzq � pf, πλpz, 0qhq is commonly used. However, because of the behav-
ior of these functions or more precisely, the form of the operators πλpMf,hq,
we shall call these functions f bλ h̄. Thus we define

(7.23) pf bλ h̄qpx, yq � pf, πλpx� iy, 0qhq2 for f, h P L2pRnq.
We also shall make repeated use of integrals of form»

fpwqπλpx� iy, 0qhpwq dnw

where f and h are in L2pRnq. We note these are matrix coefficients of the
representation π�λ. Indeed,
(7.24)»

fpwqπλpx� iy, 0qhpwq dnw �
»

fpwqe iλpx,yq
2 e�iλpy,wqhpw � xq dnw

�
»

fpwqe�λipx,yq
2 eiλpy,wqh̄pw � xq dnw

� pf, π�λpx� iyqh̄q2
� pf b�λ hqpx, yq.

Theorem 7.9 (Orthogonality). Let f , h, f 1, and h1 belong to L2pRnq. Then
f bλ h̄ and f 1 bλ h̄1 are L2 functions on Rn � Rn and¼

pf, πλpx� iy, 0qhq2pf 1, πλpx� iy, 0qh1q2 dnx dny � 1
|λ|n pf, f 1q2ph1, hq2.

Proof. We start with f, h, f 1, h1 P SpRnq. Note

πλpx� iy, 0qfpwq � e
1
2
iλpx,yqe�iλpy,wqfpw � xq.

Thus

pf, πλpx� iy, 0qhq2 �
»

e� 1
2
iλpx,yqeiλpy,wqfpwqh̄pw � xq dnw.
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Hence¼
pf, πλpx� iy, 0qhq2pf 1, πλpx� iy, 0qh1q dnx dny

�
»»»»

e� 1
2 iλpx,yqeiλpy,wqfpwqh̄pw � xq e 1

2 iλpx,yqe�iλpy,w1qf̄ 1pw1qh1pw1 � xq dnw dnw1 dnx dny

�
»»»»

eiλpy,wqe�iλpy,w1qfpwqf̄ 1pw1qh̄pw � w1 � xqh1p�xq dnw dnw1 dnx dny

�
»»»»

eiλpy,w�w1qe�iλpy,w1qfpw � w1qf̄ 1pw1qh̄pw � xqh1p�xq dnw dnw1 dnx dny

�
»»»»

eiλpy,wqfpw � w1qf̄ 1p�w1qh̄pw � xqh1p�xq dnw dnw1 dnx dny

�
¼

eiλpy,wq ¯̌
f 1 � fpwqȟ1 � h̄pwqdnw dny

� 1

|λ|n
¼

eipy,wq ¯̌
f 1 � fpwqȟ1 � h̄pwqdnw dny

� 1

|λ|n
»
F�1pp ¯̌f 1 � fqpȟ1 � h̄qqpyq dny

� 1

|λ|n p
¯̌
f 1 � fqp0qȟ1 � h̄p0q

� 1

|λ|n
»

f̄ 1p�wqfp�wq dnw

»
h1p�w1qh̄p�w1q dnw1

� 1

|λ|n
»

fpwqf̄ 1pwq dnw

»
h1pw1qh̄pw1q dnw1

� 1

|λ|n pf, f 1q2ph1, hq2.

Extend to the general case by using the density of SpRnq in L2 and by taking
L2 limits. ¤
Remark 7.10. We give an alternate method for obtaining the above result.
Let F2 be the partial Fourier transform in the second variable on Rn � Rn.
Thus F2pF qpx, vq � ³

F px, yqe�ipy,vq dny. Then F2 is unitary isomorphism
of L2 onto L2. Moreover, as seen by the argument in Lemma 7.7 the matrix
coefficient f bλ h̄px � iyq � pf, πλpx � iy, 0qhq2 is given by f bλ h̄px �
iyq � 1|λ|nF�1

2

�pf b h̄q � Φ�1
� px, yq. Since F�1

2 is a unitary isomorphism of
L2pR2nq,�

1
|λ|nF�1

2 ppf b h̄q � Φ�1q, 1
|λ|nF�1

2 ppf 1 b h̄1q � Φ�1q



2

� 1
|λ|2n

¼
fpx

2
� w

λ
qh̄p�x

2
� w

λ
qf̄ 1px

2
� w

λ
qh1p�x

2
� w

λ
q dnx dnw

� 1
|λ|n

¼
fpx

2
� wqh̄p�x

2
� wqf̄ 1px

2
� wqh1p�x

2
� wq dnx dnw

� 1
|λ|n

¼
fpx� wqf̄ 1px� wqh̄pwqh1pwq dnx dnw

� 1
|λ|n

¼
fpxqf̄ 1pxqh̄pwqh1pwq dnx dnw � 1

|λ|n pf, f 1q2ph1, hq2.
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and we have the orthogonality relations for πλ.

Corollary 7.11. For λ � 0, the representation πλ is an irreducible unitary
representation.

Proof. Let M be an invariant nonzero closed subspace of L2pRnq. We show
M � L2. It suffices to show MK � t0u. Let f PMK and take h PM with
h � 0. Then by the orthogonality theorem,

0 �
¼
pf, πλpx� iy, 0qhq2pf, πλpx� iy, 0qhq2 dnx dny � 1

|λ|n pf, fq2ph, hq2.
The only way this can happen is pf, fq2 � 0 and thus f � 0. ¤

5. The Wigner and Weyl Transforms

The general Wigner transform on L2pRn � Rnq is defined by

WλpF qpx, yq �
»

eiλpy,wqF p1
2
x� w,�1

2
x� wq dnw

� 1
|λ|n

»
eipy,wqF p1

2
x� w

λ
,�1

2
x� w

λ
q dnw(7.25)

� 1
|λ|nF�1

2 pF � Φ�1qpx, yq
When λ � 1, it is called the Wigner transform. It is important for as we
have seen in Lemma 7.7 the matrix coefficient f bλ h̄ is given by:

(7.26) f bλ h̄ �Wλpf b h̄q.
In Equation 7.14, we defined πλpF q for F a Schwartz function on Rn�Rn.

Indeed, it is the linear operator with Schwartz kernel Kλ,F � pF2F q�Φ. We
shall discard the distinction between the operator and its kernel.

Definition 7.12. Let F P L2pRn�Rnq. Then the Weyl transform πλpF q
of F is the L2 function defined by

πλpF q � pF2F q � Φ.

When F is a Schwartz function, πλpF q is thus both a Schwartz function
and an operator with Schwartz kernel πλpF q. We thus have the misuse of
notation

πλpF qfpxq �
»
Rn

πλpF qpx, yq fpyq dny.

Proposition 2.62 and the fact that F2 is homeomorphism imply the Weyl
transform F ÞÑ πλpF q :� pF2F q�Φ is a linear homeomorphism of SpRn�Rnq
onto SpRn � Rnq.

The orthogonality relations for πλ can be rewritten in terms of Weyl
transforms.
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Proposition 7.13 (Weyl transform orthogonality formula). If f and h are
nonzero functions in L2pRnq, then

πλpf bλ h̄q � 1
|λ|n f b h̄

both as a function and as a rank one operator.

Proof.

pπλpf bλ h̄qf 1, h1q2 �
¼
pf bλ h̄qpx, yqpπλpx� iy, 0qf 1, h1q2 dnx dny

�
¼
pf bλ h̄qpx, yqph1, πλpx� iy, 0qf 1q2 dnx dny

�
¼
pf bλ h̄qpx, yqh1 bλ f̄ 1 dnx dny

� pf bλ h̄, h1 bλ f̄ 1q2
� 1
|λ|n pf, h1q2pf 1, hq2

� 1
|λ|n ppf 1, hq2f, h1q2

� 1
|λ|n ppf b h̄qpf 1q, h1q2

for all f 1 and h1 in L2pRnq. ¤

Using earlier notation, this proposition gives:

(7.27) Kλ,fbλh̄ � 1
|λ|n f b h̄.

As we have seen, the mapping Φ1 : SpRn � Rnq Ñ SpRn � Rnq given by
Φ1pF q � F � Φ is a linear homeomorphism of SpRnq.

Thus F�1
2 pU �Φq and F2pUq�pΦ�1q1 are tempered distributions for each

tempered distribution U on R2n. We thus define the Wigner and Weyl
transforms of U by

(7.28) WλpUq � F�1
2 pU � Φ1q

and

(7.29) πλpUq � 1
|λ|nF2pUq � pΦ�1q1.

Thus

(7.30) WλpUqpF q � U � Φ1pF�1
2 F q � UppF�1

2 F q � Φq
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and

(7.31) πλpUqpF q � 1
|λ|nF2pUqpF � Φ�1q � 1

|λ|n UpF2pF � Φ�1qq
for F P SpRn � Rnq.

In terms of integral notation for distributions, one has

WλpUqpF q �
¼
pF�1

2 F qpΦpx, yqq dUpx, yq and(7.32)

πλpUqpF q � 1
|λ|n

¼
F2pF � Φ�1qpx, yq dUpx, yq.(7.33)

That these definitions are consistent with the definitions given in Equa-
tion 7.25 and in Definition 7.12 is left as Exercises 7.2.3 and 7.2.4. Indeed if
U is a distribution given by an L2 function F , then πλpUq is the distribution
given by pF2F q�Φ and WλpUq is the distribution given by 1|λ|nF�1

2 pF �Φ�1q.
Remark 7.14. The definition of the distribution πλpUq is motivated by the
formula
(7.34)

πλpUqpf bhq � Upf b�λ hq �
¼ �»

fpwqπλpx� iy, 0qhpwq dnw



dUpx, yq.

Indeed, Exercises 7.2.5 and 7.2.6 show pf, hq ÞÑ Upf b�λ hq is a continuous
bilinear mapping on SpRnq � SpRnq. The Schwartz kernel theorem states
that any continuous bilinear C valued mapping on SpRnq � SpRnq has form
pf, hq ÞÑ T pf bhq for some tempered distribution T on Rn�Rn. In the case
of pf, hq ÞÑ Upf b�λ hq, we do not need to invoke the Schwartz theorem for
we have

πλpUq � 1
|λ|n pF2Uq � pΦ�1q1.

Proposition 7.15. Let f and h be Schwartz functions on Rn. Then

WλpUqpf b�λ hq � 1
|λ|n Upf b hq.

Proof. By Equation 7.30, we have

WλpUqpf b�λ hq � UpF�1
2 pf b�λ hq � Φq.

Now

F�1
2 pf b�λ hqpx, yq �

»
pf b�λ hqpx, wqeipw,yq dnw

�
» »

fpuqπλpx� iw, 0qhpuqeipw,yq dnu dnw

�
¼

fpuqe iλpx,wq
2 e�iλpw,uqhpu� xqeipw,yq dnu dnw.
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Thus

F�1
2 pf b�λ hqpΦpx, yqq � F�1

2 pf b�λ hqpx� y,
λ

2
px� yqq

�
¼

fpuqe iλpx�y,wq
2 e�iλpw,uqhpu� x� yqeipw, λ

2
px�yqq dnu dnw

�
¼

fpuqhpu� x� yqeiλpx,wqe�iλpw,uq dnu dnw.

Fix x and y and define Schwartz function ψ by ψpuq � fpuqhpu � x � yq.
Then we see

F�1
2 pf b�λ hqpΦpx, yqq �

¼
ψpuqe�iλpw,uq dnu eiλpx,wq dnw

�
»

ψ̂pλwqeiλpx,wq dnw

� 1
|λ|n

»
ψ̂pwqeipx,wq dnw

� 1
|λ|n ψpxq

� 1
|λ|n fpxqhpyq

� 1
|λ|n pf b hqpx, yq.

Consequently,

WλpUqpf b�λ hq � UpF�1
2 pf b�λ hq � Φq

� 1
|λ|n Upf b hq.

¤

We summarize:

Theorem 7.16. Let U be a tempered distribution on Rn � Rn. Then:

(a) Wλpf b h̄q � f bλ h̄ for f, h P L2pRnq
(b) WλpUqpf b π�λhq � 1|λ|n Upf b hq if f, h P SpRnq
(c) πλpf bλ h̄q � 1|λ|n f b h̄ for f, h P L2pRnq
(d) πλpUqpf b h̄q � Upf bλ h̄q if f, h P SpRnq
(e) WλpπλpUqq � 1|λ|n U

(f) πλpWλpUqq � 1|λ|n U
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Proof. We have (a) from Equation 7.26 and (b) and (c) are the results of
Propositions 7.15 and 7.13. We stated (d) in Equation 7.34. Its proof is
Exercise 7.2.6.

For (e), using Equations 7.30 and 7.31, we see

WλpπλpUqqpF q � πλpUqppF�1
2 F q � Φq

� 1
|λ|n UpF2ppF�1

2 F q � Φ � Φ�1q
� 1
|λ|n UpF2F�1

2 F q
� 1
|λ|n UpF q.

The same argument works for (f). ¤

The bars or conjugates in the above results can all be removed if desired
by replacing h by h̄.

Exercise Set 7.2

1. Show the representation πλ where λ � 0 can be obtained from the rep-
resentation π1 by πλpgq � π1pφλpgqq where φλ is the group automorphism
of Hn defined by

φλpx� iy, tq � px� iλy, λtq.
2. In Remark 4.81 of Chapter 4, it was stated that the windowed Fourier
transform is a matrix coefficient of a representation of the Heisenberg group.
Indeed, let ρ be the representation πλ when λ � �2π. Show if ψ and f are
in L2pRnq, then the windowed Fourier transform given in Definition 4.4.21
satisfies

Sψpfqpu, ωq � eπipu�wq
p2πqn{2 pf, ρpu� iω, 0qψq2.

Then show the orthogonality relation given in Theorem 7.9 is the Plancherel
formula given in Theorem 4.4.80.

3. Show if F P L2pRn�Rnq, the Weyl transform πλpF q as a distribution is
the distribution given by the L2 function F2pF q � Φ.

4. Let F P L2pRn � Rnq. Show WλpF q as a distribution is given by the
function 1|λ|nF�1

2 pF � Φ�1q.
5. Show the mappings pf, hq ÞÑ fbλ h̄ and pf, hq ÞÑ fb�λ h are continuous
bilinear mappings of SpRnq � SpRnq into SpRn � Rnq whose ranges span
Schwartz dense linear subspaces.
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6. Show if U is a tempered distribution on Rn�Rn, then the Weyl transform
πλpUq satisfies

πλpUqpf b hq �
¼ �»

Rn

fpwqπλpx� iy, 0qhpwq dnwq



dUpx, yq.

6. Twisted Convolution on L1pRn � Rnq
We now define a natural multiplication on functions on Rn � Rn which is
based on multiplication on Hn. It is called twisted convolution and will be
denoted by

F#λH.

It should have the property that since πλ respects multiplication on Hn, πλ

respects twisted convolution on functions. Suppose we have functions F and
H which are 0 except on finite sets. We would want

p¸F pzqπλpz, 0qqp¸Hpz1qπλpz1, 0qq �¸pF#λHqpwqπλpw, 0q.
So then we would have

w̧

pF#λHqpwqπλpw, 0q �
w̧

¸
z�z1�w

F pzqHpz1qπλpz � z1, 1
2
xz, z1yq

�
w̧ z̧

F pzqHpw � zqe 1
2
iλxz,w�zyπλpw, 0q

�
w̧

�
z̧

F pzqHpw � zqe 1
2
iλxz,wy

�
πλpw, 0q.

This suggests one would define

F#λHpwq �
z̧

F pzqHpw � zqe 1
2
iλxz,wy,

and this is precisely what one would do if one were using the discrete topol-
ogy on Hn.

For the usual topology, we make the following definition.

Definition 7.17. Let F and H be in L1pRn � Rnq. Then the twisted con-
volution F#λH of F and H is defined by

F#λHpwq �
»

ei λ
2
xz,wyF pzqHpw � zq d2nz.

We first remark that z ÞÑ F pzqHpw� zq is integrable for a.e. w. Indeed,
this follows from Fubini’s Theorem and the invariance of Lebesgue measure.
Moreover, if one takes the usual adjoint F � defined for F P L1pRn�Rnq by

F �px, yq � F p�x,�yq,
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then as can be seen by Exercise 7.3.5, L1pRn�Rnq with twisted convolution
and this adjoint is a noncommutative Banach � algebra. In particular, one
has:

|F#λH|1 ¤ |F |1 |H|1(7.35)

pF#λGq#λH � F#λpG#λHq(7.36)

pF#λHq� � H�#λF �(7.37)

as well as the obvious relations pF �q� � F and |F �|1 � |F |1 for F , G, and
H in L1pRn � Rnq.

What we have defined is sometimes called λ-twisted convolution. If
λ � 1, we obtain the standard definition of twisted convolution. When
λ � 0, we have ordinary convolution of functions on R2n.

In Section 14 of Chapter 6 we showed how one can integrate unitary
representations to representations of L1pGq. We can do a similar construc-
tion and integrate representations π of Hn where πp0, tq � eiλtI for all t
to give representations of L1pRn � Rnq. We give the weak definition. The
arguments for the existence of these integrals are made in the same manner
as when one integrated representations in Section 14 of Chapter 6.

Definition 7.18. Let π be a unitary representation of Hn on a Hilbert space
H satisfying πp0, tq � eiλtI for all t P R. Let F P L1pRn � Rnq. For v P H,
define πpF qv by

pπpF qv, wq �
¼

F px, yqpπpx� iy, 0qv, wqH dnx dny

for w P H.

One can also give a strong definition for πpF qv by approximating F by
simple functions and then taking a limit in H. Thus we write:

(7.38) πpF qv �
¼

Rn�Rn

F px, yqπpx� iy, 0qv dnx dny

for v P H.
One would expect

πpF qπpHq � πpF#λHq
where

πpF q �
»

F pz, 0qπλpz, 0q d2nz.

Also we have πpF q is bounded when F P L1pRn � Rnq and

(7.39) ||πpF q|| ¤ |F |1.
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Indeed,

|pπpF qv, wqH| ¤
»
|F pzq| |pπpz, 0qv, wqH| d2nz

¤
»
|F pzq| ||πpz, 0qv||H ||w||H d2nz

¤ |F |1||v||H ||w||H
for all v, w P H. So |πpF q| ¤ |F |1.
Proposition 7.19. Suppose π is a unitary representation on Hn satisfying
πp0, tq � eiλtI for all t. Then πpF#Hq � πpF qπpHq and πpF �q � πpF q�
for F, H P L1pRn � Rnq.

Proof. Formally, we have:

πpF#λHq �
¼

F#Hpzqπpzq d2nz

�
¼ �¼

e
λ
2
ixz1,zyF pz1qHpz � z1q d2nz1



πpz, 0q d2nz

�
»»»»

e
λ
2
ixz1,z�z1yF pz1qHpzqπpz � z1, 0q d2nz1 d2nz

�
»»»»

e
λ
2
ixz1,zyF pz1qHpzqe�i λ

2
xz1,zyπpz1, 0qπpz, 0q d2nz1 d2nz

�
¼

F pz1qπpz1, 0qd2nz1
¼

Hpzqπpz, 0qd2nz

� πpF qπpHq
and

pπpF qv, wqH �
¼

F pzqpπpz, 0qv, wqH d2nz

�
¼

F pzqpv, πp�z, 0qwqH d2nz

�
¼

F p�zqpv, πpz, 0qwqH d2nz

� pv,

¼
F p�zqπpz, 0qw d2nzqH

� pv, πpF �qwqH.

¤



454 The Heisenberg Group

7. Twisted Convolution on L2pRn � Rnq
We also note we can define the twisted convolution of any two L2 functions
F and H by

(7.40) F#λHpwq �
»

ei λ
2
xz,wyF pzqHpw � zq d2nz.

Note this integral exists for each w for z ÞÑ F pzq and z ÞÑ Hpw � zq are L2

functions on Rn�Rn for all w. Indeed Exercise 7.3.1 shows F#λH is in fact
a continuous function when F and H are in L2pRn � Rnq. Moreover, when
λ � 0, F#0Hpwq � pF, LpwqHq2 where L is the left regular representation
R2n.

In Definition 7.12 we defined πλpF q when F is an L2 function. There it
was a distribution given by the L2 function F2pF q �Φ � πλpF q. Thus it can
be thought of as a Hilbert-Schmidt operator with an L2 kernel. Our intent
in this section is to show why this is an appropriate interpretation.

Recall that πλpUq is defined for every tempered distribution U on Rn�Rn

and that if F is a Schwartz function, then πλpF q is the distribution given
by the Schwartz function pF2F q �Φ. Furthermore, as seen in Exercise 7.2.3,
if F P L2pRn�Rnq, then the distribution πλpF q is given by the L2 function
pF2F q � Φ. This makes Definition 7.12 consistent with the definition given
in Equation 7.29. Moreover, when F is Schwartz, πλpF q thought of as an
operator on L2pRnq has Schwartz kernel pF2F q � Φ. If F is L2, we should
be able to interpret πλpF q as a Hilbert-Schmidt operator with L2 kernel
pF2F q � Φ. The operator πλpF q should be defined by

πλpF qfpxq �
¼

F pu, vqπλpu� iv, 0qfpxq dnu dnv.

That is the main content of the following theorem.

Theorem 7.20. Let λ � 0. If F is an L1 and L2 function on Rn�Rn and
if f P L2pRnq, then F pu, vqπλpu� iv, 0qfpxq is integrable in u and v for a.e.
x and the operator πλpF q defined in Definition 7.18 is given by

πλpF qfpxq �
¼

F pu, vqπλpu� iv, 0qfpxq dnu dnv.

Furthermore πλ on L1 X L2 extends to a linear mapping from L2pRn � Rnq
onto the space of Hilbert-Schmidt operators on L2pRnq. Also,

(a) for F P L2pRn � Rnq, πλpF q has L2 kernel F2pF q � Φ and

||πλpF q||2 � 1
|λ|n{2 |F |2;
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(b) if F, H P L2pRn � Rnq, then F#λH P L2pRn � Rnq and

|F#λH|2 ¤ 1
|λ|n{2 |F |2 |H|2,

πλpF#λHq � πλpF qπλpHq;
(c) πλpF �q � πλpF q� for F P L2pRn � Rnq.

Proof. We claim F pu, vqπλpu�iv, 0qfpxq � F pu, vqe 1
2
iλpu,vqe�iλpv,xqfpx�uq

is integrable in u and v for a.e. x. First take T puq � ³ |F pu, vq| dnv. By
Fubini’s Theorem,

³
T puq dnu � |F |1. Thus |T |1 � |F |1. Furthermore, by

Lemma 2.77 u ÞÑ T puqfpx� uq is integrable a.e. x and» �»
T puq|fpx� uq| dnu


2

dnx ¤ |T |21 |f |22.
From this we see» �� ¼

Rn�Rn

|F pu, vqfpx� uq| dnu dnv

�2

dnx ¤ |F |21|f |22.

In particular,
´

F pu, vqπλpu� iv, 0qfpxq dnu dnv exists for a.e. x and defines
an L2 function on Rn. Consequently, A defined by

Apfqpxq �
¼

F pu, vqπλpu� iv, 0qfpxq dnu dnv

is a bounded linear operator on L2pRnq. We shall show A � πλpF q.
We start by finding a kernel for A. Recall we know F pu, vqfpx � uq is

integrable in u and v for a.e. x. Also since F P L2, one has for a.e. x and u,
F px� u, vq is integrable in v and therefore:

Afpxq �
¼

F pu, vqπλpu� iv, 0qfpxq dnu dnv

�
¼

F pu, vqe 1
2
iλpu,vqe�iλpv,xqfpx� uq dnu dnv

�
¼

F px� u, vqe 1
2
iλpx�u,vqe�iλpv,xqfp�uq dnu dnv

�
¼

F px� u, vqe� 1
2
iλpx�u,vqfpuq dnu dnv

�
»
F2F px� u,

1
2
λpx� uqqfpuq dnu

�
»
pF2F q � Φpx, uqfpuq dnu.

Thus A has L2 kernel pF2F q�Φ and so by Theorem 2.34 is a Hilbert-Schmidt
operator.
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To see A � πλpF q, we first note that for f, h P L2pRnq, Hölder’s inequal-
ity, the formula for Φ�1 given in Equation 7.18, and Corollary 7.8 give the
following:

px, yq ÞÑ pF2F q � Φpx, yq ph̄b fqpx, yq is integrable(7.41)

ph̄b fq � Φ�1px, yq � h̄px
2
� y

λ
qfp�x

2
� y

λ
q � pf b h̄q � Φ�1p�x, yq(7.42)

pπλpx� iy, 0qf, hq2 � 1
|λ|n pF�1

2 pf b h̄q � Φ�1qp�x,�yq(7.43)

Thus using Equation 7.19,»
Afpxq h̄pxq dnx �

¼
F2pF q � Φpx, yqfpyq dny h̄pxq dnx

�
¼

F2pF q � Φpx, yqph̄b fqpx, yq dnx dny

� 1
|λ|n

¼
F2F px, yqph̄b fqpΦ�1px, yqq dnx dny

� 1
|λ|n

¼
F2F px, yqpf b h̄qpΦ�1p�x, yqq dnx dny

� 1
|λ|n

¼
F px, yqF2ppf b h̄q � Φ�1qp�x, yq dnx dny

� 1
|λ|n

¼
F px, yqF�1

2 pph̄b fq � Φ�1qp�x,�yq dnx dny

�
¼

F px, yqpπλpx� iy, 0qf, hq2 dnx dny

� pπλpF qf, hq2.
Therefore, Af � πλpF qf . Thus πλpF q has L2 kernel pF2F q � Φ and thus is
a Hilbert-Schmidt operator.

Now the same argument for finding the L2 norm of the kernel Kλ,F �pF2F q � Φ in Equation 7.21 shows

|pF2F q � Φ|2 � 1
|λ|n{2 |F |2.

Consequently, the Hilbert-Schmidt norm of πλpF q is 1|λ|n{2 |F |2 and since
every Schwartz function has form pF2F q � Φ for a Schwartz function F ,
we see πλ mapping L1 X L2 into B2pL2pRnq, L2pRnqq is bounded, has dense
range and has a bounded inverse. Therefore, πλ extends to a linear bijection
of L2pRn � Rnq onto the space of Hilbert-Schmidt operators on L2pRnq.
Since πλpF q has Hilbert Schmidt norm 1|λ|n{2 |F |2, we see convergence in

L2pRn � Rnq is the same as convergence in Hilbert-Schmidt norm. Hence
we obtain (a).
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To prove (b), note from Proposition 7.19 we know from that πλpF#λHq �
πλpF qπλpHq if F and H are L1 and L2 functions on Rn � Rn. Thus using
Equation 2.2 and Proposition 2.32 we see 1|λ|n{2 |F#λH|2 � ||πλpF#λHq||2 ¤
||πλpF q||2 ||πλpHq||2 � 1|λ|n |F |2 |H|2. Thus

|F#λH|2 ¤ 1
|λ|n{2 |F |2|H|2

for such functions F and H. Note by Exercise 7.3.1 if F and H are in L2

and Fk and Hk are sequences of functions which are both L1 and L2 and
converge in L2 to F and H, then Fk#λHk converges uniformly to F#λH.
Thus by Fatou’s Lemma,¼

|F#λHpx, yq|2 dnx dny ¤ lim
»
|Fk#λHkpx, yq|2 dnx dny

¤ lim
1
|λ|n |Fk|22|Hk|22

� 1
|λ|n |F |22 |H|22.

Thus

|F#λH|2 ¤ 1
|λ|n{2 |F |2 |H|2 for any F, H P L2pRn � Rnq.

This implies Fk#λHk Ñ F#λH in L2 as k Ñ8 and consequently,

πλpF#λHq � lim
k

πλpFk#λHkq
� lim

k
πλpFkqπλpHkq

� πλpF qπλpHq.
Similarly since F ÞÑ F � is an isometry of L2 and πλpF �k q � πλpFkq� for

function Fk which are both L1 and L2, we have πλpF �q � lim πλpF �k q �
limπλpFkq� � πλpF q�. ¤

It is surprising that the twisted convolution of two square integrable
functions on Rn�Rn is square integrable. Indeed, Exercise 2.5.15 shows the
ordinary convolution of two square integrable functions may not be square
integrable.

8. The Unitary Dual

Let π be an irreducible unitary representation of Hn.

Lemma 7.21. There is a scalar λ such that πp0, tq � eiλtI.
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Proof. We have πp0, tqπpz, sq � πpz, sqπp0, tq for each pz, sq. By Schur’s
Lemma, there is a complex scalar χptq of absolute value 1 with πp0, tq �
χptqI. But πp0, t1� t2q � πp0, t1qπp0, t2q implies χpt1� t2q � χpt1qχpt2q. By
Corollary 6.51, xptq � eiλt for some real scalar λ. ¤

Proposition 7.22. Let π be an irreducible unitary representation of Hn

with πp0, tq � I for all t. Then π is one dimensional and there is a vector
w P Rn � Rn such that πpz, tq � eixz,wyI for all pz, tq.
Proof. Note z Ñ πpz, 0q is an irreducible unitary representation of the
abelian group Rn � Rn. By Corollary 6.51, π is one dimensional. Thus
πpz, tq � χpzq where χ is a continuous homomorphism of Rn � Rn into the
complex numbers of modulus 1. From Table 1 in Chapter 6, we know that
each irreducible unitary representation of R is given by t ÞÑ eiµt for some
unique real scalar µ. Hence χpptej , 0qq � eiλjt and χpp0, tejqq � eiµjt where
λj and µj are real scalars. Set w � pp�µ1, �µ2, . . . ,�µnq, pλ1, λ2, . . . , λnqq.
Then if z � pt, sq where t, s P Rn, then

πppx, yq, tq �¹
eiλjtjeiµjsj

� eixpt,sq,p�µ,λq
� eixz,wy.

¤

We now suppose πp0, tq � eiλt where λ � 0.

Proposition 7.23. Let f, h, f 1, h1 P L2pRnq. Then

pf bλ h̄q#pf 1 bλ h̄1q � 1
|λ|n pf 1, hq2pf bλ h̄1q.

Proof. This is essentially a corollary of Theorem 7.20 and Theorem 7.9.
Indeed,

πλppf bλ h̄q#pf 1 bλ h̄1qq � πλpf bλ h̄qπλpf 1 bλ h̄1q
� 1
|λ|n pf b h̄q � 1

|λ|n pf 1 b h̄1q
� 1
|λ|n pf 1, hq2

1
|λ|n pf b h̄1q

� 1
|λ|n pf 1, hq2πλpf bλ h̄1q

� πλp 1
|λ|n pf 1, hq2f bλ h̄1q.
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Since πλ is one-to-one on L2pRn � Rnq, we see

pf bλ h̄q#pf 1 bλ h̄1q � 1
|λ|n pf 1, hq2f bλ h̄1.

¤

Recall we are using Fzpz1q � λpzqF pz1q � F pz1 � zq for z, z1 P Cn.

Lemma 7.24. Let F P S2n and suppose π is a unitary representation of Hn

with πp0, tq � eiλtI for t P Rn. Then

πpF qπpz, 0q � πpe 1
2
iλx�,zyFzq and

πpz, 0qπpF q � πpe 1
2
iλxz,�yFzq.

Proof.

πpz, 0qπpF q �
»

πpz, 0qF pz1qπpz1, 0q d2nz1

�
»

F pz1qπpz � z1, 1
2
xz, z1yq d2nz1

�
»

e
1
2
iλxz,z1yF pz1qπpz � z1, 0q d2nz1

�
»

e
1
2
iλxz,z1yF pz1 � zqπpz1, 0q d2nz1

� πpe 1
2
iλxz,�yFzq.

Similarly
πpF qπpz, 0q � πpe 1

2
iλx�,zyFzq.

¤

Theorem 7.25. Let f0 be a Schwartz function on Rn with |f0|2 � 1. Set
Epzq � pf0,πλpz, 0qf0q2. Then the Schwartz function E satisfies

(a) E#λE � 1|λ|n E

(b) E#λpei λ
2
xz,�yEzq � 1|λ|n Ep�zqE

(c) E� � E

(d) If π is a unitary representation of Hn on a Hilbert space H satisfying
πp0, tq � eiλtI for t P R, then |λ|nπpEq is an orthogonal projection
on H.

Proof. Note by Proposition 7.23,

E#λE � pf0 bλ f̄0q#λpf0 bλ f̄0q � 1
|λ|n pf0, f0q2f0 bλ f̄0 � 1

|λ|n E.
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Now from Lemma 7.24, πλpz, 0qπλpEq � πλpei λ
2
xz,�yEzq. Hence one has

πλpEqπλpz, 0qπλpEq � πλpE#ei λ
2
xz,�yEzq. But by Proposition 7.13, πλpEq �

1|λ|n f0 b f̄0. Thus

πλpEqπλpz, 0qπλpEqh � 1
|λ|2n

pf0 b f̄0qπλpz, 0qph, f0q2f0

� 1
|λ|2n

ph, f0q2pf0 b f̄0q pπλpz, 0qf0q
� 1
|λ|2n

ph, f0q2pπλpz, 0qf0, f0q2f0

� 1
|λ|2n

Ep�zqph, f0q2f0

� 1
|λ|2n

Ep�zqpf0 b f̄0qphq
� 1
|λ|n Ep�zqπλpEqphq.

Thus πλpE#λei λ
2
xz,�yEzq � πλp 1|λ|n Ep�zqEq. Since πλ is one-to-one,

E#λpei λ
2
xz,�yEzq � 1

|λ|n Ep�zqE.

For (c), we have

E#pzq � Ep�zq
� pf0, πλp�z, 0qf0q
� pπλp�z, 0qf0, f0q
� pf0, πλpz, 0qf0q
� Epzq.

Now πpEq � πpE�q � πpEq� and |λ|nπpEq |λ|nπpEq � |λ|2nπpE#Eq �
|λ|2nπp 1|λ|n Eq � |λ|nπpEq. Thus |λ|nπpEq is an orthogonal projection. ¤
Theorem 7.26 (Stone -Von Neumann). Let λ � 0. Suppose π is a unitary
representation of Hn on a Hilbert space H where πp0, tq � eiλtI for all t.
Then H is a direct sum of orthogonal irreducible invariant subspaces Hk

where each unitary representation π|Hk
is unitarily equivalent to πλ. In

particular, if π is irreducible, then there is a unitary operator U of H onto
L2pRnq such that

Uπppx, yq, tqU�fpwq � eiλte
1
2
iλpx,yqe�iλpy,wqfpw � xq.

Proof. To simplify matters we assume λ � 1. To handle the general case
one can either apply Exercises 7.2.1 and 7.3.8 or make easy modifications in
the following argument.
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We have by Definition 7.18 the operators πpF q � ³
F pz, 0qπpz, 0q d2nz

for F P L1pRn � Rnq. We let F#H � F#1H. Proposition 7.19 shows
πpF qπpHq � πpF#Hq and πpF �q � πpF q�. Let f0 be a Schwartz function
on Rn such that |f0|2 � 1. By Proposition 7.25, if E is the matrix coefficient
f0 bπ1 f̄0, we have πpEq is an orthogonal projection onto a closed subspace
H0 of H.

We also note that if F � 0 and is Schwartz and M is a closed nonzero
invariant subspace of H, then πpF q|M � 0. Indeed, if u, v P M, then by
Lemma 7.24 we have

pπpz, 0qπpF qπp�z, 0qv, wqH � pπpe 1
2
ixz,�yFzqπp�z, 0qv, wqH

� pπpe 1
2
ixz,�ye 1

2
x�,�zyF qv, wqH

� pπpeixz,�yF qu,wqH.

But

pπpeixz,�yF qu, vqH �
»

eixz,z1yF pz1qpπpz1, 0qu, vqH d2nz1.
Hence if πpF q � 0 on M, we see»

eipx�y1�y�x1qF px1 � iy1qpπpx1 � iy1, 0qu, vqH dnx dny � 0

for all x, y. This implies FpF p�qpπp�, 0qu, vqqH � 0 for each u and v P M.
But then F pzqpπpzqu, vqH � 0 for all z and u, v PM. Taking v � πpz, 0qu,
we see this can only occur if F pzq � 0 for all z. Using Lemma 7.7, we see E
is Schwartz, and hence πpEq � 0 on any closed invariant subspace M of H.

Now note by (d) of Proposition 7.25, πpEq is an orthogonal projection.
Hence using Lemma 7.24 again and (b) of Proposition 7.25, we have

pπpz, 0qπpEqu, πpz1, 0qπpEqvqH � pπpEqπp�z1, 0qπpz, 0qπpEqu, vqH
� pπpEqe 1

2
ixz,z1yπpz � z1, 0qπpEqu, vqH

� pe 1
2
ixz,z1yπpEqπpe 1

2
ixz�z1,�yEz�z1qu, vqH

� pe 1
2
ixz,z1yπpE#pe 1

2
ixz�z1,�yEz�z1qqu, vqH

� pe 1
2
ixz,z1yπpEpz1 � zqEqu, vqH

� e
1
2
ixz,z1yEpz1 � zqpπpEqu, πpEqvqH.

Thus if u, v P πpEqH, we have

pπpz, 0qu, πpz1, 0qvqH � e
1
2
ixz,z1yEpz1 � zqpu, vqH.

In particular, if uk form an orthonormal basis of πpEqH, then the vector
subspaces Hk which are the closed linear spans of the vectors πpz, 0quk for
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z P Cn are orthogonal. We claim `Hk � H. Suppose not. Let M �
p`HkqK. Then πpEqM � 0. Since M is π invariant, we see M � t0u.

Define a mapping U from Hk into L2pRnq by

Up¸ ajπpzj , 0qukq �¸
ajπ1pzj , 0qf0.

Clearly U is defined on a dense subspace of Hk. Recall

pπpz, 0quk, πpz1, 0qukqH � e
1
2
ixz,z1yEpz1 � zq.

We do not know if U is well defined, but we do note

pUp¸ arπpzr, 0qukq, Up¸ asπpzs, 0qukqq2 �
ŗ,s

arājpπ1pzr, 0qf0, π1pzs, 0qf0q2
�

ŗ,s

arāse
1
2
ixzr,zsyEpzs � zrq

�
ŗ,s

arāspπpzr, 0quk, πpzs, 0qukqH
� p¸ arπpzr, 0quk,

¸
asπpzs, 0qukqH.

Hence U is a linear isometry. In particular U is well defined for if
°

arπpzr, 0quk �°
bsπpz1s, 0quk, then

||Up¸ arπpzr, 0quk �¸
bsπpz1s, 0qukq||2 � 0

and we see ¸
arπ1pzr, 0qf0 �¸

bsπ1pz1s, 0qf0.

Hence U extends to a unitary operator of Hk onto a closed subspace of
L2pRnq. Moreover, since

π1pz, 0qUp¸ arπpzr, 0qukq �¸
arπ1pz, 0qπ1pzr, 0qf0

�¸
arπ1pz � zr,

1
2
xz, zryqf0

�¸
e

1
2
ixz,zryarπ1pz � zr, 0qf0

� Up¸ e
1
2
ixz,zryarπpz � zr, 0qukq

� Uπpz, 0qp¸ arπpzr, 0qukq,
we have

π1pz, 0qUpvq � Upπpz, 0qvq
for all v P Hk. Thus the range of U is a nonzero closed invariant subspace
of π1. Since π1 is irreducible, UpHkq � L2pRnq, and since

Uπpz, tq � eitUπpz, 0q � eitπ1pz, 0qU � π1pz, tqU,

we see π on the Hilbert space Hk is unitarily equivalent to π1. ¤
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Exercise Set 7.3

1. Let F and H be in L2pRn �Rnq. Show F#λH is a continuous function
on Rn�Rn. Moreover, show if Fk and Hk are sequences in L2pRn�Rnq con-
verging in norm to F and H, then Fk#λHk converges uniformly to F#λH
as k Ñ8.

2. Let F P L1pRn � Rnq. Show if H is Schwartz, then¼ »
|Hpx, yqF px, vq| dnx dny dnv   8.

3. Show if F is in L1pRnq and λ � 0, then the Weyl transform πλpF q as a
distribution is given by the function F2pF q � Φ

4. Show if F is in L1pRn�Rnq and λ � 0, then the bounded linear operator
πλpF q on L2pRnq is given on Schwartz functions f by

πλpF qpfqpxq �
»
pF2F q � Φpx, yqfpyq dny

a.e. x. Hint: Show pF2F q � Φpx, yqfpyq is integrable in y for a.e. x.

5. Show L1pRn�Rnq is a noncommutative Banach � algebra. That is show
twisted convolution is associative, ||F#λH||1 ¤ ||F ||1||H||1, F ÞÑ F � is a
norm preserving conjugate linear isomorphism and pF#λHq� � H�#λF �.
6. Show a unitary representation π of Hn on a Hilbert space H with
πp0, tq � eiλtI for all t where λ is a nonzero real number is irreducible
if and only if the only closed invariant subspaces under all the operators
πpF q � ´

F px, yqπpx� iy, 0q dnx dny for F P L1pRn � Rnq are t0u and H.

7. As seen in Exercise 2.5.16, the space of Hilbert-Schmidt operators is an
example of a Hilbert algebra. Let dλz be the measure on Rn � Rn given
by dλz � |λ|n d2nz � |λ|n dnx � dny. Show the Weyl transform πλ is a
Hilbert algebra isometry of L2pRn � Rn, dλzq under λ-twisted convolution
and function adjoints onto the Hilbert algebra of Hilbert-Schmidt operators
on L2pRnq under composition and operator adjoints.

8. Suppose λ is a nonzero real number. Let π be a unitary representation
of the Heisenberg group Hn on Hilbert space H satisfying πp0, tq � eiλtI for
all t. Define π1 on Hn by π1px � iy, tq � πpx � iy

λ , t
λq. Show π1 is a unitary

representation of Hn satisfying π1p0, tq � eiλtI for all t.

9. Let U be an n � n unitary matrix. Show the representations πλ and
pz, tq ÞÑ πpzU, tq are unitarily equivalent.

10. Let π̃λpz, tq � πλpiz, tq. Show the Fourier transform F : L2pRnq Ñ
L2pRnq is a unitary equivalence of π1 with π̃1.
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11. Show
³
Rn e�ipz,xqe� 1

2
|x|2 dnx � e� 1

2
z2

where z2 � °
z2
j . (Hint: It suffices

to do the one-dimensional case.)

9. The Plancherel Measure

Proposition 7.27. Let f be a Schwartz function on Hn. Then if λ � 0,
πλpfq is a trace class operator on L2pRn, dnxq and

Trpπλpfqq � 1
|λ|nF�1

c fp0, λq
where F�1

c is the inverse Fourier transform over the center; i.e.

F�1
c fpz, λq �

»
fpz, tqeiλt d1t.

Proof.

πλpfq �
¼

fpz, tqπλpz, tq d2nz d1t

�
¼

fpz, tqeiλt d1t πλpz, 0q d2nz

�
»

Fλpzqπλpz, 0q d2nz

� πλpFλq
where

Fλpzq � Fcfpz,�λq
and Fc is the Fourier transform on Hn in the central coordinate t. Hence
Fλ is Schwartz. In this case we know the operator πλpFλq has Schwartz
kernel the Weyl transform πλpFλq � F2pFλq � Φ. Hence by Theorem 4.74
and Formulas 7.16 and 7.17,

Trpπλpfqq � TrpπλpFλqq
�
»
F2pFλq � Φpx, xq dnx

�
»
F2pFλqp0, λxq dnx

�
¼

Fλp0, wqeipλx,wq dnw dnx

� 1
|λ|n

»
e�ip0,xq

»
Fcfpp0, wq,�λq eipx,wq dnw dnx

� 1
|λ|nFcfp0,�λq.

¤
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Note

πλpgqπλpfq �
»

fpg1qπλpgqπλpg1q dmpg1q
�
»

fpg1qπλpgg1q dmpg1q
�
»

fpg�1g1qπλpg1q dmpg1q
�
»

Lpgqfpg1qπλpg1q dmpg1q
� πλpLpgqfq

where f P L1pHnq.
Recall the left regular representation of a locally compact group G with a

left Haar measure m is the representation L defined on L2pGq by Lpgqfpxq �
fpg�1xq and the right regular representation of G is defined on L2pGq by
Rpgqfpxq � ∆pgq1{2fpxgq. Moreover, the biregular representation is the
representation B of G�G given by Bpg1, g2qf � Lpg1qRpg2qf .

We have denoted the Hilbert space of Hilbert-Schmidt operators on a
Hilbert spaceH by B2pH,Hq and also byHbH̄. To simplify notation, we use
H2 to denote the Hilbert space of Hilbert-Schmidt operators on L2pRn, dnxq.
Thus

H2 � L2pRn, dnxq b L2pRn, dnxq.
Let pX, µq be a σ-finite measure space. A function T : X Ñ H2 is said

to be strongly measurable if x ÞÑ T pxqf is measurable from X into the
Hilbert space L2pRn, dnxq for each f in L2pRn, dnxq. As seen by Exercise
7.4.2, T is strongly measurable if and only if T is a measurable function
from X into H2 and the space L2pX,H2q with inner product given by

pT1, T2q �
»

X
pT1pxq, T2pxqq2 dµpxq

is a Hilbert space.
In Theorem 7.20, we see if λ � 0, there is a bicontinuous onto linear

transformation πλ : L2pRn � Rn, d2nzq Ñ H2 given by

πλpF qphq �
»
F2pF q � Φpx, yqhpyq dny.

It satisfies

πλpF qphq �
¼

F px, yqπλpx� iy, 0qh dnx dny

when F is in L1 X L2. Now if f P L2pHnq, πλpfq is defined a.e. λ. Indeed,
f � FcpF�1

c fq where F�1
c f P L2pRn � Rn � Rq. Thus for almost all λ,
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F�1
c fp�, λq is in L2pRn � Rn, dnx� dnyq. We define

πλpfq � πλpFλq
when Fλpx, yq � F�1

c fpx, y, λq is in L2pRn � Rnq. This agrees with our
earlier definition of πλpfq when f P L1pHnq X L2pHnq. Indeed,

πλpfqphqpxq �
½

fpu� iv, tqπλpu� iv, tqhpxq d1t dnu dnv

�
½

fpu� iv, tqeiλtπλpu� iv, 0qhpxq d1t dnu dnv

�
¼

F�1
c fpu� iv, λqπλpu� iv, 0qhpxq dnu dnv

� πλpFλqhpxq.
To see λ ÞÑ πλpfq is strongly measurable, it suffices by Exercise 7.4.3 to

show λ ÞÑ ph1, πλpfqh2q2 is measurable for each pair h1 and h2 of Schwartz
functions on Rn. By Exercise 7.2.3, the Weyl transform πλpFλq of the distri-
bution Fλ is given by the function F2pFλq � Φ. Putting this together using
Theorem 7.16, we see¼

F2pFλq � Φpx, yqh̄1 b h2px, yq dnx dny � πλpFλqph̄1 b h2q
�
¼

h̄1 bλ h2px, yqFλpx, yq dnx dny.

Now px, y, λq ÞÑ h̄1 bλ h2px, yq is measurable. Using the measurability of
F�1

c f and Fubini’s Theorem, we see

ph1, πλpFλqh2q2 �
»

h1puqπλpFλqh2puq dnu

�
»

h1puq
»
F2pFλq � Φpu, vqh2pvq dnv dnu

�
»

h̄1puq
»
F2pFλq � Φpu, vqh2pvq dnv dnu

�
¼

F2pFλq � Φpu, vqph̄1 b h2qpu, vq dnu dnv

� πλpFλqph̄1 b h2q
�
¼

h̄1 bλ h2px, yqFλpx, yq dnu dnv

�
¼

h̄1 bλ h2px, yqF�1
c fpx, y, λq dnx dny

is measurable in λ.
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Theorem 7.28 (Plancherel Theorem). The mapping f ÞÑ f̂ where f̂pλq �
πλpfq is a unitary mapping from L2pHn, d2nz � d1tq onto the Hilbert space
L2pR,H2, |λ|n d1λq. Moreover, if f is Schwartz or is a finite linear combi-
nation of functions of form f1 �f2 where f1 and f2 are in L1pHnqXL2pHnq,
then

fpz, tq �
»

Trpπλp�z,�tqπλpfqq|λ|n d1λ.

Proof. We show f ÞÑ f̂ where f̂pλq � πλpfq is a well defined unitary
isomorphism of L2pHnq onto L2pR,H2, |λ|n d1λq. Note by Theorem 7.20
that the mapping F ÞÑ πλpF q from L2pRn�Rn, d2nzq into H2 is one-to-one
and onto and satisfies

||πλpF q||2 � 1
|λ|n{2 |F |2

πλpF1#λF2q � πλpF1qπλpF2q and

πλpF �q � πλpF q�.
Hence |f̂pλq|2 � 1|λ|n{2 |Fλ|2 where Fλpz, λq � F�1

c fpz, λq. and we see»
|f̂pλq|22 |λ|n d1λ �

»
|Fλ|22 d1λ

�
¼
|F�1

c fpz, λq|2 d2nz d1λ

�
¼
|F�1

c fpz, λq|2 d1λ d2nz

�
¼
|fpz, tq|2 d1t d2nz

� |f |22.
To see that it is onto, we start by recalling from Theorem 7.20 that

for F P L2pRn � Rnq, one has πλpF q has kernel Kλ,F � F2pF q � Φ where
F2F px, yq � ³

F px,wqe�ipy,wq dnw and Φpx, yq � px� y, λ
2 px� yqq.

Suppose λ ÞÑ F pλq is measurable and satisfies
³ |F pλq|22 |λ|n d1λ   8.

By Exercise 7.4.5, F pλq � Φ�1 is measurable in λ and satisfies
³ |F pλq �

Φ�1|22 d1λ   8. Using Exercise 7.4.5, there is a measurable function rF on
Rn � Rn � R satisfying

(a) F pλq � Φ�1px, yq � rF px, y, λq
for a.e. px, yq for a.e. λ. In particular rF is L2pRn � Rn � Rq and we can
define f in L2pHnq by

f � FcF�1
2

rF .
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We note

f̂pλq � πλpfq � πλpFλq
for those λ for which px, yq ÞÑ Fλpx, yq � F�1

c fpx, y, λq is in L2pRn �
Rnq. But since this holds a.e. λ and F�1

c f � F�1
2

rF , we see Fλpx, yq �
F�1

2
rF px, y, λq a.e. px, yq for a.e. λ. Thus

f̂pλq � πλpF�1
2

rF p�, �, λqq for a.e. λ.

This implies f̂pλq is the Hilbert-Schmidt operator with kernel

Kλpx, yq � F2pF�1
2

rF qpΦpx, yq, λq � rF pΦpx, yq, λq.
for a.e. λ. But from Equation (a), rF pΦpx, yq, λq � F pλqpx, yq a.e. px, yq for
a.e. λ. This gives f̂pλq � F pλq for a.e. λ and we see f ÞÑ f̂ maps L2pHnq
onto L2pR,H2, |λ|n d1λq.

Let f be Schwartz on Hn. Set g � pz, tq � px � iy, tq � px, y, tq be in
Hn. We calculate Trpπλpgq�1πλpfqq. Using Exercise 6.8.4 or by an easy
computation, we know πλpg�1qπλpfq � πλpLpg�1qfq; and from Proposition
7.27 we have

TrpπλpLpg�1qfqq � 1
|λ|nF�1

c pLpg�1qfqp0, λq.

These together with the Fourier inversion formula give

fpgq � Lpg�1qfpp0, 0q, 0q
�
»
F�1

c pLpg�1qfqpp0, 0q, λqe�iλ�0 d1λ

�
»

TrpπλpLpg�1qfqq|λ|ne�iλ�0 d1λ

�
»

Trpπλpgq�1πλpfqq |λ|n d1λ.

Now suppose f1 and f2 are integrable and square integrable on Hn. Note

f1 � f2pgq � pf1, Lpg�1qf�2 q2.
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Indeed,

f1 � f2pgq �
»

f1pg1qf2pg�1
1 gq dg1

�
»

f1pg1qf2ppg�1g1q�1q dg1

�
»

f1pg1qf�2 pg�1g1q dg1

�
»

f1pg1qLpgqf�2 pg1q dg1

� pf1, Lpgqf�2 q2.
Recall πλpLpgqf�2 q � πλpgqπλpf�2 q, πλpf�2 q� � πλpf2q, and πλpgq� � πλpg�1q.
Since the mapping f ÞÑ f̂ is a unitary mapping on L2pHnq, we then have

f1 � f2pgq �
»
pπλpf1q, πλpLpgqf�2 qq2 |λ|n d1λ

�
»

Trpπλpf1qπλpLpgqf�2 q�q |λ|n d1λ

�
»

Trpπλpf1qpπλpgqπλpf�2 qq�q |λ|n d1λ

�
»

Trpπλpf1qπλpf2qπλpg�1qq |λ|n d1λ

�
»

Trpπλpg�1qπλpf1 � f2q |λ|n d1λ.

¤

Remark 7.29. The Hilbert-space L2pR,H2, |λ|n d1λq is a simple example
of a direct integral of Hilbert spaces. In this case L2pRn,H2, |λ|n d1λq is³
R̀ H2 dµpλq where dµpλq is the measure dµpλq � |λ|n d1λ. In general, if

λ ÞÑ Hλ is a measurable (appropriately defined) mapping from a measure
space pS, µq, then

³`Hλ dµpλq is the collection of all measurable (again this
needs to be defined) functions f on S with fpλq P Hλ a.e. λ and for which³ |fpλq|2Hλ

dµpλq   8.

Exercise Set 7.4

1. Let f be a Schwartz function on Hn. Show f � f�p0, 0q � |f |22. Use the
inversion formula φp0, 0q � ³

Trpφ̂pλqq |λ|n d1λ to show

|f |22 �
»
|f̂pλq|22 |λ|n d1λ.

2. Let T , T1 and T2 be strongly measurable functions from Rn into H2, the
Hilbert space of Hilbert-Schmidt operators on L2pRnq. Show:
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(a) x ÞÑ pT1pxqf1, T2pxqf2q2 is measurable for each pair of functions f1

and f2 in L2pRn, dnxq.
(b) Show x ÞÑ ||T pxq||2 is measurable.

(c) Show x ÞÑ pT1pxq, T2pxqq2 is measurable.

(d) Show x ÞÑ T pxq is strongly measurable if and only if it is measur-
able; i.e., T�1pV q is measurable in Rn for any open subset U of
H2.

(e) Define L2pRn,H2q to be the vector space of all measurable functions
T : Rn Ñ H2 satisfying»

Rn

||T pxq||22 dnx   8
identifying them if they are equal almost everywhere. Show

pT1, T2q �
»
pT1pxq, T2pxqq2 dnx.

defines an inner product on L2pRn,H2q which makes it a Hilbert
space.

3. Let X be a measurable space. Show a mapping T : X Ñ H2 is strongly
measurable if and only if x ÞÑ ph1, T pxqh2q2 is measurable for each pair h1

and h2 of Schwartz functions on Rn.

4. Suppose λ ÞÑ F pλq is a strongly measurable function fromR into L2pRn�
Rnq satisfying

³ |F pλq|22 |λ|n d1λ   8. Show λ ÞÑ F pλq � Φ�1 is measurable
from R into L2pRn � Rnq satisfying»

|F pλq � Φ�1|22 d1λ �
»
|F pλq|22|λ|n d1λ.

5. Show if λ ÞÑ F pλq is measurable from R into H2 � L2pRn � Rnq and³ |F pλq|22 d1λ   8, then there is a function rF P L2pRn � Rn � Rq satisfying

F pλqpx, yq � rF px, y, λq
a.e. px, yq for a.e. λ.

6. Let U be the unitary mapping from L2pHnq onto L2pR,H2, |λ|nd1λq
given by Upfqpλq � f̂pλq. Let B be the biregular representation of Hn.
Show

UpBpg1, g2qfqpλq � πλpg1qUfpλqπλpg2q�1 � πλ � π̄λpg1, g2qpUpfqpλqq
a.e. λ for each f P L2pHnq and any g1 and g2 in Hn.
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7. Use the Plancherel Theorem to show if f1 and f2 are in L2pHnq, then
the continuous function f1 � f�2 on Hn is given at each point by

f1 � f�2 pz, tq �
»

Trpπλp�z,�tqπλpf1qπλpf2q�q |λ|n d1λ.

Remark 7.30. Exercise 7.4.6 above shows f ÞÑ f̂ carries the biregular
representation B on Hn to the representation pB on L2pR,H2, |λ|nd1λq given
by pBpg1, g2qfqpλq � πλ b π̄λpg1, g2qf̂pλq.
In direct integral terminology, the transform f ÞÑ f̂ carries the biregular
representation to the direct integral representation» `

R
πλ b π̄λpg1, g2q dµpλq

where dµpλq � |λ|n d1λ.

Remark 7.31 (Abstract Plancherel Theorem). A type I group is a second
countable locally compact Hausdorff group whose unitary representations
are all type I. We do not go into this here, but remark that abelian, connected
nilpotent and semi-simple Lie groups, and compact groups are type I. Let G
be a unimodular locally compact type I group. Then if m is a Haar measure
on G, there is a unique measure µ (called the Plancherel measure) on Ĝ,
the space of equivalence classes of irreducible unitary representations of G,
such that »

|fpgq|2 dmpgq �
»

Ĝ
Trpπpfqπpfq�q dµpπq.

For Hn, we have
³ |fpz, tq|2 d2nz d1t � ³ ||πλpfq||22 |λ|n d1λ. However, Propo-

sition 2.42 gives ||πλpfq||22 � pπλpfq, πλpfqq2 � Trpπλpfqπλpfq�q. More-
over, the mapping f ÞÑ f̂ where f̂pπq � πpfq is a unitary isomorphism
of L2pGq onto

³
ĜH2pHπq dµpπq which carries the biregular representation

of G onto
³`̂
G

π b π̄ dµpπq. There is also an inversion formula. Namely, if
f P CcpGq � CcpGq, then

fpgq �
»

Trpπpg�1qπpfqq dµpπq.
Remark 7.32. For G � Rn and dmpxq � dnx, one has Ĝ � Rn and
dµpyq � dny. Namely, with y P Rn we identify the unique irreducible
unitary representation eypxq � e�ipx,yq. Then f̂pyq is the Fourier transform
of f and »

|f̂pyq|2 dny �
»

Trpeypfqeypfq�q dny �
»
|fpxq|2 dnx.

Thus with dnx as Haar measure on Rn, the corresponding Plancherel mea-
sure is dny.





Chapter 8

Compact Groups

1. Representations of Compact Groups

Theorem 8.1. Let π be a nonunitary representation of a compact Hausdorff
group G on a Hilbert space H with inner product p� , �q. Then there is an inner
product p� , �q1 on H defining an equivalent norm such that π is unitary in
this inner product.

Proof. We first note the collection of operators πpgq where g P G is point-
wise bounded. Indeed g ÞÑ ||πpgqv|| is continuous on G. Hence it has a max-
imum value. Thus for each v P H, there is an Mv   8 with ||πpgqv|| ¤ Mv

for all g. By the Principle of Uniform Boundedness, the operators πpgq are
uniformly bounded; i.e., there is an 0  M   8 with ||πpgq|| ¤M for all g.
Hence

1
M2

pv, vq � 1
M2

||πpg�1qπpgqv||2 ¤ ||πpgqv||2 ¤M2||v||2 �M2pv, vq
for all g.

Define inner product p� , �q1 by

pv, wq1 �
»
pπpgqv, πpgqwq dg

where dg is the Haar measure on G with
³
dg � 1. This is a positive semi-

definite complex inner product on H. Moreover,

1
M2

pv, vq ¤
»
pπpgqv, πpgqvq dg ¤M2pv, vq.

Consequently 1
M ||v|| ¤ ||v||1 ¤ M ||v||, and we see one has an inner product

giving an equivalent norm. ThusH with inner product p� , �q1 is still a Hilbert

473
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space and since

pπpgqv, πpgqwq1 �
»
pπpg1gqv, πpg1gqwq dg1 �

»
pπpg1qv, πpg1qwq dg1 � pv, wq1,

we see the operators πpgq are all unitary. ¤

Lemma 8.2. Let G be a compact Hausdorff group and let π and π1 be unitary
representations of G on Hilbert spaces H and H1. Let T be a bounded linear
operator from H into H1. Then for each v P H, the integral»

G
π1pgqTπpg�1qv dx

exists in the Riemann sense and v ÞÑ ³
G π1pgqTπpg�1qv dg is a bounded

linear operator on H into H1 which intertwines the representations π and
π1. This operator is called

³
G π1pgqTπpg�1q dg.

Proof. Set F pgq � π1pgqTπpg�1qv. This is a continuous function from G
into H1. Its range is a compact subset of the metric space H1 and thus is
separable. This implies F is a uniform limit of simple function sn. Indeed, let
ε ¡ 0. Choose v11, . . . , v1m in F pGq such that if g P G, then ||F pgq�v1k|| ¤ ε for
some k. Define Gk � tg P G | ||F pgq � v1k|| ¤ ε, ||F pgq � v1i|| ¡ ε for i   ku.
The Gk partition G into measurable sets and the simple function spgq �°m

k�1 χGk
pgqv1k satisfies ||spgq � F pgq|| ¤ ε for all g. We define

³
spgq dg �°

mpGkqv1k. If follows easily if sn converges uniformly to F , then
³
snpgq dg

converges in H1. Thus
³
F pgq dg exists.

Since || ³ spgq dg|| ¤ ³ ||spgq|| dg for simple functions, we have

||
»

π1pgqTπpg�1qv dg|| ¤
»
||π1pgqTπpg�1qv|| dg

¤
»

G
||T || ||v|| dg

� ||T || ||v||.
Thus the operator

³
π1pgqTπpg�1q dg is bounded. To see it is intertwining,

note »
π1pgqTπpg�1qπpxqv dg �

»
π1pgqTπppx�1gq�1qv dg

�
»

π1pxgqTπpg�1qv dg

�
»

π1pxqπ1pgqTπpg�1qv dg

� π1pxq
»

π1pgqTπpg�1qv dg.

¤
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Lemma 8.3. Let G be a compact Hausdorff group and let π be a unitary
representation of G. Let v � 0 in H. Then there is a continuous central
function f with πpfqv � 0.

Proof. Suppose πpfqv � 0 for all continuous central functions f . For h P
CpGq, set hcpxq � ³

hpgxg�1q dg. Note hc is continuous. Indeed, if ε ¡ 0, by
left uniform continuity, we can choose an open neighborhood U of e so that

|hpuxq � hpxq|   ε for all x P G and u P U.

For each g pick a symmetric open neighborhood Npgq of e with gNpgq3g�1 �
U . The open sets gNpgq cover G and thus by compactness, we can choose
g1, . . . , gk where YgiNpgiq � G. Set N � Xk

i�1Npgiq. Let a P N and g P G.
Then g � gini for some i and ni P Npgiq. Thus gag�1 � ginian�1

i g�1
i P

giNpgiq3g�1
i � U and we see

|fpgaxg�1q � fpgxg�1q| � |fpgag�1pgxg�1qq � fpgxg�1q|   ε.

Consequently,

|hcpaxq � hcpxq| ¤
»
|hpgaxg�1q � hpgxg�1q| dg   ε for a P N.

Moreover, hc is central for each h P CpGq. Indeed,

hcpyxy�1q �
»

hpgyxpgyq�1q dg �
»

hpgxg�1q dg � hcpxq
for all x and y. Now if πpfqv � 0 for all continuous central functions f , we
would have πphcqv � 0 for all h. Hence

0 �
»

hcpxqpπpxqv, vq dx

�
» »

hpg�1xgqpπpxqv, vq dg dx

�
» »

hpxqpπpgxg�1qv, vq dx dg

�
»

hpxq
»
pπpgxg�1qv, vq dg dx

for all h P CpGq. Thus
³pπpgxg�1qv, vq dg � 0 for almost all x. But as

x ÞÑ ³pπpgxg�1qv, vq dg is continuous (see above), we can by taking x � e
conclude that ||v||2 � 0, a contradiction. ¤

Lemma 8.4. Let G be a compact Hausdorff group and let π be a unitary
cyclic representation of G. Then π is unitarily equivalent to a subrepresen-
tation of the left regular representation. Moreover, πpfq is a Hilbert-Schmidt
operator for every f P L2pGq.
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Proof. Let v be a cyclic vector for ρ. Define Twpyq � pw, πpyqvq for w P Hπ

and y P G. Since Tw P CpGq, Tw P L2pGq for all w. Clearly T is linear
and ||Tw||2 � ³ |pw, πpgqvq|2 dmpgq ¤ ³ ||w||2||v||2 dmpgq � ||v||2||w||2. Thus
T P BpHπ, L2pGqq. Moreover,

T pπpxqwqpyq � pπpxqw, πpyqvq
� pw, πpx�1yqvq
� Twpx�1yq
� λpxqpTwqpyq.

Thus T P HomGpπ, λq. We claim T is one-to-one. Indeed, Tw � 0 implies
pw, πpyqvq � 0 and thus pw, v1q � 0 for all v1 P xπpGqvy � Hπ. Thus w � 0.
By Theorem 6.47, there is a unitary equivalence of π with λ restricted to
the closure of the range of T .

Since UπpfqU�1 � λpfq|UpHπq, to show πpfq is compact, we need only
show λpfq is compact for every f P L2pGq. But if φ, ψ P L2pGq, one has

pλpfqpφq, ψq2 �
»

fpyqpλpyqφ, ψq2 dmpyq
�
»

fpyq
»

λpyqφpxqψ̄pxq dmpxq dmpyq
�
» »

fpyqφpy�1xqψ̄pxq dmpyq dmpxq
�
» »

fpxyqφpy�1qψ̄pxq dmpyq dmpxq
�
» »

fpxy�1qφpyq dmpyq ψ̄pxq dmpxq
� pTKf, ψq2

where TK is the integral operator with kernel Kpx, yq � fpxy�1q. Since³ ³ |fpxy�1q|2 dmpxq dmpyq � ³ ³ |fpxq|2 dmpxq dmpyq � |f |22, we see the ker-
nel is L2. By Theorem 2.34, the operator TK is Hilbert-Schmidt. ¤

Theorem 8.5. Every unitary representation of a compact Hausdorff group
is an internal orthogonal direct sum of finite dimensional irreducible unitary
subrepresentations.

Proof. Let π be a unitary representation on Hilbert space H. Take a max-
imal collection tHα | α P Au of orthogonal finite dimensional invariant irre-
ducible subspaces of H. Set H0 � `Hα. Then H0 is a closed linear subspace
of H and is invariant under π. Assume H0 � H. By Lemma 6.36, HK0 is
nonzero and invariant. Choose nonzero vector v P HK0 and set K � xπpGqvy.
Then K � HK0 . Let π1 � π|K . Then π1 is unitary and has cyclic vector v.
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By Lemma 8.3, there is a central function f P CpGq with π1pfqv � 0. Using
Lemma 8.4 and Corollary 2.49, we see π1pfq is a compact operator. More-
over, since f is central, π1pfq P HomGpπ1, π1q. Set T � π1pfq�π1pfq. Then
T is nonzero, positive, and compact and by Lemma 6.46, T P HomGpπ1, π1q.
By the spectral theorem for compact operators, i.e., Theorem 2.51, there is a
nonzero eigenvalue λ for T . By Proposition 2.47, Kλ � tw P K | Tw � λwu
is finite dimensional and since Tπ1pgq � π1pgqT for all g P G, Kλ is invariant.
Indeed, note Tπ1pgqw � π1pgqTw � π1pgqpλwq � λπ1pgqw if w P Kλ. Now
there exists a π invariant subspace K0 of Kλ of smallest positive dimension.
Since K0 is irreducible under π and K0 K Hα for all α P A, we see the
collection tHα | α P Au is not maximal. Hence our assumption `Hα � H
was incorrect. ¤

Corollary 8.6. Every irreducible representation of a compact Hausdorff
group G on a Hilbert space H is finite dimensional.

Proof. By Theorem 8.1, we may assume the representation is unitary. ¤

2. Unitary Dual

Recall the unitary dual Ĝ of a topological group G is the set of unitary
equivalence classes of irreducible unitary representations of G.

If π is an irreducible unitary representation of G, we set rπs to be unitary
equivalence class of π. To classify the dual of G means to obtain a listing of
irreducible unitary representations of G, one from each unitary equivalence
class in Ĝ.

Theorem 8.7. Let G1 and G2 be compact Hausdorff groups. Then every
irreducible unitary representation of G1�G2 is equivalent to a tensor product
representation π1 � π2 where π1 is an irreducible unitary representation of
G1 and π2 is an irreducible unitary representation of G2.

Proof. Assume π is an irreducible unitary representation of G1 � G2 on
Hilbert spaceH. Define ρpg1q � πpg1, e2q. Then ρ is a unitary representation
of G1. But by Theorem 8.5, ρ has an irreducible subrepresentation π1 on
a ρ invariant subspace H1 of H. Let P be the π1-primary projection for ρ
on H. By Exercise 6.4.9, P commutes with every bounded linear operator
commuting with ρ. Since πpe1, g2q commutes with πpg1, e2q for all g1, we
see Pπpe1, g2q � πpe1, g2qP for all g2. But this and P P HomGpρ, ρq implies
P P HomG1�G2pπ, πq � CI. Since P � 0, P � I. From Theorem 6.53
and Exercise 6.4.9, we know ρ|PH � nπ1 � π1 b I2 where I2 is the identity
representation of G1 on a Hilbert space H2 of dimension n. Thus there is a
unitary operator U P HomG1pρ, π1 b I2q. Define π1pg1, g2q � Uπpg1, g2qU�1.
Then π1 is unitarily equivalent to π and π1pg1, e2q � Uρpg1qU�1 � pπ1 b
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I2qpg1q � π1pg1q b I2. Set A � π1pe1, g2q. Then Apπ1pg1q b I2q � pπ1pg1q b
I2qA for all g1 P G1. By Lemma 6.74, A � I1bπ2pg2q for a unique bounded
linear operator π2pg2q on H2. Hence π1pg1, e2q � π1pg1qbI2 and π1pe1, g2q �
I1 b π2pg2q. This implies π1pg1, g2q � π1pg1q b π2pg2q for all g1 P G1 and
g2 P G2. Since π1 is a representation, one has π2 is a representation of G2

on H2; moreover, it is unitary since π1 is unitary. ¤

3. Matrix Coefficients

If π is a unitary representation on a Hilbert spaceH, the continuous bounded
functions πv,w defined by

πv,wpgq � pv, πpgqwqH � pπpg�1qv, wqH
are said to be the matrix coefficients of π. As was the case in Section 4
of Chapter 7, it will be useful to denote these functions by v bπ w̄. If π is
finite dimensional, these are the same as the functions

πv,µpgq � xv, π̌pgqµy � xπpg�1qv, µy where µ P H�.
For π nonunitary, we set

pv b µqπpgq � µpπpg�1qvq when µ P H�.
Lemma 8.8. Let π and π1 be unitary representations of a compact Hausdorff
group G on Hilbert spaces H and H1. Then

pπ1pv bπ w̄qπv1, w1qH1 � pv bπ w̄, w1 bπ1 v̄1q2 �
»

G
pv, πpgqwqpw1, π1pgqv1q dg

for v, w P H and v1, w1 P H1.
Proof. Since matrix coefficients are continuous and bounded, they are in
L1pGq. Moreover,

pπ1pv bπ w̄qπv1, w1qH �
»
pv bπ w̄qpgqpπ1pgqv1, w1qH1 dg

�
»
pv bπ w̄qpgqpw1, π1pgqv1qH1 dg

�
»
pv bπ w̄qpgqw1 bπ1 v̄1pgq dg.

¤

4. Orthogonality Relations

Theorem 8.9. Let G be a compact Hausdorff group and suppose π is a
unitary representation of G on a Hilbert space H of finite dimension d. Let B
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be the biregular representation for G. Define Iπ : HbH̄ � LpH,Hq Ñ L2pGq
by

IπpT qpxq � Trpπpx�1qT q.
Then

(a) Iπ P HomG�Gpπ � π̄, Bq.
(b) Iπpv b w̄q � v bπ w̄ for all v and w in H.

(c) I�πf � πpfq for all f P L2pGq.
(d) The range of Iπ is a � ideal in the convolution algebra CpGq. It is

spanned by the matrix coefficients of the representation π.

If, in addition, π is irreducible, then

(e) I�πIπ � 1
dI.

(f)
?

dIπ is an isometry of Hb H̄ into L2pGq.
(g) The mapping dIπ is a � algebra isomorphism of the � algebra BpHq

into CpGq.

Proof. Clearly IπpT q P CpGq for each T . Also

Iπppπ � π̄qpg1, g2qT qpxq � Iπpπpg1qTπpg2q�1qpxq � Trpπpx�1qπpg1qTπpg2q�1q
� Trpπpg�1

2 qπpx�1qπpg1qT q � Trpπppg�1
1 xg2q�1T q

� IπpT qpg�1
1 xg2q � Bpg1, g2qIπpT qpxq.

Thus Iπ P HomGpπ � π̄, Bq. Now by Definition 2.38,

Iπpv b w̄qpxq � Trpπpx�1qv b w̄q � pπpx�1qv, wqH
� v bπ w̄pgq.

I�πf is an operator in BpHq � Hb H̄. We claim it is πpfq.
pI�πf, v b w̄q2 � pf, Iπpv b w̄qqL2pGq

� pf, v bπ w̄qL2pGq
�
»

fpxqpv, πpgqwq dg

�
»

fpxqpπpgqw, vq dg

� pπpfqw, vq
� Trpπpfqw b v̄q
� Trpπpfqpv b w̄q�q
� pπpfq, v b w̄q2.
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where we have used equations (2.5) and (2.6) from Chapter 2. Since the
linear span of the rank one operators v b w̄ is all of Hb H̄, we have I�πf �
πpfq.

Suppose A P BpHq � Hb H̄ and f P CpGq. Then

IπpAq�pxq � IπpAqpx�1q
� TrpπpxqAq
� TrppπpxqAq�q
� TrpA�πpxq�q
� TrpA�πpx�1qq
� Trpπpx�1qA�q
� IπpA�qpxq,

(8.1)

and since the trace is linear and continuous, we see

f � IπpAqpxq �
»

fpyqIπpAqpy�1xq dy

�
»

fpyqTrpπpx�1qπpyqAq dy

� Trp
»

fpyqπpx�1qπpyqAdyq
� Tr

�
πpx�1qp

»
fpyqπpyq dyqA



� IπpπpfqAqpxq.

(8.2)

Now this along with (8.1) implies

IπpAq � f � pf� � IπpAq�q�
� pf� � IπpA�qq�
� Iπpπpf�qA�q�
� IπpAπpf�q�q
� IπpAπpfqq.

(8.3)

Hence (8.1), (8.2), and (8.3) imply the range of Iπ is a � subideal of the �
convolution algebra CpGq. Since the rank one operators v b w̄ span BpHq
and Iπpv b w̄q � v bπ w̄, the matrix coefficients span the range of Iπ.

We now assume π is irreducible. By Lemma 6.46, I�πIπ P HomG�Gpπ �
π̄, π � π̄q. The irreducibility of π � π̄ and Schur’s Lemma imply I�πIπ � c2I
for some constant c ¡ 0. Let e1, e2, . . . , ed be an orthonormal basis of Hπ.
Since

pIπpei b v̄q, Iπpej b v̄qq2 � c2pei b v̄, ej b v̄q2 � c2pei, ejqHpv, vqH,
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the vectors Iπpei b v̄q are orthogonal. Hence

c2d|v|2 � ḑ

k�1

pI�πIπpek b v̄q, ek b v̄q
�¸ ||Iπpek b v̄q||22
�¸»

G
|pek, πpxqvq|2 dx

�
»

G
||πpxqv||2 dx

�
»

G
||v||2 dx

� ||v||2.
So c2 � 1

d . Next note
?

dIπ is an isometry for

p?dIπpAq,?dIπpBqq2 � dpI�πIπpAq, Bq2
� pA,Bq2.

To see it is multiplicative, let f � IπpAq and g � IπpBq where A and
B are linear transformations of H. Using I�πIπ � 1

dI, I�π pfq � 1
dA and

I�π pgq � 1
dB, we see

dIπpABq � dIπpdI�π pfq dI�π pgqq
� d3Iπpπpfqπpgqq
� d3Iπpπpf � gqq
� d3IπI�π pf � gq
� d3

d
pf � gq

� dIπpAq � dIπpBq.
¤

Corollary 8.10. Let π be an irreducible unitary representation of a compact
Hausdorff group G on the Hilbert space H of finite dimension d. Then

pv bπ w̄, v1 bπ w̄1q2 � 1
d
pv, v1qHpw1, wqH and

πpv bπ w̄q � 1
d
v b w̄.
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Proof. Note (b), (d), and (e) give both

pv bπ w, v1 bπ w̄1qL2pGq � pIπpv b w̄q, Iπpv1 b w̄1qqL2pGq
� pI�πIπpv b w̄q, v1 b w̄1q2
� 1

d
pv b w̄, v1 b w̄1q2

� 1
d
pv, v1qHpw1, wqH

and
πpv bπ w̄q � I�πIπpv b w̄q � 1

d
pv b w̄q.

¤

Corollary 8.11. If π is an irreducible unitary representation of a compact
Hausdorff group G on a Hilbert space of dimension d, then

pv bπ w̄q � pv1 bπ w̄1q � 1
d
pv1, wqHv bπ w̄1.

Proof.

pv bπ w̄q � pv1 bπ1 w̄1qpgq �
»
pv, πpxqwqHpv1, πpx�1qπpgqw1qH dx

�
»
pv, πpxqwqHpπpgqw1, πpxqv1qH dx

� pv bπ w̄, πpgqw1 bπ v̄1qL2pGq
� 1

d
pv, πpgqw1qHpv1, wqH

� 1
d
pv1, wqH v bπ w̄1pgq.

¤

Theorem 8.12 (Orthogonality). Let π and π1 be unitary representations
of a compact Hausdorff group G on finite dimensional Hilbert spaces H and
H1. If HomGpπ, π1q � t0u, then

IπpHb H̄q K Iπ1pH1 b H̄1q.
In particular, the matrix coefficients for π and the matrix coefficients for π1
are pairwise orthogonal in L2pGq; and π1pv bπ w̄q � 0 for all v, w P H.

Proof. Consider I�π1Iπ : H b H̄ Ñ H1 b H̄1. Suppose we have shown this
operator to be 0. Then

pI�π1IπT, Sq � 0
for all T P H b H̄ and S P H1 b H̄1. Thus pIπT, Iπ1Sq2 � 0 and we would
be done. Hence we need only show I�π1Iπ � 0. Since π1 � π̄1 is unitary,
Lemma 6.46 shows I�π1Iπ P HomG�Gpπ � π̄, π1 � π̄1q. But by Lemma 6.77,
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HomGpπ, π1q � t0u implies HomG�Gpπ � π̄, π1 � π̄1q � t0u. Finally π1pv bπ

wq � 0 follows from Lemma 8.8. ¤

Corollary 8.13. Let π and π1 be inequivalent irreducible unitary represen-
tations of compact Hausdorff group G. Then for v, w P H and v1, w1 P H1,
one has:

pv bπ w̄, v1 bπ1 w̄1q2 �
»
pv, πpgqwqHpv1, π1pgqw1qH1 dmpgq � 0,

π1pv bπ w̄q � 0, and

pv bπ w̄q � pv1 bπ1 w̄1q � 0.

Proof. Follow the arguments in Corollary 8.10 and Corollary 8.11. ¤

Exercise Set 8.1

1. Let G be a compact Hausdorff group with Haar measure m normalized
so that mpGq � 1.

(a) Show |f |p ¤ |f |q if 1 ¤ p ¤ q ¤ 8 for measurable functions f .

(b) Show L1pGq � LppGq � LqpGq � L8pGq � CpGq if 1   p   q   8.

2. Let G be a compact Hausdorff group. Let π and π1 be unitary represen-
tations of G on H and H1. Define P on BpH,H1q by

P pT q �
»

G
π1pgqTπpg�1q dg.

(a) Show P 2 � P .

(b) Show P restricted to B2pH,H1q is the orthogonal projection of H1b
H̄ onto HomGpπ, π1q2.

3. Let π and π1 be unitary representations of a compact Hausdorff group
G. Show HomGpπ, π1q � t0u if and only if the matrix coefficients of π are
orthogonal to the matrix coefficients of π1.
4. Let G be a compact Hausdorff group and let π be a unitary represen-
tation of G with cyclic vector w. For u, v P H, the Hilbert space of π,
define

Bpu, vq �
»

G
pw, πpgqvqHpπpgqu,wqH dg.

(a) Show B is a bounded sesquilinear form on H�H.

(b) Show there is a positive continuous linear one-to-one operator T on
H with

Bpu, vq � pTu, vqH for all u, v P H.

(c) Show T P HomGpπ, πq.
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(d) Show if vn is bounded and converges weakly to a vector v, then

lim
n
||Tvn||2 �

»
G
pw, πpgqTvqHpπpgqv, wqH dg � ||Tv||2.

(e) Use Exercise 6.2.4 and the weak compactness of the closed unit ball
in H to show T is a compact operator.

(f) Using the spectral theorem for compact linear operators, show π
has a nonzero finite dimensional irreducible subrepresentation.

5. Let π and π1 be finite dimensional inequivalent unitary representations
of a compact group G on Hilbert spaces H and H1. For T P LpH,H1q, let A
be the operator give by

Av �
»

G
π1pgqTπpgq�1v dg.

(a) If T � v1 b v̄, show pAw, w1qH1 � 0 yields the orthogonality of the
matrix coefficients w bπ v̄ and w1 bπ1 v̄1 in L2pGq.

(b) In the case where π1 � π and π is irreducible, show Schur’s Lemma
implies that there is a c ¡ 0 so that»

pw bπ v̄qpgqpw1 bπ v̄1qpgq dg � cpw, w1qHpv1, vqH.

6. Let π be an irreducible unitary representation of compact Hausdorff
group G on a Hilbert space H of dimension d. Let v and w be in H. Define
T � ³

πpgqv b π̄pgqw̄ dg. Show T � 1
dI and use this to show

pv bπ w̄, v1 bπ w̄1qL2pGq � 1
d
pv, v1qHpw1, wqH for all v, w, v1, w1 P H.

7. Let π be a nontrivial irreducible unitary representation of a compact
Hausdorff group G. Show¼

πpxqAπpy�1q dx dy � 0

for all linear transformations A of Hπ.

8. Show a continuous function f on a compact Hausdorff group G is central
if and only if f � g � g � f for all functions g P L1pGq.
9. Let G be a compact Hausdorff group with left regular representation λ.
Show for f, h P L1pGq that λpfq � λphq if and only if f � h.

10. Show an L1 function f on a compact Hausdorff group G is central if
and only if λpfq P HomGpλ, λq.
Lemma 8.14. Let λ and ρ be the left regular and right regular representa-
tions of a compact Hausdorff group G. Then for f, h P L2pGq,

f � h�pxq � pf, λpxqhq2 and f� � hpxq � pρpxqh, fq2.
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Moreover, the mapping C : pf, hq ÞÑ f � h is a continuous bilinear mapping
of L2pGq � L2pGq into CpGq with the uniform topology.

Proof.

pf, λpxqhq2 �
»

fpyqλpxqhpyq dy

�
»

fpyqhpx�1yq dy

�
»

fpyqh�py�1xq dy

� f � h�pxq.
A similar calculation show f� � hpxq � pρpxqh, fq2.

In particular, we see f �hpxq � pf, λpxqh�q2 is a continuous function and
||f � h||8 � maxxPG |pf, λpxqh�q| ¤ maxxPG ||f ||2||λpxqh�||2 � ||f ||2||h||2.
Since convolution is bilinear, we see ||C|| ¤ 1 and thus C is continuous. ¤

Lemma 8.15. Let π be an irreducible unitary representation of compact
Hausdorff group G. Define Pπ :� a

dpπqIπI�π . Then Pπ is the orthogo-
nal projection of L2pGq onto the range of Iπ, the linear span of the matrix
coefficients of π.

Proof. By Theorem 8.9, we know
a

dpπqIπ is an isometry of H b H̄ into
L2pGq. Using Exercise 6.4.1, we know dpπqIπI�π is the orthogonal projection
of L2pGq onto the range of Iπ. But from (d) of Theorem 8.9, this range is
the linear span of the matrix coefficients of π. ¤

In Example 6.113 we established the following lemma.

Lemma 8.16. Let f P L1pGq and h P L2pGq. Then λpfqh � f � h.

Proposition 8.17. Let G be a compact Hausdorff group and let π be an
irreducible unitary representation of G having dimension dpπq. Suppose f P
L2pGq. Then Pπf � dpπqIπI�πf is the function in L2pGq given by

Pπfpxq � dpπqTrpπpx�1qπpfqq.
Moreover,

||Pπf ||22 � dpπqTrpπpfq�πpfqq.
Proof. Using Theorem 8.9, we have

Pπfpxq � dpπqIπI�π pfqpxq � dpπqTrpπpx�1qI�π pfqq � dpπqTrpπpx�1qπpfqq
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and

||Pπf ||22 � pPπf, Pπfq2 � pPπf, fq2
� dpπqpIπI�πf, fq � dpπqpI�πf, I�πfq2
� dpπqpπpfq, πpfqq2
� dpπqTrpπpfq�πpfqq.

¤

Remark 8.18. Note if π and π0 are equivalent irreducible unitary repre-
sentations of compact group G, then Pπ � Pπ0 .

Let G be a topological group. Ĝc will denote a collection of pairwise
inequivalent irreducible unitary representations of G with the property that
if π0 is an irreducible unitary representation of G, then π0 is unitarily equiv-
alent to exactly one of the representations in Ĝc. Such a collection is said
to be a concrete dual for G.

Theorem 8.19. Let G be a compact Hausdorff group. For π P Ĝc, let

Pπpfqpxq � dpπqTrpπpx�1qπpfqq.
Then à

πPĜc

Pπ � I.

Proof. The ranges of the Pπ are the ranges of the Iπ. These spaces are
invariant under B, the biregular representation of G�G on L2pGq. By The-
orem 8.12, these ranges are pairwise orthogonal. Set P � `Pπ and let H1 be
P pL2pGqqK. H1 is the orthogonal complement of an internal orthogonal di-
rect sum of the B invariant subspaces IπpHπbH̄πq and hence is B invariant.
Since λpgq � Bpg, eq, we see it is λ invariant. If H1 � t0u, H1 would contain
a λ invariant subspace H0 such that λ0 � λ|H0 is irreducible. Take f P H0

with f � 0. Note f� P L2pGq � L1pGq. Thus λ0pf�q is a bounded operator
on H0. Lemma 8.16 implies λ0pf�q � 0 for λ0pf�qpfqpxq � λpf�qpfqpxq �
f� � fpxq � pf, λpxqfq. Hence λ0pfq � λ0pf�q� � 0. So f� � f P H0 and
Trpλ0pf� � fqq � Trpλ0pfq�λ0pfqq � pλ0pfq, λ0pfqq2 ¡ 0. Consequently,
Pλ0pf� � fqpxq � Trpλ0px�1qλpf� � fqq is a nonzero continuous function.
Choose π0 P Ĝc unitarily equivalent to λ0. Since Pλ0 � Pπ0 , we have
Pπ0pf� � fq � 0. But f� � f P H0 � PπpL2pGqqK for all π. So P � I. ¤

Theorem 8.20 (Plancherel). Let G be a compact Hausdorff group. If f P
L2pGq, then

f � à
πPĜc

Pπpfq, ||f ||22 �
π̧PĜc

dpπqTrpπpfq�πpfqq, and
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U : L2pGq Ñ ` �Hπ b H̄π

�
defined by Upfqπ � a

dpπqπpfq is a unitary
equivalence of B with `πPĜc

pπ � π̄q.
Proof.

||f ||22 �¸ ||Pπf ||22 �¸pPπf, Pπfq2
�¸pP 2

πf, fq2 �¸pPπf, fq2
�¸

dpπqpIπI�πf, fq2 �¸
dpπqpI�πf, I�πfq2

�¸
dpπqpπpfq, πpfqq2 �¸

dpπqTrpπpfq�πpfqq.
To see U is unitary and intertwining, we need only show Vπ where Vπ :

PπL2pGq Ñ Hπ bπ H̄π given by VπpPπfq � a
dpπqπpfq � a

dpπqI�π pfq is
a unitary intertwiner for each π P Ĝc. Since I�π intertwines B and π �
π̄, Vπ is an intertwiner. Since dpπqIπI�π � Pπ, we see it is onto. Since
||adpπqI�π pfq||2 � dpπqpI�πf, I�πfq � pPπf, fq2 � pPπf, Pπfq2 � ||Pπf ||22, we
see it is an isometry. ¤
Corollary 8.21. Let G be a compact Hausdorff group. If f is in the linear
span of L2pGq � L2pGq, then f is continuous and

π̧PĜc

dpπqTrpπpxq�1πpfqq
converges uniformly to fpxq on G.

Proof. It suffices to show this works for functions of form f �h� where f and
h are in L2pGq. By Lemma 8.14,

°
πPĜc

pf, λpxqPπhq2 converges uniformly
to pf, λpxqhq2 � f � h�pxq. But

pf, λpxqPπhq2 � pPπλpx�1qf, hq2
� pdpπqIπI�π pλpx�1qfq, hq2
� dpπqpI�π pλpx�1qfq, I�πhq2
� dpπqpI�π pBpx�1, eqfq, I�πhq2
� dpπqppπpx�1q b π̄peqqπpfq, πphqq2
� dpπqTrpπpx�1qπpfqπphq�q
� dpπqTrpπpx�1qπpf � h�q.

¤
Corollary 8.22. Let π be an irreducible unitary representation of a compact
Hausdorff group G. Let Pπfpxq � dpπqTrpπpx�1qπpfqq for f P L2pGq. Then
Pπ is the π-primary projection for the left regular, the π̄-primary projection
for the right regular representation, and the π� π̄ primary projection for the
biregular representation of G�G.
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Proof. We may assume we have a concrete dual Ĝc containing π. For π1 P
Ĝc, let P pπ1q be the π1-primary projection for the left regular representation
λ. We claim P pπ1qPπ1 � Pπ1 . Fix w P Hπ1 . Then the transformation T :
Hπ1 Ñ L2pGq given by Tv � Iπ1pvb w̄q � vbπ1 w̄ is in HomGpπ1, λq. Indeed,
Tπ1pgqv � Iπ1pπ1pgqvb w̄q � Iπ1ppπ1� π̄1qpg, eqpvb w̄qq � Bpg, eqIπ1pvb w̄q �
λpgqTv. By Corollary 6.54, P pπ1qpvbπ1 w̄q � pvbπ1 w̄q for all v and w. Thus
P pπ1qpIπ1pT qq � Iπ1pT q for all T P Hπ1 b H̄π1 . Hence P pπ1qPπ1 � Pπ1 for
all π1 P Ĝc. By Corollary 6.55, P pπqP pπ1q � 0 for inequivalent irreducible
unitary representations π and π1 of G. Thus P pπq � °

π1PĜc�tπu P pπqpI �
P pπ1qqPπ1 � P pπqPπ � P pπqPπ � Pπ.

A similar argument works using Tw̄ � vbπ w̄ gives P pπq is the π̄-primary
projection for the right regular representation.

Now Iπ1 intertwines π1 � π̄1 with B|Pπ1 pL2pGqq. Thus if P pπ1 � π̄1q is the
π1 � π̄1 primary projection for B, we have P pπ1 � π̄1qIπ1pT q � Iπ1pT q for all
T P Hπ1 . So P pπ1 � π̄1qPπ1 � Pπ1 . Using Lemma 6.77 and Schur’s Lemma
one sees π � π̄ is unitarily equivalent to π1 � π̄1 if and only if π1 � π. Thus
P pπ� π̄qP pπ1� π̄1q � 0 when π and π1 are distinct elements in Ĝc. We then
argue as above that

P pπ � π̄q �
π̧1�π

P pπ � π̄qpI � P pπ1 � π̄1qqPπ1 � P pπ � π̄qPπ � Pπ.

¤

Exercise Set 8.2

1. Let π be an irreducible unitary representation of a compact Hausdorff
group G and let λ and ρ be the left and right regular unitary representa-
tions of G. Show λ|PπL2pGq is unitarily equivalent to dpπqπ and ρ|PπL2pGq is
unitarily equivalent to dpπqπ̄.

2. Let G be a compact Hausdorff group. Show a function f P L1pGq is
central if and only if for every irreducible unitary representation π of G,
πpfq P HomGpπ, πq.
3. Let G be a compact Hausdorff group with concrete dual Ĝc. For π P Ĝc,
let e1, e2, . . . , edpπq be an orthonormal basis of the Hilbert space for π. Let

πi,j � eibπ ēj be the matrix coefficients of π obtained from the basis teiudpπqi�1 .

(a) Show tadpπqπi,j | π P Ĝc, 1 ¤ i, j ¤ dpπqu form an orthonormal
basis of L2pGq.

(b) Show for f P L2pGq, the series

π̧PĜc

¸
1¤i,j¤dpπq

dpπqpf, πi,jq2πi,j
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converges in L2pGq to f .

(c) Show if f P xL2pGq � L2pGqy, then the series in (b) converges uni-
formly on G to f .

4. Let G be a compact Hausdorff group and let π be an irreducible unitary
representation of G. Show if f is in the π-primary subspace PπL2pGq for
the left regular representation λ, then f� is also in this subspace.

5. Show if H is a separable Hilbert space and there is unitary isomorphism
from Hilbert space mH onto nH where m and n are cardinals, then m � n.

6. Show if π1 is a unitary representation on a Hilbert space H1 and I is the
identity representation on Hilbert space H, then the representation I b π1
is unitarily equivalent to nπ1 where n is the cardinality of an orthonormal
basis of H.

5. Frobenius Reciprocity

We have used the trace on the operators on the finite dimensional Hilbert
spaces Hπ where π P Ĝc to decompose the left, right, and biregular represen-
tations into orthogonal irreducible invariant subspaces. We in this section
will begin to show that this is a more general process; one which can be
applied to all representations which are induced from a representation of
closed subgroup of the compact Hausdorff group G.

We recall from Section 17 of Chapter 6 that if π is a unitary repre-
sentation of a closed subgroup K of a compact group G on a separable
Hilbert space K, then πG or indG

Kπ denotes the unitary representation on
the Hilbert space L2

πpGq of Baire measurable functions f : G Ñ K satisfying
fpgkq � πpk�1qfpgq for all k for a.e. g and

³ ||fpgq||2K dg   8. Instead of the
notation L2

πpGq, to give more specificity, we use the notation L2
KpG, πq to

denote this function space. Recall the inner product on L2
KpG, πq is given

by pf1, f2q � ³pf1pgq, f2pgqqK dg. We shall need the following lemma.

Lemma 8.23. Let H0 be a finite dimensional subspace of L2
πpG,Kq which

is invariant under the induced representation πG. Then the elements in H0

are continuous functions.

Proof. Since H0 is finite dimensional, it is a direct sum of finitely many
orthogonal nonzero irreducible invariant subspaces. Hence we may assume
the representation ρ obtained by restricting πG to H0 is irreducible. We first
show ρphqf is continuous on G for each f P H0 and h P CpGq.

Indeed, since G is unimodular, we have ρphqfpxq � ³
hpyqfpy�1xq dy �³

hpxy�1qfpyq dy. Let ε ¡ 0. By Lemma 5.5.24, we know h is uniformly
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continuous, and thus one can choose a neighborhood U of e so that

|hpugq � hpgq|   ε

1� ³ ||fpyq||K dy
if g P G and u P U.

Thus

||ρphqfpuxq � ρphqfpxq||K ¤
»
|hpuxy�1q � hpxy�1q| ||fpyq||K dy

¤ ε

1� ³ ||fpyq||K dy

»
||fpyq||K dy

¤ ε.

Thus ρphqf is continuous. We cannot have ρphqf � 0 for all h P CpGq and
f P H0; for by Corollary 6.108, the density of GpGq in L1pGq, and ||ρphq|| ¤
|h|1 for h P L1pGq, we would then have ρphqf � 0 for all h P L1pGq and
all f P H0 and thus the integrated representation h ÞÑ ρphq � ³

hpyqρpyq dy
of L1pGq could not be nondegenerate. Consequently ρphqf is nonzero and
continuous for some f P H0 and h P CpGq. Since ρphqf P H0, the space of
continuous functions in H0 is nonzero. It is clearly invariant under ρ and
since ρ is irreducible and finite dimensional, this space is all of H0. ¤

Definition 8.24. Let π and π1 be unitary representations of a topological
group G. Then

HomGpπ, π1q2 � tA P HomGpπ, π1q | A is Hilbert-Schmidtu.
The above vector space is a closed linear subspace of the Hilbert space

H1b H̄ � BpH,H1q2 and thus is a Hilbert space. The inner product is given
by

pA,A1q2 � TrpA1�Aq � TrpAA1�q.
Moreover, HomGpπ, π1q2 � pH1b H̄qG � tA P H1b H̄ | pπ1b π̄qpgqpAq � Au.
Theorem 8.25 (Frobenius). Let K be a closed subgroup of a compact group
G and let π be a unitary representation of K on a separable Hilbert space
K and π1 be a unitary representation of G on Hilbert space H1. Then the
mapping A ÞÑ Ã by

Ãv1pxq � Aπ1px�1qv1
is a unitary isomorphism from the Hilbert space HomKpπ1|K , πq2 onto the
Hilbert space HomGpπ1, indG

Kπq2. In particular, if B is a Hilbert-Schmidt
intertwining operator from π1 to indG

Kπ, then the range of B consists of
continuous functions.

Proof. Note Ãv1 is continuous and

Ãv1pxkq � Aπ1pk�1x�1qv1 � πpk�1qAπ1px�1qv1 � πpk�1qÃv1pxq.
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Thus Ãv1 is in L2
KpG, πq. Also since

||Ãv1||2 �
»

G
||Aπ1pg�1qv1||2 dg

¤ ||A|| 2||v1||2,
Ã is a bounded linear operator. We claim Ã P HomGpπ1, indG

Kπq2. First we
note:

Ãπ1pgqv1pxq � Aπ1px�1qπ1pgqv1
� Aπ1ppg�1xq�1qv1
� Ãv1pg�1xq
� πGpgq Ãv1pxq.

Thus Ã intertwines. Let f P L2pG, πq. Then

pÃ�f, v1qH1 � pf, Ãv1q2
�
»

G
pfpxq, Ãv1pxqqK dx

�
»

G
pfpxq, Aπ1px�1qv1qK dx

�
»

G
pπ1pxqA�fpxq, v1qH1 dx

� p
»

G
π1pxqA�fpxq dx, v1qH1 .

Thus

Ã�f �
»

π1pxqA�fpxq dx for f P L2
KpG, πq.

We can therefore calculate the operator Ã�Ã. Note:

Ã�Ãv1 �
»

π1pxqA�Ãv1pxq dx

�
»

π1pxqA�Aπ1px�1qv1 dx

�
�»

π1pxqA�Aπ1px�1q dx



v1.
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Thus

||Ã||22 � TrpÃ�Ãq
� Tr

�»
π1pxqA�Aπ1px�1q dx



�
»

Trpπ1pxqA�Aπ1px�1qq dx

�
»

TrpA�Aq dx

� TrpA�Aq
� ||A||22.

Thus A ÞÑ Ã is an isometry of the Hilbert space HomGpπ1|K , πq2 into the
Hilbert space HomGpπ1, indG

Kπq2.
We claim it is onto. Let B P HomGpπ1, indG

Kπq2. By Theorem 8.5, we can
choose orthogonal projections Pα, α P A, where Pα P HomGpindG

Kπ, indG
Kπq,

PαL2
KpG, πq are finite dimensional, and

À
Pα � I. Thus PαB are in the

Hilbert space HomGpπ1, indG
Kπq2. We claim they are orthogonal in this

Hilbert space. Indeed,

pPαB,Pα1Bq2 � TrpB�P �α1PαBq � Trp0q � 0 if α � α1.
Moreover ¸ ||PαB||22 � ||B||22
for ¸ ||PαB||22 �¸

TrpPαBB�Pαq � TrpBB�q � ||B||22.
Thus

°
PαB � B in HomGpπ1, indG

Kπq2.
Next we show there is a Aα P HomGpπ1|K , πq2 with Ãα � PαB. In fact,

define Aα : H1 Ñ K by

Aαv1 � PαBv1peq.
This is well defined for by Lemma 8.23 the finite dimensional invariant sub-
space PαBH1 of L2

KpG, πq must consist of continuous functions. Moreover,

Aαπ1pkqv1 � PαBpπ1pkqv1qpeq � πGpkqpPαBv1qpeq
� PαBv1pk�1q � πpkqPαBv1peq � πpkqAαv1.

To see Aα : H1 Ñ K is continuous, let v1k Ñ 0 in H1. Then PαBv1k Ñ 0 in
PαL2

KpG, πq, a finite dimensional vector space. Since all Hausdorff vector
space topologies on PαL2

KpG, πq are equivalent, PαBv1k Ñ 0 in CKpG, πq.
Thus PαBv1kpeq Ñ 0. So Aα P HomGpπ1|K , πq. We claim Ãα � PαB.
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Indeed,

Ãαv1pxq � Aαπ1px�1qv1
� PαBpπ1px�1qv1qpeq
� πGpx�1qpPαBv1qpeq
� PαBv1pxq.

The earlier part of the argument shows ||Aα||22 � ||Ãα||22 � ||PαB||22. Thus
Aα P HomGpπ1|K , πq2. Since A ÞÑ Ã is an isometry, we see A � °

Aα exists
in HomGpπ1|K , πq2 and Ã � °

Ãα � °
PαB � B. ¤

Corollary 8.26. Let G be a compact Hausdorff group and let π1 P Ĝc.
Suppose K is a closed subgroup and π is a unitary representation of K
on a separable Hilbert space K. Then the π1-primary projection P pπ1q on
L2

KpG, πq is the orthogonal projection whose range consists of the closure of
the linear span of the functions x ÞÑ Aπ1px�1qv1 where A P HomKpπ1|K , πq.
Proof. Apply Corollary 6.54. ¤

As we shall see shortly, there is a natural linear mapping between
HomKpπ1|K , πq2bH1 and L2

KpG, πq which sends the elementary tensor Abv1
to the function Ãv1. Thus it is natural to define functions Abπ1v1 in CKpG, πq
by

pAbπ1 v1qpxq � Aπ1px�1qv1.
These are in some sense “vector valued” matrix coefficients.

Lemma 8.27. Let π1 be an irreducible unitary representation of a compact
Hausdorff group G on a Hilbert space H1 of finite dimension dpπ1q. Let T be
a linear operator on H1. Then»

pπ1pxqTπ1px�1qv11, v12qH1 dx � 1
dpπ1qTrpT qpv11, v12qH1 .

Proof. By Lemma 8.2, the operator A � ³
π1pxqTπ1px�1q dx intertwines π1

with π1. By Schur’s Lemma, A � cI for some scalar c. Take the trace of
both sides. We see cdpπ1q � TrpT q. So c � TrpT q

dpπ1q . ¤

Theorem 8.28 (Orthogonality Relations). Suppose π1 is an irreducible uni-
tary representation of G. If A1, A2 P HomKpπ1|K , πq, then

pA1 bπ1 v11, A2 bπ1 v12q � 1
dpπ1qpA1, A2q2pv11, v12qH1 .

Moreover, if π11 and π12 are unitary representations of G with HomGpπ11, π12q2 �t0u, then

pA1bπ1v11, A2bπ1v12q � 0 for A1 P HomGpπ11|K , πq2 and A2 P HomGpπ12|K , πq2.
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Proof.

pA1 bπ1 v11, A2 bπ1 v12q �
»
pA1π

1px�1qv11, A2π
1px�1qv12qK dx

�
»
pπ1pxqA�2A1π

1px�1qv11, v12qH1 dx

� 1
dpπ1qTrpA�2A1qpv11, v12qH1

� 1
dpπ1qpA1, A2q2pv11, v12qH1 .

For the second part, assume Aj P HomGpπ1j |K , πq2 for j � 1, 2. Then
T � ³

π12pxqA�2A1π
1
1px�1q dx is a intertwining operator between π11 and π12.

We claim it is Hilbert-Schmidt. Indeed,

||T ||2 ¤
»
||π12pxqA�2A1π

1
1px�1q||2 dx

¤
»
||π12pxq|| ||A2|| ||A1||2||π11px�1q|| dx

� ||A2|| ||A1||2.
Hence since HomGpπ11, π12q2 � t0u, T � 0. Thus»

pA1π
1
1px�1qv11, A2π

1
2px�1qv12qK dx �

»
pπ12pxqA�2A1π

1
1px�1qv11, v12qH12 dx

� pTv11, v12qH12� 0

for v11, v12 in the Hilbert spaces for π11 and π12, respectively. ¤

Corollary 8.29. Let π1 be an irreducible unitary representation of a compact
Hausdorff group G. There is an intertwining operator Iπ1 between I b π1 on
the Hilbert space HomKpπ1|K , πq2 bH1 with indG

Kπ on L2
KpG, πq satisfying

Iπ1pAb v1q � Abπ1 v1.
In particular, indG

Kπ|ImpIπ1 q � dimpHomKpπ1|K , πq2qπ1. Moreover,
a

dpπ1qIπ1
is an isometry whose range is the π1-primary subspace for the unitary rep-
resentation indG

Kπ.

Proof. To define Iπ1 , it suffices to define the linear isometry
a

dpπ1qIπ1 ; and
to do this we need only know it takes an orthonormal basis to an orthonormal
set. Let e1, e2, . . . , ed1 be an orthonormal basis of H1 and let tEιuiPI be an
orthonormal basis of HomGpπ1|K , πq2. Seta

dpπ1qIπpEi b ejq �a
dpπ1qEi bπ1 ej .
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By Theorem 8.28, the orthogonality relations, we see
a

dpπqIπ is send-
ing an orthonormal basis of HomGpπ1|K , πq2 b H1 into an orthonormal set
in L2

KpG, πq. It consequently extends to a linear isometry
a

dpπqIπ from
HomKpπ1|K , πq2bH1 into L2

KpG, πq. In conclusion, we see there is a bounded
linear mapping Iπ : HomGpπ1|K , πq2 bH1 Ñ L2

KpG, πq sending the elemen-
tary tensor Ab v to Abπ1 v.

By the Frobenius Theorem 8.25, we know Ã intertwines π1 and indG
Kπ

and thus

Iπ1ppI b π1qpgqpAb v1qq � Iπ1pAb π1pgqv1q
� Abπ1 π1pgqv1
� Ãπ1pgqv1
� πGpgqÃv1
� πGpgqpAbπ1 v1q
� πGpgqIπ1pAb v1q.

This implies Iπ1 intertwines I b π1 and the indG
Kπ.

We first note every operator in HomGpπ1, indG
Kπq is Hilbert-Schmidt for

Hπ1 is finite dimensional. Thus HomGpπ1, indG
Kπq � HomGpπ1, indG

Kπq2.
Since the range of

a
dpπqIπ1 is the closure of the linear span of the func-

tions Ãv1, we see by Corollary 6.54, that the range of Iπ1 is the range of the
primary projection P pπ1q for indG

Kπ.
Finally, the statement πGπ|ImpIπ1 q � dimpHomGpπ1|K , πq2qπ1 follows from

Exercise 8.2.6. ¤

These results can be restated in terms of multiplicity. Namely, by The-
orem 8.5, we know the representation indG

Kπ is discretely decomposable.
Moreover, by Corollary 8.29, indG

Kπ restricted to the range of P pπ1q is
unitarily equivalent to nπ1 where n is the dimension of the Hilbert space
HomKpπ|1K , πq2. Since π1 is finite dimensional and the Hilbert space K for π
is assumed to be separable, this space of intertwiners is separable. Hence its
dimension is either finite or ℵ0. Thus, the multiplicity mpπ1, indG

Kπq equals
mpπ1|K , πq. Note even though K is separable, the representation indG

Kπ will
not be separable if the homogeneous space G{K is nonseparable.

Theorem 8.30 (Frobenius). Let π be a unitary representation of a closed
subgroup of a compact Hausdorff group G on a separable Hilbert space K.
Then

mpπ1, indG
Kπq � mpπ1|K , πq

for each irreducible unitary representation π1 of G.
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We thus have
indG

Kπ � à
π1PĜc

mpπ1|K , πqπ1.
where here the unitary equivalence is established by composing a unitary
equivalence from indG

Kπ restricted to the range of P pπ1q with Ibπ1 followed
by a unitary equivalence of I b π1 to nπ1. (See Exercise 8.2.6.)

To obtain the primary internal orthogonal decomposition of the repre-
sentation indG

Kπ, we need to determine the primary projections

(8.4) P pπ1q � dpπ1qIπ1I�π1 for π1 P Ĝc.

We show in our next sections this can be done using traces.

6. Trace Class Operators between Hilbert Spaces

In Section 3 of Chapter 2, we defined the notion of a trace class operator on
a Hilbert space H and its trace. Trace class operators are always Hilbert-
Schmidt; in fact they are seen to be the product of two Hilbert-Schmidt
operators. To continue decomposing an induced representation on a compact
group, we shall make use of a more general notion of a trace class operator
and the concept of traces having values in a Hilbert space.

Definition 8.31. Let H and H1 be Hilbert spaces. Then a bounded linear
operator A : HÑ H1 is said to be trace class if A can be written in form

i̧

v1i b v̄i

where ¸ ||vi||2   8 and
¸ ||v1i||2   8.

We note when H � H1, then we have the same definition as 2.37 in
Chapter 2. Moreover, we still have the following.

Proposition 8.32. An operator A from H to H1 is trace class if and only
if it is the composition of two Hilbert-Schmidt operators.

Proof. Let A � RS where R P B2pK,H1q and S P B2pH,Kq. By Exercise
2.2.15, we can find an orthonormal set teiu in K and collections tviu in H
and tv1iu in H1 such that

° ||vi||2   8 and
° ||v1i||2   8 with R � °

v1i b ēi

and S � °
ei b v̄i. Then RS � °

v1i b v̄i is trace class.
Conversely, let A � °

v1i b v̄i be trace class where
° ||v1i||2   8 and° ||vi||2   8. Take a Hilbert spaceK with an orthonormal basis teiu indexed

by the i’s. Set R � °
v1ib ēi and S � °

eib v̄i. Using Exercise 2.2.15 again,
we see R and S are Hilbert-Schmidt. Moreover, A � RS. ¤
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Proposition 2.32 shows trace class operators are always Hilbert-Schmidt.
We now generalize the notion of trace. To do this let B : H1�HÑ K where
K is a Hilbert space be sesquilinear and bounded.

Definition 8.33. Let B : H1�HÑ K be bounded and sesquilinear. If A is
a trace class operator from H to H1 with A � °

v1i b v̄i where
° ||vi||2   8

and
° ||v1i||2   8, then the B-trace of A is defined by

TrBpAq �
i̧

Bpv1i, viq.

Note the series in the definition converges absolutely for¸ ||Bpwi, viq|| ¤
i̧

||B|| ||wi|| ||vi||

¤ ||B||
�

i̧

||wi||2
�1{2 �

i̧

||vi||2
�1{2

  8.

Proposition 8.34. Let teαu be an orthonormal basis for H. Then the B
trace of trace class operator A is

α̧

BpAeα, eαq.
Moreover, this series is absolutely summable.

Proof. Since A is trace class, A � °
i wi b v̄i where

°
i |wi|2   8 and°

i |vi|2   8. From Aeα � °
i
peα, viqwi, we see

BpAeα, eαq �¸peα, viqBpwi, eαq.
Set v1i � °

α
|pvi, eαq|eα. Note ||v1i|| � ||vi||. Applying the Cauchy-Schwarz’s

inequality one obtains:

α̧

|BpAeα, eαq| �
α̧

|
i̧

peα, viqBpwi, eαq| ¤
i̧, α

|peα, viqBpwi, eαq|
�

i̧

|Bpwi,
α̧

|pvi, eαq|eαq| �
i̧

|Bpwi, v
1
iq|

¤
i̧

||B|| ||wi|| ||v1i|| ¤ ||B||
�

i̧

||vi||2
� 1

2
�

i̧

||wi||2
� 1

2

.
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From this we also see
°

i, αpeα, viqBpwi, eαq converges absolutely. Thus

α̧

BpAeα, eαq �
α̧

Bp
i̧

peα, viqwi, eαq �
α̧, i

peα, viqBpwi, eαq
�

i̧, α

Bpwi, pvi, eαqeαq �
i̧

Bpwi,
α̧

pvi, eαqeαq
�

i̧

Bpwi, viq.

¤

If we are in the case when H � H1 and we take B : H �H Ñ C to be
the inner product on H, one returns to the standard trace

TrpAq �
α̧

pAeα, eαq.

As we have just seen, associated to any bounded sesquilinear Hilbert
space valued function on a product of Hilbert spaces, one has a Hilbert
space valued trace on the trace class operators. In order to decompose
induced representations, we shall use a specific one.

Let π be a representation of a closed subgroup K of a compact group
G on a separable Hilbert space K. Let π1 be an irreducible unitary rep-
resentation of G on a necessarily finite dimensional Hilbert space H1. We
have Hilbert space H1 b H̄1, which in this case is all linear transformations
from H1 into H1 and Hilbert space K. Since H1 b H̄1 is finite dimensional,
all bounded linear transformations from K̄ into H1 b H̄1 are trace class.
Moreover, B defined on pH1 b H̄1q � K̄ by

BpT, w̄q � TrpT qw
is bounded and sesquilinear on pH1 b H̄1q � K̄. Thus every linear operator
A : K̄Ñ H1 b H̄1 is trace class and has a B-trace in K.

Definition 8.35. Let H1 be a finite dimensional Hilbert space and let K
be a Hilbert space. Let te1αu be an orthonormal basis for H1. For A P
pH1 b H̄1q bK � BpK̄,BpH1,H1qq, define

TrKpAq �
α̧

A�pe1α b ē1αq.
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Using Definition 8.33 and A � v11 b v̄12 and w P K, one sees:

TrB

�pv11 b v̄12q b w
� � Trpv11 b v̄12qw
� pv11, v12qH1w
�

α̧

pv11, e1αqpe1α, v12qw
�

α̧

pe1α, v11qpv12, e1αqw̄
�

α̧

pw̄ b v11 b v̄12qpe1α b ē1αq
�

α̧

ppv11 b v̄12q b wq�pe1α b ē1αq
� TrK

�pv11 b v̄12q b w
�
.

(8.5)

In particular, TrKpAq � TrBpAq and thus is well defined. This trace is
also defined when H1 is infinite dimensional, but of course only on the trace
class operators.

Lemma 8.36. Suppose H1 is finite dimensional. Then TrK : pH1bH̄1qbKÑ
K is a bounded linear transformation whose adjoint is defined by

ppTrKq�pwq � I b w for w P K.

Proof. We first note TrK is bounded from pH1b H̄1q bK into K. Indeed, if
d is the dimension of H1 and e11, . . . , e1d is an orthonormal basis, then

||TrKpAq|| � ||
ḑ

i�1

A�pē1i b e1iq||

¤ ḑ

i�1

||A�|| ||ē1i b e1i||2
� d||A||
¤ d||A||2

since the operator norm is smaller than the Hilbert-Schmidt norm. Note if
w1 and w2 are in K, then

pAb w2, pTrKq�w1q � pTrKpAb w2q, w1q
� pTrpAqw2, w1q
� TrpAI�qpw2, w1q
� pA, Iq2pw2, w1q
� pAb w2, I b w1q2.

Thus pTrKq�pw1q � I b w1. ¤
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We remark the operator I b w1 : K̄ Ñ LpH1,H1q is the linear transfor-
mation ppI b w1qpw̄2qq pv1q � pw1, w2qv1. Since I � °d

i�1 e1i b ē1i, we can also
write

pTrKq�pw1q �
ḑ

i�1

pe1i b ē1iq b w1.

Definition 8.37. Let f P L2
KpG, πq and π1 P Ĝc. Then π1pfq is the operator

in pH1 b H̄1q bK defined by

π1pfq �
»

G
π1pxq b fpxq dx.

Note in Corollary 6.108, we defined π1pfq for f P L1pGq. We are now
defining π1pfq for f P L2

KpG, πq � L1
KpG, πq. We note π1pfq is a bounded

operator. Indeed, if d is the dimension of H1, then since ||π1pxq||2 ¤ ?d, we
see

||π1pfq|| ¤
»
||π1pxq b fpxq||2 dx

¤
»
||π1pxq||2||fpxq||K dx

¤ ?d||f ||1 ¤ ?d||f ||2.
In particular, π1pfq is K-traceable.

Lemma 8.38. Let f P L2
KpG, πq. Then

π1pfq �
»

G
pπ1pxq b IqTr�Kpfpxqq dx.

Proof. Using Lemma 8.36, we see

π1pfq �
»

π1pxq b fpxq dx

�
»
pπ1pxq b IqpI b fpxqq dx

�
»
pπ1pxq b IqTr�Kpfpxqq dx.

¤

Before stating the next theorem, in order to use the K trace, we need
to establish a natural unitary isomorphism Φ between pK b H̄1q b H1 and
pH1 b H̄1q b K when H1 is finite dimensional. This natural isomorphism
satisfies

Φppw b v̄12q b v11q � pv11 b v̄12q b w
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for v11, v12 P H1 and w P K. Hence let T be a linear transformation from H̄1
into K b H̄1 � BpH1,Kq. We define ΦpT q by

(8.6) pΦpT qpw̄qq pv1q � T �pw b v̄1q.
Note �

Φpppw1 b v̄12q b v11qpw̄q� pv1q � ppw1 b v̄12q b v11q�pw b v̄1q
� pv̄11 b pw1 b v̄12qqpw b v̄1q
� pw b v̄1, w1 b v̄12qv̄11
� pw, w1qKpv̄1, v̄12qH̄v11
� pw, w1qKpv1, v12qHv11
� pw̄, w̄1qK̄pv1, v12qHv11
� �ppv11 b v̄12q b w1qpw̄q� pv1q.

To see Φ preserves inner products, it suffices to show

pΦppw1 b v̄2q b v1q, Φppw2 b v̄12q b v11qq2 �
ppw1 b v̄2q b v1, pw2 b v̄12q b v11q

for v1, v2, v
1
1, v

1
2 P H1 and w1, w2 P K. But this is immediate since

ppv1 b v̄2q b w1, pv11 b v̄12q b w2q2 � pv1 b v̄2, v
1
1 b v̄12q2pw1, w2qK

� pv1, v
1
1qH1pv̄2, v̄

1
2qH̄1pw1, w2qK

� pw1 b v̄2, w2 b v̄12q2pv1, v
1
1qH1

� ppw1 b v̄2q b v1, pw2 b v̄12q b v11q2.
To see Φ is onto, we note the inverse Φ�1 � Φ� (e.g. see Exercise 8.3.3)
is the transformation defined by

�
Φ�1pSqpv̄11q� pv12q � S�pv11 b v̄12q for S P

pH1 b H̄1q bK.
We also note if T P pH1 b H̄1q bK, then T is a bounded linear operator

from K̄ intoH1bH̄1, the space of linear transformations ofH1. Now π1bI is a
unitary representation of G onH1bH̄1. Thus the composition pπ1px�1qbIqT
is again in pH1b H̄1qbK, and hence we can take its K trace, TrKppπ1px�1qb
IqT q. This will allow us to obtain a formula for the intertwining operator Iπ1
given in Corollary 8.29 whose range is the π1-primary subspace of L2

KpG, πq.

Theorem 8.39. Let π1 be an irreducible unitary representation of a compact
group G on a finite dimensional Hilbert space H1 and let π be a unitary
representation of closed subgroup K on a separable Hilbert space K.
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(a) For T P HomKpπ1|K , πq bH1 � pK b H̄1q bH1,

Iπ1pT qpxq � TrKppπ1px�1q b IqΦpT qq.

(b) For f P L2
KpG, πq,

I�π1pfq � Φ�1pπ1pfqq � Φ�pπ1pfqq.

(c) The π1-primary projection P pπ1q � dpπ1qIπI�π onto the range of Iπ

is given by

P pπ1qfpxq � dpπ1qTrKppπ1px�1q b Iqπ1pfqq.

Proof. First note since A � °d
i�1 Aeib ēi if e11, e12, . . . , e1d is an orthonormal

basis of H1, we have

Iπ1pAb v1qpxq � Apπ1px�1qv1q � ḑ

i�1

pAe1i b ē1iqpπ1px�1qv1q � ḑ

i�1

pπ1px�1qv1, e1iqAe1i

� ḑ

i�1

Trpπ1px�1qv1 b ē1iqAe1i �
ḑ

i�1

TrKppπ1px�1qv1 b ē1iq bAe1iq

� ḑ

i�1

TrKppπ1px�1q b Iqppv1 b ē1iq bAe1iqq

� TrKppπ1px�1q b Iq ḑ

i�1

ppv1 b ē1iq bAe1iqq

� TrKppπ1px�1q b Iq ḑ

i�1

ΦppAe1i b ē1iq b v1qq

� TrK

�
pπ1px�1q b IqΦ

�
ḑ

i�1

pAe1i b ē1iq b v1
��

� TrKppπ1px�1q b IqΦpAb v1qq.

Hence we have (a).
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For (b), let f P L2
KpG, πq. Then using Lemma 8.36 and Lemma 8.38,

pI�π1f, T q2 � pf, Iπ1T q
�
»

G
pfpxq, Iπ1T pxqqK dx

�
»

G
pfpxq,TrKppπ1px�1q b IqΦpT qqK dx

�
»

G
pTr�Kpfpxqq, pπ1px�1q b IqΦpT qq2 dx

�
�»

G
pπ1pxq b IqTr�Kpfpxqq dx,ΦpT q



2

� pπ1pfq, ΦpT qq2
� pΦ�pπ1pfqq, T q2.

Thus I�π1f � Φ�1pπ1pfqq. Finally, using (8.4),

P pπ1qfpxq � dpπ1qIπ1I�π1fpxq
� dpπ1qIπ1Φ�1pπ1pfqqpxq
� dpπ1qTrKppπ1px�1q b Iqπ1pfqq

which is (c). ¤

From Theorem 8.5, Proposition 6.58, and Corollary 8.29 we can conclude
with the following result.

Theorem 8.40. Let G be a compact Hausdorff group with concrete dual
Ĝc. Let π be a unitary representation of a closed subgroup K of G on a
separable Hilbert space K. For π1 P Ĝc, the π1-primary projection P pπ1q for
the representation of G induced from π is given by:

P pπ1qfpxq � dpπ1qTrKppπ1px�1q b Iqπ1pfqq for f P L2
KpG, πq.

Moreover, à
π1PĜc

P pπ1q � I on L2
KpG, πq.

7. The One Dimensional Case

When π is one dimensional, the situation in the prior section becomes much
simpler. In this case π is a character χ and CKpG,χq consists of those
continuous complex valued functions f on the compact group G satisfying

fpxkq � χpk�1qfpxq for all x P G and k P K.

But the most important simplification is that we no longer need to use vector
valued traces.
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Note if f P L2
KpG,χq, then f P L1pGq and we then have two definitions

for π1pfq. Namely π1pfq � ³
fpxqπ1pxq dx P BpH1,H1q defined in Corollary

6.108 and π1pfq � ³
π1pxq b fpxq dx P LpC̄,BpH1,H1qq given in Definition

8.37. As we shall see in the following proof they are related by the formula:�»
π1pxq b fpxq dx



p1̄q �

»
fpxqπ1pxq dx.

Theorem 8.41. Let χ : K Ñ T be a continuous homomorphism. For
π1 P Ĝc and f P L2

KpG,χq, let π1pfq � ³
G fpxqπ1pxq dx. Let P pπ1q be the π1

primary projection for the representation indG
Kχ. Then:

P pπ1qL2
KpG, πq � xtx ÞÑ Aπ1px�1qv1 | A P HomKpπ1|K , χq, v1 P H1uy

� tx ÞÑ Trpπ1px�1qπ1pfqq | f P L2
KpG,χqu.

Moreover, if Hpπ1q � P pπ1qL2
KpG,χq, then

L2
KpG,χq � à

π1PĜc

Hpπ1q
and

||f ||22 � ¸
π1PĜc

dpπ1qTrpπ1pfq�π1pfqq.

Proof. Using Definition 8.37 and Corollary 6.108,

π1pfqp1̄q �
»
pπ1pxq b fpxqqp1̄q dx

�
»
p1, fpxqqC̄π1pxq dx

�
»

fpxqπ1pxq dx.

Hence from part (c) of Theorem 8.39,

P pπ1qpfqpxq � TrKpπ1px�1q b Iqπ1pfqq
� TrCpπ1px�1q b 1qpπ1pfq b 1q
� TrCpπ1px�1qπ1pfq b 1q
� Trpπ1px�1qπ1pfqq.

(8.7)

and thus we have the first statement. The last two statements follow from
Theorem 8.40. ¤

Let Ĝc be a concrete dual for G. For a one-dimensional character χ of
K, we define:

(8.8) Ĝc,χ � tπ1 P Ĝc | P pπ1q � 0u � tπ1 P Ĝc | HomKpπ1|K , χq � t0uu
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Thus

L2
KpG,χq � à

π1PĜc,χ

P pπ1qL2
KpG,χq.

The above decomposition then becomes a problem of determining the
intertwining operators from the representations π1|K and the character χ
of K. This can be described in terms of the simultaneous existence of
eigenvectors for the operators π1pkq.

Let χ be a one-dimensional character of a subgroup K of a topological
G and suppose π is a unitary representation of G on a Hilbert space H. We
define Epπ, χq by

Epπ, χq � tv P H | πpkqv � χpkqv for all k P Ku.
Lemma 8.42. Epπ, χq is the χ-primary subspace for the representation π|K
and the mapping v ÞÑ Av P HomKpπ|K , χq given by Avpwq � pw, vqH is a
conjugate linear one-to-one mapping of Epπ, χq onto HomKpπ|K , χq.
Proof. By Corollary 6.54, the χ-primary subspace for π|K is Epπ, χq. Now
note:

Avpπpkqwq � pπpkqw, vq � pw, πpk�1qvq
� pw, χpk�1qvq � χpkqpw, vq
� χpkqAvpwq.

Thus Av P HomKpπ|K , χq. Clearly v ÞÑ Av is conjugate linear. Moreover,
Av � 0 implies pw, vq � 0 for all w P H and thus v � 0. Hence the mapping
is one-to-one. Finally if A P HomKpπ|K , χq, then A is a continuous linear
functional on H. By the Riesz Theorem, Aw � pw, vq for a unique vector v P
H. But Aπpkq � χpkqA implies pπpkqw, vq � pw, χpk�1qvq for all w. Hence
pw, πpk�1qvq � pw, χpk�1qvq for all w and we conclude v P Epπ, χq. ¤

Corollary 8.43. Let f P L2
KpG,χq and π P Ĝc. Then πpfq � 0 if Epπ, χq �

t0u.
Proof. If πpfq � 0, then πpfq� � πpfq is a nonzero positive operator. But
this is πpf� � fq and f� � f P CKpG,χq. Now P pπqpf� � fq � 0 for P pπq � 0.
Thus by Equation (8.7) Trpπpx�1qπpf� � fqq � 0 for all x. This contradicts
Trpπpf� � fqq ¡ 0. ¤

Lemma 8.44. Let G be a compact Hausdorff group and suppose χ is a one-
dimensional character of a closed subgroup K of G. Let f P L2

KpG,χq. Then
πpfqw � 0 for all w P Epπ, χqK.
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Proof. Let v P Hπ. Then since fpxkq � χpk�1qfpxq and we are taking dk
to have total measure 1, we see

pπpfqw, vq �
»

G
fpxqpπpxqw, vq dx

�
»

G
fpxqpw, πpx�1qvq dx

�
»

K

»
G

fpxkqχpkqpw, πpx�1qvq dx dk

�
»

G
fpxq

»
K
pw, χpk�1qπpkx�1q vq dk dx

�
»

G
fpxqpw, vpxqq dx

where vpxq � ³
K χpk�1qπpkqπpx�1qv dk. Since

πpk0qvpxq �
»

χpk�1qπpk0kqπpx�1qv dk

�
»

χpk�1k0qπpk�1qπpx�1qv dk

� χpk0q
»

χpk�1qπpk�1qπpx�1qv dk

� χpk0qvpxq,
one has vpxq P Epπ, χq for x P G. Consequently pw, vpxqq � 0 for all x and
pπpfqw, vq � 0 for all v. Thus πpfqw � 0. ¤

Corollary 8.45. Suppose π P Ĝc and e1, e2, . . . , ek is an orthonormal basis
of Epπ, χq. Then the π-primary projection for indG

Kχ is given by

P pπqfpxq � dpπqTrpπpx�1qπpfqq � dpπq ķ

i�1

pπpx�1qπpfqei, eiq.
Proof. By Theorem 8.40 and (8.7), we see

P pπqfpxq � dpπqTrpπpx�1qπpfqq.
Extending e1, e2, . . . , ek to an orthonormal basis e1, e2, . . . , ek, . . . edpπq ofHπ,
Lemma 8.44 gives

Trpπpx�1qπpfqq �
dpπq̧

i�1

pπpx�1qπpfqei, eiq

� ķ

i�1

pπpx�1qπpfqei, eiq.
¤
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Let π P Ĝc and v P Epπ, χq. Again let Av P HomKpπ|K , χq be given by
Avpwq � pw, vqH1 . If H is the Hilbert space for π, then the finite dimensional
π-primary subspace for the representation indG

Kχ is given by

P pπqpL2
KpG,χqq � xtÃvw | v P Epπ, χq, w P H1uy

� xtAv bπ w | v P Epπ, χq, w P Huy
� xtx ÞÑ Avπpx�1qw | v P Epπ, χq, w P Huy
� xtx ÞÑ pπpx�1qw, vq | v P Epπ, χq, w P Huy
� xtw bπ v̄ | v P Epπ, χq, w P Huy.

(8.9)

Thus the functions Av bπ w in CKpG,χq are just the matrix coefficients
w bπ v̄ in CpGq.
Corollary 8.46. Suppose f P L2pGq and h P L2

KpG, χq. Let Ĝc,χ be the
collection of those π1 in Ĝc with Epπ, χq � t0u. Then¸

πPĜc,χ

dpπqTrpπpx�1qπpf � hqq

converges uniformly in x to f � hpxq.
Proof. This follows directly Corollaries 8.43 and 8.21. ¤

We now indicate how these results can be used to obtain the primary de-
composition Theorems 8.19 and 8.20 and the biregular primary projections
for L2pGq.

First note the left regular representation λ of a compact Hausdorff group
G is the representation indGteu1. Hence to decompose λ, we need only note

for each π P Ĝc, the vector space Epπ, 1q � tv P Hπ | πpeqv � 1peqvu is
precisely Hπ. Thus for each π P Ĝc, we have

P pπqL2pGq � xtv bπ w̄ | v, w P Hπuy.
Furthermore, the primary projection P pπq on L2pGq is given by

P pπqfpxq � dpπqTrpπpx�1qπpfqq.
Using these we see Theorem 8.41 reduces to Theorem 8.19.

The orthogonality formulas for matrix coefficients also follows from The-
orem 8.28. Indeed, we know pAw bπ v, Aw1 bπ v1q2 � 1

dpπqpAw, Aw1q2pv, v1q.
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Let e1, e2, . . . , ed be an orthonormal basis of Hπ. Then

pAw, Aw1q2 � TrpA�w1Awq �
ḑ

i�1

pA�w1Awei, eiq

� ḑ

i�1

pAwei, Aw1eiq �
ḑ

i�1

pei, wqpei, w1q

� ḑ

i�1

pw1, eiqpei, wq � p
ḑ

i�1

pw1, eiqei, wq
� pw1, wq.

Since Aw bπ v � v bπ w̄, we recover the orthogonality formula:

pv bπ w̄, v1 bπ w̄1q2 � 1
dpπqpv, v1qpw1, wq.

To obtain the primary decomposition for the biregular representation of
G � G, we will need to obtain a unitary equivalence between the biregular
representation B on L2pGq and an induced unitary representation of G�G.
To do this we take diagonal subgroup Gd � tpg, gq | g P Gu of G�G. Gd is
a closed. Moreover, the mapping

Ufpx, yq � fpxy�1q
defines a unitary transformation of L2pGq onto L2

Gd
pG�G, 1q. In fact, note

Ufppx, yqpg, gqq � Ufpxg, ygq � fpxgg�1y�1q � fpxy�1q and

||Uf ||22 �
»

G�G
|fpxy�1q|2 dpm�mqpx, yq

�
»

G

»
G
|fpxy�1q|2dmpxq dmpyq

�
»

G

»
G
|fpxq|2 dmpxq dmpyq

�
»

G
|fpxq|2 dmpxq

»
G

1 dmpyq
�
»

G
|fpxq|2 dmpxq.

Thus U is a linear isometry. U is onto for U�1fpxq � fpx, 1q is well defined
for f P CGd

pG � G, 1q and UpU�1fq � f . Thus the range of U contains
CGd

pG�G, 1q and thus is dense in L2
Gd
pG�G, 1q. Since the range of U is

closed, we have U is onto.
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Moreover, UBU�1 � indG�G
Gd

1. In fact,

UBpg1, g2qfpx, yq � Bpg1, g2qfpxy�1q
� fpg�1

1 xy�1g2q
� fpg�1

1 xpg�1
2 yq�1q

� Ufpg�1
1 x, g�1

2 yq
� indG�G

Gd
1pg1, g2qUfpx, yq.

Thus U is a unitary equivalence. We now decompose the representation
indG�G

Gd
1. To do this we first remark that Proposition 6.75 and Theorem 8.7

imply we can take p{G�Gqc � tπ1� π̄2 | π1, π2 P Ĝcu. The task is to find all
unitary representations π1 � π̄2 in p{G�Gqc such that Epπ1 � π̄2, 1q � t0u.
Recall H1b H̄2 � B2pH2,H1q and pπ1� π̄2qpg, gqpT q � π1pgqTπpg�1q. Thus
T P Epπ1 � π̄2, 1q if and only if π1pgqTπ2pg�1q � T . By Schur’s Lemma, a
nonzero T exists if and only if π1 is unitarily equivalent to π2. This implies
π2 � π1. Concluding, we have:

Epπ1 � π̄2, 1q � t0u if and only if π1 � π2.

Moreover, by Schur’s Lemma, Epπ � π̄, 1q � tT P BpHπq | πpgqTπpg�1q �
T u � CI. By (8.9), P pπ � π̄q is the orthogonal projection of L2

Gd
pG � Gq

onto the linear span of the coefficients pv b w̄q bπ�π̄ Ī where v, w P Hπ. It
is given by P pπ � π̄qfpx, yq � dpπ � π̄qTrppπ � π̄qpx, yq�1pπ � π̄qpfqq. Note

ppv b w̄q bπ�π̄ Īqpx, yq � pv b w̄, π � π̄px, yqIq2
� pv b w̄, πpxqIπpy�1qq2
� Trpπpxy�1q�pv b w̄qq
� Trpπpyx�1qpv b w̄qq
� Trppπpyx�1qvq b w̄q
� pπpyx�1qv, wq
� pv, πpxy�1qwq
� v bπ w̄pxy�1q.

Thus we see the π � π̄ primary projection for the biregular representation
is the orthogonal projection of L2pGq onto the linear span of the matrix
coefficients vbπw̄. This is precisely the same range as the primary projection
P pπq for the left regular representation λ. Hence we have P pπqfpxq �
dpπqTrpπpx�1qπpfqq also gives the π � π̄ primary projection for B.
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Exercise Set 8.3

1. WhenH1 is finite dimensional, then the K-trace is actually a contraction;
i.e., show there is a bounded linear transformation C of pKb H̄1q bH1 into
K satisfying CpT b v1q � T pv1q. In particular, Cppw b v̄1q b vq � pv, v1qw.
Then show

C � Φ�1 � TrK

where Φ is the unitary isomorphism given by (8.6).

2. Let T P H1 b H̄2 be a trace class operator.

(a) Show there is a constant M ¡ 0 such that if A is an index set
and eα and fα for α P A are orthonormal sets in H1 and H2, then°

α |peα, T fαq|  M .

(b) Let |T |1 be the infinimum of all such M in (a). Show | � |1 is a norm
on the linear space of trace class operators from H2 to H1.

(c) Show ||T || ¤ |T |1.
(d) Show the trace class operators with this norm is a Banach space.

3. Show the inverse Φ�1 of the transformation Φ given in Definition 8.6 is
defined by �

Φ�1pSqpv̄11q� pv12q � S�pv11 b v̄12q
for S P pH1 b H̄1q bK.

4. Let χ be a one-dimensional unitary representation of a closed subgroup
K of compact Hausdorff group G. Note L2

KpG,χq is a closed linear subspace
of L2pGq. Show the orthogonal projection of L2pGq onto L2

KpG,χq is given
by

Pfpxq �
»

K
χpkqfpxkq dk.

5. Let G be a compact Hausdorff group and suppose π is an irreducible
unitary representation of G. Let χ be a one-dimensional character of a
closed subgroup K of G. Let f be a function in L2pGq orthogonal to the
subspace L2

KpG,χq. Show πpfqw � 0 for all w P Epπ, χq.
6. Let G be a compact Hausdorff group and suppose π and π1 are irreducible
unitary representations of G. Let χ be a one-dimensional character of a
closed subgroup K of G. Let w P Epπ, χqK.

(a) Show πpw1 bπ1 v̄1qpwq � 0 if v1 P Epπ1, χq and w1 P Hπ1 .
(b) Use Theorem 8.41 and the description of the primary subspaces

given in Equation (8.9) to show πpfqw � 0 for all f P L2
KpG,χq.

This gives an alternative proof to Lemma 8.44.
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7. Show directly that if U is the unitary mapping from L2pGq onto L2
Gd
pG�

G, 1q given by

Ufpx, yq � fpxy�1q,
then

dpπ � π̄qTrppπ � π̄qpx, yq�1pπ � π̄qpUfqq � UP pπqfpx, yq
where

P pπqfpxq � dpπqTrpπpx�1qπpfqq.
8. Use Frobenius Reciprocity Theorem 8.30 to show if G is a compact
Hausdorff group with closed subgroups K and H where K � H and π is
a unitary representation of K, then indG

HpindH
Kπq and indG

Hπ are unitarily
equivalent.

9. Let G be a compact Hausdorff group with closed subgroup K having one
dimensional character χ. Recall we know L2

KpG, χq, the Hilbert space for
indG

Kχ, is a subspace of L2pGq and the induced representation indG
Kχ is just

the restriction of the regular representation λ to this subspace. Show if π is
an irreducible unitary representation of G, then the π-primary projection for
indG

Kχ is PπQ where Q is the orthogonal projection of L2pGq onto L2
KpG,χq.

10. Let G be a compact Hausdorff group with closed subgroup K having
one dimensional character χ. Show the orthogonal projection of L2pGq onto
L2

KpG,χq is given by

Qfpxq �
»

K
χpkqfpxkq dk.

8. Primary Projections–General Case

In the previous sections we have shown how it is possible to use traces on
trace class operators to obtain the primary projections for induced repre-
sentations. We now turn to a general unitary representation of a compact
Hausdorff group and will describe its decomposition into primary subspaces.
We will again use the trace or more specifically the character of the repre-
sentation to obtain these projections. Indeed, Theorem 6.123 shows that if π
is a finite dimensional unitary representation, then the character χπ defined
by χπpgq � Trpπpgqq is a central function which to unitary equivalence iden-
tifies the representation. Sometimes, we say χ is a d-dimensional character
if the representation π is unitary and its Hilbert space has dimension d.
We have already been using the term one-dimensional character to denote
a one-dimensional unitary representation.



512 Compact Groups

Note if π is a finite dimensional dimensional unitary representation and
e1, e2, . . . , ed is an orthonormal basis for the Hilbert space for π, then

χ̄πpgq �
ḑ

i�1

pπpgqei, eiq

� ḑ

i�1

pei, πpgqqeiq

� ḑ

i�1

ei bπ ēipgq.

(8.10)

and thus χ̄πpxq � °pei, πpxqeiq � °pπpx�1qei, eiq � χπpx�1q and χπpeq �
d where d is the dimension of Hπ. Thus for finite dimensional unitary
representations π one has:

(8.11)

χπpx�1q � χπpxq, thus χ�π � χπ

χπpeq � dpπq
χπpxyq � χπpyxq, i.e. χπ is central.

Moreover, one has
°d

i�1 ei b ēi � I, for
°d

i�1pv, eiqei � v for all v P Hπ.
If π is a finite dimensional representation of group G, define

ξπ � dpπqχπ .

Note that dpπq, χπ and ξπ depend only on the unitary equivalence class rπs
of π.

Recall from Corollary 8.13 and Corollary 8.10 that pu bπ v̄q � pu1 bπ1
v̄1q � 0 and π1pubπ v̄q=0 when π and π1 are inequivalent irreducible unitary
representations of G and πpu bπ v̄q � 1

dpπqu b v̄ for irreducible unitary
representations π.

Proposition 8.47. Let π and π1 be inequivalent irreducible unitary repre-
sentations of a compact group G.

(a) ξ̄π1 � ξ̄π � 0

(b) π1pξ̄πq � 0

(c) ξ̄π � ξ̄π � ξ̄π

(d) ξ�π � ξ̄π

(e) πpξ̄πq � I.

Proof. Note (a) and (b) follow from Equation 8.10 and the remarks prior
to the statement of this proposition. For (c) we again use Equation 8.10 and
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Corollary 8.11 to obtain

ξ̄π � ξ̄π � dpπq
dpπq̧

i�1

pei bπ ēiq � dpπq
dpπq̧

j�1

pej bπ ējq
� dpπq2

i̧,j

pei bπ ēiq � pej bπ ējq

� dpπq2
i̧,j

1
dpπqpej , eiqei bπ ēj

� dpπq
dpπq̧

i�1

ei bπ ēi

� ξ̄π.

Clearly (d) follows from (8.11). For (e), note since πpei bπ ēiq � 1
dpπqei b ēi,

πpξ̄πq � dpπq ḑ

i�1

πpei bπ ēiq

� ḑ

i�1

ei b ēi

� I.

¤

Let ρ be a unitary representation of G. By part (e), we know that
ρpξ̄πqP pπqv � P pπqv where P pπq is primary projection for ρ corresponding
to the irreducible unitary representation π. This is true for on P pπqH, ρ is
an inner direct sum of representations equivalent to π.

Corollary 8.48. Let π and π1 be inequivalent irreducible unitary representa-
tions of a compact Hausdorff group G. Then f�h � 0 whenever f P PπL2pGq
and h P Pπ1L2pGq.
Proof. By Lemma 8.15, we know PπL2pGq is the finite dimensional space
consisting of the linear span of the matrix coefficients vbπ w̄ and Pπ1L2pGq
is the finite dimensional space consisting of the linear span of the matrix
coefficients v1 bπ1 w̄1. Thus the result follows from Corollary 8.13. ¤

Theorem 8.49. Let ρ be a unitary representation of a compact Hausdorff
group G. For each irreducible unitary representation π of G, there is a
bounded linear transformation Iπ : HomGpπ, ρq2 bHπ Ñ Hρ satisfying:

(a) Iπ intertwines I b π with ρ;

(b) IπpAb vq � Av;
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(c)
a

dpπqIπ is an isometry onto the π-primary subspace for the repre-
sentation ρ; and

(d) ρpξ̄πq � P pπq � dpπqIπI�π is the π-primary projection for ρ.

Proof. First note if A1, A2 P HomGpπ, ρq2, then A�2A1 P HomGpπ, πq � CI.
Thus by Schur’s Lemma, A�2A1 � cI. Taking traces gives pA1, A2q2 �
TrpA�2A1q � cdpπq. Hence if v1, v2 P Hπ, we see:

pA1v1, A2v2qHρ � pA�2A1v1, v2q
� 1

dpπqpA1, A2q2pv1, v2qHπ .

Thus if Eα for α P Γ is an orthonormal basis of HomGpπ, ρq2 and teiudi�1 is
an orthonormal basis for Hπ, the vectors

a
dpπqEαei form an orthonormal

set in Hρ. Hence there is a unique isometry from HomGpπ, ρq2bHπ into Hρ

sending the orthonormal basis tEαb eiu to the orthonormal set
a

dpπqEαei

in Hρ. This is the linear isometry
a

dpπqIπ. In particular, Iπ is a bounded
linear transformation. To see Iπ intertwines, note

IπppIbπqpgqpAb vqq � IπpAbπpgqvq � Aπpgqv � ρpgqAv � ρpgqIπpAb vq.
To finish, we need only show (d). Clearly the range of Iπ consists of the
closure of the linear span of all vectors Av where A P HomGpπ, ρq and
v P Hπ. Hence Corollary Chapter 6.54 and HomGpπ, ρq2 � HomGpπ, ρq
imply this is the range of the primary projection P pπq. Using Exercise
6.4.1 and (c), we have P pπq � dpπqIπI�π . Now by Corollary 6.110 and (e)
of Proposition 8.47, ρpξ̄πqAv � Aπpξ̄πqv � Av. Moreover, since ξ̄�π � ξ̄π

and ξ̄π � ξ̄π � ξ̄π, we see from Corollary 6.108, that ρpξ̄πq is an orthogonal
projection with ρpξ̄πq ¥ P pπq. Next, since ξ̄π � ξ̄π1 � 0 if π and π1 are
inequivalent irreducible unitary representations of G and

°
π1PĜc

P pπ1q � I
for ρ is discretely decomposable, we have:

P pπq � P pπqρpξ̄πq
� ¸

π1PĜc

P pπ1qρpξ̄π1qρpξ̄πq
� ¸

π1PĜc

P pπ1qρpξ̄πq
� ρpξ̄πq.

¤

Corollary 8.50. Let π P Ĝ, where G is a compact Hausdorff group. Then
for any unitary representation ρ of G, one has

mpπ, ρq � dimpHomGpπ, ρqq.
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Note from Exercise 8.2.3 that if π P Ĝ and e1, e2, . . . , ed is an orthonormal
basis of Hπ, then

?
dπi,j is an an orthonormal basis of PπL2pGq.

Theorem 8.51. Let G be a compact Hausdorff group. Let π P Ĝ. Let Pπ be
the π-primary for the left regular representation λ. Then the following are
equivalent:

(a) f P PπL2pGq;
(b) ξ̄π � f � f ;

(c) f is in the linear span of the matrix coefficients of π;

(d) fpxq � dpπqTrpπpλpx�1qfqq � dpπqTrpπpx�1qπpfqq for a.e. x;

(e) ||f ||2 � dpπqTrpπpfq�πpfqq.

Proof. By Corollary 8.22 and (d) of Theorem 8.49, Pπ � P pπq � λpξ̄πq.
Using Lemma 8.16, we know λpξ̄πqf � ξ̄π �f for f P L2pGq. So f P PπL2pGq
if and only if Pπf � f if and only if ξ̄π � f � f . Thus (a) and (b)
are equivalent. Now by Theorem 8.9, f is in the linear span of the ma-
trix coefficients of π if and only if f is in the range of the linear isome-
try

a
dpπqIπ. But by Exercise 6.4.1, the range of

a
dpπqIπ is the range

of Pπ. Thus (a), (b), and (c) are equivalent. Next by Proposition 8.17,
we have Pπfpxq � dpπqTrpπpx�1qπpfqq and thus (d) is equivalent to (a).
Finally, by Theorem 8.20 and Proposition 8.17, f � Pπf if and only if
||f ||2 � ||Pπf ||2 � dpπqTrpπpfq�πpfqq. ¤

8.1. Central L2 functions.

Lemma 8.52. The central functions in L2pGq form a closed subspace L2
cpGq

invariant under the unitary representation g ÞÑ Bpg, gq where B is the bireg-
ular representation. Moreover, Qfpxq � ³

G fpyxy�1q dy is the orthogonal
projection onto L2

cpGq.

Proof. Note if f P L2pGq, then Bpg, gqf � f for all g if and only if
fpg�1xgq � fpxq a.e. x for each g if and only if f is central. Thus L2

cpGq �tf P L2pGq | Bpg, gqf � f for all gu is a closed set. It is clearly a linear sub-
space. Also if f P L2

cpGq, by Lemma 6.118, we may assume fpyxy�1q � fpxq
for all x and y. Thus Qfpxq � fpxq for all x. Moreover for any f P
L2pGq, right translating y by g shows Qfpg�1xgq � ³

fpyg�1xgy�1q dy �³
fpyxy�1q dy � Qfpxq a.e. x. Thus Qf P L2

cpGq and Q2 � Q. Finally
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Q� � Q for

pQf, hq �
»

Qfpxqh̄pxq dx

�
» »

fpyxy�1q dy h̄pxq dx

�
» »

fpxqh̄py�1xyq dy dx

�
»

fpxq
»

hpyxy�1q dy dx.

¤

Proposition 8.53. Suppose G is a compact Hausdorff group and f is a
central function in L2pGq. If π is an irreducible unitary representation of
G, then

Pπf � pf, χ̄πqχ̄π.

Thus

f �
π̧PĜc

pf, χ̄πqχ̄π �
π̧PĜc

pf, χπqχπ.

Proof. Since f P L2pGq � L1pGq and f is central, Lemma 6.119 im-
plies πpfq commutes with πpxq for all x P G. By Schur’s Lemma, there
is a scalar c P C with πpfq � cI. Now by Proposition 8.17, Pπfpxq �
dpπqTrpπpx�1qπpfqq � dpπqTrpπpx�1qcIq � cdpπqχπpx�1q. Since πpfq �³
fpxqπpxq dx,

cdpπq � Trpπpfqq �
»

fpxqTrpπpxqq dx �
»

fpxqχπpxq dx � pf, χ̄πq2.
So c � pf,χ̄πq2

dpπq . Thus we see Pπfpxq � pf, χ̄πq2χπpx�1q � pf, χ̄πq2χ̄π. From
Theorem 8.17 we obtain f � °

πPĜc
pf, χ̄πqχ̄π. Note since π̄ is irreducible if

and only if π is irreducible, we have
°

πPĜc
pf, χ̄πqχ̄π � °

πPĜc
pf, χπqχπ. ¤

Corollary 8.54. The characters χπ for π P Ĝc form an orthonormal basis
of L2

cpGq.
Proof. Note χπ P Pπ̄L2pGq and by Theorem 8.17, Pπ̄Pπ̄1 � 0 when π and
π1 are inequivalent. Thus χπ K χπ1 for inequivalent π and π1. Also if
e1, e2, . . . , ed is an orthonormal basis of Hπ, then the orthogonality relations,
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Corollary 8.10, imply

pχπ, χπq2 � pχ̄π, χ̄πq2
�

dpπq̧

i�1

dpπq̧

j�1

pei bπ ēi, ej bπ ējq2

� ḑ

i�1

ḑ

j�1

1
dpπqpei, ejqpej , eiq

� ḑ

i�1

1
dpπq

� 1.

¤

Exercise Set 8.4

1. Let G be a compact Hausdorff group. Let χ be a 1-dimensional repre-
sentation of G. Show χ is unitary; i.e., |χpgq| � 1 for all g.

2. Let G be a compact group. For π P Ĝ, show by a direct calculation that
if f P L2pGq, one has

ξ̄π � fpxq � dpπqTrpπpλpx�1qfqq � dpπqTrpπpx�1qπpfqq for all x.

3. Let π be a finite dimensional unitary representation of compact Haus-
dorff group G. Let f be in L1pGq. Show

Trpπpx�1qπpfqq � χ̄π � fpxq.
4. Let ρ, λ, and B be the left regular, the right regular, and the biregular
representations of a compact Hausdorff group G. Let π be an irreducible
unitary representation of G. Show from direct calculations of the definitions
of ξπ and ξπ�π̄ that for f P L2pGq, one has:

(a) ρpξ̄πqfpxq � dpπqTrpπpx�1qπpfqq
(b) λpξ̄πqfpxq � dpπqTrpπpx�1qπpfqq and

(c) pπ � π̄qpξ̄π�π̄qfpxq � dpπqTrpπpx�1qπpfqq.
5. Define a mapping F : L2pGq ÑÀ

πPĜc
Hb H̄ by

Fpfqpπq �a
dpπqπpfq.

Let A denote the Hilbert space
À

πPĜc
H b H̄. Define multiplication on A

by pTπq � pSπq � pTπSπq and an adjoint by pTπq� � pT �π q. Let x�, �y denotes
the inner product on A.

(a) Show the adjoint is an isometry.
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(b) Show xRS, T y � xS, R�T y.
(c) Show xR, Sy � xS�, T �y.
(d) Show LR : A Ñ A defined by LRS � RS is bounded and has

adjoint LR� .
(e) Show A2 is dense in A.

This shows A is a left Hilbert algebra. Now show F is a unitary isomorphism
of L2pGq onto A satisfying Fpf � hq � FpfqFphq for f, h P L2pGq and
Fpf�q � Fpfq�. In particular, L2pGq is a left Hilbert algebra. The unitary
transformation F is called the Fourier transform.

6. Let G be a compact Hausdorff group. Let π be an irreducible unitary
representation of G. Show

dpπqTrpπpfqq � pf, ξ̄πq for f P L2pGq.
7. Let π be an irreducible unitary representation of a compact Hausdorff
group G with orthonormal basis e1, e2, . . . , ed. Set πi,j � ei bπ ēj . Using
Corollaries 8.11 and 8.13 and Exercise 8.2.3, show

°
i,j ai,jπi,j is central if

and only if ai,j � cδi,j for some constant c. Then conclude Proposition 8.53.

8. Let G be a compact Hausdorff group and let B be the biregular rep-
resentation. Suppose π is an irreducible unitary representation of G. Let
Iπ : Hπb H̄π Ñ L2pGq be the intertwining operator between π� π̄ of G�G
with B given in Theorem 8.9 whose range is PπL2pGq. Show the subspace of
PπL2pGq invariant under all Bpg, gq for g P G is IπpCIq where I : Hπ Ñ Hπ

is the identity operator. Use this to show the space of central functions in
PπL2pGq is Cχ̄π and obtain another proof of Proposition 8.53.

9. Let G be a compact Hausdorff group and let π be an irreducible unitary
representation of G. Let f be a central L1 function on G. Show πpfq �

1
dpπqf � χπpeqI.

10. Let σ be a finite dimensional unitary representation of a compact Haus-
dorff group G. Let χσpgq � Trpσpgqq for g P G. Show the following are
equivalent.

(a) σ is irreducible.

(b) χσ � χσ � 1
dpσqχσ.

(c) pχσ, χσq2 � 1.

11. Let G be a compact Hausdorff group with left regular representation
λ and suppose π1, π2, . . . , πs are inequivalent irreducible unitary representa-
tions of G. For each r, let er,1, er,2, . . . , er,dpπrq be an orthonormal basis of
Hπr and let πrpi, jq � er,1 bπr ēr,j be the collection of corresponding matrix
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coefficients. Suppose nr ¤ dpπrq for r � 1, 2, . . . , s. Define f by

f � ş

r�1

nŗ

j�1

πrpj, jq.
Show the smallest invariant subspace of L2pGq containing f gives a unitary
representation unitarily equivalent to

sà
r�1

nrπr.

In particular, this representation is cyclic.

9. Spherical Functions and Gelfand Pairs

We consider a character χ of a closed subgroup K of a compact Hausdorff
group G and will be interested in the case where the multiplicities of all
π P Ĝc in indG

Kχ are either 0 or 1. We recall in this case the space Epπ, χq �
tv | πpkqv � χpkqvu is either the zero space or has dimension 1. In the case
where it has dimension 1, we can choose a unit basis vector v of Epπ, χq
and then tw bπ v̄ | w P Hπu is a vector subspace of L2

KpG,χq that is the
π-primary subspace for the induced representation indG

Kχ; i.e.; w ÞÑ wbπ v̄
is an intertwining operator of π with indG

Kχ onto the π-primary subspace.
Moreover, using the orthogonality formula

pw bπ v̄, w1 bπ v̄q2 � 1
dpπqpv, vqpw,w1q � 1

dpπqpw, w1q
from Corollary 8.10, we see Jπw �a

dpπqwbπ v̄ is an isometric intertwining
operator. There is very special function in the range of Jπ; namely v bπ

v̄pgq � pv, πpgqvq; this will be an example of a spherical function.
Let φpgq � pv, πpgqvq where Epπ, χq has orthonormal basis tvu. Then

by the invariance of Haar measure under the mapping k ÞÑ k�1,»
χpkqφpakbq dk �

»
χpkqpv, πpakbqvq dk

�
»

χpkqpπpk�1qπpaq�v, πpbqvq dk

�
»

χ̄pkqpπpkqπpaq�v, πpbqvq dk

� pπ|Kpχ̄qπpaq�v, πpbqvq.

(8.12)

From Theorem 8.49, we know π|Kpχ̄q is the χ-primary projection for the
representation π|K . But by Lemma 8.42, this is the orthogonal projection
of Hπ onto Epπ, χq. So this projection must be given by

π|Kpχ̄qw � pw, vqv.
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Thus »
χpkqφpakbq dk � pπpaq�v, vqpv, πpbqvq

� pv, πpaqvq pv, πpbqvq
� φpaqφpbq.

(SP)

Also note

φpk1gk2q � pv, πpk1gk2qvq
� pπpk�1

1 qv, πpgqπpk2qvq
� pχpk�1

1 qv, πpgqχpk2qvq
� χpk�1

1 qχpk�1
2 qpv, πpgqvq

� χpk�1
1 qχpk�1

2 qφpgq
for all k1, k2 P K. We say such a function is χ bicovariant.

Theorem 8.55. Let π be an irreducible unitary representation of a compact
Hausdorff group G and let χ be a 1-dimensional unitary representation of a
closed subgroup K of G. Then dim Epπ, χq � 1 if and only if there is a unit
vector v P Epπ, χq such that if φpgq � pv, πpgqvq, then»

χpkqφpakbq dk � φpaqφpbq.
Proof. We already have done the forward direction. Conversely, suppose
such a v exists. We show the χ-primary projection for π|K is given by

Pw � pw, vqv.

Using

pπpa�1qv, vqpv, πpbqvq � pv, πpaqvqpv, πpbqvq
� φpaqφpbq
�
»

χpkqφpakbq dk

with (8.12) shows

pπpa�1qv, vqpπpb�1qv, vq � φpaqφpbq
� pPπpaq�v, πpbqvq
� pPπpa�1qv, πpbqvq.

Thus
pPπpaqv, πpbqvq � ppπpaqv, vqv, πpbqvq.

Since π is irreducible, v is cyclic. Thus pPw,w1q � ppw, vqv, w1q for all w
and w1. This gives Pw � pw, vqv and the range of P is one-dimensional. So
Epπ, χq is one dimensional. ¤
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Definition 8.56. Let G be topological group. A continuous complex valued
function φ on G is positive definite if for each finite subset x1, x2, . . . , xn in
G, the n� n matrix

A � rπpx�1
i xjqsi,j

is positive semidefinite; i.e.,

(8.13)
¸

aiājπpx�1
i xjq ¥ 0

for any sequence a1, a2, . . . , an in C.

Proposition 8.57. Let π be a unitary representation of a topological group
G. Then for each v P Hπ, the function φpgq � pv, πpgqvq is positive definite.

Proof.

i̧,j

aiājpv, πpx�1
i xjqvq �

i̧,j

aiājpπpxiqv, πpxjqvq
� p

i̧

aiπpxiqv,
j̧

ajπpxjqvq ¥ 0.

¤
Lemma 8.58. Let φ be a nonzero positive definite function on a topological
group G. Then:

(a) |φpgq| ¤ φpeq for all g P G and

(b) φpg�1q � φpgq for all g P G.

Proof. Let x1 � e, x2 � g. Taking a1 � 1 and a2 � 0 in inequality
(8.13) gives φpeq ¥ 0. Taking a1 � a2 � 1 gives 2φpeq � φpgq � φpg�1q ¥
0. Taking a1 � 1 and a2 � i gives 2φpeq � iφpgq � iφpg�1q ¥ 0. Thus
Impφpgq � φpg�1qq � 0 and Impiφpg�1q � iφpgqq � Repφpg�1q � φpgqq �
0. Thus Impφpgqq � �Impφpg�1qq and Repφpgqq � Repφpg�1qq. Hence
φpg�1q � φpgq.

We thus have |a1|2φpeq � a1ā2φpgq � ā1a2φpgq � |a2|2φpeq ¥ 0 for all a1

and a2. Take a1 � φpeq and a2 � �φpgq. We obtain φpeq3 � φpeq|φpgq|2 �
φpeq|φpgq|2� |φpgq|2φpeq ¥ 0. Since φpeq ¥ 0, we obtain φpeq2 ¥ |φpgq|2 and
thus φpeq ¥ |φpgq|. ¤
Definition 8.59. Let G be a topological Hausdorff group and let K be a
compact closed subgroup. Suppose χ is a one-dimensional character of K;
i.e., a one dimensional unitary representation. Then a nonzero continuous
function φ on G is said to be a χ-spherical function if

φpk1gk2q � χpk1q�1χpk2q�1φpgq for k1, k2 P K and g P G

and »
K

χpkqφpakbq dk � φpaqφpbq for all a, b P G.
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We will show that spherical functions arise precisely as in Theorem 8.55.
Namely, suppose φ is a nonzero χ-spherical function on a compact Hausdorff
group G which is positive definite. We shall find an irreducible represen-
tation π of G such that mpπ, indG

Kχq � 1 and the corresponding spherical
function is φ.

Definition 8.60. Let G be a compact Hausdorff group and let χ be a one-
dimensional character of a closed subgroup K of G. Then an irreducible
unitary representation π of G is said to be class χ if mpπ, indG

Kχq � 1.

We are asking to establish a natural correspondence between the class
χ representations π of G and the χ-spherical functions on G.

Theorem 8.61. Let φ be nonzero χ-spherical function on a compact Haus-
dorff group G satisfying φpa�1q � φpaq for all a P G. Then φ is positive
definite; and if λ is the left regular representation of G, the linear span
Hφ of the left translates λpgqφ is a finite dimensional irreducible subspace
for λ. Moreover, if λ0 � λ|Hφ

, then λ0 is a class χ representation of G.
Furthermore, if φ0 � φ||φ||2 , then φpgq � pφ0, λ0pgqφ0q2.

Proof. Note L2
KpG, χq � L2pGq and the induced representation indG

Kχ is
the restriction of λ to L2

KpG,χq. For simplicity, we use λ to denote both the
regular representation and the induced representation indG

Kχ.
By Theorem 8.41, L2

KpG,χq decomposes into an orthogonal direct sum
of primary subspaces

L2
KpG,χq � ¸

πPĜc,χ

P pπqL2
KpG,χq.

Choose π so that P pπqφ � 0. By Theorem 8.49, we know

P pπqφ � λpξ̄πqφ.

Next note as a function of y,»
K

χpkqλpξ̄πqφpxkyq dk �
»

χpkqλpξ̄πqλpk�1x�1qφpyq dk P P pπqL2
KpG,χq.
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But using (SP), the defining property of a spherical function, we have»
K

χpkqλpξ̄πqφpxkyq dk �
»

K

»
G

χpkqξ̄πpgqλpgqφpxkyq dg dk

�
»

G

»
K

ξ̄πpgqχpkqφpg�1xkyq dk dg

�
»

G
ξ̄πpgqφpg�1xqφpyq dg

�
�»

ξ̄πpgqλpgqφpxq dg



φpyq

� pP pπqφpxqqφpyq.
Since P pπqφ is a assumed to be nonzero, we see φ P P pπqL2

KpG,χq. Thus
P pπqφ � φ for a unique π P Ĝc,χ.

Recall P pπqL2
KpG,χq is finite dimensional by Frobenius reciprocity. Hence

the subspace Hφ of L2
KpG,χq with cyclic vector φ is a finite dimensional sub-

space of P pπqL2
KpG,χq.

We show λ|Hφ
is irreducible and consequently must be unitarily equiva-

lent to π. Set λ0 � λ|Hφ
. Note λpkqφ � χpkqφ. Thus Epλ0, χq has dimension

at least one. Now using the definition of λ0 and replacing k by k�1, we have»
K

χpkqpφ, λ0pakbqφq2 dk �
»

K
χpkqpλ0pk�1qλ0paq�φ, λ0pbqφq2 dk

�
»

K
χ̄pkqpλ0pkqλ0paq�φ, λ0pbqφq2 dk

� pλ0|Kpχ̄qλ0paq�φ, λ0pbqφq2.
So using φpx�1q � φpxq and (SP), we obtain»

K

»
G

χpkqφpgqφpb�1k�1a�1gq dg dk �
»

G

»
K

χpkqφpgqφpg�1akbq dk dg

�
»

φpgqφpg�1aqφpbq dg

�
»

φpgqφpa�1gq dg φpbq
� pφ, λ0paqφq2φpbq.

Thus

(Eq-1) pλ0|Kpχ̄qλ0paq�φ, λ0pbqφq2 � pφ, λ0paqφq2φpbq.
Since λ0|Kpχ̄qφpxq � ³

K χpk�1qφpk�1xq dk � φpxq, we see pφ, λ0pbqφq2 �
pφ, φq2φpbq. Thus if φ0 � φ||φ||2 , then

pλ0paqφ0, λ0pbqφ0q2 � 1
||φ||22 pφ, λpa�1bqφq2 � φpa�1bq.
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Furthermore (Eq-1) yields

pλ0|Kpχ̄qλ0pa�1qφ, λ0pbqφq2 � pλ0pa�1qφ, φq2φpbq � pλ0pa�1qφ, φq2 pφ, λ0pbqφq2pφ, φq2 .

Thus since φ is cyclic for λ0,

λ0|Kpχ̄qλ0pa�1qφ � pλ0pa�1qφ, φq2φpφ, φq2 � pλ0pa�1qφ, φ0q2φ0.

So on Hφ, (d) of Theorem 8.49 implies the χ primary projection for the
restriction of λ0 to K is given by

P pχqf � pf, φ0q2φ0.

In particular, mpχ, λ0|Kq � 1 and Epλ0, χq � xφ0y.
To finish we need only establish that λ0 is irreducible. Suppose Hφ �

H1 `H2 where H1 and H2 are invariant orthogonal subspaces. Decompose
φ into φ1 � φ2. Since φ is cyclic for Hφ, Exercise 6.4.17 implies φ1 and
φ2 are cyclic for H1 and H2. But λ0pkqφ � χpkqφ for all k P K implies
λ0pkqφ1 � χpkqφ1 and λ0pkqφ2 � χpkqφ2 for all k. Thus φ1, φ2 P Epλ0, χq �xφ0y and hence are linearly dependent. So one of the two spaces H1 or H2

is trivial. ¤

To decompose the representation indG
Kχ, we have seen that one must

describe the π-primary projections P pπq and that the simplest case occurs
when mpπ, indG

Kχq is 0 or 1 for all π P Ĝc; for in this instance there is a
unique positive definite spherical function φ P P pπqL2

KpG,χq such that the
cyclic subspace generated by φ is irreducible and unitarily equivalent to π.

Although in this chapter we are dealing with compact groups, in the
following discussion we give a more general presentation.

Let G be a σ-compact locally compact unimodular Hausdorff topological
group with a compact subgroup K having one dimension character χ. Then
Cc,χpKzG{Kq will denote the vector space of all continuous complex valued
functions f on G having compact support which satisfy

fpk1gk2q � χpk�1
1 qfpgqχpk�1

2 q for all k1 and k2 in K.

Note when G is compact, these are the continuous functions in L2
KpG,χq in

Epλ, χq, the space of functions in L2
KpG,χq satisfying λpkqfpgq � χpkqfpgq

for k P K. By Lemma 8.42 this is the χ-primary subspace of L2
KpG,χq for

the representation λ|K .
We know the space CcpGq � L2pGq is a � algebra closed under convolu-

tion.

Lemma 8.62. Cc,χpKzG{Kq is a � subalgebra of CcpGq.
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Proof. Let f P Cc,χpKzG{Kq. Then f� is continuous and

f�pk1xk2q � fpk�1
2 x�1k�1

1 q
� χpk2qfpx�1qχpk1q
� χpk�1

2 qfpx�1qχpk�1
1 q

� χpk�1
1 qf�pxqχpk�1

2 q.
Thus f� P Cc,χpKzG{Kq. Also for f, h P Cχ

c pKzG{Kq, one has

f � hpk1xk2q �
»

fpyqhpy�1k1xk2q dy

�
»

fpk1yqhpy�1xk2q dy

�
»

χpk�1
1 qfpyqhpy�1xqχpk�1

2 q dy

� χpk�1
1 qf � hpxqχpk�1

2 q.
¤

Definition 8.63. Let G be a unimodular locally compact Hausdorff group
with compact subgroup K having one-dimensional character χ. The pair
pG,Kq is called a χ-Gelfand pair if Cc,χpKzG{Kq is a commutative � alge-
bra.

When χ � 1, we will use the standard terminology and say pG,Kq is a
Gelfand pair.

Theorem 8.64. Let G be a compact Hausdorff group with a closed subgroup
K having one-dimensional character χ. Then pG,Kq is a χ-Gelfand pair if
and only if mpπ, indG

Kχq is 0 or 1 for all irreducible unitary representations
π of G. In particular, this occurs if and only if indG

Kχ is the orthogonal
direct sum of pairwise inequivalent class χ representations of G.

Proof. By Corollary 8.48, we know f � h � 0 if f and h lie in distinct
primary subspaces for indG

Kχ. Now assume mpπ, indG
Kχq is 0 or 1 for all

π P Ĝc. Since mpπ, indG
Kχq � mpχ, π|Kq � dimEpπ, χq, Theorems 8.55 and

8.61 imply λ0 � λ|P pπqL2
KpG,χq is either 0 or a class χ representation of G. In

particular the χ primary projection for λ0|K has at most one dimensional
range Epλ0, χq and this is the span of a χ-spherical function φπ. Now if
f P CχpKzG{Kq, f P Epλ, χq and thus P pπqf P Epλ0, χq. Hence

f � ¸
πPĜc,χ

aπφπ



526 Compact Groups

and similarly,
h � ¸

πPĜc,χ

bπφπ.

Since φπ � φπ1 � 0 when π and π1 are inequivalent, we see

f � h �
π̧

aπφπ �
π̧1

bπ1φπ1 �¸
aπbπφπ � φπ �

π̧1
bπ1φπ1 �

π̧

aπφπ � h � f

for by Lemma 8.14, convolution is continuous in L2pGq. Hence CχpKzG{Kq
is commutative and thus pG,Kq is a χ-Gelfand pair.

Conversely, suppose CχpKzG{Kq is commutative. Assume there is a π P
Ĝc with Epπ, χq having dimension greater than 1. Pick nonzero orthonormal
vectors v1 and v2 in Epπ, χq. Then v2bπ v̄1 and v1bπ v̄2 are in CχpKzG{Kq.
Moreover, by Corollary 8.10,

pv2 bπ v̄1q � pv1 bπ v̄2q � 1
dpπqv2 bπ v̄2

and

pv1 bπ v̄2q � pv2 bπ v̄1q � 1
dpπqv1 bπ v̄1

Using the orthogonality relations, these are nonzero independent vectors in
L2pGq. Thus CχpKzG{Kq is not commutative. ¤

Let L2
K,KpG,χq be the closed subspace of L2pGq consisting of those f P

L2
KpG,χq with λpkqf � χpkqf for k P K. Thus L2

K,KpG,χq � EpindG
Kχ, χq

is the χ-primary space for the representation induced from χ restricted to
K. It is also the χ � χ̄ primary subspace for the biregular representation
B restricted to K � K. Recall Ĝc,χ is the collection of the π P Ĝc with
Epπ, χq � t0u.
Theorem 8.65. Let pG,Kq be a χ-Gelfand pair where G is compact. For
π P Ĝc,χ choose a unit vector vπ P Epπ, χq and let φπ be the corresponding
spherical function; i.e., φπpgq � pvπ, πpgqvπq.

(a) The mapping

U :
à

πPĜc,χ

Hπ Ñ L2
KpG,χq

given by
Upwπq � ¸

πPĜc,χ

a
dpπqwπ bπ v̄π

is a unitary equivalence between the external orthogonal sum
À

πPĜc,χ
π

and indG
Kχ.
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(b) The inverse of U is given by:

U�1pfq � padpπqπpfqvπqπPĜc,χ
for f P L2

KpG,χq.

(c) For f P L2
KpG,χq, the series¸

πPĜc,χ

dpπqpπpx�1qπpfqvπ, vπq � ¸
πPĜc,χ

dpπqpf, λpxqφπq2

and converges in L2pGq to f .

(d) If h is a function in CχpKzG{Kq that is in the linear span
xL2pGq � L2pGqy, then¸

πPĜc,x

dpπqpπpx�1qπphqvπ, vπq � ¸
πPĜc,χ

dpπqph, λpxqφπq2

and converges uniformly to h.

Proof. Note U is an isometry by the orthogonality formulas for matrix
coefficients given in Corollary 8.10 and Corollary 8.13. Since every π P Ĝc,χ

is class χ, we know dimEpπ, χq � 1 for π P Ĝc,χ. By Theorem 8.40, U is
onto for the π-primary subspaces for L2

KpG,χq are given in (8.9) on page
507 by

P pπqL2
KpG,χq � xw bπ v̄ | w P Hπ, v P Epπ, χqy.

Thus (a) holds.
To see (b), it suffices to show the formula in (b) works for each of the

functions w bπ v̄π. But this follows since by Corollary 8.10, πpw bπ v̄πq �
1

dpπqw b v̄π and thus

a
dpπq�adpπqpπpw bπ v̄πqvπq bπ v̄π

	 � pw b v̄πqvπ bπ v̄π

� pvπ, vπqw bπ v̄π

� w bπ v̄π.



528 Compact Groups

For (c) and (d), we note using Corollary 8.45 and (b) of Lemma 8.58
that

Trpπpx�1qπpfqq � pπpx�1qπpfqvπ, vπq
� pπpfqvπ, πpxqvπq
�
»

fpyqpπpyqvπ, πpxqvπq dy

�
»

fpyqφπpy�1xq dy

�
»

fpyqφ̄πpx�1yq dy

� pf, λpxqφπq
Thus (c) follows from Theorem 8.19, and (d) follows from Corollary 8.21. ¤

Corollary 8.66. Assume G is compact and pG,Kq is a χ-Gelfand pair.
For each π P Ĝc,χ, choose a unit vector vπ P Epπ, χq and let φπ be the
corresponding spherical function given by φπpgq � pvπ, πpgqvπq. Then the
functions tadpπqφπ | π P Ĝc,χu are an orthonormal basis for L2

K,KpG,χq.
Moreover, if h is a function in xL2pGq � L2pGqy X CχpKzG{Kq, then¸

πPĜc,χ

dpπqph, φπq2φπ

converges uniformly to h.

Proof. The functions
a

dpπqφπ are orthonormal by the orthogonality for-
mulas given in Corollaries 8.10 and 8.13. Thus we need only check pf, λpxqφπq �pf, φπqφπpxq for f P L2

K,KpG,χq. But this follows from the χ-spherical prop-
erty. Indeed,

pf, λpxqφπq �
»

fpyqφπpx�1yq dy

�
»

fpyqφπpy�1xq dy

�
»

K

»
G

χpkqfpkyqφπpy�1xq dy dk

�
»

G
fpyq

»
K

χpkqφπpy�1kxq dk dy

�
»

G
fpyqφπpy�1qφπpxq dy

�
�»

G
fpyqφπpyq dy



φπpxq

� pf, φπq2φπpxq.
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¤

Definition 8.67. A continuous homomorphism τ on a topological group G
is called an involution if τ � id and τ2 � id.

Lemma 8.68. Let τ be a involution on a unimodular Hausdorff locally com-
pact group G. Then τ preserves Haar measure; i.e.,»

fpτxq dx �
»

fpxq dx

for all f P CcpGq.
Proof. We first show

³
fpτxq dx is left invariant for f P CcpGq. Indeed,»

fpaτpxqq dx �
»

fpτpτpaqxqq dx

�
»

fpτpτpaqτpa�1qxqq dx

�
»

fpτpxqq dx

where we have used left translation invariance. Thus there is a c ¡ 0 such
that »

fpτpxqq dx � c

»
fpxq dx.

Consequently, »
fpxq dx �

»
fpτpτpxqqq dx

� c

»
fpτpxqq dx

� c2

»
fpxq dx

for f P CcpGq. So c � 1. ¤

Proposition 8.69. Let χ be a character of a compact subgroup K of a locally
compact unimodular Hausdorff group G. Suppose τ is a automorphism of
G that preserves Haar measure and for which for each g, there are k1 and
k2 in K satisfying τpgq � k1g

�1k2 and χpk1qχpk2q � 1. Then pG,Kq is a
χ-Gelfand pair.

Proof. We show Cc,χpKzG{Kq is commutative. First note by hypothesis
that fpxq � fpτpx�1qq for all f P Cc,χpKzG{Kq. Hence using invariance of
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Haar measure under τ , we have

f � hpxq �
»

G
fpaqhpa�1xq da �

»
fpτpa�1qqhpτpx�1aqq da

�
»

fpτpa�1qqhpτpx�1qτpaqq da �
»

fpa�1qqhpτpx�1qaq da

�
»

hpaqfpa�1τpx�1qq da � ph � fqpτpx�1qq
� h � fpxq.

¤

Consider a compact Hausdorff group G. If Gd � tpx, xq | x P Gu,
then pG � G,Gdq is a Gelfand pair. Indeed, take τpx, yq � py, xq. Then
τ is an involution of G and py, xq � py, yqpx�1, y�1qpx, xq. Consequently,
mpπ1 � π2, indG�G

Gd
1q is either 0 or 1 for each pair π1, π2 P Ĝc. Indeed, we

already knew this. In Section 7 we showed the biregular representation B is
unitarily equivalent to indG�G

Gd
1 and showed the multiplicity mpπ1 � π2, Bq

is 0 unless π2 is equivalent to π̄1 and 1 otherwise.
For another example, we show (SOpnq, SOpn�1q) is a Gelfand pair. Let

Ei,j be the n � n matrix with a 1 in the i, j entry and all other entries 0.
The key is to use Proposition 8.69 and the following Lemma.

Lemma 8.70. Let A P SOpnq. Then there are B1 and B2 in SOpn� 1q and
a θ P R such that B�1

1 AB�1
2 � exppθpE1,n � En,1qq.

Proof. Let W � E1,n � En,1. We have exp θW � e1 � cos θ e1 � sin θen,
while exp θW � en � sin θ e1 � cos θ en. Now Aen � v � λen where v P
xe1, . . . , en�1y. If v � 0, then λ � 1 or λ � �1. For λ � 1, there is nothing
to do for A P SOpn � 1q. If λ � �1, then exppπW q � en � �en, and so
expp�πW qA � en � en. Consequently, expp�πW qA P SOpn � 1q and this
case is done.

Now suppose v � 0. Since SOpn � 1q acts transitively on spheres in
xe1, . . . , en�1y, we can find a B1 P SOpn � 1q with B�1

1 v � 1||v||e1. So
B�1

1 Aen � µe1 � λen where µ2 � λ2 � 1. Hence we can find a θ with
expp�θW q�pB�1

1 Aenq � en. Consequently, B2 :� expp�θW qB�1
1 A P SOpn�

1q. So A � B1 exppθW qB2. ¤

Let τ be the involution on SOpnq given by

τpAq �
�

In�1 0
0 �1



A

�
In�1 0

0 �1



.
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Then τpAq P SOpn� 1qA�1SOpn� 1q. Indeed, if A � B1 exppθW qB2, then
using �

In�1 0
0 �1



B

�
In�1 0

0 �1



� B for B P SOpn� 1q and�

In�1 0
0 �1



exppθW q

�
In�1 0

0 �1



� expp�θW q,

we have

τpAq � B1 expp�θW qB2 � B1B2pB�1
2 expp�θW qB�1

1 qB1B2

� pB1B2qA�1pB1B2q.
Thus by Proposition 8.69, pSOpnq,SOpn� 1qq is a Gelfand pair.

For a noncompact example, let G � SLpn,Rq and K � SOpnq. Then
pG,Kq is a Gelfand pair. In fact we take τpAq � pA�1qt for A in G. Every
invertible matrix A can be decomposed into A � sk where s is an invertible
symmetric matrix and k P SOpnq. Thus τpAq � pkts�1qt � ps�1qtk �
s�1k � kpk�1s�1qk � kA�1k.

Exercise Set 8.5

1. Let φ be a positive definite χ spherical function on a topological Haus-
dorff group G with closed compact subgroup K having one dimensional char-
acter χ. Let S be the linear span of the functions λpaqφ where λpaqfpxq �
fpa�1xq for functions f . Define a sesquilinear form x�, �y on S by

x m̧

i�1

aiλpxiqφ,
ņ

j�1

bjλpyjqφy �
i̧,j

aib̄jφpx�1
i yjq.

(a) Show

|x m̧

i�1

aiλpxiqφ,
ņ

i�1

bjλpyjqφy|2 ¤
i̧,j

aiājφpx�1
i xjq

i̧,j

bib̄jφpy�1
i yjq.

(b) Show x�, �y is well defined.
(c) Show xf, fy ¥ 0 for f P S.
(d) Let Nφ � tf P S | xf, fy � 0u. Show λpaqNφ � Nφ.
(e) Define an inner product on S{Nφ by

xf �Nφ, f 1 �Nφy � xf, f 1y,
and show g ÞÑ λpgqf � Nφ is continuous from G into the complex
inner product space S{Nφ.

(f) Set λ1pgqpf � Nφq � λpgqf � Nφ. Show λ1pgq preserves the inner
product on S{Nφ and extends to a unitary representation of π of G
on the completion Hπ of S{Nφ.
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(g) Show φ�Nφ is a cyclic vector for π and xφ�Nφ, πpgqpφ�Nφqy �
φpgq.

2. Assume G is as in Exercise 8.5.1. Show π is irreducible. (Hint: Show
the χ-primary projection for the representation π|K has range the one di-
mensional space consisting of multiples of φ�Nφ.)

10. Compact Abelian Groups

Let G be a compact abelian Hausdorff group. By Corollary 6.51, we know
every unitary representation π of G is one dimensional and thus is a one
dimensional character of G. Since any two equivalent one dimensional rep-
resentations of G are equal, we see

Ĝ � Ĝc � tχ | χ : G Ñ T is a continuous homorphismu.
Note if χ1 and χ2 are in Ĝ, then χ1χ

�1
2 � χ1χ̄2 P Ĝ, and thus the

set of characters of G form a group. When G is compact, the group of
characters with the discrete topology is called the dual group of G and as
a topological space Ĝ is a locally compact Hausdorff group whose Haar
measure is counting measure. Thus f : Ĝ Ñ C is integrable if and only if°

Ĝ |fpχq| � supt°χPF |fpχq| | F � Ĝ with F finiteu   8.

Definition 8.71 (Fourier Transform). The Fourier transform on the com-
pact abelian Hausdorff group G is the linear transformation F : L1pGq Ñ
CpĜq given by

Fpfqpχq � f̂pχq �
»

G
fpxqχ̄pxq dx.

We can now apply the Plancherel Theorem 8.20 and Corollary 8.21 for
compact groups. First we note for χ P Ĝ, we have the primary projection
Pχ̄ is given by

Pχ̄fpxq � dpχ̄qTrpχ̄px�1qχ̄pfqq � χ̄px�1qf̂pχq � f̂pχqχ
Theorem 8.72 (Plancherel). For f P L2pGq, one has L2 decomposition

f �
χ̧PĜ

f̂pχqχ
and

||f ||22 �
χ̧

|f̂pχq|2.
In particular, the mapping f ÞÑ f̂ is a unitary isomorphism of L2pGq onto
L2pĜq � l2pĜq with the property

UpBpg1, g2qfqpχq � pχb χ̄qpg1, g2qf̂pχq � χpg1g
�1
2 qf̂pχq.
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Furthermore, if f P xL2pGq � L2pGqy, then
°

χ f̂pχqχ converges pointwise
uniformly to f .

The formula f � °
f̂pχqχ is called the inversion formula. Note

F�1pF q �
»

Ĝ
F pχqχ dµpχq �¸

F pχqχ
is the inverse Fourier transform.

We remark the characters χ P Ĝ thus form an orthonormal basis of
L2pGq. In the case when G � T, we saw in Chapter 1 the functions enpzq �
zn form an orthonormal basis of L2pTq. Since enpz1z

�1
2 q � enpz1qenpz�1

2 q,
we have en P T̂. Consequently, T̂ � ten | n P Zu is the dual group. Since
emen � em�n, we see the group multiplication for T̂ is addition in Z. Using
the identification npzq � enpzq � zn, we have T̂ � Z. Using Section 8 of
Chapter 6 or by Exercise 8.6.1, the dual of Tn as a group is isomorphic to
the additive discrete group Zn under the identification

χmpzq � zm :� n¹
k�1

zmk
k for z � pz1, . . . , znq P Tn

and m � pm1,m2, . . . , mnq P Zn.

All of this was noted earlier and was part of the summary given in Table 1
of Chapter 6.

The Double Dual. We first note pG with the discrete topology is a locally
compact abelian group. Thus the irreducible unitary representations of pG
are again one dimensional characters. Thus if ξ P ppG , we have ξpχq P T for
each χ P pG. In particular, ξ P±

χP pG T. The product topology on
±

χP pG T is
compact and with this topology is a compact abelian group. See Exercise
8.6.2.

Lemma 8.73. ppG is a closed subgroup of
±

xP pG T and thus is a compact
topological group.

Proof. Since the product of two characters is again a character and the

conjugate of a character is the multiplicative inverse of a character, ppG is a
subgroup. We show it is closed set in P where P is

±
χP pG T. Indeed, let χ1

and χ2 be in pG and suppose ξ0 is in the closure of ppG in P . Let ε ¡ 0. Then

U � tξ P P | |ξpχ1q�ξ0pχ1q|   ε, |ξpχ2q�ξ0pχ2q|   ε, |ξpχ1χ
�1
2 q�ξ0pχ1χ

�1
2 q|   εu
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is an open subset of P containing ξ0. Since UX ppG � φ, there is a ξ P ppG XU .
Now

|ξ0pχ1χ
�1
2 q � ξ0pχ1qξ0pχ2q�1| ¤ |ξ0pχ1χ

�1
2 q � ξpχ1χ

�1
2 q| � |ξpχ1χ

�1
2 q � ξpχ1qξpχ�1

2 q|
� |ξpχ1qξpχ�1

2 q � ξ0pχ1qξpχ�1
2 q| � |ξ0pχ1qξpχ�1

2 q � ξ0pχ1qξ0px2q�1|
  ε� 0� |ξpχ1q � ξ0pχ1q| � |ξpχ2q � ξ0pχ2q|
  3ε.

Since ε is arbitrary, we obtain ξ0pχ1χ
�1
2 q � ξ0pχ1qξ0pχ2q�1 and thus ξ0 is a

one-dimensional character for pG. ¤

We now know the double dual group ppG is a compact abelian Hausdorff
group whose topology is the relative topology of

±
χ T; i.e. the topology of

pointwise convergence on pG.
There is a natural mapping Φ from G into

±
χP pG T. It is given by

(8.14) Φpgq � ξg where ξgpχq � χpgq.
Proposition 8.74. The mapping Φ is a continuous group isomorphism from

the compact abelian group G onto a compact abelian subgroup of ppG .

Proof. We first note Φpxy�1q � ΦpxqΦpyq�1. Indeed,

Φpxy�1qpχq � χpxy�1q
� χpxqχpyq�1

� ΦpxqpχqΦpyqpχq�1

� �
ΦpxqΦpyq�1

� pχq.
So Φpxy�1q � ΦpxqΦpyq�1. Next one has Φpxq � 1 if and only if χpxq � 1
for all χ P pG. Now by the Plancherel Theorem, if f P L2pGq, f � °pf, χq2χ.
Hence λpxqf � °pf, χq2λpxqχ. Since λpxqχpyq � χpx�1yq � χpxqχpyq �
χpyq, we see λpxqf � f for all f P L2pGq. But this says fpx�1yq � fpyq
for all y for all f P CpGq. Since CpGq separates points, x�1y � y for all y.
Hence x � e. So Φ is one-to-one.

We claim Φ is continuous. Let χ P pG and ε ¡ 0. Consider Upχ, 1q � tξ PppG | |ξpχq � 1|   εu. Since ΦpGq has the relative topology of
±

χP pG T, these
sets form a neighborhood subbase at 1 in ΦpGq. But since χ is continuous,
there is a neighborhood Nεpχq of e in G such that |χpxq � χpeq|   ε if
x P Nεpχq. Thus |ξxpχq � 1pχq|   ε if x P Nεpχq. So ξx P Upχ, 1q if
x P Nεpχq. Hence Φ is continuous at e and since Φ is a homomorphism,
Φ is continuous everywhere. By continuity, the image ΦpGq is a compact
subgroup of Γ. ¤
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Proposition 8.75. Let G be a compact abelian Hausdorff group. If Γ is a
subgroup of pG which separates points, then Γ � pG.

Proof. Consider the complex linear span A of the functions in Γ. Since Γ is
a group and χ̄ � χ�1 for χ P A, we see A is a complex algebra of functions on
the compact space G which is closed under conjugation. Since Γ separates
points, the algebra A separates points. Moreover, A contains the constants
for 1 P Γ. By the Stone-Weierstrass Theorem, A is uniformly dense in the
algebra CpGq. Since ||f ||2 ¤ ||f ||8 for f P L8pGq, A is L2 dense in CpGq.
It follows from the density of CpGq in L2pGq that A is L2 dense in L2pGq.
Thus no nonzero function in L2pGq is orthogonal to all χ P Γ. Since pG is an
orthonormal basis of L2pGq and Γ � pG, Γ � pG. ¤

Theorem 8.76 (Pontryagin Duality). Φ is a group homeomorphism of G

onto ppG .

Proof. We already know ΦpGq is a compact subgroup of ppG. Let Γ be the

dual group of the compact group ppG. We claim for each character δ P Γ,
there is a χ P pG such that

δpξq � ξpχq for ξ P ppG .

For χ in pG, define χ1 by

χ1pξq � ξpχq for ξ P ppG .

Then χ1 is a character of ppG. Indeed,

χ1pξ1ξ
�1
2 q � pξ1ξ

�1
2 qpχq � ξ1pχqξ̄2pχq � χ1pξ1qχ1pξ2q�1

for ξ1 and ξ2 in ppG . Moreover, χ1 : ppG Ñ T is continuous, for ppG has the
relative topology of the product topology

±
χP pG T. We thus see pG1 � tχ1 |

χ P pGu is a subgroup of Γ. This subgroup separates the points in ppG . Indeed,
if χ1pξ1q � χ1pξ2q for all χ P pG, then ξ1pχq � ξ2pχq for χ P pG, and so ξ1 � ξ2.

By Proposition 8.75, p pGq1 � Γ. Now if ΦpGq is a proper subgroup of ppG , thenppG {ΦpGq is a compact abelian Hausdorff group with a nontrivial character.

This implies there is a character γ of ppG which is not 1 and which satisfies
γpΦpgqq � 1 for all g P G. But then γ � χ1 for some χ P pG. Consequently

χ1pΦpgqq � Φpgqpχq � χpgq � 1

for all g P G. Thus χ � 1. Since χ1 � γ, γpξq � χ1pξq � ξpχq � ξp1q � 1 for

all ξ P ppG . Thus γ is trivial, a contradiction. ¤
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We remark this theorem is a special case of the famous Pontryagin-
Van Kampen duality theorem. We state this without proof. The details
are available in several texts covering topics in abelian harmonic analysis;
e.g. [22, Hewitt-Ross], [38, Rudin]. Some of the steps are outlined in the
exercises.

If G is a locally compact Hausdorff group, then the set pG of characters
is an abelian group with multiplication and inversion defined by

pχ1χ2qpgq � χ1pgqχ2pgq
χ�1pgq � χpgq.

This group can be given a topology. Indeed, if ε ¡ 0 and K is a compact
subset of G, then

(8.15) NK,εpχ0q :� tχ | |χpgq � χ0pgq|   ε for all g P Ku
form neighborhood bases at points χ0 in pG, and with this topology pG is a
Hausdorff topological group. The closures of the sets NK,εpχ0q for 0   ε   1
are compact; and we have pG is locally compact, abelian, and Hausdorff.
That pG is not the trivial group; i.e., there are nontrivial characters is not
clear. Indeed, one can use Bochner’s Theorem (see references above) to show
the characters separate the points of G.

Theorem 8.77 (Pontryagin-Van Kampen). Let G be an abelian locally com-

pact Hausdorff group. Define Φ : GÑ ppG by

Φpgqpχq � χpgq for χ P pG.

Then Φ is a topological group isomorphism of the abelian group G onto the

abelian double dual group ppG .

Exercise Set 8.6

1. Suppose G1 and G2 are Hausdorff locally compact abelian groups. Show
the dual group of G1 �G2 is topologically isomorphic to pG1 � pG2.

2. Let A be an index set. Show
±

aPA T with the product topology is a
compact Hausdorff group.

3. Let G be a compact Hausdorff group and suppose χ is a one-dimensional
character of G. Show f � χ � f̂pχqχ.

4. Let G be a locally compact Hausdorff group. Give pG the topology in
(8.15). Show this makes pG into a group which is Hausdorff and abelian.

5. Let G be a locally compact Hausdorff group and let ∆ be the collection
all one dimensional nonzero � representations of the Banach � algebra L1pGq.
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By Corollary 6.108, there is a one-to-one correspondence χ Ñ πχ between
the collection of one dimensional characters of G and ∆ where

πχpfq �
»

fpgqχpgq dg.

Show the collection ∆Yt0u is a closed subset in the weak � topology of the
unit ball of the dual space of L1pGq and thus with the weak � topology is a
compact Hausdorff space. In particular, ∆ with the relative weak � topology
is a locally compact Hausdorff space. When G is abelian, the correspondence
χÑ πχ gives a locally compact topology on pG.

6. Let G be a abelian compact Hausdorff group.

(a) Show pg, χq ÞÑ χpgq is continuous from G � pG into T where pG has
the relative weak � topology of Exercise 8.6.5. (Hint: Consider
pg, χq ÞÑ πχpλpgqfq.)

(b) Show if K is a compact subset of G and ε ¡ 0, then

tχ P pG | |χpkq � 1|   ε for k P Ku
is open in the topology on pG given in Exercise 8.6.5.

(c) Show if f P L1pGq and χ P pG, then the set

tχ1 P pG | |πχ1pfq � πχpfq|   εu
is open in the topology on pG given by the neighborhood bases of
(8.15).

In particular, the topology on pG is the weak � topology described in Exercise
8.6.5.

7. Assume G is an abelian compact Hausdorff group. Show the topology
defined by the neighborhood bases given in (8.15) is discrete.

8. Assume G is a discrete abelian group. Show the topology on pG given
by the neighborhood bases given in (8.15) is compact. (Hint: You may use
Exercises 8.6.5 and 8.6.6.)

9. Let G be a compact Hausdorff group. Define ApGq to be the space
F�1pL1p pGqq. Thus

ApGq � tF�1pfq | f P L1p pGqu
where

F�1pfqpgq �
χ̧P pG fpχqχpgq.

Show ApGq is a dense � subalgebra of the Banach � algebra CpGq.



538 Compact Groups

10. Let G be a compact Hausdorff group and let ξ P ppG . Define π0 on ApGq
by π0pF�1pfqq � °

χP pG fpχqξpχq for f P L1p pGq.
(a) Show π0 is a � representation of the subalgebra ApGq of CpGq.
(b) Assuming π0 is continuous; i.e. ||πphq|| ¤ ||h||8 for h in ApGq, show

there is a g P G such that

π0phq �
χ̧P pGphpχqχpgq.

(c) Assuming π0 is continuous, show ξpχq � χpgq for χ P pG.

11. Finite Groups

In the last section we considered compact abelian groups. Here we apply the
general theory to finite groups. A group with discrete topology is compact
if and only if it is finite. When G is finite, the only Hausdorff topology on
G is the discrete topology and with this topology the group is compact. In
this case, normalized Haar measure is given by

mpEq � |E||G|
where |E| is the number of elements in the set E. We set n � |G|. Note all
Lp spaces are equal; indeed,

CpGq � L1pGq � L8pGq � CG,

the space of all complex functions. For any function f ,»
G

fpxqdx � 1
n

x̧PG
fpxq.

Define δx : G Ñ C by

δxpyq �
#

n if x � y

0 if y �� x.

If G � te � x1, . . . , xnu, then δx1 , . . . , δxn is an orthonormal basis for
L2pGq. Thus L2pGq � CG is a n-dimensional � algebra over C. Usually this
algebra is denoted by CrGs.
Lemma 8.78. The map G Q x ÞÑ δx P CrGs satisfies

δxy � δx � δy

δ�x � δx�1

(8.16)
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Proof. We have

δx � δypzq � 1
n

ģPG
δxpgqδypg�1zq

� δypx�1zq
�

#
n if x�1z � y

0 if x�1z �� y

� δxypzq
and

δ�xpyq � δxpy�1q
�
#

n̄ if y�1 � x

0 if y�1 � x

� δx�1pyq.
¤

This shows that x ÞÑ δx P CrGs is multiplicative, so we can identify G
with its image in CrGs. Then CrGs is the algebra over C generated by G.
For this reason, CrGs is called the group algebra of G.

Let pGc � tπ1 � 1, π2, . . . , πru. Let χi � χπi be the character of πi. Then
as seen in Corollary 8.54, the functions χi are a basis of the center of CrGs.
Set ξi � dpπiqχi. Then Proposition 8.47 shows

(8.17) ξi � ξj � δijξi

Consequently, the characters ξj are central idempotents. Let Mj � ξj�CrGs.
Then since ξj commutes with the elements of CrGs,
(8.18) Mj � CrGs � ξj � ξj � CrGs � ξj � ξj � CrGs .
Theorem 8.79 (Wedderburn). The following hold:

(a) Mj is a � ideal in CrGs.
(b) Mi �Mj � t0u if i �� j.
(c) Mj � Mpdpπjq,Cq, the � algebra under adjoints of dpπjq � dpπjq

complex matrices.
(d) CrGs �Àr

j�1 Mj.

(e) |G| � °r
j�1 dpπjq2.

Proof. (a) and (b) follow from Equations (8.17) and ( 8.18).
For (c) if Pj is the primary projection on L2pGq corresponding to the

irreducible representation π̄j , then by Theorem 8.51 the range of Pj is Mj .
Thus by Theorem 8.9 and Proposition 8.17, Mj is isomorphic as � algebras
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to BpHπ̄j q; but this algebra is isomorphic to the matrix algebra of dj � dj

matrices with adjoint being complex transposition.
Next (d) is an immediate consequence of the Plancherel Theorem 8.20

and (e) follows from dimCrGs � |G| � °
j dimMj . ¤

Recall that a function is central if it constant on each conjugacy class.
Let C � tC1 � teu, C2, . . . , Cmu be the set of conjugacy classes in G. Take
x1 � e and choose xj P Cj for j � 1, . . . , m. Define

fjpxq :�
#

1 if x P Cj

0 if x R Cj

Theorem 8.80. The sets tf1, . . . , fmu and tξ1, . . . , ξru are bases for the
space of central functions on G. In particular

|Ĝ| � number of conjugacy classes .

Proof. By Corollary 8.54, the set tξ1, . . . , ξru is a basis of L2
cpGq, the center

of CrGs. If f is a central function, then f � °m
j�1 fpxjqfj . Note also

that
°m

j�1 cjfj � 0 implies ck � fpxkq � °m
j�1 fjpxkq � 0. Hence the set

tf1, . . . , fmu is an linearly independent spanning set. ¤

The next result depends on the theory of algebraic integers. In this the-
ory every rational algebraic integer is an integer. Then if π is an irreducible
representation and we show n

dpπq is an algebraic integer, then the order n of
the group G is divisible by the dimension of the representation π.

Definition 8.81. A complex number is an algebraic number if it is a root of
a polynomial having integer coefficients. If it is a root of a monic polynomial
with integer coefficients, it is an algebraic integer.

We denote the set of algebraic integers by A. We shall show A is a ring.
Note clearly since k is a root of ppxq � x� k for k P Z, we see Z � A.

Proposition 8.82. Suppose R � C is a ring which is finitely generated;
i.e., there are w1, w2, . . . , wk in R such that R � Zw1 � Zw2 � � � � � Zwk.
Then R � A.

Proof. Let w P R be nonzero. We know there is a k � k matrix A � rai,js
where ai,j P Z with

wwj � a1,jw1 � a2,jw2 � � � � � ak,jwk

for j � 1, 2, . . . , k. Hence

pwI �Aq
���w1

...
wk

��� ���0
...
0

��.
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This implies the matrix wI � A is singular. Thus detpwI � Aq � 0 and we
see w is a root of the characteristic polynomial ppxq � detpxI �Aq. ¤

Lemma 8.83. If w is a rational algebraic integer, then w P Z.

Proof. Start by writing w � j
k where j and k are relatively prime and

k ¡ 0. Let w be a root of ppxq � xm � am�1x
m�1 � � � � � a1x

1 � a0 where
the ai are integers. Then

jm

km
� m�1̧

i�0

ai
ji

ki
.

Thus

jm � m�1̧

i�0

aij
ikm�i.

This implies k|jm. Since k is relatively prime to j, k � 1. ¤

Theorem 8.84. The set A of algebraic integers is a ring.

Proof. Let θ and φ be algebraic integers. Then θp � °p�1
j�0 ajθ

j and φq �°q�1
k�0 bkφ

k for some p and q and integers aj and bk. Set wj,k � θjφk for
0 ¤ j   p and 0 ¤ k   q. If R � °

Zwj,k, then pθ � φqwj,k P R for all
j, k and pθφqwj,k P R for all j, k. By Proposition 8.82, θ � φ and θφ are in
A. ¤

Lemma 8.85. If χ is a character of a finite group G, then χpgq is a sum
of kth roots of unity where k is the order of g. Thus χpgq is an algebraic
integer.

Proof. Let χ � Trpρq where ρ is a finite dimensional representation of G.
Set H to be the abelian subgroup of G generated by g. This is a cyclic group
of order k where k|n. Now ρ|H is equivalent as matrix representations to
a direct sum

°m
i�1 ρi of irreducible representations ρi. Since H is abelian,

each ρi has dimension 1 and since ρpgqk � ρpgkq � I, we see ρipgqk � 1 for
each i. ¤

Theorem 8.86. Let ρ be an irreducible representation of the finite group G
and let C1, C2, . . . , Cr be the conjugacy classes of G. Set ρj � °

gPCj
ρpgq �

nρpfjq. Then:

(a) ρj � wjI where wj � hjχj

d ; here hj is the number of elements
in the conjugacy class Cj, χj is the value of the character χ of
ρ on the elements in Cj, and d is the degree or dimension of the
representation ρ.
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(b) For each i and j in t1, 2, . . . , ru, there are nonnegative integers ci,j,k

for 1 ¤ k ¤ r such that

wiwj �
ŗ

k�1

ci,j,kwk.

Proof. Set γj to be the element in the group algebra given by γj � °
gPCj

g.
In the group algebra CG, this is the function fj which is a constant 1 on
the members of the conjugacy class Cj and 0 off this coset. In particular
by Theorem 8.80, these elements are a basis of the center of the group
algebra. Hence ρj � nρpγjq as operators commute with every ρpgq. By
Schur’s Lemma, ρj � wjI for some scalar wj . To calculate wj , note

dwj � Trpρjq �
ģPCj

Trpρpgqq
�

ģPCj

χpgq � hjχj .

So wj � hjχj

d and we have (a).
For (b) we note γiγj is in the center of the group algebra. Thus

γiγj �
ķ

ci,j,kγk.

Since

γiγj �
� ¸

g1PCi

g1

��� ¸
g2PCj

g2

��
ķ

¸
gPCk

¸tg1g2 | g1 P Ci, g2 P Cj , g1g2 � gu,
we see ci,j,k is the number of pairs g1 P Ci, g2 P Cj where g1g2 � g a fixed
member of Ck. Thus ci,j,k is a nonnegative integer. Now

wiwjI � ρiρj � ¸
g1PCi

¸
g2PCj

ρpg1qρpg2q
�

ķ

¸
gPCk

ci,j,kρpgq �
ķ

ci,j,k

¸
gPCk

ρpgq
�

ķ

ci,j,kρk �
ķ

ci,j,kwkI.

Thus wiwj � °
k ci,j,kwk. ¤

Corollary 8.87. Each wi is an algebraic integer.

Proof. Let R be the Z module generated by w1, w2, . . . , wr. By (b), we
have R is a ring. Thus by Proposition 8.82, R � A. ¤
Theorem 8.88. The dimension d of an irreducible representation ρ of a
finite group G divides the order of the group.
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Proof. Let χ be the character of ρ. By Corollary 8.54, pχ, χq2 � 1. Thus if
χk is the constant value of χ on the elements of the conjugacy class Ck, we
have

1
n

ŗ

k�1

hkχkχ̄k � 1
n

ŗ

k�1

¸
gPCk

χpgqχpgq

� 1
n

ģPG
χpgqχpgq

� 1.

Thus
n

d
� ŗ

k�1

hkχk

d
χ̄k �

ŗ

k�1

wkχ̄k.

Now χ̄k is the value character χ on the elements in the conjugacy class
C�1

k . Thus since each wk is an algebraic integer and the values of χ on
the conjugacy classes of G are algebraic integers, Theorem 8.84 implies the
rational number n

d is an algebraic integer. Hence by Lemma 8.83, n
d is an

integer. ¤

Corollary 8.89. Let ρ be an irreducible representation of a finite group G.
Then dpρq divides |G{ kerpρq|.
Proof. Define an irreducible representation π of G{ kerpρq by πpgZq � ρpgq.
Then dpπq � dpρq and consequently dpρq divides |G{ ker ρ|. ¤

11.1. Induced characters. In Section 16 of Chapter 6 we saw in Theorem
6.123 that the two finite dimensional unitary representations are equivalent
if and only if they have equal characters. In this chapter we have dealt
largely with induced representations and thus it is appropriate to determine
the character of any unitarily induced finite dimensional representation.

Let G be a locally compact Hausdorff group and assume H is a closed
subgroup which has only finitely many left cosets in G. Now counting mea-
sure on G{H is left invariant and thus if π is a unitary representation on a
Hilbert space H, we see if m � |G{H| and x1, x2, . . . , xm are representatives
of the left cosets of G{H, then a function f P L2

HpG, πq is determined by
its values fpx1q, fpx2q, . . . , fpxmq. Now if in addition, the Hilbert space H
has finite dimension d, then L2

HpG, πq has dimension md. Moreover, if ej

for j � 1, 2, . . . , d is an orthonormal basis of H, the functions fk,j defined
by fk,jpxlhq � δk,lπph�1qej form an orthonormal basis of L2

HpG, πq.
We calculate the character χ of the induced representation πG. First

note for x P G, x�1 permutes the left cosets xkH. Thus if x�1xkH � xk1H,
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then x�1xk � xk1h where h � x�1
k1 x�1xk P H. This implies

pπGpxqfk,j , fk,jq2 �
m̧

i�1

pfk,jpx�1xiq, fk,jpxiqqH
� pfk,jpx�1xkq, ejqH � pfk,jpxk1hq, ejqH
� pπph�1qfk,jpxk1q, ejqH � δk,k1pπph�1qej , ejqH
� δk,k1pπpx�1

k xxk1qej , ejqH.

So pπGpxqfk,j , fk,jq2 � 0 only if x�1xk � xkH. Consequently, if Spxq �
tk | x�1

k xxk P Hu,
χpgq �

ķ,j

pπGpxqfk,j , fk,jq2 � ¸
kPSpxq j̧

pπGpxqfk,j , fk,jq
� ¸

kPSpxq j̧

pπpx�1
k xxkqej , ejqH � ¸

kPSpxq
χπpx�1

k xxkq.
This is essentially the content of the following theorem.

Theorem 8.90. Let G be a locally compact Hausdorff group and suppose H
is a closed subgroup having only finitely many left cosets in G. Suppose π is
a finite dimensional unitary representation of H with character χπ. Then
the character χ of the induced representation πG is given by

χpxq � ¸
gHPG{H, g�1xgPH

χπpg�1xgq.
In particular, when G is a finite group, one has

χpxq � 1
|H|

¸
gPG, g�1xgPH

χπpg�1xgq.

Proof. The first statement follows since pghq�1xpghq P H if and only if
g�1xg P H and thus χπph�1x�1

k xxkhq � χπpx�1
k xxkq for elements g P xkH

and k P Spxq. In the case when G is finite, we have¸
gPG, g�1xgPH

χπpg�1xgq �
ḩPH

¸
kPSpxq

χπph�1x�1
k xxkhq

�
ḩPH

¸
kPSpxq

χπpx�1
k xxkq

�
ḩPH

χpxq
� |H|χpxq.

¤
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Exercise Set 8.7

1. Let R be a finitely generated algebra over the rational numbers Q. Show
every number w P R is algebraic.

2. Show the collection of algebraic numbers is a field.

3. Let A4 be the alternating subgroup of the symmetric group S4 consisting
of even permutations.

(a) Show there are 4 conjugacy classes.
(b) Determine the dimensions of the irreducible finite dimensional rep-

resentations of A4.

4. Find 4 inequivalent irreducible finite dimensional representations of A4.

5. Determine the degrees of the characters of S4.

6. Find the dual of S4; i.e. one irreducible representation for each dis-
tinct irreducible character of S4. (Hint: Consider the parity representa-
tion, three dimensional representations of S4 which extend the irreducible
3 dimensional representation of A4, and representations of S4 induced from
one-dimensional representations of A4.)

7. Let D4 be the dihedral group of order 8. It has generators a and b
satisfying a4 � b2 � 1 and bab � a3. Determine the conjugacy classes of
D4, the degrees of each irreducible character of D4, and a representation for
each of these characters.

8. Let G be a finite group. Show two finite dimensional complex represen-
tations of G are equivalent if and only if they have equal characters.

9. Let G be a finite group with center Z. Show if χ is an irreducible
character, then

pdegχq2 ¤ rG : Zs � |G||Z| .
(Hint: Let ρ be a representation with character χ. Use Schur’s Lemma and
Frobenius reciprocity.)

10. Let G be a finite group and let G1 be the commutator subgroup of G.
Thus G1 is the smallest group containing all aba�1b�1 for a, b P G. Note
G{G1 is an abelian group. Show the number of distinct one dimensional
representations of G is the order of the group G{G1.

11. Let G be a finite group with subgroup H. Find the character of the
quasi-regular representation of G on L2pG{Hq.
12. Let G � S3 and X � t1, 2, 3u. Show that L2pXq decomposes into two
irreducible representations, one of them, the trivial representation being one
dimensional, and the other two dimensional.
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biregular representation, 343
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complex differentiable, 151
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conjugate representation, 328
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C� algebra, 339

cyclic representation, 333

cyclic vector, 333

derivative

of a distribution, 182, 183

weak, 184

diffeomorphism, 57

differentiable, 56

differential operator

on a distribution, 183

dilation

of a distribution, 185

on Rn, 86, 120

Dirichlet kernel, 29

Dirichlet problem, 3

distribution, 173

δ, 174

tempered, 177

Weyl transform, 447

Wigner transform, 447

double dual, 533

dual group, 532

dyadic rationals, 258

elementary tensor, 325

equivalent representations, 309

equivariant mapping, 253

Euclidean group, 281

finite rank operator, 68

first category, 257

flag manifold, 279

Fourier transform

L1pRnq function, 117

L1pTq function, 16

compact abelian group, 532

of a tempered distribution, 190

Fréchet space, 50

Gelfand pair, 525

Gelfand spectrum, 341

Gelfand theorem, 341

general linear group, 264

generalized function, 173

group algebra, 539

Haar integral, 286

harmonic function, 4

heat equation, 3, 41

Heaviside distribution, 174

Heine-Borel property, 56

Heisenberg commutation relations, 437

Heisenberg group

definition, 250, 431

Heisenberg uncertainty principle, 220

Helmholtz’s equation, 3

Hermite differential operator, 142

Hermite function, 138

Hermite operator, 136, 138, 142

Hermite polynomial, 138

Hilbert-Schmidt operator, 64

holomorphic, 151

on Cn, 156

Huygens’ principle, 169

induced character, 544

induced representation, 393

for compact groups, 384

for semi-direct products, 395

using a cross section, 398

inductive limit topology, 50

inner tensor product, 326, 331

integrated representation, 368

internal point, 47

intertwining operator, 319

Hilbert-Schmidt, 490

invariant subspace, 309

inverse Fourier transform

compact abelian group, 533

involution

of a function on Rn, 101

on a group, 529

irreducible representation, 310

isomorphism

of G spaces, 253

of topological groups, 251

isoperimetric problem, 42

Jacobian matrix, 56

Jordan curve, 153

kernel

integral operator, 61

Kolomorgoroff space, 257

Laplace operator, 3

left action, 252

left translation, 247

Lie algebra, 432

hn of the Heisenberg group, 434

Lie bracket, 431

on hn, 434

Lindelöff space, 256

locally compact space, 256

locally integrable function, 174

matrix coefficient, 444, 478

v bπ w̄, 478

meagre, 257

mean

of a measure, 217

measure

quasi-invariant, 300
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relatively invariant, 298

modular function, 289

mollifier, 107

motion group, 280

multiplication

of a distribution, 185

multiplicity

for representations, 325

non-degenerate form, 267

nondegenerate

representation, 366

norm

sesquilinear or bilinear form, 268

normal space, 258

nowhere dense, 257

nullity

skew symmetric form, 277

symmetric bilinear form, 275

one-dimensional torus, 9

open mapping theorem, 52

orbit space, 254

orthogonal group, 272

orthogonal sum

external of representations, 314

internal of representations, 313

orthogonality relations

for induced representations of a compact
group, 493

for matrix coefficients of a compact
group, 479

for the Heisenberg group, 444

Paley-Wiener space, 158

paracompact, 297

Parseval’s equality

Shannon sampling theorem, 237

partial Fourier transform, 128

partial isometry, 318

periodic function, 8

π1-primary subspace

for indG
Kπ, 501

Plancherel formula

windowed Fourier transform, 223

Plancherel measure, 471

Plancherel Theorem

Heisenberg group, 467

Plancherel theorem

abstract, 471

compact abelian group, 532

for Rn, 137

for L2
KpG, χq, 504

for a compact group, 486

for the torus, 20

wavelet transform, 231

point mass, 358

Poisson kernel, 7, 37

Poisson summation formula, 243

polar coordinates, 59

polar decomposition

bounded operator, 318

polarization

of a form, 272

Pontryagin-Van Kampen duality, 536

positive definite, 521

positive form, 267

power series, 155

primary projection, 324

compact group, 513

product group, 249

quasi-regular representation

left, 346

quasi-regular representation, 344

right, 346

quotient topology, 255

quotient topology, 263

Radon measure, 285

complex, 354

rank

skew symmetric form, 277

symmetric bilinear form, 275

rank one operator, 68, 325

rapidly decreasing

sequence, 22

smooth function, 83

rapidly decreasing sequence, 209

regular Borel measure, 286

regular representation

left, 341

right, 343

representation

class χ, 522

discretely decomposable, 324

nondegenerate, 366

of a group, 309

of an algebra, 309

square-integrable, 404

reproducing Hilbert space, 411

rho function, 297

right, 347

Riesz theorem

dual of CcpXq, 286

right translation, 248

saturating set, 46

Schrödinger’s equation, 3

Schur’s lemma, 320

Schwartz basis, 210

Schwartz topology

on C8c pΩq, 93

second category, 257
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semi-direct product, 394

seminorm, 46

separated set, 46
separation of variables, 4

sesquilinear, 267

Shannon sampling theorem, 237
σ-bounded, 289

signature
symmetric bilinear form, 275

sinc function

sincT , 236
sinc function, 124, 236

sincT , 148

skew-Hermitian form, 267
skew-symmetric bilinear form, 267

smooth funtion, 57
Sobolev lemma, 208

space

T0, T1, T2, T3, T3a, T4, 257
Fréchet, 257

regular, 257
special linear group, 265

spectral radius, 338

spectral theorem, 315
compact operator, 76

spectrum, 338

n-sphere, 278
spherical function, 521

square-integrable representation, 404
�-algebra, 101

Banach, 101

� representation, 310
Stone -Von Neumann Theorem, 459

strong operator topology, 310

strongly measurable, 465
subrepresentation, 309

support
for a distribution, 176

for a measurable function, 177

of a continuous function, 261
of a function, 57

symmetric

conjugation, 270
symmetric bilinear form, 267

symmetric neighborhood, 248
symplectic basis, 430

symplectic group, 276

tempered
function, 86

tempered distribution, 177

tempered measure, 178
tensor product

finite dimensional representations, 326

finite dimensional spaces, 325
of Hilbert spaces, 328

of tempered distributions, 199

unitary representations, 329
test function, 173
Tichonov space, 258
topological group, 247
topological vector space, 46
trace, 69

vector valued, 497
trace class operator, 69, 496
transform

wavelet, 408
translation

of a distribution, 185
on Rn, 86, 120

transpose
differential operator, 183

trigonometric polynomials, 16
twisted convolution, 451

uniform bundedness principle, 52
uniformly continuous

left, 259
right, 259

unimodular, 289
unitary dual, 322
unitary equivalence, 311
unitary group, 311
unitary operator, 310
unitary representation, 311

variance
of a measure, 217

variation
complex measure, 354

vector field, 431
left or right invariant, 432

wave equation, 3, 40, 169
wavelet

transform, 408
vector, 408

wavelet function, 228
weak � topology, 173
weak derivative, 184
Wedderburn theorem, 539
Weyl algebra, 210
Weyl transform, 446
Wigner transform, 446
windowed Fourier transform, 222


