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Preface

In the late 1970s several mathematicians independently started to study
a possible interplay of order and continuous symmetry. The motivation
for doing so came from various sources. K.H. Hofmann and J.D. Lawson
[67] tried to incorporate ideas from geometric control theory into a sys-
tematic Lie theory for semigroups, S. Paneitz [147, 148] built on concepts
from cosmology as propagated by his teacher I.E. Segal [157], E.B. Vin-
berg’s [166] starting point was automorphism groups of cones, and G.I.
Ol’shanskii [137, 138, 139] was lead to semigroups and orders by his stud-
ies of unitary representations of certain infinite-dimensional Lie groups. It
was Ol’shanskii who first considered the subject proper of the present book,
causal symmetric spaces, and showed how they could play an important role
in harmonic analysis. In particular, he exhibited the role of semigroups in
the Gelfand-Gindikin program [34], which is designed to realize families of
similar unitary representations simultaneously in a unified geometric way.
This line of research attracted other researchers such as R.J. Stanton [159],
B. Ørsted, and the authors of the present book [159].

This book grew out of the Habilitationschrift of G. Ólafsson [129], in
which many of the results anounced by Ol’shanskii were proven and a clas-
sification of invariant causal structures on symmetric spaces was given.
The theory of causal symmetric spaces has seen a rapid development in
the last decade, with important contributions in particular by J. Faraut
[24, 25, 26, 28] and K.-H. Neeb [114, 115, 116, 117, 120]. Its role in the
study of unitarizable highest-weight representations is becoming increas-
ingly clear [16, 60, 61, 88] and harmonic analysis on these spaces turned
out to be very rich with interesting applications to the study of integral
equations [31, 53, 58] and groupoid C∗-algebras [55]. Present research also
deals with the relation to Jordan algebras [59, 86] and convexity proper-
ties of gradient flows [49, 125]. Thus it is not possible to write a definitive
treatment of ordered symmetric spaces at this point. On the other hand,
even results considered “standard” by the specialists in the field so far have
either not appeared in print at all or else can be found only in the original
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literature.
This book is meant to introduce researchers and graduate students with

a solid background in Lie theory to the theory of causal symmetric spaces,
to make the basic results and their proofs available, and to describe some
important lines of research in the field. It has gone through various stages
and quite a few people helped us through their comments and corrections,
encouragement, and criticism. Many thanks to W. Bertram, F. Betten, J.
Faraut, S. Helgason, T. Kobayashi, J. Kockmann, Kh. Koufany, B. Krötz,
K.-H. Neeb, and B. Ørsted. We would also like to thank the Mittag-Leffler
Institute in Djursholm, Sweden, for the hospitality during our stay there in
spring 1996.

Djursholm
Gestur Ólafsson
Joachim Hilgert



Introduction

Symmetric spaces are manifolds with additional structure. In particular
they are homogeneous, i.e., they admit a transitive Lie group action. The
study of causality in general relativity naturally leads to “orderings” of
manifolds [149, 157]. The basic idea is to fix a convex cone (modeled after
the light cone in relativity) in each tangent space and to say that a point x in
the manifold precedes a point y if x can be connected to y by a curve whose
derivative lies in the respective cone wherever it exists (i.e., the derivative
is a timelike vector). Various technical problems arise from this concept.
First of all, the resulting “order” relation need not be antisymmetric. This
describes phenomena such as time traveling and leads to the concept of
causal orientation (or quasi-order), in which antisymmetry is not required.
Moreover, the relation may not be closed and may depend on the choice
of the class of curves admitted. Geometric control theory has developed
tools to deal with such questions, but things simplify considerably when
one assumes that the field of cones is invariant under the Lie group acting
transitively. Then a single cone will completely determine the whole field
and it is no longer necessary to consider questions such as continuity or
differentiablility of a field of cones. In addition, one now has an algebraic
object coming with the relation: If one fixes a base point o, the set of points
preceded by o may be viewed as a positive domain in the symmetric space
and the set of group elements mapping the positive domain into itself is
a semigroup, which is a very effective tool in studying causal orientations.
Since we consider only homogeneous manifolds, we restrict our attention to
this simplified approach to causality.

Not every cone in the tangent space at o of a symmetric spaceM leads to
a causal orientation. It has to be invariant under the action of the stabilizer
group H of o. At the moment one is nowhere near a complete classification
of the cones satisfying this condition, but in the case of irreducible semisim-
ple symmetric spaces it is possible to single out the ones which admit such
cones. These spaces are then simply called causal symmetric spaces, and it
turns out that the existence of a causal orientation puts severe restrictions
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INTRODUCTION xi

on the structure of the space. More precisely, associated to each symmetric
space M = G/H there is an involution τ :G → G whose infinitesimal ver-
sion (also denoted by τ) yields an eigenspace decomposition g = h + q of
the Lie algebra g of G, where h, the Lie algebra of H , is the eigenspace for
the eigenvalue 1 and q is the eigenspace for the eigenvalue −1. Then the
tangent space of M at o can be identified with q and causal orientations
are in one-to-one correspondence with H-invariant cones in q.

A heavy use of the available structural information makes it possible to
classify all regular (i.e., containing no lines but interior points) H-invariant
cones in q. This classification is done in terms of the intersection with a
Cartan subspace a of q. The resulting cones in a can then be described
explicitly via the machinery of root systems and Weyl groups.

It turns out that causal symmetric spaces come in two families. If g = k+
p is a Cartan decomposition compatible with g = h+q, i.e., τ and the Cartan
involution commute, then a regularH-invariant cone in q either has interior
points contained in k or in p. Accordingly the resulting causal orientation
is called compactly causal or noncompactly causal. Compactly causal and
noncompactly causal symmetric spaces show a radically different behavior.
So, for instance, noncompactly causal orientations are partial orders with
compact order intervals, whereas compactly causal orientations need neither
be antisymmetric nor, if they are, have compact order intervals. On the
other hand, there is a duality between compactly causal and noncompactly
causal symmetric spaces which on the infinitesimal level can be described
by the correspondence h+ q←→ h+ iq. There are symmetric spaces which
admit compactly as well as noncompactly causal orientations. They are
called spaces of Cayley type and are in certain respects the spaces most
accessible to explicit analysis.

The geometry of causal symmetric spaces is closely related to the ge-
ometry of Hermitian symmetric domains. In fact, for compactly causal
symmetric spaces the associated Riemannian symmetric space G/K, where
K is the analytic subgroup of G corresponding to k, is a Hermitian sym-
metric domain and the space H/(H ∩K) can be realized as a bounded real
domain by a real analog of the Harish–Chandra embedding theorem. This
indicates that concepts such as strongly orthogonal roots that can be ap-
plied successfully in the context of Hermitian symmetric domains are also
important for causal symmetric spaces. Similar things could be said about
Euclidian Jordan algebras.

Harmonic analysis on causal symmetric spaces differs from harmonic
analysis on Riemannian symmetric spaces in various respects. So, for in-
stance, the stabilizer group of the basepoint is noncompact, which accounts
for considerable difficulties in the definition and analysis of spherical func-
tions. Moreover, useful decompositions such as the Iwasawa decomposition
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do not have global analogs. On the other hand, the specific structural infor-
mation one has for causal symmetric space makes it possible to create tools
that are not available in the context of Riemannian or general semisimple
symmetric spaces. Examples of such tools are the order compactification
of noncompactly causal symmetric spaces and the various semigroups as-
sociated to a causal orientation.

The applications of causal symmetric spaces in analysis, most notably
spherical functions, highest-weight representations, and Wiener-Hopf oper-
ators, have not yet found a definitive form, so we decided to give a mere
outline of the analysis explaining in which way the geometry of causal ori-
entations enters. In addition we provide a guide to the original literature
as we know it.

We describe the contents of the book in a little more detail. In Chapter 1
we review some basic structure theory for symmetric spaces. In particular,
we introduce the duality constructions which will play an important role
in the theory of causal symmetric spaces. The core of the chapter consists
of a detailed study of the H- and h-module structures on q. The resulting
information plays a decisive role in determining symmetric spaces admitting
G-invariant causal structures. Two classes of examples are treated in some
detail to illustrate the theory: hyperboloids and symmetric spaces obtained
via duality from tube domains.

In Chapter 2 we review some basic facts about convex cones and give
precise definitions of the objects necessary to study causal orientations.
These definitions are illustrated by a series of examples that will be impor-
tant later on in the text. The central results are a series of theorems due
to Kostant, Paneitz, and Vinberg, giving conditions for finite-dimensional
representations to contain convex cones invariant under the group action.
We also introduce the causal compactification of an ordered homogeneous
space, a construction that plays a role in the analysis on such spaces.

Chapter 3 is devoted to the determination of all irreducible symmetric
spaces which admit causal structures. The strategy is to characterize the
existence of causal structures in terms of the module structure of q and
then use the results of Chapter 1 to narrow down the scope of the theory
to a point where a classification is possible. We give a list of symmetric
pairs (g, τ) which come from causal symmetric spaces and give necessary
and sufficient conditions for the various covering spaces to be causal.

In Chapter 4 we determine all the cones that lead to causal structures
on the symmetric spaces described in Chapter 3. Using duality it suffices
to do that for the noncompactly causal symmetric spaces. It turns out that
up to sign one always has a minimal and a maximal cone giving rise to
a causal structure. The cones are determined by their intersection with a
certain (small) abelian subspace a of q and it is possible to characterize
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the cones that occur as intersections with a. Since the cone in q can be
recovered from the cone in a, this gives an effective classification of causal
structures. A technical result, needed to carry out this program but of
independent interest, is the linear convexity theorem, which describes the
image of certain coadjoint orbits under the orthogonal proction from q to
a.

Chapter 5 is a collection of global geometric results on noncompactly
causal symmetric spaces which are frequently used in the harmonic analysis
of such spaces. In particular, it is shown that the order on such spaces has
compact intervals. Moreover, the causal semigroup associated naturally
to the maximal causal structure is characterized as the subsemigroup of
G which leaves a certain open domain in a flag manifold of G invariant.
The detailed information on the ordering obtained by this characterization
allows to prove a nonlinear analog of the convexity theorem which plays
an important role in the study of spherical functions. Moreover, one has
an Iwasawa-like decomposition for the causal semigroup which makes it
possible to describe the positive cone of the symmetric space purely in
terms of the “solvable part” of the semigroup, which can be embedded in
a semigroup of affine selfmaps. This point of view allows us to compactify
the solvable semigroup and in this way makes a better understanding of
the causal compactification possible.

In Chapter 6 we pursue the study of the order compactification of non-
compactly causal symmetric spaces. The results on the solvable part of
the causal semigroup together with realization of the causal semigroup as a
compression semigroup acting on a flag manifold yield a new description of
the compactification of the positive cone which then can be used to give a
very explicit picture of the G-orbit structure of the order compactification.

The last three chapters are devoted to applications of the theory in har-
monic analysis.

In Chapter 7 we sketch a few of the connections the theory of causal
symmetric spaces has with unitary representation theory. It turns out that
unitary highest-weight representations are characterized by the fact that
they admit analytic extensions to semigroups of the type considered here.
This opens the way to construct Hardy spaces and gives a conceptual inter-
pretation of the holomorphic discrete series for compactly causal symmetric
spaces along the lines of the Gelfand–Gindikin program.

Chapter 8 contains a brief description of the spherical Laplace transform
for noncompactly causal symmetric spaces. We introduce the correspond-
ing spherical functions, describe their asymptotic behavior, and give an
inversion formula.

In Chapter 9 we briefly explain how the causal compactification from
Chapter 2 is used in the study of Wiener-Hopf operators on noncompactly
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causal symmetric spaces. In particular, we show how the results of Chapter
6 yield structural information on the C∗-algebra generated by the Wiener-
Hopf operators.

Appendix A consists of background material on reductive Lie groups and
their finite-dimensional representations. In particular, there is a collection
of our version of the standard semisimple notation in Section A.2. More-
over, in Section A.4 we assemble material on Hermitian Lie groups and
Hermitian symmetric spaces which is used throughout the text.

In Appendix C we describe some topological properties of the set of
closed subsets of a locally compact space. This material is needed to study
compactifications of homogeneous ordered spaces.



Chapter 1

Symmetric Spaces

In this chapter we present those parts of the theory of symmetric spaces
which are essential for the study of causal structures on these spaces. Since
in this book we are mainly interested in the group theoretical aspects, we
use here the definition in [81] which is given in group theoretical rather
than differential geometric terms.

Apart from various well known standard facts we describe several duality
constructions which will play an important role in our treatment of causal
structures. The central part of this chapter is a detailed discussion of
the module structure of the tangent spaces of semisimple non-Riemannian
symmetric spaces. The results of this discussion will play a crucial role in
our study of causal structures on symmetric spaces. Finally we review some
technical decomposition results due to Oshima and Matsuki which will be
needed in later chapters.

In order to illustrate the theory with examples that are relevant in the
context of causal symmetric spaces we treat the hyperboloids in some detail.

1.1 Basic Structure Theory

Definition 1.1.1 A symmetric space is a triple (G,H, τ), where

1) G is a Lie group,

2) τ is a nontrivial involution on G, i.e., τ :G → G is an automorphism
with τ2 = IdG, and

1



2 CHAPTER 1. SYMMETRIC SPACES

3) H is a closed subgroup of G such that Gτ
o ⊂ H ⊂ Gτ .

Here the subscript o means the connected component containing the identity
and Gτ denotes the group of τ -fixed points in G. By abuse of notation we
also say that (G,H) as well as G/H is a symmetric space. 2

The infinitesimal version of Definition 1.1.1 is

Definition 1.1.2 A pair (g, τ) is called a symmetric pair if

1) g is a Lie algebra,

2) τ is a nontrivial involution of g, i.e., τ : g → g is an automorphism
with τ2 = Idg. 2

Let (g, τ) be a symmetric pair and let G be a connected Lie group with
Lie algebra g. IfH is a closed subgroup ofG, then (G,H) is called associated
to (g, τ) if τ integrates to an involution on G, again denoted by τ , such that
(G,H, τ) is a symmetric space. In this case the Lie algebra of H is denoted
by h and it is given by:

h = g(1, τ) := {X ∈ g | τ(X) = X}. (1.1)

Note that g = h⊕ q, where

q = g(−1, τ) := {X ∈ g | τ(X) = −X}. (1.2)

We have the following relations:

[h, h] ⊂ h, [h, q] ⊂ q, and [q, q] ⊂ h. (1.3)

From (1.3) it follows that adq : h → End(q), X 7→ ad(X)|q, is a represen-
tation of h. In particular, (g, h) is a reductive pair in the sense that there
exists an h-stable complement of h in g. On the other hand, if (g, h) is a
reductive pair and the commutator relations (1.3) hold, we can define an
involution τ of g by τ |h = id and τ |q = − id. Then (g, τ) is a symmetric
pair.

Example 1.1.3 (The Group Case I) Let G be a connected Lie group.
Define τ by τ(a, b) := (b, a). Then (G ×G)τ = ∆(G) := {(a, a) | a ∈ G} is
the diagonal in G×G andM = (G×G)/∆(G) is a symmetric space. The
map

G×G 3 (a, b) 7→ ab−1 ∈ G
induces a diffeomorphismM' G intertwining the left action of G×G on
M and the operation (a, b) · c = acb−1 of G×G on G. The decomposition
of g× g into τ -eigenspaces is given by

h = {(X,X) | X ∈ g} ' g
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and

q = {(X,−X) | X ∈ g} ' g. 2

Example 1.1.4 (The Group Case II) Let g be a real Lie algebra, gC

its complexification, and σ: gC → gC the complex conjugation with respect
the real form g of gC, i.e.,

σ(X + iY ) = X − iY, X, Y ∈ g .

Further, let GC be a connected complex Lie group with Lie algebra gC such
that σ integrates to a real involution on GC, again denoted by σ. Then GR,
the analytic subgroup of GC with Lie algebra g, is the connected component
of (GC)σ. In particular, it is closed in GC and GC/GR is a symmetric space.
The decomposition of gC into σ-eigenspaces is given by gC = h+q = g+ ig.

2

Example 1.1.5 (Bounded Symmetric Domains) Let g be a Hermi-
tian Lie algebra and let G be a connected Lie group with Lie algebra
g. Let K be a maximal compact subgroup of G. Then D = G/K is
a bounded symmetric domain. Let H(D) be the group of holomorphic
isometries f : D → D. Then H(D)o, the connected component containing
the identy map, is localy isomorphic to G. Let us assume that G = H(D)o.
Let σD : D → D be a complex conjugation, i.e., σD is an antiholomoprhic
involution. We assume that σ(o) = o, where o = {K}. Define σ : G → G
by

σ(f) = σD ◦ f ◦ σD .

Then σ is a nontrivial involution on G In this case

Gσ = {f ∈ G | f(DR) = DR}

where DR is the real form of D given by DR = {z ∈ D | σD(z) = z}. 2

Example 1.1.6 (Symmetric Pairs and Tube Domains) We have the
following construction in the case where G/K is a tube domain and G is
contained in the simply connected Lie group GC. Consider the elements
Z0 = Zo ∈ z(k), Xo ∈ p and Yo ∈ p, as well as the space a ⊂ p, from
p. 253 and p. 254. We have spec(adZ0) = {0, i,−i} and spec(adXo) =
spec(adYo) = {0, 1,−1}. Let h := g(0, Yo), q+ := g(1, Yo), q− := g(−1, Yo)
and q = q+ ⊕ q−. Then h is a θ-stable subalgebra of g. As [q+, q+] ⊂
g(2, Yo) = {0} and [q−, q−] ⊂ g(−2, Yo) = {0}, it follows that q+ and q−

are both abelian subalgebras of g.
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Define
τ = Ad(expπiYo) : gC → gC .

Then τ |hC
= id and τ |qC

= − id. Hence τ is a complex linear involution
on gC. We notice that τ = C2 in the notation of Lemma A.4.2. As usual,
we denote the involution on GC determined via τ(expX) = exp(τ(X)) for
X ∈ gC by the same letter. We set H := Gτ and M = G/H . Then
(G,H, τ) is a symmetric space. As τ = C2, we get from Lemma A.4.2 and
Theorem A.4.5 that τ(Zo) = −Zo. Hence the induced involution on the
tube domain G/K is antiholomorphic. 2

Let (G,H, τ) be a symmetric space. We set M := G/H and o := 1/H .
Then the map q 3 X 7→ Xo ∈ To(M), given by

Xo(f) :=
d

dt
f(exp(tX) · o)|t=0, f ∈ C∞(M), (1.4)

is a linear isomorphism of q onto the tangent space To(M) ofM at o.
Two symmetric pairs (g, τ) and (l, ϕ) are called isomorphic, (g, τ) '

(l, ϕ), if there exists an isomorphism of Lie algebras λ : g → l such that
λ ◦ τ = ϕ ◦ λ. If λ is only assumed to be injective, then we call (g, τ) a
subsymmetric pair of (l, ϕ). In the same way we can define isomorphisms
and homomorphisms for symmetric pairs (G,H) and also for symmetric
spacesM = G/H .

The symmetric pair (g, h) is said to be irreducible if the only τ -stable
ideals in g containing the Lie algebra gfix :=

⋂

g∈G Ad(g)h are gfix and g.
Note that it plays no role here which group G with Lie algebra g we use in
the definition of gfix.

Let M = G/H be a symmetric space. For a ∈ G we denote the diffeo-
morphism m 7→ a ·m by `a :M→M .

Lemma 1.1.7 Consider the pointwise stabilizer

GM = {a ∈ G | ∀m ∈M : `am = m} = ker(a 7→ `a) ⊂ H

of M in G. Then the Lie algebra of GM is gfix.

Proof: X ∈ g is contained in the Lie algebra of GM if and only if

(exp tX)gH ⊂ gH

for all g ∈ G and all t ∈ R. But this is equivalent to Ad(g)X ∈ h for all
g ∈ G and hence to X ∈ ⋂g∈G Ad(g)h = gfix. 2

Denote by N (H) the set of normal subgroups in G contained in H .
Then N (H) is ordered by inclusion.
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Proposition 1.1.8 1) The group GM is a normal subgroup of G and
contained in H.

2) If N is a normal subgroup of G contained in H, then N ⊂ GM. This
means that GM is the unique maximal element of N (H).

3) Let Adq:H → GL(q) be defined by Adq(h) = Ad(h)|q. Then GM =
kerAdq.

Proof: The first part is obvious. If N is a normal subgroup of G contained
in H , then for all a ∈ G and n ∈ N we have

n · (ao) = a(a−1na) · o = a · o
as a−1na ∈ N . Hence N ⊂ GM and 2) follows. In order to prove 3) we
first observe that GM ⊂ kerAdq since h exp(X)h−1H = exp(X)H for all
h ∈ GM and X ∈ q. To show the converse it suffices to prove that kerAdq

is normal in G. But exp q and H are clearly in the normalizer of kerAdq

and these two sets generate G. 2

Remark 1.1.9 Proposition 1.1.8 shows the assumption gfix = {0} means
that the pair (g, h) is effective, i.e., that the representation adq of h, X 7→
adX |q, is faithful. If (g, h) is effective, we have [q, q] = h since [q, q] + q

clearly is an ideal in g. 2

Remark 1.1.10 Let (g, τ) be an irreducible and effective symmetric pair.
If r is the radical of g, then r is τ -stable. Therefore g is either semisimple
or solvable. If g is solvable, then [g, g] is a τ -stable ideal of g. Hence g

is abelian. As every τ -stable subspace of an abelian algebra is an τ -stable
ideal, it follows that g is one dimensional. 2

The following theorem is proved in [97], p.171.

Theorem 1.1.11 Let G be a connected simply connected Lie group and
τ :G → G an involution. Then the group Gτ of τ-fixed points in G is
connected and the quotient space G/Gτ is simply connected. 2

Let G be a connected simply connected Lie group with Lie algebra g.
Then any involution τ : g → g integrates to an involution on G which we
also denote by τ . Thus Theorem 1.1.11 yields a canonical way to construct
a simply connected symmetric space from a symmetric pair.

Definition 1.1.12 Let (g, τ) be a symmetric pair and G̃ the simply con-
nected Lie group with Lie algebra g. Then the symmetric space M̃ := G̃/G̃τ

described by Theorem 1.1.11 is called the universal symmetric space asso-
ciated to (g, τ). 2
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Note that, given a symmetric spaceM = G/H , the canonical projection
G̃→ G induces a covering map M̃ →M, so that M̃ is indeed the universal
covering space ofM.

Another canonical way to associate a symmetric space to a symmetric
pair is to complexify g and then use a simply connected complex Lie group.

Definition 1.1.13 Let g be a real Lie algebra and gC the complexification
of g. Consider the following involutions of the real Lie algebra gC:

1) σ = σg is the complex conjugation of gC with respect to g,

σ(X + iY ) = X − iY, X, Y ∈ g,

2) τ : gC → gC, the complex linear extension of τ to gC.

3) η := τ ◦ σ = σ ◦ τ , the antilinear extension of τ to γC. 2

The corresponding Lie algebras of fixed points are

gσ
C = g, gτ

C = hC, g
η
C = gc := h + iq.

Note that η depends on τ as well as on the real form g. If necessary we
will therefore write η(τ, g).

Given a symmetric pair (g, τ), let GC be a simply connected complex
Lie group with Lie algebra gC. Then, according to Theorem 1.1.11, τ , σ,
and η can be integrated to involutions on GC with connected fixed point
groups Gσ

C, G
τ
C, and Gη

C, respectively. We set Ǧ := Gσ
C, Ǧ

c := Gη
C and

Ȟ := (Gσ
C ∩Gτ

C) = (Gη
C ∩Gτ

C). Then

M̌ := Gσ
C/(G

σ
C ∩Gτ

C) = Ǧ/Ȟ (1.5)

M̌c := Gη
C/(G

η
C ∩Gτ

C) = Ǧc/Ȟ (1.6)

are symmetric spaces associated to (g, τ) and (gc, τ), respectively.

Lemma 1.1.14 Let (g, τ) be a symmetric pair with g semisimple and de-
note the Killing form of g by B. Then the following holds:

1) q = {X ∈ g | B(X, h) = 0}.

2) The ideal g1 = [q, q] ⊕ q τ-stable ideal and l := {X ∈ g | ∀Y ∈
g1 : B(X,Y ) = 0} is an ideal of g contained in h. In particular, if
gfix = {0}, then g1 = g.
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Proof: 1) As B is nondegenerate and

B(X,Y ) = B(τ(X), Y ) = B(X, τ(Y )) = −B(X,Y )

for all X ∈ h and Y ∈ q, the claim follows from g = h⊕ q.
3) Since B([X,Y ], Z) = −B(Y, [X,Z]) for all X,Y, Z ∈ g, this follows

from (1). 2

Remark 1.1.15 Let (G,H, τ) be a symmetric space with G a noncompact
semisimple Lie group and τ not a Cartan involution. In this case we call
M := G/H a nonRiemannian semisimple symmetric space. For such spaces
it is possible to find a Cartan involution θ that commutes with τ (cf. [99],
p. 337). Consequently we have

g = k⊕ p = h⊕ q = hk ⊕ qk ⊕ hp ⊕ qp, (1.7)

where k = g(+1, θ), p = g(−1, θ) and the subscripts k and p, respectively
denote intersection with k and p, respectively. The above decompositions
of g are orthogonal w.r.t. the inner product (· | ·)θ on g defined in (A.9).

Any subalgebra of g invariant under θ is reductive (cf. [168]). In partic-
ular, the Lie algebra h is reductive. Moreover, the group H is θ-invariant
and θ induces a Cartan decomposition

H = (H ∩K) exp hp. (1.8)

In fact, let x = k expX ∈ H with k ∈ K and X ∈ p. Then x = τ(x) =
τ(k) exp τ(X). Thus k = τ(k), X = τ(X). In particular, exp(X) ∈ Ho ⊂
H whence k = x exp(−X) ∈ H . 2

1.2 Dual Symmetric Spaces

In this section we fix a symmetric pair (g, τ) with semisimple g and a Car-
tan decomposition θ of g commuting with τ . Denote the complex linear
extension of θ to gC also by θ and recall the involutions σ and η from Def-
inition 1.1.13. The decomposition (1.7) of g allows us to construct further
symmetric pairs.

1.2.1 The c-Dual Space M̃c

The fixed point algebra of η is gc = h + iq. Then we have two natural
symmetric spaces associated to the symmetric pair (gc, τ), the universal
symmetric space M̃c (cf. Def. 1.1.12) and the space M̌c (cf. (1.6)). We
call M̃c the c-dual ofM.
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The equality
gc = (hk ⊕ iqp)⊕ (hp ⊕ iqk) (1.9)

yields a Cartan decomposition of gc corresponding to the Cartan involution
θτ . We will write kc := hk ⊕ iqp and pc := hp ⊕ iqk . Analogously, we write
qc for iq . If we want to stress which involution we are using, we will write
(g, τ)c or (g, τ, θ)c.

Comparing the decompositions (1.7) and (1.9), we see that the c-duality
“interchanges” the compact and the noncompact parts of the respective
(−1)-eigenspaces.

There are cases for which c-dual symmetric pairs are isomorphic. The
following lemma describes a way to obtain such isomorphisms.

Lemma 1.2.1 Let g be a semisimple Lie algebra with Cartan involution θ
and corresponding Cartan decomposition g = k + p.

1) Let X ∈ gC be such that gC = gC(0, X)⊕ gC(i,X)⊕ gC(−i,X). Fur-
ther, let

τX := Ad(expπX) = eπ ad X .

Then τX is an involution on gC such that

gC(+1, τX) = gC(0, X) and gC(−1, τX) = gC(i,X)⊕ gC(−i,X) .

If X ∈ k ∪ ip, then g is τX-stable and τX |g commutes with θ.

2) If X ∈ k ∪ ip, define

ϕX = Ad
(

exp(π
2X)

)

= e(π/2) ad X

and
(g, h) := (g, g(1, τX)).

Then ϕ2
X = τX , ϕX |h = id, ϕX |g(±i,X) = ±i id, and in the case that

X ∈ ip, ϕX defines an isomorphism (g, h) ' (gc, h).

Proof: All statements except the last part of 1) follow from the fact that

exp (z ad(X)) |gC(λ,X) = ezλ id .

Let X ∈ k ∪ ip. Then σ(X) = X if X ∈ k and σ(X) = −X if X ∈ ip. As
τX is an involution, we have τX = τ−X . Hence

σ ◦ τX = τσ(X) ◦ σ = τX ◦ σ

and τX commutes with σ. Thus g is τX -stable. That τX commutes with θ
follows in the same way. 2
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1.2.2 The Associated Dual Space Ma

The involution τa := τθ is called the associated or a-dual involution of τ .
We have

ha = gτa

= hk ⊕ qp, qa = g(−1, τa) = qk ⊕ hp

and call

(g, τ, θ)a = (g, τa, θ) (1.10)

the a-dual or associated triple. Since all ideals in |fg are θ-invariant we
see that τ -invariant ideals are automatically τa-invariant and conversely.
In particular, we see that (g, τ) is irreducible and effective if and only if
(g, τa) is irreducible and effective. To define a canonical symmetric space
associated to (g, τa), let

Gτa

o ⊂ Ha := (K ∩H) exp(qp) ⊂ Gτa

. (1.11)

Ha is a group since K ∩H is a group normalizing qp. Thus (Ga, Ha, τa),
where Ga = G, is a symmetric space. We denote G/Ha byMa.

1.2.3 The Riemannian Dual Space Mr

The dual (Riemannian) triple (gr, τr, θr) is defined by

(gr, τr , θr) := (gc, θ|gc, θc)c. (1.12)

As σ|gc = η, it follows that

η(gc, θ) = η ◦ θ = σ ◦ τa = η(g, θ ◦ τ) .

Thus

gr = (ga)c = (gc)r . (1.13)

Furthermore,

gr = (hk ⊕ ihp)⊕ (iqk ⊕ qp) = kr ⊕ pr (1.14)

is a Cartan decomposition of gr corresponding to the Cartan involution
θr = τ |gr . The symmetric pair (gr, τr) is Riemannian and it is called the
Riemannian dual of g or the Riemannian pair associated to (g, τ, θ).

Let Gr be a connected Lie group with Lie algebra gr and Kr the analytic
subgroup of Gr with Lie algebra kr. Then Mr = Gr/Kr is said to be the
(dual) Riemannian form of M. We note thatMr is automatically simply
connected and does not depend on the choice of Gr.
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Example 1.2.2 (The Group Case III) Let L be a connected semisim-
ple Lie group andM = (L×L)/∆(L) as in Example 1.1.3. The associated
symmetric pair is (l× l, τ), where τ(X,Y ) = (Y,X) for X,Y ∈ l. We define
g := l× l, G := L× L and H := ∆(L). Then we have

gc = {(X,X) + i(Y,−Y ) | X,Y ∈ l},
and the projection onto the first component

(X,X) + i(Y,−Y ) = (X + iY,X − iY ) 7→ X + iY

is a linear isomorphism gc → lC which transforms τ into the complex con-
jugation σ: lC → lC with respect to l. Thus the symmetric pair (gc, τ) is
isomorphic to (lC, σ) (cf. Example 1.1.4). If now LC is a simply connected
complex Lie group with Lie algebra lC and LR, is the analytic subgroup
of LC with Lie algebra l, then σ integrates to an involution on LC, again
denoted by σ and LR = Lσ

C (cf. Theorem 1.1.11). Thus LC/LR is simply
connected and hence isomorphic to M̃c.

Let θL be a Cartan involution on L. Let l = lk ⊕ lp be the correspond-
ing Cartan decomposition. Define a Cartan involution on G by θ(a, b) =
(θL(a), θL(b)). Then

τa(a, b) = (θ(b), θ(a)) .

In particular,

Ha = {(a, θ(a)) | a ∈ L} ' L,
ha = {(X, θ(X)) | X ∈ l} ' l,

qa = {(Y,−θ(Y )) | Y ∈ l} ' l,

and
Ma ' L,

where the isomorphism is now given by (a, b)Ha 7→ aθ(b)−1. For the Rie-
mannian dual we notice that

hk = {(X,X) | X ∈ lk} ' lk,

hp = {(X,X) | X ∈ lp} ' lp,

qk = {(X,−X) | X ∈ lk} ' lk,

qp = {(X,−X) | X ∈ lp} ' lp .

The projection onto the first factor,

(X + iY + iS + T,X + iY − iS − T ) 7→ X + iY + iS + T,

defines an isomorphism gr ' lC mapping kr into the compact real form
u = lk⊕ilp. HenceMr ' LC/U , where U is the maximal compact subgroup
corresponding to u. 2
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Example 1.2.3 Let M = G/H be as in Example 1.1.6. We want to
determine the dual symmetric spaces of M. To do this we have to invoke
Lemma 1.2.1. We recall that

τ = τiYo
.

Hence

ϕiYo
= Ad

(

exp
πi

2
Yo

)

: g→ gc

is an isomorphism commuting with τ . Furthermore,

ϕiYo
◦ θ = θ ◦ ϕ−1

iYo
= (θ ◦ τ) ◦ ϕiYo

.

Hence ϕiYo
: (g, τ, θ)→ (gc, τ, θτ) is an isomorphism. We note that ϕiYo

=
Ch in the notation in Lemma A.4.2, page 255.

An sl2-reduction proves the following lemma.

Lemma 1.2.4 Xo = Ad
(

exp−π
2
Zo

)

Yo = [−Zo, Yo]. 2

Let ϕ = ϕ−Zo
. As θ = τZo

we get ϕ◦τ = τ ◦ϕ−1 = τa ◦ϕ and τa = τiXo
.

In particular, ϕ defines an isomorphism (g, ha) ' (g, h). Finally, we have

ϕiXo
◦ θ = θ ◦ ϕ−iXo

= τ ◦ ϕiXo
.

As ϕiXo
|hk⊕qp

= id and ϕiXo
is multiplication by ±i on hp⊕qk, we get that

ϕiXo
: (g, k)→ (gr, kr) is an isomorphism interchanging the role of τ and θ.

We collect this in a lemma.

Lemma 1.2.5 Let τ = τiYo
and θ = τZo

as above. Then the following
holds:

1) ϕiYo
: (g, τ, θ)→ (gc, τ, θτ) is an isomorphism.

2) Let Xo = [−Zo, Yo]. Then τa = τiXo
and ϕ−Zo

: (g, τ, θ) → (g, τa, θ)
is an isomorphism.

3) ϕiXo
: (g, τ, θ)→ (gr, τr, θr) is an isomorphism. 2

2
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1.3 The Module Structure of To(G/H)

LetM = G/H be a non-Riemannian semisimple symmetric space as defined
in Remark 1.1.15. Let τ be the corresponding involution and θ a Cartan
involution of G commuting with τ . Further assume that (g, h) is irreducible
and effective. We will use the notation introduced in Remark 1.1.15. In
this section we will study the H- and h-module structures of q under the
assumptions just spelled out.

The spaces

qH∩K := {X ∈ q | ∀k ∈ H ∩K : Ad(k)X = X} (1.15)

and

qHo∩K = {X ∈ q | ∀k ∈ Ho ∩K : Ad(k)X = X} (1.16)

will play a crucial role in the study of causal structures on irreducible
non-Riemannian semisimple symmetric spaces. We will explore the special
properties of symmetric spaces for which qH∩K or qHo∩K are nontrivial.

Lemma 1.3.1 Let l be a θ-stable subalgebra of g. Let l⊥ := {X ∈ g|∀Y ∈
l : B(Y,X) = 0}. Then g = l ⊕ l⊥ and the Lie algebra generated by l⊥,
g1 = [l⊥, l⊥] + l⊥, is a θ-stable ideal in g.

Proof: That g = l ⊕ l⊥ follows from the fact that −B(·, θ(·)) is positive
definite inner product on g. Let X,Y ∈ l and let Z ∈ l⊥. Then

B(X, [Y, Z]) = −B([Y,X ], Z) = 0,

as l is an algebra. By the Jacobi identity it follows now that g1 is an ideal.
As l is θ-stable, the same holds true for l⊥ and hence for g1. 2

Lemma 1.3.2 The algebra h is a maximal θ-stable subalgebra of g.

Proof: Let l be a θ-stable subalgebra of g containing h and assume that
l 6= g. Then l⊥ 6= {0}. Furthermore, l⊥ ⊂ h⊥ = q. Now the above lemma
shows that [l⊥, l⊥]⊕ l⊥ is an τ -stable ideal in g. As (g, h) is assumed to be
irreducible, we get [l⊥, l⊥]⊕ l⊥ = g. Thus l⊥ = q and the lemma follows. 2

Remark 1.3.3 Lemma 1.3.2 becomes false if we replace θ-stable by τ -
stable as is shown by sl(2,R) with the involution τ :

τ

(

a b
c −a

)

=

(

a −b
−c −a

)

.
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In this case h = R

(

1 0
0 −1

)

. Furthermore,

h ⊂ pmin =

{(

a x
0 −a

)∣

∣

∣

∣

a, x ∈ R

}

,

pmin is τ -stable and a proper subalgebra of sl(2,R). 2

Lemma 1.3.4 Let (g, τ) be an irreducible effective semisimple symmetric
pair. If q is not irreducible as an h-module, then the following holds.

1) q splits into two irreducible components,

q+ := g(1, Y 0) and q− := g(−1, Y 0), (1.17)

such that θ(q+) = q− for any Cartan involution θ commuting with τ .

2) The submodules q± are isotropic for the Killing form and abelian
subalgebras of g.

3) The subalgebras h + q± of g are maximal parabolic.

4) The h-modules q+ and q− are not isomorphic. In particular, q+ and
q− are the only nontrivial η-submodules of q.

Proof: Let V ⊂ q be an h-submodule and V ⊥ ⊂ q its orthogonal com-
plement w.r.t. the Killing form B, which is nondegenerate on q. But
b := V + [V, V ] and note that this is an h-invariant subalgebra of g. More-
over, we have

B([V ⊥, V ], h) = B(V ⊥, [V, h]) ⊂ B(V ⊥, V ) = {0}.

Since the restriction of B to h is also nondegenerate, we conclude that
[V ⊥, V ] = {0}.

If V ⊂ q is a nontrivial irreducible h-submodule which is not isotropic,
then the restriction of B to V is nondegenerate and so q = V ⊕ V ⊥. Since
[b, V ⊥] = {0} and [b, V ] ⊂ V , we see that b is a τ -stable ideal of g, i.e., equal
to g. But this is impossible unless V = q. Thus every proper submodule
of q must be isotropic. Moreover, if q+ is such a submodule, the subspace
q+ + θ(q+) is also an h-submodule which is not isotropic, hence coincides
with q. To complete the proof of (1) and (2) we only have to note that
(q+)⊥ = q+, since q+ is isotropic and of half the dimension of q.

To show (3), note first that we now know

[q+, q−] ⊂ h, [q+, h] ⊂ q+, [q+, q+] ⊂ {0}.
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Therefore q+ acts on g by nilpotent linear maps and the subalgebra h+q+ is
not reductive in g. On the other hand, it is maximal since any subalgebra of
g strictly containing h+q+ contains an h-submodule of q strictly containing
q+, i.e., all of q. Now [10], Chap. 8, §10, Cor. 1 of Th. 2, shows that h+q+,
and hence also h + q− is parabolic.

Part (3) shows that there is an 0 6= X ∈ h∩ p that is central in h and for
which ad(X)|q+ has only positive eigenvalues. Since θ(X) = −X , it follows
that ad(X)|q− has only negative eigenvalues. Thus q+ and q− cannot be
isomorphic as h-modules. 2

Let l be a Lie algebra and a, b ⊂ l. Then we denote the centralizer of a

in b by
zb(a) = {X ∈ b |∀Y ∈ a : [X,Y ] = 0} . (1.18)

The center zl(l) of l will simply be denoted by z(l).

Lemma 1.3.5 Let X ∈ q. Then the following holds.

1) Assume X ∈ qk. Then [X, hk] = 0 if and only if [X, qk] = 0, i.e.,
zqk

(hk) = zqk
(qk) = z(k) ∩ q.

2) Assume X ∈ qp. Then [X, hk] = 0 if and only if [X, qp] = 0, i.e.,
zqp

(hk) = zqp
(qp) = z(ha) ∩ q.

3) qH∩K and qHo∩K are θ-stable, i.e.,

qH∩K = qH∩K
k ⊕ qH∩K

p and qHo∩K = qHo∩K
k ⊕ qHo∩K

p .

4) qHo∩K
k ⊂ z(k) and qHo∩K

p ⊂ z(ha).

Proof: It is obvious that qH∩K is θ-stable. Let B(·, ·) be the Killing form
of g. Then B(·, ·) is negative definite on k. Let X ∈ qk be such that
[X, hk] = 0. If Y ∈ qk, then [X,Y ] ∈ hk. Thus

0 ≥ B([X,Y ], [X,Y ]) = −B(Y, [X, [X,Y ]]) = 0.

Thus [X,Y ] = 0. The other claims are proved similarly. 2

From Lemma 1.3.5.4) we immediately obtain the following corollary.

Corollary 1.3.6 If qHo∩K
k 6= 0, then z(k) 6= 0. 2

Lemma 1.3.7 Suppose that qHo∩K 6= {0}. Then H 6= K and one of the
following cases occurs:

1) g is noncompact, simple with no complex structure, and τ is not a
Cartan involution.
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2) g = g1×g1, where g1 is noncompact, simple with no complex structure,
and τ is the involution (X,Y ) 7→ (Y,X).

3) g is simple with a complex structure and h is a noncompact real form
of g.

Proof: If H = K, then M = G/K is Riemannian. Then g is simple
since (g, h) is irreducible and effective. . Therefore qH∩K ⊂ p and qH∩K

commutes with k. But this is impossible, as k is a maximal subalgebra of g

(apply Lemma 1.3.2 to θ).
In order to prove the lemma, according to [33], p. 6, we have to exclude

two further possibilities:
a) Suppose that g is complex and τ is complex linear. Then it follows

from Lemma 1.3.5 that qHo∩K is a complex abelian algebra that commutes
with h since h = hk ⊕ ihk. But this contradicts Lemma 1.3.2.

b) Suppose that g = g1 × g1, where g1 is noncompact, simple with
complex structure, and τ is the involution (X,Y ) 7→ (Y,X). This case is
c-dual to Case a), as can be seen from Example 1.2.2 (we have to use the
complex structure on gC given by the identification with (g1×g1)×(g1×g1)),
so it also cannot occur if qHo∩L 6= {0}. 2

For information and notation concerning bounded symmetric domains,
refer to Appendix A.4. As τ commutes with θ, we can define an involution
on G/K, also denoted by τ , via τ(aK) = τ(a)K.

Theorem 1.3.8 Suppose that M = G/H is an irreducible effective non-
Riemannian semisimple symmetric space such that qHo∩K

k 6= {0}. Then we
have:

1) G/K is a bounded symmetric domain, and the complex structure can
be chosen such that τ : G/K → G/K is antiholomorphic.

2) g is either simple Hermitian or of the form g1 × g1 with g1 simple
Hermitian and τ(X,Y ) = (Y,X), X,Y ∈ g1.

3) qH∩K
k 6= {0}.

Proof: Lemma 1.3.5 shows that {0} 6= qHo∩K
k ⊂ z(k). Therefore, according

to Lemma 1.3.7, g is either simple, of the form g = hC with h simple, or of
the form g = g1 × g1 with g1 simple.

Suppose that Case 3) of Lemma 1.3.7 holds, i.e., τ is the complex conju-
gation of g with respect to h. Then iqk = hp so that hp has a (Ho∩K)-fixed
point which contradicts the assumption that h is simple.

Suppose that Case 1) of Lemma 1.3.7 holds. Then qHo∩K
k ⊂ z(k) so that

g is Hermitian. In fact, we even see that qHo∩K
k = z(k) = RZ0 in the
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notation of Appendix A.4, and obviously Z0 ∈ qH∩K
k . Note that ad(Z0)

induces a complex structure on p and then, by K-invariance, also on G/K.
As τ(Z0) = −Z0, it follows that τ : G/K → G/K is antiholomorphic w.r.t.
this complex structure.

Finally we suppose that Case 2) of Lemma 1.3.7 holds. Then, similarly
as for Case 1), we find

qHo∩K
k = {(X,−X) | X ∈ z(k1)}.

Thus z(k1) 6= {0} and g1 is Hermitian. Let Z define a complex structure on
G1/K1. Then Z0 = (Z,−Z) ∈ qH∩K

k defines a complex structure on G/K
anticommuting with τ . This implies the claim. 2

Remark 1.3.9 There is a converse of Theorem 1.3.8, as Example 1.1.5
shows: Every antiholomorphic involution of a bounded symmetric domain
D = G/K fixing the origin o = {K} gives rise to an involution τ with
qHo∩K

k 6= {0}. This follows from the fact that an involution on D is an-
tiholomorphic if and only if it anticommutes with ad(Z0)|g/k. But then
[τ(Z0) + Z0, g] ⊂ k, which implies τ(Z0) = −Z0. Therefore τ and θ com-
mute.

Consider the special case G = G1 ×G1. Then we have

τ(z, w) = (w, z)

for z, w ∈ G1/K1, where the complex structure on the second factor is the
opposite of the complex structure on the first factor. 2

Lemma 1.3.10 Suppose thatM = G/H is an irreducible non-Riemannian
semisimple symmetric space with qHo∩K 6= {0}. Then we have:

1) Z(H)∩K is discrete. In particular, the center of h is contained in p.
Furthermore, dim z(h) ≤ 1.

2) Ho ∩K is connected with Lie algebra hk.

3) hk ⊂ [h, h].

4) Let H ′
o be the semisimple analytic subgroup of G with Lie algebra

[h, h]. Then Ho ∩K = H ′
o ∩K.

Proof: If z(h) 6= {0}, then g is simple without complex structure (Lemma
1.3.7). Then [44], p. 443, implies that gC is simple. Thus gr is also simple.
Since z(h) is θ-invariant, we have

z(kr) = z(h) ∩ k + i(z(h) ∩ p) 6= {0}.
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Therefore gr is Hermitian and z(kr) is one-dimensional. Thus z(h) ⊂ hk or
z(h) ⊂ hp. Moreover, adZ|pr is nonsingular for every nonzero Z ∈ z(kr).

1) Let Z ∈ z(h) be nonzero. If Z ∈ hk, then ad(Z)|qHo∩K = 0, which
contradicts the regularity of ad(Z)|pr . Thus z(h) ⊂ hp, and 1) follows.

2) SinceHo is θ-invariant, the Cartan involution ofG restricts to a Cartan
involution on Ho as was noted in (1.8). Therefore K ∩Ho, being the group
of θ-fixed points in the connected group Ho is connected.

3) This follows from the θ-invariance of [h, h] and z(h) ⊂ p.
4) In view of 1) and 2), this is an immediate consequence of 3). 2

Theorem 1.3.11 LetM = G/H be an irreducible non-Riemannian semi-
simple symmetric space with qHo∩K 6= {0}. Then the following statements
are equivalent:

1) dim z(h) = 1.

2) q is reducible as an h-module.

3) dim qHo∩K > 1.

4) dim qHo∩K = 2.

5) G/K is a tube domain and up to conjugation by an element of K, we
have h = g(0, Yo) (cf. Appendix A.4 for the notation).

If these conditions are satisfied, then in addition the following properties
hold:

a) There exists an, up to sign unique, element Y 0 ∈ z(h) ∩ p such that

h = g(0, Y 0), and q = g(+1, Y 0)⊕ g(−1, Y 0) (1.19)

is the decomposition of q into irreducible h-modules.

b) The spaces g(±1, Y 0) are not equivalent as h-modules and

θ(g(+1, Y 0)) = g(−1, Y 0) .

c) g(+1, Y 0)Ho∩K 6= {0} 6= g(−1, Y 0)Ho∩K and

qHo∩K = g(+1, Y 0)Ho∩K ⊕ g(−1, Y 0)Ho∩K . (1.20)

d) dim qHo∩K
k = dim qHo∩K

p = 1

e) qHo∩K
k = qH∩K

k .
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Proof: (1)⇒(2): Suppose that z(h) 6= {0}. Then up to sign there is a
unique Z0

r ∈ z(kr) such that ad(Z0
r ) has the eigenvalues ±i on pr

C since
gr is Hermitian (cf. Lemma 1.3.10). Then Y 0 := −iZ0

r ∈ z(h) ∩ p and
adqC

(Y 0) has eigenvalues 1 and −1. Let σ : gC → gC be the conjugation
with respect to g. Then σ(Y 0) = Y 0. Hence the eigenspaces g(j, Y 0),
j = −1, 0, 1, are σ-stable. It follows that gC(j, Y 0) = g(j, Y 0)C. Therefore
θ(Y 0) = −Y 0 implies g(±1, Y 0) 6= {0}, q = g(+1, Y 0) ⊕ g(−1, Y 0) and,
θ(g(+1, Y 0)) = g(−1, Y 0). As Y 0 is central in h, we get that g(+1, Y 0) and
g(−1, Y 0) are h-invariant. This shows that q is reducible as h-module, i.e.,
(2).

(2)⇒(1): Conversely, suppose that q is reducible. Then q is the direct
sum of two irreducible h-modules q± with θ(q+) = q− (Lemma 1.3.4).

We get
{0} 6= qHo∩K = (q+)Ho∩K ⊕ (q−)Ho∩K

and both of the spaces on the right-hand side are nonzero. Let 0 6= X ∈
(q+)Ho∩K and define

Z := [X, θ(X)] ∈ p ∩ [q, q] ⊂ hp.

Then Z commutes with hk. Apply Lemma 1.3.5 to the involution τ ◦ θ to
see that Z is central in h. Thus we have to show that Z is nonzero. To do
that define Y := X + θ(X) ∈ qHo∩K ∩ k. Then Y ∈ z(k) by Lemma 1.3.5
and Y 6= 0. From Lemma 1.3.7 we see that g is either simple Hermitian or
the direct sum of two copies of a simple Hermitian algebra. Calculating in
each simple factor separately, we obtain

0 6= [X + θ(X), X − θ(X)] = −2Z.

(1),(2)⇒ a),b),c): Assertion a) follows from Lemma 1.3.4 and the fact
that Y 0 has different eigenvalues on the two irreducible pieces. To prove b)
and c), consider 0 6= X ∈ qHo∩K . Let X+ and X− be the projections of X
onto g(+1, Y 0) and g(−1, Y 0), respectively. Then X± ∈ g(±1, Y 0)Ho∩K ,
and either X+ or X− is nonzero. Obviously,

θ
(

g(+1, Y 0)Ho∩K
)

= g(−1, Y 0)Ho∩K ,

and θ ◦Ad(k) = Ad(k) ◦ θ for all k ∈ H ∩K. Thus (1.20) follows.
(3)⇒(1): Suppose that dim qHo∩K > 1. As the commutator algebra

[h, h] is semisimple, it follows from Lemma A.3.5 that q is reducible as an
[h, h]-module. If z(h) were zero we would have (2) and a contradiction to
the equivalence of (1) and (2).

(1)⇒(4): In view of Theorem 1.3.11.4), we see that Lemma A.3.5, applied
to H ′

o, proves dim(qHo∩K) = 2, since q contains precisely two irreducible
[h, h]-submodules by a).
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(4)⇒(3): This is obvious.
(1)⇒ d): Since the spaces g(±, Y 0)Ho∩K get interchanged by θ, we

see that qHo∩K contains nonzero elements in k and in p. This proves
dim(q+)Ho∩K = dim(q−)Ho∩K = 1.

(1)⇒ e): Apply Theorem 1.3.8 to obtain qH∩K
k = qHo∩K

k 6= {0} from d).

(1)⇒(5): Since qHo∩K
k 6= {0}, we can apply Theorem 1.3.8, which shows

that g is Hermitian since h is not semisimple. Choose a maximal abelian
subspace a0 of p containing Y 0. Since h = g(0, Y 0), we have a0 ⊂ h. The
restricted roots vanishing on Y 0 are precisely the restricted roots of the
pair (h, a0). In particular, there is at least one restricted root not vanishing
on Y 0. But the spectrum of ad(Y 0) is {−1, 0, 1} so that Moore’s Theorem
A.4.4 shows that G/K is of tube type (cf. also Theorem A.4.5).

There exists a k ∈ K such that Ad(k)a0 = a is the maximal abelian
subspace of p described in Appendix A.4. Thus we may assume that Y 0 ∈ a.
Conjugating with a suitable Weyl group element, we may even assume that
Y 0 in the closure of the positive Weyl chamber. But then all positive
restricted roots which do not belong to the pair (h, a) take the value 1 on
Y 0, which proves that Y 0 = Yo.

(5)⇒(1): Since h is the centralizer of an element in g it clearly has a
nontrivial center. 2

In the following we will choose an element Y 0 ∈ z(h) ∩ p in the way
Theorem 1.3.11 describes it, whenever it is possible.

Example 1.3.12 Consider the conjugation

τ

((

a b
c d

))

=

(

0 1
1 0

)(

a b
c d

)(

0 1
1 0

)

=

(

d c
b a

)

(1.21)

on G = SL(2,R). It commutes with the Cartan involution θ(g) = tg−1 and
satisfies

Gτ = ±
{

h(t) :=

(

cosh t sinh t
sinh t cosh t

) ∣

∣

∣

∣

t ∈ R

}

.

Moreover, we have

K = Gθ =

{

k(s) :=

(

cos s − sin s
sin s cos s

) ∣

∣

∣

∣

s ∈ R

}

.

Note that G is contained in its simply connected complexification GC =
SL(2,C). The above formula defines an involution τ on GC which on gC is
the complex linear extension of τ on g. The involution η on GC is given by

η

(

a b
c d

)

=

(

d c
b a

)

,
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which implies Ǧc = SUo(1, 1) and Ȟ = SO(1, 1). In particular, we see that
Ȟ is not connected. The corresponding space M̌ = G/Ȟ can be realized

as the Ad(G)-orbit of the element

(

1 0
0 −1

)

∈ g, and this orbit is

{(

a b+ c
b− c −a

)

| a2 + b2 − c2 = 1

}

,

i.e., a one-sheeted hyperboloid.
On the Lie algebra level, τ is given by the same conjugation and we find

h = R

(

0 1
1 0

)

⊂ p,

qk = R

(

0 1
−1 0

)

,

qp = R

(

1 0
0 −1

)

= ha .

Moreover, we see that gc = su(1, 1) and kc = iqp. Set

Y 0 =
1

2

(

0 1
1 0

)

∈ hp ,

X0 =
1

2

(

1 0
0 −1

)

∈ qp,

Z0 =
1

2

(

0 −1
1 0

)

∈ qk,

Y+ =

(

0 1
0 0

)

= Y 0 − Z0,

Y− =

(

0 0
1 0

)

= Y 0 + Z0 = −θ(Y+) = τ(Y+),

X+ =
1

2

(

1 −1
1 −1

)

= X0 + Z0,

X− =
1

2

(

1 1
−1 −1

)

= X0 − Z0 = −θ(X+).

Then we have

g(±1, Y 0) = RX±, g(0, Y 0) = RY 0 = h .

The spaces g(±1, Y 0) are the irreducible components of q as Gτ - and h-
modules. More precisely. we have

Adh(t)(rX+ + sX−) = e2trX+ + e−2tsX−.
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Further, we have

qGτ∩K
k = RZ0, qGτ∩K

p = RX0,

spec(adX0) = spec(adY 0) = {−1, 0, 1} ,
and

spec(adZ0) = {−i, 0, i}. 2

Corollary 1.3.13 Let M be an irreducible non-Riemannian semisimple
symmetric space with qHo∩K 6= {0}. Then q is reducible as an h-module
if and only if (gc, h) is isomorphic to (g, h). In that case there exists an
Y 0 ∈ z(h) ∩ p such that

τ = exp(iπ adY 0) (1.22)

and
Ho = H ′

o × exp RY 0 . (1.23)

Proof: Suppose that q is reducible as an h-module. Then Theorem 1.3.11
shows that we can find an element Y 0 ∈ z(h) ∩ p such that

q = g(+1, Y 0)⊕ g(−1, Y 0) .

Now apply Lemma 1.2.1 to iY 0 to see that τ = τiY 0 and that ϕiX0 : (g, h)→
(gc, h) is an isomorphism.

Conversely, suppose that (g, h) and (gc, h) are isomorphic. Choose an
isomorphism λ: gc → g. We may assume that qHo∩K

k 6= {0}. In fact,

otherwise we replace λ by λ−1: g→ gc. As iqk = qc
p, we get (qc)

Ho∩K
p 6= {0}.

But qk ∩λ
(

qc
p

)

= {0}, so dim qHo∩K = 2. Thus Theorem 1.3.11 shows that
q is reducible as an h module and h = [h, h]+RY 0. Considering the Cartan
decomposition of Ho, we see that we also have the global version of this
fact, which is (1.23). 2

Lemma 1.3.14 LetM be an irreducible non-Riemannian semisimple sym-
metric space. Suppose that q is reducible as an h-module but irreducible as
an H-module. Fix Y 0 as in Theorem 1.3.11 and set

H1 = {h ∈ H | Ad(h)(g(+1, Y 0)) = g(+1, Y 0)} .

Then H1 is a θ-stable normal subgroup of H. Moreover, there exists an
element k ∈ K ∩H such that

Ad(k)g(+1, Y 0) = g(−1, Y 0)

and
H = H1 ∪̇ kH1 .
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Proof: We write q± := g(±1, Y 0) for the h-irreducible submodules of q.
Since q is irreducible as an H-module, and H = (H ∩K) exphp by (1.8),
we can find a k ∈ K ∩H such that

Ad(k)q+ 6= q+.

As Ad(k)q+ ∩ q+ is Ho-stable and q+ is irreducible as an Ho-module, we
get Ad(k)q+ ∩ q+ = {0}. Thus

q = q+ ⊕Ad(k)q+ = q+ ⊕ q−.

The Ho-representations q+ and q− are inequivalent by Theorem 1.3.11.
Thus Ad(k)q+ = q−. Fix an h ∈ H \ H1. Then it follows as above that
Ad(h)q+ = q− = Ad(k)q+. Hence Ad(k−1h)q+ = q+ and H1 is subgroup
of index 2 in H . Therefore H1 is normal in H . To prove the θ-stability let
h ∈ H1 and recall that exp p ⊂ Ho ⊂ H1. Then (1.8) shows that there is a
k̃ ∈ H ∩K and an X ∈ hp with h = k̃ exp(X). Thus k̃ = h exp(−X) ∈ H1

and H1 is θ-stable. 2

The following example shows that the situation of Lemma 1.3.14 actu-
ally occurs.

Example 1.3.15 LetM = G/H be as in Example 1.1.6 and consider the
space Ad(G)/Ad(G)τ , where Ad(G)τ = {ϕ ∈ Ad(G) | ϕτ = τϕ}. Then
Ad(G)/Ad(G)τ is a non-Riemannian semisimple symmetric space which is
locally isomorphic toM. Moreover, θ ∈ Ad(G)τ , so that q is irreducible as
an Ad(G)τ -module. 2

1.4 A-Subspaces

LetM = G/H be a symmetric space with G connected semisimple. In this
section we recall some results from [143] on the orbit decomposition ofM
with respect to H . It can be skipped at first reading because there are no
proofs in this section and the results will be used only much later.

A maximal abelian subspace aq of q is called an A-subspace if it consists
of semisimple elements of g. For X ∈ q consider the polynomial

det (t− ad(X)) =

n
∑

j=1

dj(X)tj .

Let k be the least integer such that dk does not vanish. Then the elements

q′ := {X ∈ q | dk(X) 6= 0}
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are called q-regular elements . The set of q-regular elements is open and
dense in q.

Let φ : G→ G be the map defined by

φ(g) = gτ(g−1) .

This map factors to G/Gτ and defines a homeomorphism between G/Gτ

and the closed submanifold φ(G) of G ([143], p.402). We have the following
maps:

G −→ G/H
↓

G/Gτ −→ φ(G).

For x ∈ φ(G) consider the polynomial

det (1− t−Ad(x)) =
n
∑

j=1

Dj(x)t
j .

Then the elements of

φ(G)′ := {x ∈ φ(G) | Dk(x) 6= 0}

are called the φ(G)-regular elements . The centralizer

Aq := Zφ(G)(aq)

of an A-subspace aq is called an A-subset. We set

A′
q := Aq ∩ φ(G)′.

Oshima and Matsuki, in [143], prove the following results.

Theorem 1.4.1 Let the notation be as above. Then the following holds:

1) Each A-subspace is conjugate under (Gτ )o to a θ-invariant one.

2) The number of H-conjugacy classes of A-subspaces is finite. This
number can be described in terms of root systems.

3) The decomposition of an A-subset into connected components has the
form

Aq =
⋃

j∈J

kj exp aq,

where kj ∈ φ(K) and J is finite if the center of G is finite (which is
the case if G ⊂ GC).
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4) If aq is an A-subspace, then

Zφ(GC) ((aq)C) = exp(aq)C.

5) φ(G)′ is open dense in φ(G). 2

Theorem 1.4.2 Let (aq,1, . . . , aq,r) be a set of θ-invariant A-subspaces rep-
resenting the H-conjugacy classes. Then the set

r
⋃

j=1

Hφ−1
(

A′
q,j

)

is open dense in G. 2

1.5 The Hyperboloids

Let p, q ∈ Z+, n = p+ q, and V = Rn. We write elements of V as v =
(

x
y

)

with x ∈ Rp and y ∈ Rq. Note that for p = 1, x is a real number. We write
pr1(v) := x and pr2(v) = y. Define the bilinear form Qp,q on Rn by

Qp,q(v, w) = (pr1(v)| pr1(w)) − (pr2(v)| pr2(w)) (1.24)

= v1w1 + . . .+ vpwp − vp+1wp+1 − . . .− vnwn. (1.25)

Here (·|·) is the usual inner product on Rn.
For r ∈ R+, p, q ∈ N, n = p+ q ≥ 1 define

Qp,q
−r = Q−r := {v ∈ Rn+1 | Qp,q+1(v, v) = −r2} (1.26)

and
Qp,q

+r = Q+r := {x ∈ Rn+1 | Qp+1,q(x, x) = +r2}. (1.27)

Then Q±r has dimension n and

Tm(Q+r) ' {v ∈ Rn+1
p+1 | Qp+1,q(v,m) = 0} ' Rn

p .

The linear isomorphism

Ln : Rn 3 t(x1, . . . , xn) 7→ t(xn, . . . , x1) ∈ Rn

satisfies Qq,p ◦ (Ln, Ln) = −Qp,q. Hence Ln+1 maps Qp,q
+r bijectively onto

Qq,p
−r . Furthermore,

Sq × Rp 3 (v, w) 7→ F (v, w) := t
(

w,
√

r2 + ‖w‖2 v
)

∈ Rn+1
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satisfies

Qp,q+1(F (v, w), F (v, w)) = ‖w‖2 − (r2 + ‖w‖2) = −r2

and induces a diffeomorphism

Q−r ' Sq × Rp, (1.28)

where the inverse is given by

(

v

w

)

7→
(

w

‖w‖ , v
)

.

Using that on Q−r, we have ‖w‖2 = r2 + ‖v‖2. In the same way, or by
using the map Ln+1, it follows that Sp ×Rn−p ' Q+r. In particular, Q−r,
respectively Q+r, is connected except for p = n (respectively p = 0), where
it has two components.

Let O(p, q) be the group

O(p, q) := {a ∈ GL(n,R) | ∀v, w ∈ Rn : Qp,q(av, aw) = Qp,q(v, w)}.

Consider Ip,q :=

(

Ip 0
0 −Iq

)

, where Im is the identity matrix of size m×m.

With this notation we have

O(p, q) = {a ∈ GL(n,R) | taIp,qa = Ip,q}.

In block form O(p, q) can thus be written as the group of block matrices
(

A B
C D

)

∈ GL(n,R) satisfying the following relations:

A ∈M(p,R), B ∈M(p× q,R), D ∈M(q,R), C ∈M(q × p,R),

and

tAA− tCC = Ip,
tAB − tCD = 0, (1.29)
tBB − tDD = −Iq.

Here M(l×m,K) denotes the m×l matrices with entries in K and M(m,K)
:= M(m×m,K).

The group O(p, q), pq 6= 0 has four connected components, described in
the following way, writing

(

A B
C D

)

∈ O(p, q).

1) detA ≥ 1 and detD ≥ 1 (the identity component), representative In,
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2) detA ≥ 1 and detD ≤ −1, representative

(

Ip 0
0 Iq−1,1

)

,

3) detA ≤ −1 and detD ≥ 1, representative

(

Ip−1,1 0
0 Iq

)

,

4) detA ≤ −1 and detD ≤ −1, representative

(

Ip−1,1 0
0 Iq−1,1

)

.

Let SO(p, q) := O(p, q) ∩ SL(n,R). Then

O(p, q)o = SOo(p, q) := SO(p, q)o .

For the Lie algebras we have

o(p, q) = so(p, q) = {X ∈ gl(n,R) | Ip,qX + tXIp,q = 0}

or, in block form,

so(p, q) =

{(

A B
C D

)∣

∣

∣

∣

tA = −A, tD = −D, tB = C

}

. (1.30)

It is clear that O(p+1, q) acts on Q+r. Let {e1, . . . , en} be the standard
basis for Rn.

Lemma 1.5.1 For p, q > 0 the group SOo(p + 1, q) acts transitively on
Q+r. The isotropy subgroup at re1 is isomorphic to SOo(p, q). Whence, as
a manifold,

Q+r ' SOo(p+ 1, q)/ SOo(p, q).

Proof: We may and will assume that r = 1. Let v =
(

x
y

)

∈ Q1. Then, using

Witt’s theorem, we can find A ∈ SOo(p+ 1) and D ∈ SOo(q) such that

Ax = ‖x‖e1 and Dy = ‖y‖ep+2.

As

(

A 0
0 D

)

∈ SOo(p+1, q), we may assume x = λe1 and y = µep+2 with

λ, µ > 0 and λ2 − µ2 = 1. But then a(e1) = v with

a =







λ 0 µ 0
0 Ip 0 0
µ 0 λ 0
0 0 0 Iq−1






∈ SOo(p+ 1, q),

where the block structure of a is according to the partition (1, p, 1, q−1) of
n+ 1. The last statement is a direct calculation and is left to the reader.2
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Now Ln+1(r, 0, . . . , 0) = (0, . . . , 0, r), and on the group level the conju-
gation

Ad(Ln+1) : a 7→ Ln+1aL
−1
n+1

sets up an isomorphism of groups O(q + 1, p) ' O(p, q + 1) mapping the
stabilizer of (r, 0, . . . , 0) onto the stabilizer O(p, q) of (0, . . . , 0, r). Thus

Q−r ' O(p, q + 1)/O(p, q) = SOo(p, q + 1)/ SOo(p, q).

Next we show that the hyperboloids Q±r are symmetric spaces. We
will only treat the case O(p+ 1, q)/O(p, q), as the other case follows by
conjugation with Ln+1. The involution τ on O(p+ 1, q) is conjugation by
I1,n. Then

O(p+ 1, q)τ
o = SOo(p, q) ⊂ O(p+ 1, q)re1 ⊂ O(p+ 1, q)τ .

The involution τ on the Lie algebra g = so(p+ 1, q) is also conjugation by
I1,n. Then h = so(p, q) = gτ and defining

q(v) :=

(

0 −t(vIp,q)
v 0

)

(1.31)

for v ∈ Rn we find a linear isomorphism

Rn 3 v 7→ q(v) ∈ q (1.32)

which satisfies

q(av) = aq(v)a−1, a ∈ SOo(p, q),

Qp,q(v, w) = −1

2
Tr q(v)q(w).

The c-dual of a hyperboloid is again a hyperboloid or at least a covering
of a hyperboloid. More precisely,

(so(2, n− 1), so(1, n− 1))c = (so(1, n), so(1, n− 1))

which, by abuse of notation, can be written Qc
+1 ' Q−1. In fact, let q and

q1 denote the map from (1.32) for the case of (so(2, n−1), so(1, n−1)) and
(so(1, n), so(1, n− 1)), respectively. For X ∈ so(1, n− 1) ⊂ so(2, n− 1) we
define λ(X) ∈ so(1, n− 1) ⊂ so(1, n) by

λ

((

0
X

))

=

(

X
0

)

.

Then
so(2, n− 1)c 3 X + iq(v) 7→ λ(X) + q1(v) ∈ so(1, n)
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is a Lie algebra isomorphism.

Notes for Chapter 1

The material of the first section in this chapter is mostly standard and can be

found in [81, 97]. The classification of semisimple symmetric spaces is due to M.

Berger [5]. The dual constructions presented here and the relations between them

can be found in [146]. The importance of the c-dual for causal spaces was pointed

out in [129, 130], where one can also find most of the material on the h-module

structure of q. The version of Lemma 1.3.4 presented here was communicated to

us by K.-H. Neeb.



Chapter 2

Causal Orientations

In this chapter we recall some basic facts about convex cones, their duality,
and linear automorphism groups which will be used throughout the book.
Then we define causal orientations for homogeneous manifolds and show
how they are determined by a single closed convex cone in the tangent
space of a base point invariant under the stabilizer group of this point.
Finally, we describe various causal orientations for the examples treated in
Chapter 1.

2.1 Convex Cones and Their Automorphisms

Let V be a finite-dimensional real Euclidean vector space with inner prod-
uct (·|·). Let R+ := {λ ∈ R | λ > 0} and R

+
0 = R+ ∩ {0}. A subset C ⊂ V

is a cone if R+C ⊂ C and a convex cone if C in addition is a convex subset
of V, i.e., u, v ∈ C and λ ∈ [0, 1] imply λu + (1 − λ)v ∈ C. Thus C is a
convex cone if and only if for all u, v ∈ C and λ, µ ∈ R+, λu+µv ∈ C. The
cone C is called nontrivial if C 6= −C. Note that C 6= {0}, and C 6= V if
C is nontrivial. We set

1) VC := C ∩ −C,

2) < C >:= C − C = {u − v | u, v ∈ C},
3) C∗ := {u ∈ V | ∀v ∈ C : (v | u) ≥ 0}.

Then VC and < C > are vector spaces called the edge and the span of C.
The set C∗ is a closed convex cone called the dual cone of C. Note that

29
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this definition agrees with the usual one under the identification of the dual
space V∗ with V by use of the inner product (·|·). If C is a closed convex
cone we have C∗∗ = C and

(C∗ ∩ −C∗) =< C >⊥, (2.1)

where for a subset U in V we set U⊥ = {v ∈ V | ∀u ∈ U : (u | v) = 0}.

Definition 2.1.1 Let C be a convex cone in V. Then C is called generating
if < C >= V and pointed if there exists a v ∈ V such that for all u ∈ C\{0}
we have (u | v) > 0. If C is closed, it is called proper if VC = {0}, regular
if it is generating and proper, and and self-dual if C∗ = C.

The set of interior points of C is denoted by Co or int(C). The interior of
C in its linear span < C > is called the algebraic interior of C and denoted
algint(C).

Let S ⊂ V. Then the closed convex cone generated by S is denoted by
cone(S):

cone(S) :=

{

∑

finite

rss

∣

∣

∣

∣

∣

s ∈ S, rs ≥ 0

}

. (2.2)

The set of closed regular convex cones in V is denoted by Cone(V). 2

If C is a closed convex cone, then its interior Co is an open convex cone.
If Ω is an open convex cone, then its closure Ω := cl(Ω) is a closed convex
cone. For an open convex cone we define the dual cone by

Ω∗ := {u ∈ V | ∀v ∈ Ω \ {0} : (u | v) > 0} = int(Ω
∗
).

If Ω is proper we have Ω∗∗ = Ω. With this modified version of duality for
open convex cones it also makes sense to talk about open self-dual cones.

Example 2.1.2 (The Forward Light Cone) For n ≥ 2, q = n− 1 and
p = 1 we define the (semialgebraic) cone C in Rn by

C := {v ∈ Rn | Q1,q(v, v) ≥ 0, x ≥ 0}

and set
Ω := Co = {v ∈ Rn | Q1,q(v, v) > 0, x > 0}.

C is called the forward light cone in Rn. We have v =
(

x
y

)

∈ C if and only

if x ≥ ‖y‖. If v ∈ C ∩−C, then 0 ≤ x ≤ 0 and thus x = 0. We get ‖y‖ = 0
and hence y = 0. Thus v = 0 and C is proper. For v, v′ ∈ C we calculate

(v′ | v) = x′x+ (y′ | y) ≥ ‖y′‖ ‖y‖+ (y′ | y) ≥ 0
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so that C ⊂ C∗. For the converse let v =
(

x
y

)

∈ C∗. Then it follows by
testing against e1 ∈ Ω that x ≥ 0. We may assume, that y 6= 0. Define w
by pr1(w) = ‖y‖ and pr2(w) = −y. Then w ∈ C and

0 ≤ (w|v) = x‖y‖ − ‖y‖2 = (x− ‖y‖)‖y‖.

If follows that x ≥ ‖y‖. Therefore y ∈ C so that C∗ ⊂ C and hence C is
self-dual. In the same way one can show that also Ω is self-dual. 2

Remark 2.1.3 Let C be a closed convex cone in V. Then the following
are equivalent:

1) Co is nonempty.

2) C contains a basis of V.

3) < C >= V. 2

Proposition 2.1.4 Let C be a nonempty closed convex cone in V. Then
the following properties are equivalent:

1) C is pointed,

2) C is proper.

3) int(C∗) 6= ∅.

Proof: The implications “(1)⇒(2)” and “(3)⇒(1)” are immediate. Assume
now that C is proper. Then by (2.1) we have

< C∗ >= (VC)⊥ = V,

so C∗ is generating. Now Remark 2.1.3 shows int(C∗) 6= ∅ and (3) follows.
2

Corollary 2.1.5 Let C be a closed convex cone. Then C is proper if and
only if C∗ is generating. 2

Corollary 2.1.6 Let C be a convex cone in V. Then C ∈ Cone(V) if and
only if C∗ ∈ Cone(V). 2

A face F of a closed convex cone C ⊂ V is subset of C such that v, v′ ∈
C \ F with v, v′ ∈ C implies v ∈ C \ F or v′ ∈ C \ F . We denote the set
of faces of a cone C by Fa(C). Note that Fa(C) is a lattice with respect to
the inclusion order.

A cone C in a finite-dimensional vector space V is said to be polyhedral
if it is an intersection of finitely many half-spaces. For the following result
see [55].
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Remark 2.1.7 Let V be a finite-dimensional vector space and W ⊂ V .
Then 1)−3) are equivalent and imply 4), and 5).

1) There exists a finite subset E ⊂ V such that W = cone(E) =
∑

v∈E R+v.

2) W is a polyhedral cone.

3) The dual wedge W ∗ ⊂ V ∗ is polyhedral.

4) For every face F ∈ Fa(W ) there exists a finite subset D ⊂ E such
that the following assertions hold:

a) F = cone(D).

b) W − F = cone(E ∪ −D) is a cone.

c) VW−F = F − F = cone(D ∪ −D).

d) < F > ∩W = F .

5) The mapping

op : Fa(W )→ Fa(W ∗), F 7→ F⊥ ∩W ∗ (2.3)

defines an antiisomorphism of finite lattices. Moreover,

< op(F ) >= F⊥ ∀F ∈ Fa(W ). 2

We introduce some notation that will be used throughout the book. Let
W be a Euclidean vector space and let V be a subspace. Denote by prV

or simply pr the orthogonal projection prV :W→ V. If C is a cone in W,
then we define PV

W (C), IV
W (C) ⊂ V by

PW
V (C) = prV (C) and IW

V (C) = C ∩V . (2.4)

If the role of W and V is clear from the context, we simply write P (C)
and I(C) .

Lemma 2.1.8 Let W be Euclidean vector space and let V be a subspace
of W. Denote by pr:W → V the orthogonal projection onto V. Given
C ∈ Cone(W), we have I(C∗) = P (C)∗.

Proof: Let Z ∈ C and let X = pr(Z) ∈ P (C). If Y ∈ I(C∗), then (Y |X) =
(Y |Z) ≥ 0. Thus Y ∈ P (C)∗. Conversely, assume that X ∈ P (C)∗ and
Y ∈ C. Then Y = prY + Y ⊥ with Y ⊥ ⊥ V. In particular, pr(Y ) ∈ P (C).
Therefore we have

(Y |X) = (pr(Y )|X) ≥ 0

and hence X ∈ I(C∗). 2
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Lemma 2.1.9 Suppose that τ :W → W is an involutive isometry with
fixed point set V. Let C̃ ∈ Cone(W) with −τ(C̃) = C̃. Then IW

V (C̃) =
PW

V (C̃) and IW
V (C̃∗) = IW

V (C̃)∗.

Proof: Let X = X+ +X− ∈ C̃, where the subscripts denote the projections
onto the (±1) eigenspaces of τ . As −τ(C̃) = C̃, it follows that −τ(X) =
−X+ +X− ∈ C̃. Hence X− = 1

2 (X − τ(X)) ∈ C̃. Thus P (C̃) ⊂ I(C̃). But

we always have I(C̃) ⊂ P (C̃). Hence P (C̃) = I(C̃). Let Y = Y++Y− ∈ C̃∗.
Since −τ(C̃) = C̃ implies −τ(C̃∗) = C̃∗, we find Y− ∈ C̃∗. Lemma 2.1.8
shows that P (C̃∗) = I(C̃)∗ and thus I(C̃∗) = I(C̃)∗. 2

Next we turn to linear automorphism groups of convex cones. For a
convex cone C we denote the automorphism group of C by

Aut(C) := {a ∈ GL(V) | a(C) = C}. (2.5)

If C is open or closed, then Aut(C) is closed in GL(V). In particular,
Aut(C) is a linear Lie group. If we denote the transpose of a linear operator
a by ta, we obtain

Aut(C∗) = t Aut(C) (2.6)

whenever C is an open or closed convex cone.

Remark 2.1.10 Equation (2.6) shows that if C is an open or closed self-
dual cone in V, then Aut(C) is a reductive subgroup of GL(V) invariant
under the involution a 7→ θ(a) := ta−1. The restriction of θ to the com-
mutator subgroup of the connected component Aut(C)o of Aut(C)o is a
Cartan involution. 2

Definition 2.1.11 Let G be a group acting (linearly) on V. Then a cone
C ⊂ V is called G-invariant if G · C = C. We denote the set of invariant
regular cones in V by ConeG(V). A convex cone C is called homogeneous
if Aut(C) acts transitively on C. 2

For C ∈ Cone(V) we have Aut(C) = Aut(Co) and C = ∂C ∪ Co =
(C \ Co) ∪ Co is a decomposition of C into Aut(C)-invariant subsets. In
particular, a nontrivial closed regular cone can never be homogeneous.

Remark 2.1.12 Let V ⊂W be Euclidian vector spaces with orthogonal
projection prV :W → V. Suppose that L is a group acting on W and N
is a subgroup of L leaving V invariant. Let C ⊂ W be an L-invariant
convex cone. Then I(C) is N -stable. If furthermore tN = N , then P (C)
is N -invariant, too. In fact, the first claim is trivial. For the second, note
that tN = N implies that V⊥ is N -invariant. Hence pr(n ·w) = n · pr(w)
for all w ∈W and P (C) is N -invariant.
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Now let c be an N -invariant cone in V. We define the extension EV,N
W,L(c)

of c to W by
EW,L

V,N (C) = conv (L · C) . (2.7)

If the roles of L,N,V, and W are clear, we will write E(C), EL
N (C) or

EW
V (C) instead of EW,L

V,N (C). If N1 is a subgroup of N acting trivially on
V, then the group N/N1 acts on V. By abuse of notation we replace N by
N/N1 in that case. 2

Theorem 2.1.13 Let G be a Lie group acting linearly on the Euclidean
vector space V and C ∈ ConeG(V). Then the stabilizer in G of a point in
Co is compact.

Proof: Let Ω := Co. First we note that for every v ∈ Ω the set U = Ω∩(v−
Ω) is open, nonempty (1

2v ∈ U), and bounded. Thus we can find closed balls

Br(
1
2v) ⊂ U ⊂ BR(1

2v). Let a ∈ Aut(Ω)v = {b ∈ Aut(Ω) | b · v = v}. From

a ·Ω ⊂ Ω and a ·v = v we obtain a(U) ⊂ U . Therefore a(Br(
1
2v)) ⊂ BR(1

2v)
and a(1

2v) = 1
2v implies ‖a‖ ≤ R/r. Thus Aut(Ω)v is closed and bounded,

i.e., compact. 2

Example 2.1.14 (H+(m,K)) For K = R or C we let V be the real vector
space H(m,K) of Hermitian matrices over K,

V = H(m,K) := {X ∈M(m,K) | X∗ = X},

where M(m,K) denotes the set of m ×m matrices with entries in K and
X∗ := tX . Then n = dimR V is given by

1) n = m(m+ 1)/2 for K = R

2) n = m2 for K = C.

Define an inner product on V by

(X | Y ) := Re TrXY ∗, X, Y ∈ V.

Then the set

Ω = H+(m,K) := {X ∈ H(m,K) | X > 0}, (2.8)

where > means positive definite, is an open convex cone in V. The closure
C of Ω is the closed convex cone of all positive semidefinite matrices in
H(m,K). Let Y = Im denote the m×m identity matrix. Then for X ∈ C,
X 6= 0, (X | Y ) > 0 as all the eigenvalues of X are non-negative and X 6= 0.
Thus C is proper.
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We claim that C and Ω are self-dual. To prove that, let e1, . . . , em denote
the standard basis for Km, ej = t(δ1,j , . . . , δm,j) and define Eij ∈M(m,K)
by

Eijek = δj,kei.

Then E11, . . . , Emm is a basis for M(m,K).
Now suppose that X,Y ∈ Ω. Then Y = aa∗ for some matrix a and hence

Tr(XY ) = Tr(a∗Xa) ≥ 0 so that Ω ⊂ Ω∗. Conversely, let Y ∈ Ω∗. As Y
is Hermitian, we may assume that Y is diagonal: Y =

∑m
i=1 λiEii. Let

X = Ejj ∈ Ω \ {0}. Then

0 < (X | Y ) = λj .

Thus Y is positive definite and hence in Ω. This proves that Ω is self-dual
and hence also the self-duality of C. As a consequence, we see

{0} = C ∩ −C = C∗ ∩−C∗ =< C >⊥

and C ∈ Cone(V).
The group G = GL(m,K) acts on M(m,K) by

a ·X := aXa∗, a ∈ GL(m,K), X ∈M(m,K)

and Ω and C are GL(m,K)-invariant. As every positive definite matrix can
be written in the form aa∗ = a · I for some a ∈ GL(m,K), it follows that Ω
is homogeneous. The stabilizer of I in G is just K = U(m,K). We have

1) K ∩ SL(m,K) = SO(m) for K = R, and

2) K ∩ SL(m,K) = SU(m) for K = C.

We can see that Theorem 2.1.13 does not hold in general for an element in
the boundary of a convex cone. In fact, let X =

(

Ik 0
0 0

)

. Let g =
(

A B
C D

)

∈
GL(m,K)X . Here A ∈M(k,K), B ∈M(k× (m−k),K), C ∈M((m−k)×
k,K) and D ∈M(m− k,K), where M(r× s,K) denotes the r× s matrices
with entries in K. Then

X = gXg∗ =

(

AA∗ AC∗

CA∗ CC∗

)

.

Thus

GLm(K)X =

{(

A B
0 D

)∣

∣

∣

∣

A ∈ U(k), D ∈ GLm−k(K), B ∈ Mk×(m−k)(K)

}

and this group is noncompact. 2
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Consider a subset L ⊂ V. The convex hull of L is the smallest convex
subset of V containing L. We denote this set by conv(L). Then

conv(L) =

{

∑

J

λjvj

∣

∣

∣

∣

∣

J finite, λj ≥ 0,
∑

J

λj = 1, vj ∈ L
}

.

Caratheodory’s theorem ([153], p. 73) says that one can always choose λj

and vj such that the cardinality of J is less than or equal to dimV + 1. If
L is a cone, then the convex hull of L can also be described as

conv(L) =

{

∑

J

λjvj

∣

∣

∣

∣

∣

J finite, λj ≥ 0, vj ∈ L
}

.

Lemma 2.1.15 Let G be a Lie group acting linearly on V and let K ⊂ G
be a compact subgroup. If C ⊂ V is a nontrivial G-invariant proper cone in
V, then there exists a K-fixed vector u ∈ C \ {0}. If C is also generating,
then u may be chosen in Co.

Proof: Choose v ∈ C∗ such that (u|v) > 0 for all u ∈ C, u 6= 0. Fix a
u ∈ C \ {0}. Then (k · u|v) > 0 for all k ∈ K. It follows that

uK :=

∫

K

(k · u) dk ∈ conv(K · u) ⊂ C

is K-fixed and

(uK |v) =

∫

K

(k · u|v) dk > 0.

Thus uK 6= 0. As K is compact, it follows that K · u is also compact
and thus conv(K · u) = conv(K · u) is compact, too. If u ∈ Co, then
uK ∈ convK · u = convK · u ⊂ Co since C is convex. 2

Example 2.1.16 (The Forward Light Cone Continued) Recall the
notation from Example 2.1.2 and the groups SOo(p, q) described in Section
1.5.

Obviously, the forward light cone C is invariant under the usual operation
of SOo(1, q) and under all dilations λIn, λ > 0. We claim that the group
SOo(1, q)R

+Iq+1 acts transitively on Ω = Co if q ≥ 2. In particular, this
says that Ω is homogeneous.

To prove the claim, assume that q ≥ 2. We will show that

Ω = SOo(1, q)R
+

(

1

0

)

.
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In fact, using

at :=





cosh(t) sinh(t) 0
sinh(t) cosh(t) 0

0 0 In−2



 ∈ SOo(1, q)

we get

at ·
(

λ

0

)

= λt (cosh(t), sinh(t), 0, . . . , 0) ∈ Ω

for all t ∈ R. As SO(q) acts transitively on Sq−1 and

(

1 0
0 A

)

∈ SOo(1, q)

for all A ∈ SO(q), the claim now follows in view of the fact that coth(t)
runs through ]1,∞[ as t varies in ]0,∞[.

We remark that the homomorphism SO(q) ↪→ SOo(1, q) realizes SO(q) as
a maximal compact subgroup of SOo(1, q), leaving the nonzero vector e1 ∈
Ω invariant, and a straightforward calculation shows that SOo(1, q)

e1 =
SO(q). According to Lemma 2.1.15, any SOo(1, q)-invariant regular cone
in Rn contains an SO(q)-fixed vector, i.e., a multiple of e1. Therefore
homogeneity of Ω implies that

ConeSOo(1,q)(R
n) = {C,−C} . (2.9)

for q > 1. Note that for q = 1 the equality (2.9) no longer holds. In fact,
the four connected components of |x| 6= |y| in R2 are all SOo(1, 1)-invariant
cones. 2

We now prove two fundamental theorems in the theory of invariant cones.
The first result is due to Kostant [157], whereas the second theorem is due
to Vinberg [166]. For the notation, refer to Appendix A.3.

Theorem 2.1.17 (Kostant) Suppose that V is a finite-dimensional real
vector space. Let L be a connected reductive subgroup of GL(V) acting
irreducibly, and G = L′ the commutator subgroup of L. Further, let K
be a maximal compact subgroup of G. Then the following properties are
equivalent:

1) There exists a regular L-invariant closed convex cone in V.

2) The G-module V is spherical.

Proof: Note first that G is closed by Remark A.3.7, so K is a compact
subgroup of GL(V). We may assume that V is Euclidian and that K ⊂
SO(V). Then the implication (1)⇒(2) follows from Lemma 2.1.15.

Lemma A.3.8 shows that the connected component of Z(L) acts on V
by positive real numbers. Thus it only remains to show the existence of
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a G-invariant proper cone. To do that we note that VC is irreducible by
Lemma A.3.5 and consider a highest-weight vector u of VC. Let vK ∈WK

be a nonzero K-fixed vector. We can choose vK such that (u|vK) > 0. In
fact, if u and vK were orthogonal, then G = KAN would imply that all of
V is orthogonal to vK . Now (G ·u|vK) = (A ·u|vK) = R+. This shows that
cone(G · u)) ⊆ (R+u)∗ is a nontrivial G-invariant convex cone in V. It has
to be regular by irreducibility. 2

Remark 2.1.18 1) In the situation of Theorem 2.1.17 we see that K · u
is a compact subset of C bounded away from zero. This shows that for
v ∈ conv(G · u) \ {0} there exists a compact interval J ⊂ R+ such that
v ∈ convπ(K)Ju. In particular, (convG · u) ∪ {0} is closed.

2) The assumption in the next theorem that V is irreducible is not needed
for the implication (1)⇒ (2). 2

Theorem 2.1.19 (Vinberg) Let L be a connected reductive Lie group and
V a finite-dimensional irreducible real L-module. Then the following prop-
erties are equivalent:

1) ConeL(V) 6= ∅.

2) The G-module V is spherical, where G = L′ is the commutator sub-
group of L.

3) There exists a ray in V through 0 which is invariant with respect to
some minimal parabolic subgroup P of G.

If these conditions hold, every invariant pointed cone in V is regular.

Proof: Note first that any nontrivial L-invariant cone C is automatically
generating, as < C > is an L-invariant subspace of V and V is assumed
irreducible.

Denote the representation of L on V by π. Then π(G) is closed in GL(V)
and π(K) is compact, as linear semisimple groups always have compact
fixed groups for the Cartan involution. In fact, this shows that π(K) is
maximal compact in π(G). Thus the equivalence of (1) and (2) follows
from Kostant’s Theorem 2.1.17 applied to π(L).

Now suppose that V is K-spherical. Then Lemma A.3.6 yields the de-
sired ray.

Finally, assume that the ray R+ · u is MAN -invariant. Since N is nilpo-
tent and π(M) compact, we see that n and m act trivially on u. Thus u is
a highest-weight vector and the corresponding highest weight satisfies the
conditions of Theorem A.3.2, i.e., V is K-spherical. 2
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Remark 2.1.20 In the situation of Vinberg’s theorem with a spherical G-
module V, Theorem A.3.2 shows that for any highest-weight vector v ∈ VC

also v is a highest-weight vector. This implies that V contains a highest
weight vector u. In other words, V is a real highest-weight module. 2

Another well-known fact about invariant cones that we will often use is
the following description of the minimal and maximal invariant cones due
to Vinberg and Paneitz.

Theorem 2.1.21 (Paneitz,Vinberg) Assume that L is a connected re-
ductive Lie group. Let V be a finite-dimensional real irreducible L-module
with ConeL(V) 6= ∅. Equip V with an inner product as in Lemma A.3.3.
Then there exists a-unique up to multiplication by (−1)-minimal invariant
cone Cmin ∈ ConeL(V) given by

Cmin = conv(G · u) ∪ {0} = convG (R+ · vK), (2.10)

where u is a highest-weight vector, vK is a nonzero K-fixed vector unique
up to scalar multiple, and (u|vK) > 0. The unique (up to multiplication by
−1) maximal cone is then given by Cmax = C∗

min.

Proof: We know by now that there is a pointed invariant cone in V if and
only if dimVK = 1 and that every pointed invariant cone contains either vK

or −vK . Furthermore, we know that every pointed invariant cone is regular.
Thus Remark 2.1.18 implies that C := conv(G · u) ∪ {0} is a regular cone
and vK ∈ Co. In particular, we get that the closed G-invariant cone C1

generated by vK is contained in C. But Lemma A.3.6 shows that u ∈ C1

and thus Cmin = C = C1 is in fact minimal. The equality Cmax = C∗
min

follows from tπ(g) = π
(

θ(g)
)−1

. Now the claim follows from Lemma A.3.8.
2

Remark 2.1.22 We have seen in Remark 2.1.20 that in the situation of
Vinberg’s theorem 2.1.19 the G-module V is a real highest-weight module
with highest-weight vector u ∈ V. It follows from Lemma II.4.18 in [46]
that the stabilizer Gu of u in G contains the group MN . This implies that
u ∈ ∂C. In fact, according to Lemma 2.1.10, the stabilizer group of a point
in the interior of an invariant cone acts as a compact group. 2

2.2 Causal Orientations

Let M be a C∞-manifold. For m ∈ M we denote the tangent space of
M at m by Tm(M) or TmM and the tangent bundle of M by T (M).
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The derivative of a differentiable map f :M→ N at m will be denoted by
dmf :Tm(M)→ Tf(m)(N ).

A smooth causal structure onM is a map which assigns to each point m
inM a nontrivial closed convex cone C(m) in TmM and which is smooth in
the following sense: One can find an open covering {Ui}i∈I of M, smooth
maps

ϕi : Ui × Rn → T (M)

with ϕi(m, v) ∈ Tm(M), and a cone C in Rn such that

C(m) = ϕi(m,C).

The causal structure is called generating (proper, regular) if C(m) is
generating (proper, regular) for all m. A map f :M→M is called causal
if dmf (C(m)) ⊂ C (f(m)) for all m ∈ M. If a Lie group G acts smoothly
onM via (g,m) 7→ g ·m, we denote the diffeomorphism m 7→ g ·m by `g.

Definition 2.2.1 Let M be a manifold with a causal structure and G a
Lie group acting on M. Then the causal structure is called G-invariant if
all `g, g ∈ G, are causal. 2

If M = G/H is homogeneous, then a G-invariant causal structure is
determined completely by the cone C := C(o) ⊂ To(M), where o :=
{H} ∈ G/H . Furthermore, C is proper, generating, etc., if and only if
this holds for the causal structure. We also note that C is invariant under
the action of H on To(M) given by h 7→ do`h. On the other hand, if
C ∈ ConeH(To(M)), then we can define a field of cones by

M3 aH 7→ C(aH) := do`a(C) ⊂ Ta·o(M),

and this cone field is clearly G-invariant, regular, and satisfies C(o) = C.
What is not so immediate is the fact that m 7→ C(m) is smooth in the
sense described above. This can be seen using a smooth local section of the
quotient mapM = G/H → G and then one obtains the following theorem,
which we can also use as a definition since we will exclusively deal with
G-homogeneous regular causal structures.

Theorem 2.2.2 Let M = G/H be homogeneous. Then

C 7→ (aH 7→ do`a(C)) (2.11)

defines a bijection between ConeH(To(M)) and the set of G-invariant, reg-
ular causal structures on M. 2
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Let M = G/H and C ∈ ConeG(ToM). An absolutely continuous curve
γ: [a, b]→M is called C-causal (also called conal, cf. [52]) if γ′(t) ∈ C (γ(t))
whenever the derivative exists. Here a continuous mapping γ: [a, b]→M is
called absolutely continuous if for any coordinate chart φ:U → Rn the curve
η = φ◦γ: γ−1(U)→ Rn has absolutely continuous coordinate functions and
the derivatives of these functions are locally bounded.

We define a relation �s (s for strict) on M by saying that m �s n
if there exists a C-causal curve γ connecting m with n. The relation �s

clearly is reflexive and transitive. We call such relations causal orientations.
Elsewhere they are also called quasiorders .

Example 2.2.3 (Vector Spaces) Let V be a finite-dimensional vector
space and C ⊂ V a closed convex cone in V. Then we define a causal
Aut(C)-invariant orientation on V by

u � v ⇐⇒ v − u ∈ C.

Then � is antisymmtric if and only if C is proper. In particular, H+(n,K)
defines a GL(n,K)-invariant global ordering in H(n,K). Also, the light
cone C ⊂ Rn+1 defines a SOo(1, n)-invariant ordering in Rn+1. The space
Rn+1 together with this global ordering is called the (n + 1)-dimensional
Minkowski space . 2

In general, the graph M�s
:= {(m,n) ∈M×M | m �s n} of �s will

not be closed inM×M. This makes �s difficult to work with and we will
mostly use its closure �, defined via

m � n:⇐⇒ (m,n) ∈M�s
,

instead. It turns out that � is again a causal orientation. The only point
that is not evident is transitivity. So suppose that m � n � p and let
mk, nk, n

′
k, pk be sequences with

mk �s nk, n
′
k �s pk, mk → m,nk → n, n′

k → n, pk → p.

Then we can find a sequence gk in G converging to the identity such that
n′

k = gk · nk. Thus gkmk → m and gkmk �s pk implies m � p.
Given any causal orientation ≤ onM, we write for A ⊂M

↑A := {y ∈ Y | ∃a ∈ A : a ≤ y} (2.12)

and

↓A := {y ∈ Y | ∃a ∈ A : y ≤ a}. (2.13)
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We also write simply ↑ x := ↑{x} and ↓x := ↓{x}. Then the intervals with
respect to this causal orientation are

[m,n]≤ := {z ∈ M | m ≤ z ≤ n} = ↑m ∩ ↓n

and

[m,∞[≤:= ↑m, ]−∞,m]≤ := ↓m.

The following proposition shows that replacing �s by � does not change
intervals too much.

Proposition 2.2.4 Let M = G/H be a homogeneous space with a causal
structure determined by C ∈ ConeG(ToM) and �s,� the associated causal
orientations. Then [m,∞[�= [m,∞[�s

Proof: Let m � n. Then there exists a sequence (mk, nk) ∈ M�s
con-

verging to (m,n). Let U be a neighborhood of m in M such that there
exists a continuous section σ of the quotient map π:G → M = G/H .
Then σ(mk) → σ(m) and hence gk = σ(m)σ(mk)−1 converges to 1 ∈ G.
Therefore

m = σ(m) · o = gk ·mk �s gk · nk

and gk · nk → n so that n ∈ [m,∞[�s
proving the first claim. For the

second, suppose that m � n � l. Then, according to the first part we can
find sequences (nk) and (lk) converging to n and l, respectively, such that
m �s nk and n �s lk. As above, we find gk ∈ G converging to 1 such that
gk · nk = n. Thus gk ·m �s gk · nk = n �s lk implies (gk ·m, lk) ∈ M�s

and hence (m, l) ∈M�. 2

For easy reference we introduce some more definitions.

Definition 2.2.5 LetM be manifold.

1) A causal orientation ≤ onM is called topological if its graphM≤ in
M×M is closed.

2) A space (M,≤) with a topological causal orientation is called a causal
space. If ≤ is in addition antisymmetric, i.e., a partial order, then
(M,≤) is called globally ordered or simply ordered.

3) Let (M,≤) and (N ,≤) be two causal spaces and let f :M−→ N be
continuous. Then f is called order preserving or monotone if

m1 ≤ m2 =⇒ f(m1) ≤ f(m2).
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4) Let G be a group acting onM. Then a causal orientation ≤ is called
G-invariant if

m ≤ n =⇒ ∀a ∈ G : a ·m ≤ a · n.

5) A triple (M,≤, G) is called a causal G-manifold or simply causal if
≤ is a topological G-invariant causal orientation. 2

2.3 Semigroups

Invariant causal orientations on homogeneous spaces are closely related to
semigroups. We assume thatM = G/H carries a causal orientation ≤ such
that (M,≤, G) is causal. Then we define the semigroup S≤ by

S≤ := {a ∈ G | o ≤ a · o},

called the causal semigroup of (M,≤, G). If m is another point inM, then
we can find an a ∈ G such that m = a · o. Thus for the corresponding
semigroup S′

≤ := {a ∈ G | m ≤ a ·m} we have S′ = aSa−1.

Lemma 2.3.1 1) For all m,n ∈M the intervals [m,n] and [m,∞[ are
closed.

2) The semigroup S≤ is closed.

3) GS≤
:= S≤ ∩ S−1

≤ is the closed subgroup of G given by

GS≤
= {a ∈ G | o ≤ a · o ≤ o}.

GS≤
contains the stabilizer H of o and normalizes S≤.

4) GS≤
= H if and only if ≤ is a partial order.

Proof: Let {zj} be a sequence in [m,n] converging to z ∈ M. ThenM≤ 3
(m, zj) → (m, z). As M≤ is closed, it follows that (m, z) ∈ M≤, i.e.,
m ≤ z so that [m,∞] is closed. Similarly, we find z ≤ n whence [m,n[ is
also closed.

Let {aj} be a sequence in S, lim aj = a ∈ G. Then again M≤ 3
(o, aj · o)→ (o, a · o) ∈ M≤ as M≤ is closed. It follows that S≤ is closed
and so is GS≤

. Now G−1
S≤

= GS≤
, and the G-invariance of ≤ and the

transitivity of ≤ imply (3). Using (3) and the G-invariance of ≤, we see
that ≤ is a partial order if and only if o ≤ g ·o ≤ o is equivalent to g ·o = o,
i.e., if and only if GS≤

= H . 2
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Remark 2.3.2 If (M = G/H,≤, G) is causal and H = GS≤
, then ≤ can

be recovered from S≤ via a · o ≤ b · o⇐⇒ a−1b ∈ S≤. Conversely, given a
closed subsemigroup S of G, one obtains a causal G-manifold (G/H,≤S , G)
via H = S ∩ S−1 and a · o ≤S b · o :⇐⇒ a−1b ∈ S. 2

Let M = G/H be a homogeneous space with a causal structure deter-
mined by a cone C ∈ ConeG(ToM) and � the associated topological causal
orientation. Then S� = {g ∈ G | o � g · o} is a closed subsemigroup of
G. But there is another semigroup canonically associated to C: Let W
be the preimage of C under T1G = g → ToM = g/h and SW the closed
subsemigroup of G generated by expW . For the following theorems, refer
to [52], Proposition 4.16, and Theorem 4.21.

Theorem 2.3.3 S� = SWH. 2

Theorem 2.3.4 The following statements are equivalent:

1) � is a partial order.

2) S� ∩ S−1
� = H.

3) L(S�) := {X ∈ g | expR+X ⊂ S�} = W . 2

Theorem 2.3.4 shows in particular that one can recover the causal struc-
ture from � provided � is a partial order. To do that one has to calculate
the tangent cone L(S�) of the semigroup S�.

We can also build causal orientations starting with a closed subsemigroup
S of G. Write H := S∩S−1 for the group of units of S. IfM = G/H is the
associated homogeneous space, let π : G → M, g 7→ gH be the canonical
projection, and o := π(1) the base point. We define a left invariant causal
orientation on G by the prescription

g ≤S g
′ if g′ ∈ gS. (2.14)

Then g ≤S g
′ ≤S g is equivalent to gH = g′H and the prescription

π(g) ≤ π(g′) if g ≤S g
′ (2.15)

defines a partial order onM such that π : (G,≤S)→ (M,≤) is monotone.
We say that a function f : G→ R is S-monotone if

f : (G,≤S)→ (R,≤)

is a monotone mapping. We write Mon(S) for the set of all S-monotone
continuous functions on G.

The construction of a causal orientation from a semigroup is of particular
interest if the semigroup S can be recovered from its tangent cone L(S) =
{X ∈ g | exp(R+X) ⊂ S}.
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Definition 2.3.5 1) S is called a Lie semigroup if 〈expL(S)〉 = S, i.e.,
if the subsemigroup of G generated by expL(S) is dense in S.

2) S is called an extended Lie semigroup if GS〈expL(S)〉 = S.

3) S is called generating if g is the smallest subalgebra of g containing
L(S). 2

Remark 2.3.6 For every generating extended Lie semigroup S ⊂ G we
know that So is a dense semigroup ideal in S and So ⊂ 〈expL(S)〉H (cf.[52],
Lemma 3.7). Moreover, we have ↑ g = gS and ↓ g = gS−1 for g ∈ G and
these sets have dense interior. Similarly, ↑x = π(gS) and ↓ x = π(gS−1)
for x = gH ∈ G/H and these sets also have dense interior. 2

2.4 The Order Compactification

of an Ordered Homogeneous Space

Compactifications are an indispensible tool whenever one wants to describe
the behavior of mathematical objects at infinity in a quantitative manner.
Which type of compactification is suitable depends very much on the spe-
cific situation given. For an ordered homogeneous space M = G/H one
can define a compactification that takes the order into account and there-
fore turns out to be particularly useful. The basic idea is to identify an
element gH ∈ M with the set of elements g′H smaller than gH . One has
the Vietoris topology (cf. Appendix C) on the set F(M) of closed subsets
of M which makes F(M) a compact space. Then one can close up M to
obtain a compactification.

In this section we assume that G is a connected Lie group and S ⊂ G
an extended Lie semigroup with unit group H ; cf. page 45. We describe
a compactification of M := G/H which is particularly suited for analytic
questions taking into account the order structure ≤ on M induced from
≤S . Recall the notation from Appendix C and note that both G and G/H
are metrizable and σ-compact. Therefore the results of Appendix C apply
in particular to F(G) and F(G/H).

Lemma 2.4.1 1) The set F↓(G) := {F ∈ F(G) | ↓F = F} ⊂ F(G)H

is closed.

2) The set F↓(G/H) := {F ∈ F(G/H) | ↓F = F} is closed.

Proof: 1) The condition ↓F = F is equivalent to Fs ⊂ F for all s ∈ S−1.
For every s ∈ S−1 the set

Fs := {F ∈ F(G) : Fs ⊂ F}
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is closed in view of Lemma C.0.7 because F(G) is a pospace. Therefore

F↓(G) =
⋂

s∈S

Fs

is closed.
2) This follows from Proposition C.0.9 and 1). 2

Lemma 2.4.2 The mapping η : G→ F↓(G), g 7→ ↓ g factors to a continu-
ous order-preserving injective mapping

η : G/H → F↓(G), gH 7→ ↓(gH)

of locally compact G-spaces.

Proof: The continuity of the mapping η follows from Lemma C.0.7 and the
fact that

η(g) = g · η(1) ∀g ∈ G.
This mapping is constant on the cosets gH of H in G. Therefore it factors
to a continuous mapping η. To see that η is injective, let a, b ∈ G with
η(a) = η(b). Then ↓ a = ↓ b and therefore a ≤S b ≤S a. Hence aH = bH .
This proves the injectivity of η. Finally, suppose g ≤S g′. Then g′ ∈ gS
and therefore ↓ g = gS−1 ⊂ g′S−1 = ↓ g′. This shows that η preserves the
order. 2

We write M+ := [o,∞) = S · o for the positive cone in M = G/H and
set

Mcpt := η(M) = η(G) ⊂ F(G) and Mcpt
+ := η(M+) = η(S). (2.16)

ThenMcpt is called the order compactification of the ordered space (M,≤).
We refer to η as to the causal compactification map .

Lemma 2.4.3 Let F ∈Mcpt. Then the following assertions hold:

1) F ∈Mcpt
+ is equivalent to 1 ∈ F .

2) F = {g ∈ G | g−1F ∈Mcpt
+ }.

3) If F 6= ∅, then there exists g ∈ G with gF ∈ Mcpt
+ , i.e., Mcpt ⊂

G · Mcpt
+ ∪ {∅}.

Proof: 1) For s ∈ S we clearly have that 1 ∈ η(s) = ↓ s. Therefore 1 ∈ F
for all F ∈ Mcpt

+ . If, conversely, 1 ∈ F , and F = lim η(gn), gn ∈ S, then
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there exists a sequence an ∈ η(gn) = ↓ gn such that an → 1 (Lemma C.0.6).
We conclude with Lemma C.0.7 that

1 ∈ lim ↓(a−1
n gn) = lim a−1

n ↓ gn = F.

2) In view of 1), this follows from the equivalence of 1 ∈ g−1F and g ∈ F .
3) If F 6= ∅, then there exists g ∈ F , and therefore g−1F ∈Mcpt

+ . 2

Note that Lemma 2.4.3 implies that eitherMcpt = G ·Mcpt
+ orMcpt =

G ·Mcpt
+ ∪ {∅}.

Proposition 2.4.4 1) Mcpt
+ = {A ∈Mcpt | 1 ∈ A}.

2) (Mcpt
+ )o = {A ∈ Mcpt | 1 ∈ Ao}.

3) S = {g ∈ G | g · (Mcpt
+ )o ⊂ (Mcpt

+ )o}.

4) So = {g ∈ G | g ·Mcpt
+ ⊂ (Mcpt

+ )o}.
Proof: 1) This was proved in Lemma 2.4.3.

2) Let A ∈ (Mcpt
+ )o. Then 1 ∈ A. Moreover, there exists a symmetric

neighborhood U of 1 in G such that U · A ⊂ Mcpt
+ . Hence U ⊂ A, which

proves that 1 ∈ Ao. Conversely, if 1 ∈ Ao, then there exists an s ∈ Ao ∩ So

and therefore also a neighborhood V of s contained in A ∩ S. Then

Ṽ := {F ∈ F(G) | F ∩ V 6= ∅}

is a neighborhood of A in F(G). Since each element A ∈M cpt satisfies

A = ↓A = {g ∈ G | gS ∩A 6= ∅},

F ∈ Ṽ ∩M cpt entails 1 ∈ ↓F = F , hence F ∈ Mcpt
+ .

3) Let s ∈ S and A ∈ (Mcpt
+ )o. According to 2), we have

1 ≤S s ∈ (sA)o,

whence 1 ∈ (sA)o and therefore s ·A ∈ (Mcpt
+ )o. If g ∈ G with g ·(Mcpt

+ )o ⊂
(Mcpt

+ )o, then g ·Mcpt
+ ⊂Mcpt

+ and gS−1 ∈ Mcpt
+ becauseMcpt

+ = (Mcpt
+ )o.

This implies that g ∈ (S−1)−1 = S
4) If s ∈ So and A ∈ Mcpt

+ then 1 ∈ A and we find a neighborhood U of 1

in G such that Us ·A ⊂Mcpt
+ . Hence 1 ∈ gs ·A for every g ∈ U . This leads

to U−1 ⊂ s ·A and hence to 1 ∈ (s ·A)o, i.e., s ·A ∈ (Mcpt
+ )o, according to

1). To show the converse, we assume that g ∈ G and g · Mcpt
+ ⊂ (Mcpt

+ )o.

Then, as in 2), we obtain that gS−1 ∈ (Mcpt
+ )o and therefore 1 ∈ (↓ g)o or

g ∈ So again by 1). 2
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Lemma 2.4.5 1) Let F∞
↓ (G/H) denote the set of all closed subsets F ⊂

G/H with ↓F = F such that for every a ∈ F the connected component
of a in ↑ a∩F is noncompact. Then F∞

↓ (G/H) is closed in F↓(G/H).

2) Let F ∈ η(G/H)\η(G/H) and a ∈ F . Then the connected component
of a in ↑ a ∩ F is noncompact.

Proof: 1) Let F = limn→∞ Fn, Fn ∈ F∞
↓ (G/H), and a ∈ F . Let Un denote

the 1
n ball around a. Then there exists nm ∈ N such that Fn∩Um 6= ∅ for all

n ≥ nm. We clearly may assume that the sequence (nm)m∈N is increasing
and that nm ≥ m. Let am ∈ Um ∩Fnm

. Then our assumption implies that
the connected component Cm of am in ↑ am ∩Fnm

is noncompact. Passing
to a subsequence, we even may assume that Cm → C in F(G/H). Then
Cm ⊂ ↑ am and the closedness of ≤ show that

C = limCm ⊂ ↑(lim am) = ↑ a.

In addition, we know that

C = limCm ⊂ lim
m→∞

Fnm
= F.

Hence C ⊂ ↑ a∩F . Next, Lemma C.0.6 entails that the connected compo-
nent of a in C is noncompact. Therefore A ∈ F∞

↓ (G/H).
2) Let an ∈ (↓ a)o ⊂ F with an → a and Fm = ↓xm → F with xm ∈

G/H . For n ∈ N there exists mn ≥ n such that Fm ∩ (↑ an)o 6= ∅ for all
m ≥ mn. This clearly implies that an ∈ Fm, i.e., an ≤ xm. Then we find
monotone curves γn : R+ → G/H and Tn ∈ R+ such that γn(0) = an and
γn(Tn) = xmn

([114], 1.19, 1.31). Passing to a subsequence, we may assume
that the sequence Cn := γn([0, Tn]) converges to C in F(Mcpt

+ ). Then
a = lim an ∈ limCn = C, the sets Cn are connected chains, i.e., totally
ordered subsets, in the partially ordered set (G/H,�), and ∪n≥n0Cn is not
relatively compact for any n0 ∈ N because xmn

∈ Cn and xmn
→ ω since

lim η(xmn
) 6∈ η(G/H).

Now, Lemma C.0.6 entails that the connected component of a in C is
noncompact. Moreover,

C = limCn ⊂ ↑ lim an = ↑ a and C = limCn ⊂ limFmn
= F.

Finally, this proves that the connected component of a in ↑ a ∩ F is non-
compact. 2

Theorem 2.4.6 The image η(M) of M in F↓(G) is open in its closure.
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Proof: Let F ∈ η(G/H). We note first that the following two conditions
are equivalent:

1) For every a ∈ F , the connected component of ↑ a∩F is noncompact.

2) F 6∈ η(G/H).

In fact, 2) implies 1) by Lemma 2.4.5. If F = η(x) = ↓x with x ∈ G/H ,
then x ∈ F and ↑ x ∩ ↓x = {x} is compact. Therefore 1) implies 2). Now
the theorem is a consequence of Lemma 2.4.5. 2

Proposition 2.4.7 Let A ⊂ G be a closed subset with ↓A = A. Then

µ(∂A) = 0 and A = Ao.

Proof: Suppose that this is false. Then we can find x ∈ ∂A , the boundary
of A, and a compact neighborhood V of x with µ(∂A ∩ V ) > 0. Choose a
sequence sn ∈ So with sn+1 ∈ (↓ sn)o and limn→∞ sn = 1. Then As−1

n ⊂
Ao and therefore A = Ao. Let µ̃ denote a right Haar measure on G. It
suffices to prove that µ̃(∂A ∩ V ) = 0. If not, we have µ̃ ((∂A ∩ V )sn) =
µ̃(∂A ∩ V ) > 0 for every n ∈ N and

(∂A ∩ V )sn ∩ (∂A ∩ V )sm = ∅ for m < n

because (∂A)sn ⊂ Aosm. This shows that

∑∞
n=1 µ̃(∂A ∩ V ) =

∑∞
n=1 µ̃ ((∂A ∩ V )sn)

= µ̃
(
⋃

n∈N(∂A ∩ V )sn

)

≤ µ̃
(
⋃

n∈N V sn

)

<∞.

Whence µ̃(∂A ∩ V ) = 0. 2

We will see later on that for specificM the order compactification can be
described in much more concrete terms than has been done in this section.
In particular, it will turn out that the space Mcpt is in some sense the
smallest compact G-space X such that there exists an open subset O ⊂ X
with the property that

S = {g ∈ G | g · O ⊂ O} and So = {g ∈ G | g · O ⊂ O}. (2.17)

This will be used to get information about the structure of Mcpt
+ and the

G-space Mcpt because in special cases there are very natural compact G-
spaces with the above property.



50 CHAPTER 2. CAUSAL ORIENTATIONS

2.5 Examples

2.5.1 The Group Case

Recall the way of viewing a group G as a symmetric space from Example
1.1.3. A cone D ⊂ q belongs to ConeG×G(q) if and only if it is of the form

D = {(X,−X) | X ∈ C},

where C ∈ ConeG(g). There is extensive literature on the classification of
C ∈ ConeG(g) for arbitrary connected Lie groups G (cf. [50, 52, 118]).
Here we only recall some basic facts for the case of simple Lie groups. It
turns out that only Hermitian simple Lie algebras (cf. Appendix A.4) admit
regular invariant cones.

Lemma 2.5.1 Let G be a simple real Lie group with Lie algebra g. Then
ConeG(g) is nonempty if and only if g is Hermitian.

Proof: Note first that any nontrivial G-invariant cone in g is automatically
regular since it spans an ideal. Suppose that G = K exp(p) is a Cartan
decomposition and k ⊂ g is the Lie algebra of K. The group Ad(K) is
compact, so Kostant’s Theorem 2.1.17 shows that there is a nontrivial G-
invariant cone in g if and only if there exists Z ∈ g, Z 6= 0, such that
Ad(k)Z = Z for all k ∈ K. As g is irreducible as a G-module, it follows
from Lemma A.3.5 that dim gK = 1 and gC is simple. Let θ be the Cartan
involution on g corresponding to the Cartan decomposition g = k⊕p. Then
the K-invariance of θ(Z) shows that θ(Z) = ±Z. If θ(Z) = −Z, then RZ
is a k-submodule of p, which is impossible by Lemma 1.3.4 since the Killing
form is positive definite on p. 2

Now suppose that g is Hermitian and Z ∈ z(k), Z 6= 0. Then the
minimal cone (cf. Theorem 2.1.21) is given by

Cmin = convG ·R+Z

and the corresponding maximal cone is

Cmax = {X ∈ g | ∀Y ∈ Cmin : (X |Y )θ ≥ 0} .

Later on we will describe these cones in more detail.
Lemma 2.5.1 shows that each Hermitian Lie group is a causal mani-

fold with causal structures in bijective correspondence with the G-invariant
cones in g. Moreover, the lemma shows that every nontrivial G-invariant
cone contains a nonzero element Z ∈ z(k). Therefore the causal structure
cannot be antisymmetric if K is compact. This follows from the fact that
the curve t 7→ exp tZ is periodic and causal.
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Multiplication by i maps ConeH(q) into ConeH(iq). In this way causal
structures of c-dual spaces are in a canonical bijective correspondence. We
make this explicit in the group case: Assume that G is contained in a
complex group GC with Lie algebra gC. LetM := GC/G. Then the tangent
space at the origin o = 1G is ig. If C is aG-invariant cone in g, then iC ⊂ ig
is also G-invariant. Therefore Lemma 2.5.1 shows that M carries a causal
structure if and only if G is Hermitian. We will show later that M is
ordered for each of the topological orientations associated to elements of
ConeG(ig) and that the intervals [m,n] are compact. Furthermore, it will
turn out that the semigroup S� is given by G exp iC and L(S) = g ⊕ iC,
where C ∈ ConeG(ig) is the cone inducing �.

2.5.2 The Hyperboloids

Recall the hyperboloid Qr = Q1,n
r ⊆ Rn+1 and the map q: Rn+1 → q ⊆

so(2, n), defined by

q(v) :=

(

0 −t(vI1,n)
v 0

)

, (2.18)

from Section 1.5. Let C1 ⊂ Rn+1 be the forward light cone and

C := {q(v) ∈ q | v ∈ C1}.

Then C is a regular cone in q invariant under the group SOo(1, n) and
ConeSOo(1,n)(q) = {C,−C} according to Example 2.1.16. In particular,
Qr ' SOo(2, n)/ SOo(1, n) carries a causal structure. Let

α(t) := exp(tq(e1)) · o = cos te1 + sin te2 .

Then
α̇(t) = dα(0)`α(t)(α̇(0)) = dα(0)`α(t)(q(e1)) ∈ C(α(t)).

Thus α is a closed causal curve. Therefore the causal orientation is not a
partial order.

The case Q−1 can now be treated in the same way by using the map

qc: Rn+1 3 w 7→
(

0 w
t(wI1,n) 0

)

∈ q ⊂ so(1, n+ 1) (2.19)

and the SOo(1, n)-invariant form

(qc(v), q1(w)) := Tr
(

qc(v)qc(w)
)

. (2.20)

Let
C := {qc(v) ∈ q | v ∈ C1}



52 CHAPTER 2. CAUSAL ORIENTATIONS

Then the cone C is SOo(1, n)-invariant and regular. Furthermore,

ConeSOo(1,n)(q) = {C,−C}
(cf. Example 2.1.16 again). In particular, Q−r ' SOo(1, n+ 1)/ SOo(1, n)
is causal.

The causal curve α(t) = exp tqc(e1) · en+1 is given by α(t) = sinh(t)e1 +
cosh(t)en+1, and this curve is an embedding of R. We will show later
that this space is actually globally hyperbolic, i.e., the causal orientation is
antisymmetric and all the order intervals [m,n] are compact.

If n is odd, we consider a = I1,n+1 ∈ SOo(1, n + 1). Then τ(a) = a, a
commutes with SOo(1, q) but a 6∈ SOo(1, n). On the other hand, a2 = 1
so that H1 := SOo(1, n) ∪ a SOo(1, n) is a group and the group {1, a}
normalizes SOo(1, n) so it acts on Q−r. Then Q−r is a double covering of
the quotient space Q−r/{1, a} ∼= SOo(1, n + 1)/H1. In particular, locally
Q−r/{1, a} admits a causal structure. But aq(e1)a

−1 = −q(e1). Thus the
light cone is not H1-invariant and does not define a causal structure on
Q−r/{1, a} globally. Thus the existence of a causal structure may depend
on the fundamental group of the space in question.

2.6 Symmetric Spaces Related

to Tube Domains

Let (g, h) be a symmetric pair associated to a tube domain. In the notation
of Example 1.1.6 this means in particular that we have an element Z0 ∈
z(k) ∩ q and elements Xo, Yo ∈ p such that h = g(0, Yo), q = q+ + q− with
q± = g(±1, Yo) and Xo = [Yo, Z

0] ∈ qp. For the last relation see Lemma
A.4.2. The same lemma shows that the involution τ : g → g coincides with
C2

h. So Z0 ∈ q is a K-fixed point, whereas Yo ∈ h is an Ho-fixed point.
ThereforeXo ∈ qHo∩K and we are in the situation of Theorem 1.3.11. Since
conjugation by an element of K does not move Z0, we may assume that
Yo = Y 0 in the notation of that theorem. Decompose Xo = 1

2 (X+ +X−)
with X± ∈ (q±)Ho∩K and θ(X+) = −X−. As Z0 ∈ qk and adYo : q → q

is a linear involution, we obtain Z0 = ad(Y 0)Xo = 1
2 (X+ −X−). Let

{γ1, . . . , γr} be a maximal system of strongly orthogonal roots with suitable
root vectors Ej = Eγj

and co-roots Hj = Hγj
as in Appendix A.4. Then

X± = Xo ± Z0 =
1

2

r
∑

j=1

(Xj ± iHj) , (2.21)

where Xj = −i(Ej − E−j). By Theorem 2.1.21 there are minimal Ho-
invariant cones C± ⊂ q± such that X± ∈ C± and C− = −θ(C+).
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Lemma 2.6.1 The cone C+ is H-invariant if Xo ∈ qH∩K .

Proof: Let X = Ad(h)X+ for some h ∈ Ho and fix some k ∈ H ∩K. Then

Ad(k)X = Ad(kh)X+ = Ad(khk−1)Ad(k)X+ = Ad(khk−1)X+ ∈ C+

because of khk−1 ∈ Ho and the lemma follows by C+ = conv Ad(Ho)R+X+

and H = (H ∩K)Ho (cf. (1.8)). 2

Remark 2.6.2 Consider Ho-stable cones

Ck := {X + θ(Y ) | X,Y ∈ C+} = C+ − C− (2.22)

and
Cp := {X − θ(Y ) | X,Y ∈ C+} = C+ + C− . (2.23)

They are pointed and generating in q.
The (Ho ∩K)-fixed points in the Ho-invariant cones Ck and Cp, guaran-

teed by Lemma 2.1.15, can be determined explicitly:

Z0 =
X+ + θ(X+)

2
∈ qHo∩K

k ∩ Co
k ;

Xo =
X+ − θ(X+)

2
∈ qHo∩K

p ∩Co
p .

Moreover, we have

Ck ∩ p = {0}, Cp ∩ k = {0}. 2

Proposition 2.6.3 Suppose Xo ∈ qH∩K . Then the space M = G/H has
a regular invariant causal structure.

Proof: In view of Lemma 2.6.1, the assumption on Xo ensures that Ck and
Cp are even H-invariant. 2

Example 2.6.4 (cf. Example 1.3.15) Suppose that Xo ∈ qH∩K . Then
the cone Cp defines an invariant causal structure on G/H but not on the
symmetric space Ad(G)/Ad(G)τ , where Ad(G)τ = {ϕ ∈ Ad(G) | ϕτ =
τϕ}. In fact, note that by definition Co

k ∩ k 6= ∅ and Co
p ∩ p 6= ∅. Then

θ ∈ Ad(G)τ , which implies the claim since Cp is not θ-invariant. 2

We will now show that ConeHo
(q) = {±Ck,±Cp}.

Lemma 2.6.5 Xj + iHj ∈ C+ for j = 1, . . . , r.
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Proof: Recall from (2.21) X± = 1
2

∑r
j=1(Xj ± iHj). For s1, . . . , sr ∈ R, let

h = exp s1Y1 · · · exp srYr ∈ H . Then

2 Ad(h)X+ = e2s1(X1 + iH1) + · · ·+ e2sr(Xr + iHr) .

Let sj = 0 and let the other sk tend to −∞. Then, as C+ is closed, it
follows that Xj + iHj ∈ C+. 2

Lemma 2.6.6 Let C ∈ ConeHo
(q+) such that X+ ∈ Co. Then C is self

dual, C = C+, and Co = Ad(Ho)X+.

Proof: By assumption, we have C+ ⊂ C ⊂ C∗
+. Fix an X ∈ C. Then

X−θ(X) ∈ q∩p. Applying C̃, it follows from Lemma A.4.2 and Proposition
A.4.3 that

∑r
j=1 RXj is a maximal abelian subspace of p∩q. Since Ho∩K

is the group of θ-fixed points in the analytic subgroup of G with Lie algebra
ha = h ∩ k + q ∩ p, there exists a k ∈ K ∩Ho such that

Ad(k)(X − θ(X)) =
r
∑

j=1

tjXj ∈ aq .

As Xj = 1
2 (Xj + iHj) + 1

2 (Xj − iHj) and Xj ± iHj ∈ q±, it follows that
Ad(k)X = 1

2

∑r
j=1 tj(Xj + iHj). Now C ⊂ C∗

+, and by Lemma 2.6.5,

0 ≤ (Xj + iHj | Ad(k)X)θ =
1

2
tj |Xj + iHj|2 .

Hence tj ≥ 0. Again by Lemma 2.6.5 it follows that C ⊂ C+. Hence
C = C+. If we take C = C∗

+, this implies that C∗
+ = C+ and C+ is self

dual.
Now assume that X ∈ Co. Then tj > 0 for j = 1, . . . , r. Define

h =

r
∏

j=1

exp

(

−
(

1

2
log tj

)

Yj

)

∈ Ho .

Then Ad(hk)X = X+. Hence Co
+ = Ad(Ho)X+. 2

Corollary 2.6.7 ConeHo
(q+) = {C+,−C+}. If, in addition, Xo ∈ qH∩K ,

then ConeH(q+) = {C+,−C+}. 2

Theorem 2.6.8 Let G/K be a tube domain, G ⊂ GC with GC simply
connected, and τ the involution of GC which on gC is given by τ = ead iπYo .
Further, let H = Gτ and C± the closed convex Ho-invariant cones in q±

generated by X± = Xo ± Z0. Then

ConeHo
(q) = {±(C+ − C−),±(C+ + C−)}.
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If, in addition, Xo ∈ qH∩K , then

ConeH(q) = {±(C+ − C−),±(C+ + C−)}.
Proof: We prove this in four steps. Fix C ∈ ConeHo

(q).
Step 1: Let pr± : q → q± be the H-equivariant projection acording to

the decomposition q = q+ ⊕ q−. Fix an X = pr+(X) + pr−(X) ∈ C and
consider h(t) = exp tYo. Then

Ad(h(t))X = et pr+(X) + e−t pr−(X) .

Hence
lim

t→∞
e−t Ad(h(t))X = pr+(X) ∈ C .

Similarly, we get pr−(X) ∈ C.
Step 2: By the first step it follows that

C(±) := pr± C ⊂ C .
Then C ⊂ C(+) + C(−). We claim that C(+) and C(−) are Ho-invariant
proper cones in q+ and q−, respectively. As C is generating, it follows that
C(+) 6= {0}. If X ∈ C(+) ∩ −C(+), Step 1 implies that X ∈ C ∩ −C.
Hence X = 0 and C(+) is pointed. Let X ∈ q+. Then, as C is generating,
there are V,W ∈ C such that X = V −W . But then

X = pr+(V )− pr+(W ) ∈ C(+)− C(+) .

This shows that C(+) is generating. As C(+) ⊂ C and C, as well as q+,
are Ho-invariant, it follows that Ad(Ho)C(+) ⊂ C ∩ q+ ⊂ pr+(C) = C(+).
Thus C(+) is an Ho-invariant regular cone in q+.

Step 3: By Corollary 2.6.7 we get C(+) = ±C+. Similarly, we find
C(−) = ±θ(C(+)).

Step 4: As C(±) ⊂ C, we have C(+) + C(−) ⊂ C. The other inclusion
is obvious, so we have

C = C(+) + C(−) .

Step 3 now implies that either C = ±Ck = C+−C− or C = ±Cp = C++C−.
The last claim is an immediate consequence of Lemma 2.6.1. 2

Remark 2.6.9 The cone C+ ⊂ q+ also has a geometric meaning, as G/K
is biholomorphically equivalent to the tube domain q+ + iΩ, where Ω =
Co

+. The idea of the proof is as follows. Let Q+
C = exp(q+)C, Q−

C =
exp(q−)C. Similarily, we letKC ⊂ GC be the complexification ofK. Let c =
exp ((iπ/2)Xo). Then c−1KCc = HC and G ⊂ Q+

C cHCQ
−
C . Furthermore,

G∩ cHCQ
−
C . Thus G/K is diffeomorphic to the G-orbit through cHCQ

−
C in

GC/HCQ
−
C . This defines a complex structure on G/K. Now if Z ∈ q+ + iΩ,

then expZ ∈ GcHC(G−)C and this defines a biholomorphic map onto G/K.
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2.6.1 Boundary Orbits

We keep the asumptions from the last section. In particular, we assume
that G is contained in the simply connected complex Lie group GC with
Lie algebra gC. By Theorem 1.1.11, KC = Gθ

C and HC = Gτ
C. Recall the

Cayley transform C = Ad(c) with c = exp ((πi/2)Xo), cf. p.255. Then
C = ϕiXo

(cf. Lemma 1.2.1). By Lemma 1.2.5 we have τθ = τiXo
. Now

Lemma 1.2.5 and Remark 2.6.9 yield

1) C−1 = C3 = τθ ◦C = C ◦ τθ.

2) τ ◦C = C ◦ θ.

3) c−1HCc = KC.

Lemma 2.6.10 q− = C(p+) ∩ g and q+ = C(p−) ∩ g.

Proof: We will only prove the first statement, as the second follows in ex-
actly the same way. By Lemma A.4.2, C(Hj) = Xj. Therefore −iC(Z0) =
−Yo. It follows that for Z ∈ p+:

[Yo,C(Z)] = C([C−1(Yo), Z]) = iC([Z0, Z]) = −C(Z).

Thus Z ∈ q−C . The same calculation shows that if X ∈ q−, then C−1(X) ∈
p+. From this the lemma follows. 2

We recall that the realization of G/K as a bounded symmetric domain
in p+, cf. (A.23), p. 253; see also Lemma 5.1.4, Remark 5.1.9 and Example
5.1.10. The map

P+ ×KC × P− 3 (p, k, q) 7→ pkq ∈ GC

is a diffeomorphism onto an open dense submanifold of GC and G ⊂
P+KCP

−. If g ∈ G, then g = p+(g)kC(g)p−(g) uniquely with p+(g) ∈ P+,
kC(g) ∈ KC, and p−(g) ∈ P−. Let log := (exp |p+)−1 : P+ → p+. The
bounded realization of G/K is given by

Ω+ = {log(p(g)) | g ∈ G} .

For g ∈ GC and Z ∈ p+ such that g expZ ∈ P+KCP
−, define g · Z ∈ p+

and j(g, Z) ∈ KC by

g expZ ∈ exp(g · Z)j(g, Z)P− . (2.24)

Thus exp(g · Z) = p+(g expZ) and j(g, Z) = kC(g expZ). We denote the
map P+KCP

−/KCP
− → p+, pKCP

− 7→ log p by p 7→ ζ(p). Define E ∈ p+

by E = ζ(c). The Shilov boundary of Ω+ is S = G ·E.
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Lemma 2.6.11 The stabilizer of E in G is HQ+. In particular, S =
G/HQ+ = K/K ∩H is compact.

Proof: The stabilizer of cKCP
− ∈ GC/KCP

− in GC is cKCP
−c−1 = HCQ

+
C .

But by construction exp(E)KCP
− = cKCP

−. 2.

View G and GC as subgroups of G1 := G × G, respectively (G1)C :=
GC ×GC, by the diagonal embedding g 7→ (g, g). This induces a G-action
on S1 := S×S and a GC-action on GC/KCP

−×GC/KCP
− as well as other

homogeneous spaces of G1and (G1)C, respectively.

Lemma 2.6.12 Suppose that g exp(−Z) ∈ P+KCP
−, g ∈ GC, and Z ∈

p+. Then θ(g) exp(Z) ∈ P+KCP
− and

θ(g) · Z = −[g · (−Z)] .

Proof : Let g exp(−Z) = exp(g · (−Z))kp, with k ∈ KC and p ∈ P−. Then

θ(g) expZ = θ(g exp−Z)

= exp(θ(g · (−Z)))kp−1

= exp (− [g · (−Z)]) kp−1

which proves the claim. 2

Corollary 2.6.13 g ∈ P+KCP
−. Then −ζ(g) = ζ(θ(g)). In particular,

we have ζ(c−1) = −E.

Proof: Take Z = 0 in Lemma 2.6.12 and note that θ(c) = c−1. 2

Lemma 2.6.14 Let the notation be as above. Then the following hold:

1) The stabilizer of −E is HQ−.

2) S1 := S × S ' G/HQ− ×G/HQ+.

3) Let ξ0 = (E,−E) ∈ S1. Then M' G · ξ0.

Proof : Statement 1) follows from Lemma 2.6.12 and Corollary 2.6.13. The
second claim is a consequence of 1) and Lemma 2.6.11, whereas the last
claim follows immediately from 1) and 2). 2

We list here the symmetric spaces, the corresponding Shilov boundary
together with the real rank r, and the common dimension d of the restricted
root spaces for short roots as provided by Moore’s Theorem A.4.4. Here
k ≥ 3, T is the one-dimensional torus, Qn is the real quadric in the real
projective space RPn defined by the quadratic form of signature (1, n), and
the subscript + means positive determinant.
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Symmetric Spaces Related to tube domains

M = G/H S = K/K ∩H r d

Sp(n,R)/GL(n,R)+ U(n)/O(n) n 1
SU(n, n)/GL(n,C)+ U(n) n 2
SO∗(4n)/ SU∗(2n)R+ U(2n)/ Sp(2n) 2n 4
SO(2, k)/ SO(1, k − 1)R+ Qn 2 k − 2
E7(−25)/E6(−26)R

+ E6T/F4 3 8

2.6.2 The Functions Ψ
m

Our aim now is to construct an analytic function Ψ on S1 such that G/H =
{ξ ∈ S1 | Ψ(ξ) 6= 0}. This implies in particular that G/H is open and dense
in S1. For this we need a few facts from representation theory. Let ρn be
the half-sum of positive noncompact roots. Then

ρn =
1

2

[

1 +
d(r − 1)

2

]

(γ1 + · · ·+ γr) . (2.25)

Hence

2(ρn | γj)

|γj |2
= 1+

d(r − 1)

2
and

2(ρn | 1
2 (γi + γj))

|12 (γi + γj)|2
= 2+d(r−1) . (2.26)

From the table we see that

2(ρn | γj)

|γj |2
∈ Z+ ⇔ g 6= sp(2n,R) or g 6= so(2, 2k − 1) .

Theorem 2.6.15 Fix the positive system ∆+
n (pC, tC)∪−∆+(kC, tC) on ∆ =

∆(gC, tC). Then the following hold:

1) There exists an irreducible finite-dimensional representation of GC

with lowest weight −2ρn.

2) Assume that g 6= sp(2n,R), so(2, 2k+1), n, k ≥ 1. Then there exists a
finite-dimensional irreducible representation of GC with lowest weight
−ρn.

Proof: We have to check the integrality of ρn and 2ρn. Let {γ1, α2, . . . , αk}
be the set of simple roots for the positive system ∆+

n (pC, tC)∪−∆+(kC, tC).
Then α1 = γ1 is the only simple noncompact root. Furthermore, (ρn|α) = 0



2.6. SYMMETRIC SPACES RELATED TO TUBE DOMAINS 59

for α ∈ ∆(kC, tC). If γ is an arbitrary noncompact positive root, then
γ = γ1 +

∑

j>1 nαj
αj . By (2.25),

2(kρn|γ)
|γ|2 =

2(kρn|γ1)

|γ1|2
|γ1|2
|γ|2 = k

[

1 +
d(r − 1)

2

] |γ1|2
|γ|2 .

From [46], p. 537, it follows that γ1 is always a long noncompact root. Thus
|γ1|2/|γ|2 ∈ Z+. We have (1 + [d(r − 1)]/2) ∈ Z if and only if d is even or
r is odd. But in all cases 2 (1 + [d(r − 1)]/2) ∈ Z. The claim now follows
from the table. 2

Let m ∈ Z+ be such that there exists a finite-dimensional irreducible
representation (πm,Vm) of GC with lowest weight −mρn. Choose an inner
product on Vm as in Lemma A.3.3, e.g.,

πm(g)∗ = πm(σθ(g)−1)

where σ is the conjugation with respect to G. Let u0 be a lowest-weight
vector of norm 1. Define Φm : p+ → C by

Φm(Z) := (πm(c−2 expZ)u0 | u0)

and set

Ψm(Z,W ) := Φm(Z −W ) .

Example 2.6.16 (The case SU(1, 1)) Let us work out the special case
G = SU(1, 1) before we describe the general case. Now GC = SL(2,C).
As an involution on SU(1, 1) take τ(X) = X. Then τ is conjugation by

Int

(

0 1
1 0

)

and the holomorphic extension of τ is given by

τ

((

a b
c −a

))

=

(

−a c
b a

)

.

Thus

H = ±
{

h(t) :=

(

cosh t sinh t
cosh t sinh t

)∣

∣

∣

∣

t ∈ R

}

.

Let Z0 = i
2

(

1 0
0 −1

)

. Then

p+ =

{(

0 z
0 0

)∣

∣

∣

∣

z ∈ C

}

and p− =

{(

0 0
w 0

)∣

∣

∣

∣

w ∈ C

}

.
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The Cartan involution on SU(1, 1) is given by conjugating by Z0, and the
holomorphic extension of θ to SL(2,C) is given by

(

a b
c d

)

7→
(

a −b
−c d

)

.

Thus τθ(X) = tX . Identify p+ with C by z 7→ z

(

0 1
0 0

)

. Similarily,

aC = tC = kC = C

(

1 0
0 −1

)

' C and KC ' C∗. A simple calculation now

shows that
(

a b
c d

)

=

(

1 b/d
0 1

)(

1/d 0
0 d

)(

1 0
c/d 1

)

if d 6= 0. Thus

P+KCP
− =

{(

a b
c d

)∣

∣

∣

∣

d 6= 0

}

and Z

((

a b
c d

))

=
b

d
.

Thus Ω+ = {z ∈ C | |z| < 1} and S = {z ∈ C | |z| = 1}. Furthermore,

kC

((

a b
c d

))

= 1/d. Thus we recover the following well-known facts:

(

a b
c d

)

· z =
az + b

cz + d

and

j

((

a b
c d

)

, z

)

= (cz + d)−1 .

We have

E1 =

(

0 1
0 0

)

,

E−1 =

(

0 0
1 0

)

,

Xo =
i

2

(

0 −1
1 0

)

,

Yo =
1

2

(

0 1
1 0

)

,

Z0 =
i

2

(

1 0
0 −1

)

,

q+ =

{

i

(

r −r
r −r

)∣

∣

∣

∣

r ∈ R

}

,
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and

q− =

{

i

(

r r
−r −r

)∣

∣

∣

∣

r ∈ R

}

.

Thus exp itXo =

(

cos t
2 sin t

2
− sin t

2 cos t
2

)

. Hence

c =
1√
2

(

1 1
−1 1

)

and c2 =

(

0 1
−1 0

)

.

We find that c−2 expZ =

(

0 −1
1 z

)

∈ P+KCP
− if and only if z 6= 0. Fur-

thermore, we have

ζ(c) = 1, ζ(c−1) = −1 and j(c−2, Z) = 1/z.

The functions Φm and Ψm are given by Φm(Z) = zm and Ψm(z, w) =
(z − w)m. 2

Define the homomorphisms ϕj : sl(2,C) → gC by E±1 7→ E±j as in
Appendix A.4 and denote the corresponding homomorphisms SL(2,C) →
GC by the same letters. Then ϕj(SU(1, 1)) ⊂ G and since τσ(gCγj

) = gCγj
,

we can choose the root vectors Ej in the construction such that σ(Ej) =
τ(Ej) = E−j . Thus ϕj ◦ X̄ = τ ◦ ϕj(X).

Let ξ be a character of KC and assume it is unitary on K. Let c = RZ0.
Then dξ ∈ ic∗. We write kdξ := ξ(k), k ∈ KC.

Lemma 2.6.17 Let π be a finite-dimensional irreduciblerepresentation of
GC with lowest weight µ. Let uo be a nonzero vector of weight µ. Then the
KC-module generated by uo is irreducible. If µ ∈ ic∗, then KC acts on Cuo

by the character k 7→ kµ.

Proof: Let V be the representation space of π and W be the KC-submodule
generated by uo. Then, as KC normalizes p−, we find W ⊂ Vp

−

, where
Vp

−

is the space annihilated by p−. For

(nk)C =
⊕

α∈∆+(kC,tC)

(kC)α

we obtain
W(nk)C ⊂ V(nk)C⊕p

−

.

But V(nk)C⊕p
−

= Cuo. Thus W(nk)C is one-dimensional, which shows that
W is irreducible. Now the last claim is a consequence of the lowest-weight
description of the irreducible holomorphic representations of KC. The claim
follows. 2
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Lemma 2.6.18 Let σ : GC → GC be the conjugation with respect to G.
Let χ : KC → C∗ be a character. If χ|K is unitary, then χ(στ(k)) = χ(k).

Proof : Both sides are holomorphic in k and agree on K as τ |c = −1. The
lemma now follows as K is a real form of KC. 2

Lemma 2.6.19 Let Z ∈ p+. Then the following hold:

1) If expZ ∈ c2P+KCP
− then

Φm(Z) = (πm(j(c−2, Z))u0 | u0) = j(c−2, Z)−mρn .

2) Φm(k · Z) = k2mρnΦm(Z) for every k ∈ KC.

3) Let z1, . . . , zr ∈ C. Then

Φm(Ad(k)
r
∑

j=1

zjEj) = k2mρn

n
∏

j=1

z
m(1+d(r−1)/2)
j .

Proof : 1) Write c−2 expZ = pkq with p ∈ P+, k = j(c−2, Z) and q ∈ P−.
As σ(p+) = p−, we get πm(p)∗u0 = πm(σθ(p)−1)u0 = u0. Thus

Φm(Z) = (πm(c−2 expZ)u0 | u0)

= (πm(k)πm(q)u0 | πm(p)∗u0)

= (πm(k)u0|u0)

= k−mρn ,

where the last equality follows from Lemma 2.6.17 .
2) We have k · Z = Ad(k)Z. By Lemma 2.6.17,

Φm(k · Z) = (πm(c−2k expZk−1)u0 | u0)

= (πm(τ(k))πm(c−2 expZ)πm(k−1)u0 | u0)

= kmρn(πm(c−2 expZ)u0 | πm(στ(k)−1)u0)

= kmρn(στ(k))mρn Φm(Z)

= k2mρnΦm(Z)

3) This follows from 2) and sl2-reduction via ϕj . 2

Theorem 2.6.20 Let k ∈ KC, g ∈ GC and Z,W ∈ p+ be such that g · Z
and g ·W are defined. Then the following hold:

1) Ψm(g · Z, g ·W ) = j(g, Z)mρnj(g,W )mρnΨm(Z,W ).
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2) Let zj, wj ∈ C, j = 1, . . . , r. Then

Ψm(k ·
r
∑

j=1

zjEj , k ·
r
∑

j=1

wjEj) = k2mρn

r
∏

j=1

(zj − wj)
m(1+d(r−1)/2) .

Proof: 1) We have, by definition,

exp g · Z = g expZj(g, Z)−1q, q ∈ P− ,

and similarily for W . Thus

exp(g · Z − g ·W ) = exp(−g ·W ) exp(g · Z)

= (g exp(W )j(g,W )−1p)−1g exp(Z)j(g, Z)−1q

= p−1j(g,W ) exp(−W ) exp(Z)j(g, Z)−1

for some p ∈ P−. Now Ad(c−2) = C2 = θτ . Thus C2(P−) = P+. As
above, we get

Ψm(g · Z, g · W ) = (πm(c−2p−1j(g, W ) exp(−W ) exp(Z)j(g, Z)−1)u0 | u0)

= j(g, Z)mρn j(g, W )mρnΨm(Z, W ) .

2) We have k ·∑j zjEj −k ·
∑

j wjEj = k
(

∑

j(zj − wj)Ej

)

, as KC acts

by linear transformations. The claim now follows from Lemma 2.6.19. 2

2.6.3 The Causal Compactification of M
A causal compactification of a causal manifold is an open dense embedding
into a compact causal manifold preserving all structures. More precisely,
we set the following definition.

Definition 2.6.21 LetM be a causal G-manifold. A causal compactifica-
tion ofM is a pair (N ,Φ) such that

1) N is a compact causal G-manifold.

2) The map Φ :M→N is causal.

3) Φ is G-equivariant, i.e., Φ(g ·m) = g ·Φ(m), for every g ∈ G and every
m ∈M.

4) Φ(M) is open and dense in N . 2
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In this section we will show that the mapM 3 gH 7→ g ·(E,−E) ∈ S×S
is a causal compactification of M and that the image of this map is given
by

{ξ ∈ S1 | Ψm(ξ) 6= 0} .
Identify the tangent space of S1 at ξ0 with (g×g)/((h+q−)×(h+q+)) '

q+×q−. Let D be the image of C+×−C− in Tξ0S1 under this identification.
Then D is an (H ×H)-invariant regular cone in Tξ0(S1).

Lemma 2.6.22 D is an (HQ− ×HQ+)-invariant cone in Tξ0(S1).

Proof : Let q = expX ∈ Q+, p = expY ∈ Q−, and (R, T ) ∈ q+×q−. Then

Ad(p, q)(R, T ) = (ead YR, eadXT )

= (R+ [Y,R] + [Y, [Y,R]], T + [X,T ] + [X, [X,T ]]).

But [Y,R] ∈ h and [Y, [Y,R]] ∈ q−. Thus R+[Y,R]+[Y, [Y,R]] = R mod(h+
q−). Similarily, T + [X,T ] + [X, [X,T ]] = T mod(h + q+). It follows that
Ad(p, q)|Tξ0

(S1) = id. This implies the claim. 2

It follows that D defines an invariant causal structure on S1. Recall the
maximal abelian subalgebra

∑r
j=1 RXj of p from Proposition A.4.3. Write

Xj = X+
j +X−

j with X±
j ∈ q±.

Proposition 2.6.23 1) q− = Ad(H ∩K)
∑r

j=1 RX−
j .

2) Q− ·E = Ad(K ∩H){∑r
j=1 zjEj ∈ S | |zj | = 1, zj 6= −1}.

3) S = (K ∩H)
{

∑r
j=1 zjEj ∈ S

∣

∣

∣ |zj| = 1
}

.

Proof: 1) Let X ∈ q−, then X − θ(X) ∈ q ∩ p. Therefore we can find
k ∈ K ∩H and xj ∈ R such that

Ad(k)(X − θ(X)) =

r
∑

j=1

xjXj =

r
∑

j=1

xjX
−
j +

r
∑

j=1

xjX
+
j ∈ aq .

As θ(X), X+
j ∈ q+ it follows that Ad(k)X =

∑r
j=1 xjX

−
j

2) Assume first that G = SU(1, 1). Then X−
1 = i

(

1 1
−1 −1

)

. Thus

(exp tX1) · 1 =

(

1 + it it
−it 1− it

)

=
1 + 2it

1− 2it
.

So if |z| = 1, z 6= −1, we choose r = 1
2i

z−1
z+1 . The general case now follows

from 1) and sl2-reduction.
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3) Q+ ·E is dense in S as Q+HQ− is dense in G. The claim follows from
that, as (K ∩H){∑r

j=1 zjEj ∈ S | |zj | = 1} is closed and contained in S.
2

Theorem 2.6.24 Define Φ :M→ S1 by Φ(gH) := g · ξ0. Then (S1,Φ) is
a causal compactification of M with Φ(M) = {ξ ∈ S1 | Ψm(ξ) 6= 0}.
Proof : The G-equivariance of the function Φ is clear. Let us show that Φ is
causal. As both the causal structures onM and that on S1 are G-invariant,
and because Φ is G-equivariant, we only have to show that (dΦ)o(C) ⊂ Dξ0 .
But this is obvious from the definition of D.

To show that the image of Φ is dense, it suffices to show that it is given as
stated. It follows from Theorem 2.6.20 that the left-hand side is contained
in the right-hand side. Assume now that Ψm(Z,W ) 6= 0, ξ = (Z,W ) ∈ S1.
Let g ∈ G be such that g ·W = −E and then choose k ∈ K ∩H such that
k · (g · Z) =

∑

zjEj . Then

(kg) · ξ = (

r
∑

j=1

zjEj ,−E) .

By Theorem 2.6.20 we have Ψm((kg) · ξ) 6= 0. By the second part of that
theorem we have zj 6= −1 for j = 1, . . . , r. By using Proposition 2.6.23 we
now find q ∈ Q+ such that q · (kg · ξ) = ξ0. Hence ξ = (qkg)−1 · ξ0. 2

Remark 2.6.25 The compactification in Theorem 2.6.24 is also causal
with respect to the causal structure on G/H coming from the cone field
C+ + C−.

2.6.4 SU(n, n)

Let n = p+ q. Then

SU(p, q) = {a ∈ SL(n,C) | a∗Ip,qa = Ip,q}

=







(

A B
C D

)

∣

∣

∣

∣

∣

∣

A∗A− C∗C = Ip
D∗D −B∗B = Iq
B∗A−D∗C = 0







.

The conjugation in SL(n,C) with respect to SU(p, q) is given by

σ(a) = Ip,qθ(a)Ip,q ,

where θ is the Cartan involution a 7→ (a∗)−1. If a ∈ SU(p, q), then a−1 =
Ip,qa

∗Ip,q. Hence

(

A B
C D

)−1

=

(

A∗ −C∗

−B∗ D∗

)

. (2.27)
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The Lie algebra of SU(p, q) is given by

su(p, q) =

{(

X Y
Y ∗ Z

) ∣

∣

∣

∣

Y ∈M(p× q,C), X ∈ u(p),
Z ∈ u(q), TrX + TrZ = 0

}

. (2.28)

The maximal compact subgroup K is given by S(U(p) × U(p)). Further-
more,

k =

{(

A 0
0 B

)∣

∣

∣

∣

A ∈ u(p), B ∈ u(q), Tr(A) + Tr(B) = 0

}

and

p =

{(

0 Y
Y ∗ 0

)∣

∣

∣

∣

Y ∈M(p× q,C)

}

.

We choose Z0 =

( ip
n Ip 0

0 − iq
n Iq

)

∈ k. Then

ad(Z0)

(

A Y
Y ∗ B

)

=

(

0 iY
−iY ∗ 0

)

,

which implies that

p+
C =

{(

0 Y
0 0

)∣

∣

∣

∣

Y ∈M(p× q,C)

}

'M(p× q,C) .

Suppose that

(

A B
C D

)

∈ SU(p, q). Then D is invertible and we have a

decomposition
(

A B
C D

)

=

(

Ip BD−1

0 Iq

)(

A−BD−1C 0
0 D

)(

Ip 0
D−1C Iq

)

.

Thus the Harish-Chandra embedding G/K ↪→ p+ ' M(p × q,C) is given
by

Z

((

A B
C D

)

KCP
−

)

=

(

0 BD−1

0 0

)

7→ BD−1,

inducing a biholomorphic isomorphism

SU(p, q)/S(U(p) ×U(q)) ' Dp,q,

where Dp,q := {Z ∈ M(p × q,C) | Iq − Z∗Z > 0}. Here the action of
SU(p, q) on Dp,q is given by

(

A B
C D

)

· Z = (AZ +B)(CZ +D)−1 .
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G/K is of tube type if and only if p = q. In that case we have

Yo =
1

2

(

0 In
In 0

)

,

Xo =
i

2

(

0 −In
In 0

)

,

c =
1√
2

(

In In
−In In

)

,

c−2 =

(

0 In
−In 0

)

,

E = In,

S = U(n) .

The involution τ = τYo
is conjugation by 2Yo. Thus

τ

((

A B
C D

))

=

(

D C
B A

)

.

Therefore

H =

{

h(A,B) :=

(

A B
B A

)∣

∣

∣

∣

A,B ∈Mn(C)
A∗A−B∗B = In, B

∗A = A∗B

}

,

h = {h(X,Y ) ∈ su(n, n)|X∗ = −X, Y ∗ = Y, TrX = 0 } ,

and

q = i

{

q(X,Y ) :=

(

X Y
−Y −X

)∣

∣

∣

∣

tX = X, tY = Y

}

.

Define ϕ± : H ∪ h→M(n,C) by

ϕ± (h(A,−B)) = A±B .

We leave the simple proof of the following assertions to the reader:

1) ϕ± : H → GL(n,C)+ is an isomorphism of groups.

2) ϕ± : h→ sl(n,C) + R In is an isomorphism of Lie algebras.

Note that the Cartan involution on GL(n,C) is θ(a) = (a∗)−1. By (2.27),

ϕ− = θ ◦ ϕ+. We choose 1
2

(

0 In
In 0

)

as Yo. Then the h-module structure

of q is described by

q+ = i{q(X,−X) | tX = X} 3 iq(X,−X)
1
2i

ϕ+7→ X ∈ H(n,C)



68 CHAPTER 2. CAUSAL ORIENTATIONS

and

q− = i{q(X,X) | tX = X} 3 iq(X,X)
1
2i

ϕ−7→ X ∈ H(n,C) .

Obviously, both ϕ+ and ϕ−, are isomorphisms. By (2.27) we get for X ∈ q±

and a ∈ H ,

ϕ±(Ad(a)X) = ϕ±(a)

[

i

2i
ϕ±(X)

]

ϕ±(a)∗ .

In this case C± = 1
2iϕ

−1
± (H+(n,C)), cf. Example 2.1.14.

In the bounded realization we have G/K = Dn,n. The space
∑r

j=1 CEj

corresponds to the diagonal matrices and E = In. In particular, S = U(n).
By Lemma 2.6.19 and the table on p. 58, Φm(Z) = det(Z)mn. Thus

SU(n, n)/GL(n,C)+ ' {(Z,W ) ∈ U(n) ×U(n) | det(Z −W ) 6= 0} .

2.6.5 Sp(n,R)

We realize G = Sp(n,R) inside SU(n, n) as

Sp(n,R) =

{(

A B
B A

)∣

∣

∣

∣

A∗A− tBB = In,
t(B∗A) = B∗A

}

. (2.29)

Its Lie algebra is given by

sp(n,R) =

{(

X Y
Y X

)∣

∣

∣

∣

X,Y ∈M(n,C), X∗ = −X, tY = Y

}

. (2.30)

The involution τ leaves G and g stable and is also given by complex conju-
gation. Therefore H , h are just the real points of the corresponding object
for SU(n, n). We also note that the above Xo and Yo are in sp(n,R). Thus

H = {h(A,B) ∈ Sp(n,R) | A,B ∈M(n,R)}
ϕ+' GL(n,R)+,

h = {h(X,Y ) ∈ sp(n,R) | X,Y ∈M(n,R), tX = −X, tY = Y }
ϕ+' gl(n,R),

q = i{h(X,Y )|X,Y ∈M(n,R), tX = X, tY = Y } ,
q+ = i{q(X,−X) | X ∈Mn(R), tX = X}

3 iq(X,−X)
1
2i

ϕ+7→ X ∈ H(n,R) ,

q− = i{q(X,X) | X ∈M(n,R), tX = X}

3 iq(X,X)
1
2i

ϕ−7→ X ∈ H(n,R) .
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The Cartan involution on GL(n,R) is θ(a) = ta−1. From (2.27) we obtain
ϕ− = θ ◦ ϕ+ and, with X ∈ q± and a ∈ H ,

ϕ±(Ad(a)X) = ϕ±(a)

[

1

2i
ϕ±(X)

]

tϕ±(a) .

In this case C± = 2iϕ−1
± (H+(n,R)), cf. Example 2.1.14.

The bounded realization of G/K is

{Z ∈Mn(C) | In − Z∗Z > 0, tZ = Z} .

The space
∑r

j=1 CEj corresponds to the diagonal matrices and E = In. In
particular,

S = U(n)/O(n) ' {A ∈ U(n) | tZ = Z} .
Lemma 2.6.19 and the table on p. 58 imply

Φm(Z) = det(Z)
m(n+1)

2 .

Thus

Sp(n,R)/GL(n,R)+ '
{

(Z,W ) ∈ O(n)×O(n)

∣

∣

∣

∣

Z,W symmetric
det(Z −W ) 6= 0

}

.

Notes for Chapter 2

Cones have been used in different parts of mathematics for a long time and
are related to concepts such as the Laplace transform [24, 28], Hardy spaces
over tube domains, and Hermitian symmetric spaces [83, 84]. The concept of
causal orderings associated to cone fields has also been used for a long time
implicitly in the context of Lorentzian geometry and relativity (e.g., in [4, 37, 42]).
Group invariant cone fields appear in Segal’s book [157]. Vinberg, Paneitz, and
Ol’shanskii considered the special case of bi-invariant cone fields on Lie groups in
[166, 147, 148]. The first article on invariant cone fields on semisimple symmetric
spaces was [138]. A systematic study of invariant cone fields on homogeneous
spaces was started in [47] and [50]. Later it was taken up in the work of Lawson
[93], Ólafsson [129, 130], and Neeb [112]-[115], [52].

The algebraic side of the theory, i.e., a closer inspection of the cones that
appear in the study of causal orderings, was also initiated by Vinberg in [166]
and then taken up by many authors [48, 50, 129, 137, 148].

The order compactification was introduced in [55], motivated by the study of
Wiener-Hopf operators on ordered homogeneous spaces.

The results in the last section are taken partly from [136], where further infor-

mation about this class of spaces can be found. This causal compactification has
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also been considered in [86, 87]. The compactly causal hyperboloids were studied

in [107]. In [7] and [6], causal compactifications for a more general class of causal

symmetric spaces are given. Compactifications without the causal structure have

also been obtained in [98] and [76].



Chapter 3

Irreducible Causal

Symmetric Spaces

In this chapter we determine the irreducible semisimple causal symmetric
spaces. The crucial observation is that the existence of causal structures on
M = G/H is closely connected to the existence of (H ∩K)-fixed vectors in
the tangent spaces ofM. With that tie established, one can use the results
of Chapter 1 to single out which irreducible non-Riemannian semisimple
symmetric spaces admit causal structures.

As we have seen already in Chapters 1 and 2, the existence of causal struc-
tures may depend on the fundamental group of the space. So we include
a discussion on how causal structures behave with respect to coverings. In
Section 3.2 we give a list of all the irreducible semisimple symmetric pairs
(g, τ) for which the universal symmetric space admits a causal structure.

3.1 Existence of Causal Structures

In this section we assume thatM = G/H is a non-Riemannian semisimple
symmetric space such that the corresponding symmetric pair (g, τ) is irre-
ducible and effective. We fix a Cartan involution θ commuting with τ and
use the notation introduced in Remark 1.1.15.

Lemma 3.1.1 Let 0 6= X ∈ qH∩K and C the smallest Ho-invariant convex
closed cone in q containing X. Then C is H-invariant.

Proof: We mimick the proof of Lemma 2.6.1: If h ∈ H , then h is of the
form h = hok with k ∈ H ∩ K and ho ∈ Ho (cf. (1.8)). Further, let

71
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Y =
∑

λj Ad(hj)X ∈ C, λj ≥ 0, hj ∈ Ho. Thus

Ad(h)Y =
∑

λj Ad(hhj)X

=
∑

λj Ad(hhjh
−1)Ad(ho)Ad(k)X

=
∑

λj Ad(hhjh
−1)Ad(ho)X ∈ C

since hhjh
−1 ∈ Ho. As C is closed and the set of elements of the form

∑

λj Ad(hj)X is dense, it follows that C is H-invariant. 2

Lemma 3.1.2 If M admits a G-invariant causal structure, then we have:

1) There exists an H-invariant proper closed convex cone in q.

2) q is a completely reducible H-module with either one or two irreducible
components.

3) dim(qH∩K) is equal to the number of irreducible H-submodules of q.

4) If dim(qH∩K) < dim(qHo∩K), then there exists an element h ∈ H∩K
such that Ad(h)Y = −Y for all Y ∈ z(h).

Proof: 1) Let C be an H-invariant nontrivial closed convex cone in q. Then
space qC = C ∩ (−C) is H-invariant and not equal to q. According to
Lemma 1.3.4, qC is either trivial or otherwise equal to q+ or q−, where
q = q+ + q− is the decompostion of q into irreducible h-modules. In each
case we find a proper Ho-invariant cone in C.

2) Since Ho is normal in H , the action of H on q maps Ho-submodules
to Ho-submodules. Thus q is a reducible H-module if and only if it is a
reducible Ho-module and q± are both H-invariant. In this case q± are both
irreducible H-modules, which implies the claim.

3) If q is a reducible H-module, then we consider the projection pr: q→
q+, which is H-equivariant. Therefore pr(C) ⊆ q+ and θ ◦ pr(C) ⊆
q− are H-invariant proper cones. Thus Theorem 1.3.11.4) implies that
dim(qH∩K) = dim(qHo∩K) = 2.

If q is irreducible as an H-module, then qC = {0}, i.e., C is proper.
Then Lemma 2.1.15 shows that qH∩K 6= {0}. It remains to be shown that
dim(qH∩K) = 1. We have two cases to consider.

Case 1: dim(qHo∩K) = 1. In this case, obviously, dim(qH∩K) = 1 as
well.

Case 2: dim(qHo∩K) = 2. Then we are in the situation of Theorem
1.3.11 and, as far as the symmetric pair (g, τ) is concerned, Section 2.6.
Recall the θ-stable subgroup H1 of index 2 in Ho from Lemma 1.3.14.
According to this lemma, we can find an h ∈ H ∩ K, not contained in
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H1, such that Ad(h)q+ = q−. Since z(h) is one-dimensional, we have
Ad(h)Yo = rYo with r ∈ R. Moreover, h2 ∈ H1, whence r2 = 1. If
r = 1, then Xo, Z

0 ∈ qH∩K , which shows that the Ho-invariant cones
generated by X± = Xo±Z0 ∈ q± are H-invariant (Lemma 3.1.1). But this
contradicts the H-irreducibility of q. Thus we have r = −1. This means
that Ad(h)Xo = −Xo which, together with hAd(h)Z0 = Z0, shows that
the only H-invariant vectors in qHo∩K = RXo + RZ0 are the multiples of
Z0. This implies dim(qH∩K) = 1. Finally, we note that Ad(h)Yo = −Yo by
the above, so that assertion 4) follows, too. 2

Theorem 3.1.3 LetM = G/H be a non-Riemannian semisimple symmet-
ric space. IfM is irreducible, then the following statements are equivalent:

1) M admits a G-invariant causal structure.

2) dim(qH∩K) > 0.

If these conditions hold, then ConeH(q) 6= ∅, i.e., M even admits a regular
G-invariant causal structure.

Proof: Lemma 3.1.2 shows that the existence of G-invariant causal structure
onM implies that qH∩K 6= {0}. Assume conversely that qH∩K 6= {0}. We
have to consider two cases.

Case 1: Suppose that q is irreducible as an h-module. Then by Theorem
1.3.11, Ho is semisimple, and by Lemma A.3.5, dim qHo∩K = 1. Thus
qH∩K = qHo∩K . Let 0 6= X ∈ qH∩K and Cmin be the Ho-invariant cone
generated by X (cf. Theorem 2.1.21). Then Lemma 3.1.1 shows that Cmin

is H-invariant.

Case 2: Suppose that q is not irreducible as an h-module. Then we are in
the situation of Theorem 1.3.11 and Section 2.6. Let C be the Ho-invariant
cone in q generated by Z0. Then the group case described in Section 2.5.1
shows that C is proper. It is also H-invariant by Lemma 3.1.1.

It remains to show that the existence of proper H-invariant cones imply
the existence of regular H-invariant cones. If q is H-irreducible this is
obvious, since the span of an H-invariant cone is H-invariant. If q is not
H-irreducible, then the cones C± constructed in Section 2.6 areH-invariant,
proper, and generating in q±. Thus C++C− is anH-invariant regular cone.

2

Lemma 3.1.4 LetM = G/H be an irreducible non-Riemannian semisim-
ple symmetric space and C an H-invariant cone in q. If either

Co ∩ k 6= ∅ and C ∩ p 6= {0}
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or
Co ∩ p 6= ∅ and C ∩ k 6= {0},

then C contains a line.

Proof: We will only show that the first assumption implies that C contains
a line. The second part then follows from c-duality.

Assume that C is proper and Co∩k 6= ∅ and C∩p 6= {0}. Let Z1 ∈ Co∩k

and X1 ∈ C ∩ p, Z1, X1 6= 0. Define

Z :=

∫

AdG(K∩H)

k · Z1 dk and X :=

∫

AdG(K∩H)

k ·X1 dk .

Then (cf. Lemma 2.1.15) Z,X are nonzero and (K∩H)-fixed. Furthermore,
as θ commutes with Ad(K ∩H), Z ∈ Co∩q0

k and X ∈ C ∩q0
p. Thus we are

in the situation of Theorem 1.3.11 and Section 2.6. In particular, Remark
2.6.2 shows that Z ∈ RZ0 and X ∈ RXo. Normalize Z and X such that
adZ has the eigenvalues ±i and 0 and adX has the eigenvalues ±1 and 0.
In particular,

ad(Z)2|p = − id and ad(X)2|qa = id .

Let Y = [Z,X ] ∈ RYo ⊂ z(h) ∩ p. Then

[Y, Z] = [[Z,X ], Z] = − ad(Z)2X = X

and similarly, [Y,X ] = Z. Thus we have reduced the problem to one on
sl(2,R). A short direct argument goes as follows:

et ad Y (Z +X) = et(Z +X),

et ad Y (Z −X) = e−t(Z −X).

In particular, we get

et ad Y Z = cosh t [Z + (tanh t)X ] ,

et ad YX = cosh t [(tanh t)Z +X ] .

Dividing by cosh t and letting t→ ±∞ shows that ±(Z±X) ∈ C. Thus
C contains a line. 2

Theorem 3.1.5 LetM = G/H be a non-Riemannian semisimple symmet-
ric space. Suppose that M is irreducible and admits a G-invariant causal
structure. Then the following cases may occur:

1) dim(qH∩K) = dim(qHo∩K) = 1. In this case q is irreducible as H-
and h-module. There are two possibilities which are c-dual to each
other:
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1.k) qH∩K ⊂ qk. In this case, for every cone C ∈ ConeH(q) we have

Co ∩ qH∩K
k 6= ∅, C ∩ p = {0}.

1.p) qH∩K ⊂ qp. In this case, for every cone C ∈ ConeH(q) we have

Co ∩ qH∩K
p 6= ∅, C ∩ k = {0}.

2) dim(qH∩K) = dim(qHo∩K) = 2. In this case q is neither H- nor
h-irreducible and we have

ConeH(q) = {±Ck,±Cp}

(cf. Remark 2.6.2 ).

3) dim(qH∩K) = 1, dim(qHo∩K) = 2. In this case, q is H-irreducible but
not h-irreducible and we have

ConeH(q) = {±Ck}.

Proof: Note first that Theorem 1.3.11 and Theorem 3.1.3 show that no
more than these three cases are possible. Moreover, Lemma 3.1.2 shows
the claims about H- and h-irreducibility.

1) Recall that qH∩K is θ-invariant. This proves the dichotomy of (1.k)
and (1.p). Now the claim follows from Lemma 3.1.4 in view of Lemma
2.1.15.

2) In view of Theorem 1.3.11, this is a consequence of Theorem 2.6.8.
3) Theorems 1.3.11 and 2.6.8 show that ConeHo

(q) = {±Ck,±Cp}. This
proves that Ck is the Ho-invariant cone generated by Z0. Since Z0 is an
(H ∩K)-fixed point, Lemma 3.1.1 implies that Ck is H-invariant. On the
other hand, Lemma 3.1.2 shows that we can find an h ∈ H ∩ K with
Ad(h)Yo = −Yo so that also Ad(h)Xo = −Xo and hence does not leave Cp

invariant. 2

The following corollary is an immediate consequence of Theorem 3.1.5
and Remark 2.6.2.

Corollary 3.1.6 IfM is an irreducible non-Riemannian semisimple sym-
metric space and C ∈ ConeH(q), then we have either

Co ∩ qH∩K
k 6= ∅, C ∩ p = {0}

or

Co ∩ qH∩K
p 6= ∅, C ∩ k = {0}. 2
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Remark 3.1.7 1) Theorem 1.3.8 shows that in Case (1.k) of Theorem
3.1.5 the Riemannian symmetric space G/K is a bounded Hermitian
domain and τ induces an antiholomorphic involution on G/K. More-
over, Theorem 1.3.11 implies that G/K is not of tube type in this
case.

2) Under c-duality k corresponds to ha and Hermitian to para-Hermitian
structures. Therefore in Case (1.p) of Theorem 3.1.5 the space G/Ha

carries a para-Hermitian structure.

3) Theorem 1.3.11 shows that in the cases 2) and 3) of Theorem 3.1.5 the
Riemannian symmetric space G/K is a bounded Hermitian domain
of tube type.

4) Theorem 2.6.8 implies that Case 3) in Theorem 3.1.5 cannot occur if
H is connected. 2

Definition 3.1.8 Let M be an irreducible non-Riemannian semisimple
symmetric space. Then we call M

CC) a compactly causal symmetric space if there exists a C ∈ ConeH(q)
such that Co ∩ k 6= ∅,

NCC) a noncompactly causal symmetric space if there is a C ∈ ConeH(q)
such that Co ∩ p 6= ∅, and

CT) a symmetric space of Cayley type if both (CC) and (NCC) hold.

CAU) a causal symmetric space if either (CC) or (NCC) holds.

The pair (g, τ) is called compactly causal (noncompactly causal, of Cayley
type) if the corresponding universal symmetric space M̃ has that property.
Finally, (g, τ) is called causal if it is either noncompactly causal or com-
pactly causal. 2

Remark 3.1.9 1) It follows directly from the definitions that (g, τ) is
noncompactly causal if and only if (gc, τ) is compactly causal.

2) In view of (1), Lemma 1.2.1 implies that a noncompactly causal sym-
metric pair (g, τ) is of Cayley type if (g, τ) ∼= (gc, τ).

3) If (g, τ) is compactly causal, then Theorem 1.3.8 shows that either g

is simple Hermitian or of the form g1 × g1 with g1 simple Hermitian
and τ(X,Y ) = (Y,X).
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4) Example 1.2.2 now shows that if (g, τ) is noncompactly causal, then
either gc is simple Hermitian or of the form hC with τ = σ. Note that
in both cases g is a simple Lie algebra.

5) If (g, τ) is of Cayley type, then 3) and 4) imply that g is simple
Hermitian.

6) Let g be a simple noncompact Lie algebra. Then (g, id) is an irre-
ducible symmetric pair. It is not causal since it does not belong to a
non-Riemannian semisimple symmetric space (cf. Remark 1.1.15). 2

Definition 3.1.10 Let (g, τ) be noncompactly causal symmetric pair. An
element X0 ∈ qp is called cone-generating if spec(adX0) = {−1, 0, 1} and
the centralizer of X0 in g is ha. 2

Proposition 3.1.11 Suppose that (g, τ) is a noncompactly causal symmet-
ric pair.

1) Cone-generating elements exist and are unique up to sign.

2) Let b be an abelian subspace of p containing a cone-generating element
X0. Then b ⊂ qp.

3) Let a be a maximal abelian subspace of qp. Then a is maximal abelian
in p and maximal abelian in q. Moreover, a contains X0.

4) Let a be maximal abelian in q and assume that X0 ∈ a. Then a ⊂ qp.

5) Let X0 ∈ qp be a cone-generating element. Then RX0 = z(ha).

Proof: 1) According to Theorem 3.1.5, the centralizer zqp
(h) of hk in q is

nontrivial. Then, in view of Theorem 1.3.11, it is one-dimensional, say of
the form RX . Lemma 1.3.5 says that zqp

(h) = z(ha)∩ q. But then zg(X) is
θ-invariant and contains ha, so Lemma 1.3.2 implies that ha = zg(X). Note
that the spectrum of ad(X) is real and pick the largest eigenvalue r of X .
Then −r is also an eigenvalue and g(−r,X) + ha + g(r,X) is a θ-invariant
subalgebra strictly containing ha, hence equal to g, again by Lemma 1.3.2.
Thus there are no more eigenvalues of ad(X) than −r, 0, r and this implies
the claim.

2) If b is abelian and contains X0, then b ⊂ zg(X
0) = ha. Thus b ⊂ qp.

3) If a is maximal abelian in qp, then X0 ∈ a is abelian since X0 ∈ z(ha).
Let b be maximal abelian in p containing a. Then 2) implies b ⊂ qp, so
b = a. That a is maximal abelian in q follows from zq(X

0) = qp.
4) This again follows from zq(X

0) = qp.
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5) We have seen already that ha is the centralizer of X0. Therefore it
only remains to show that dim(z(ha)) ≤ 1. But that follows from Lemma
1.3.10 applied to (g, ha). 2

The analog of Proposition 3.1.11 for a compactly causal symmetric pair
follows via c-duality. We only record the first part, which will be used later.

Proposition 3.1.12 Suppose that (g, τ) is compactly causal. Then there
exists an, up to sign unique, element Z0 ∈ qk such that spec(adZ0) =
{−i, 0, i} and the centralizer of Z0 in g is k. 2

Example 3.1.13 Recall the SL(2,R) Example 1.3.12 for which one has

Gτ ∩ Gθ = {±1} so that qGτ∩Gθ

= q is two-dimensional. This shows that
the one-sheeted hyperboloid is of Cayley type. Note that a := qp is abelian
itself. The corresponding cone Cp is R+(X0 + Z0) + R+(X0 − Z0). 2

The following proposition gives some useful isomorphisms between dual
spaces of causal symmetric pairs.

Proposition 3.1.14 1) Let (g, τ) be a compactly causal symmetric pair.
Fix Z0 ∈ z(k)q such that adp Z

0 is a complex structure on p. Let
ψk = ϕZ0 (cf. Lemma 1.2.1). Then the following hold:

a) ψ2
k = θ.

b) ψ−1
k = ψk ◦ θ = θ ◦ ψk.

c) τ ◦ ψk = ψk ◦ τa.

d) ψk : (g, τ, θ)→ (g, τa, θ) is an isomorphism.

2) Let (g, τ) be a noncompactly causal symmetric pair. Fix X0 ∈ zqp
(hk)

such that g = g(0, X0) ⊕ g(+1, X0) ⊕ g(−1, X0). Let ψp = ϕiX0 .
Then the following hold:

a) ψ2
p = τa.

b) τ ◦ ψp = ψp ◦ θ.
c) ψp defines an isomorphism ψp : (g, θ, τ)→ (g, τ, θ)r.

3) Let (g, τ) be a symmetric pair of Cayley type. Fix an element Y 0 ∈
z(h) such that g = g(0, Y 0)⊕g(+1, Y 0)⊕g(−1, Y 0). Define ψc = ϕiY 0 .
Then the following hold:

a) ψ2
c = τ .

b) ψc ◦ τ = τ ◦ ψc,

c) ψc ◦ θ = τa ◦ ψc.
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d) ψc defines an isomorphism ψc : (g, τ, θ)→ (gc, τ, τa).

Proof: 1.a) follows from Lemma 1.2.1.
1.b) and 1.c): By 1.a), we have ψ4 = id. Thus ϕ−Z0 = ψ−1 = ψ3 =

ψ ◦ θ = θ ◦ ψ. As τZ0 = −Z0, it follows that τ ◦ ψ = ψ−1 ◦ τ . This implies
1.b) and 1.c).

1.d): This is an immediate consequence of 1.c).
Parts 2) and 3) can be proved in the same way as Part 1). 2

Given a causal symmetric pair, it is not clear which, if any, symmetric
spaceM associated to (g, τ) is causal (cf. Section 2.5). With the structure
theory just established, we are in a position to clarify the situation. The
following proposition shows that compactly causal symmetric pairs do not
pose any problems in this respect.

Proposition 3.1.15 If (g, τ) is compactly causal, then every symmetric
space associated to (g, τ) is causal.

Proof: Let M = G/H be a symmetric space associated to (g, τ). Choose
Z0 ∈ z(k)∩q (cf. Proposition 3.1.12). Then Ad(k)Z0 = Z0 for every k ∈ K.
In particular, Z0 = qH∩K , which proves the claim in view of Theorem 3.1.3.

2

Note here that Proposition 3.1.15 does not say that any Ho-invariant
cone in q is H-invariant, i.e., gives a causal structure onM.

As we have seen before (cf. e.g. Theorem 3.1.5), in the noncompactly
causal case the existence of causal structures is related to the nature of the
component group H/Ho of H . The right concept to study in our context
is that of essential connectedness.

Definition 3.1.16 Let M = G/H be a non-Riemannian semisimple sym-
metric space and (g, τ) corresponding symmetric pair. Further, let a be a
maximal abelian subalgebra in qp. Then H is called essentially connected
in G if

H = ZK∩H(a)Ho. 2

We note that this definition is independent of the choice of a, since the
maximal abelian subspaces in qp are conjugate under Ho ∩K.

Remark 3.1.17 Let (g, τ) be a noncompactly causal symmetric pair. We
fix a cone generating element X0 ∈ qp and a maximal abelian subspace a

of qp containing X0. Then a is a maximal abelian subspace of p and we
denote the set ∆(g, a) of restricted roots of g w.r.t. a by ∆. Further, we
set

∆0 = {α ∈ ∆ | α(X0) = 0}. (3.1)
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Since ha is the centralizer of X0, we get

∆0 = ∆(ha, a). (3.2)

Let

∆+ := {α ∈ ∆ | α(X0) = 1} and ∆− := {α ∈ ∆ | α(X0) = −1} . (3.3)

Choose a positive system ∆+
0 in ∆0. Then a positive system ∆+ for ∆ can

be defined via
∆+ := ∆+ ∪∆+

0 . (3.4)

Set
n± =

∑

α(X0)=±1

gα, n0 =
∑

α∈∆+
0

gα .

Then n = n+ + n0, [n+, n+] = {0},[n−, n−] = {0} and[ha, n±] ⊂ n±. 2

Theorem 3.1.18 Let M = G/H be a symmetric space such that the cor-
responding symmetric pair (g, τ) is noncompactly causal. Then M is non-
compactly causal if and only if H is essentially connected in G.

Proof: Choose a cone-generating element X0 ∈ qp. Then X0 centralizes
hk and hence is contained in qHo∩K

p . Next we choose a maximal abelian
subspace a of p containing X0. If H is essentially connected in G, then
obviously X0 ∈ qH∩K and G/H is noncompactly causal by Theorem 3.1.3.

Assume conversely that G/H is noncompactly causal. Then, in view of
Theorem 1.3.11, Theorem 3.1.5 implies that qH∩K

p = qHo∩K
p = RX0. Let

a, ∆, and ∆+ be as in Remark 3.1.17 and fix some k ∈ K∩H . Then Ad(k)a
is a maximal abelian subalgebra in qp. Since all such algebras are Ho ∩K-
conjugate, we can find an h ∈ Ho ∩K such that Ad(hk) normalizes a. But
k and hk are contained in the same connected component of H , so we may
as well assume that Ad(k) normalizes a. Since H ∩ K fixes X0, it leaves
∆0 invariant. Therefore k ·∆+

0 is again a positive system in ∆0 and we can
find a ko ∈ Ho ∩ K such that ko(k∆

+
0 ) = ∆+

0 . But then ∆+ is invariant
under kok, so that kok ∈ M ∩H = ZH∩K(a). Thus k ∈ ZH∩K(a)Ho and
H is essentially connected. 2

We use Theorem 3.1.18 to show that the symmetric space M̌ = G/H
is noncompactly causal if the corresponding symmetric pair (g, τ) is non-
compactly causal. To do this we need one more lemma.

Lemma 3.1.19 Let (g, τ) be a noncompactly causal symmetric pair and
GC be a simply connected complex Lie group with Lie algebra gC. Choose a
cone-generating element X0 ∈ qp. Then
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1) ZGC
(X0) is connected and equal to Gτθ

C .

2) ZG(X0) = Gτa

.

3) ZK(X0) = Kτ , where K = Gθ.

Proof: 1) Let ϕ = τiX0 (cf. Lemma 1.2.1). Then ϕ defines an involution
on GC as GC is simply connected. Obviously ZGC

(X0) ⊂ Gϕ
C and both

groups have the same Lie algebra ha
C = (hk)C ⊕ (qp)C. This shows that

ϕ = τa = τθ. By Theorem 1.1.11, Gϕ
C is connected. Hence we have

ZGC
(X0) = Gϕ

C = Gτθ
C .

2) ZG(X0) = Gτθ
C ∩G = Gτa

because of 1).
3) ZK(X0) = Gτa ∩K = Kτ because of 2) and θ|K = id. 2

Theorem 3.1.20 Let (g, τ) be a noncompactly causal symmetric pair and
GC be a simply connected complex Lie group with Lie algebra gC. Further,
let G be the analytic subgroup of GC with Lie algebra g and H a subgroup
of Gτ containing Gτ

o . Then H is essentially connected and M = G/H
is a noncompactly causal symmetric space. In particular M̌ = G/Gτ is
noncompactly causal.

Proof: Fix a cone-generating element X0 ∈ qp. Then Lemma 3.1.19 shows
that X0 ∈ qGτ∩K

p . Now Theorem 3.1.3 and Theorem 3.1.5 imply thatM =
G/Gτ is noncompactly causal. Therefore Theorem 3.1.18 shows that Gτ

is essentially connected. But then all open subgroups of Gτ are essentially
connected as well, so that the converse direction of Theorem 3.1.18 proves
the claim. 2

Remark 3.1.21 Theorem 3.1.20 shows that in the situation of Section 2.6,
i.e., for spaces related to tube domains, the assumptions made to ensure the
H-invariance of the various Ho-invariant cones are automatically satisfied.
In fact, one can choose X0 = Xo in that context, so one sees that Xo ∈
qH∩K

p . 2

The results of Lemma 3.1.19 can be substantially extended.

Lemma 3.1.22 Let (g, τ) be a noncompactly causal symmetric pair and
GC be a simply connected complex Lie group with Lie algebra gC. Further,
let G be the analytic subgroup of GC with Lie algebra g and K = Gθ. If
a ⊂ qp is a maximal abelian subspace, then

1) Gτa

= M(Gτa

)o, where M = ZK(a).

2) M = ZGτ (a) = ZKτ (a).
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3) Let F = K ∩ exp ia. Then F = {g ∈ exp ia | g2 = 1} ⊂ M , Kτ =
F (Kτ )o, and Gτ = F (Gτ )o.

4) Ha = F (Ha)o = F (Gτa

)o = Gτa

, where Ha = (H ∩ K) exp qp (cf.
(1.11))

Proof: 1) Let X0 ∈ a ⊂ qp be as in Proposition 3.1.11. Then Lemma 3.1.19
implies M ⊂ Gτa

, since X0 ∈ a. Conversely, recall from Theorem 3.1.20
that Gτ is essentially connected, so that

Gτa ∩K = Gτθ ∩Gθ ⊂
[

ZK∩Gτ (a)(Gτ )o

]

∩Gθ ⊂M [Gτa

]o.

2) According to Lemma 3.1.19, we have

ZGτ (a) ⊂ ZGτ (X0) ⊂ Gτ ∩Gτθ
C ⊂ Gτ ∩Gθ ⊂ K

which implies ZGτ (a) ⊂ M . Conversely, M ⊂ Gτa ∩ Gθ = Gτ ∩K by 1),
so M ⊂ ZGτ (a).

3) We recall that the involutions τ, σ, τσ, and θu on gC with fixed point
algebras hC, g, g

c and k + ip, respectively, all integrate to involutions on
GC and have connected sets of fixed points HC, G,G

c and U in GC (cf.
Theorem 1.1.11). The involution θu induces Cartan involutions on G,Gc,
and GC. Let Kc be the corresponding maximal compact subgroup of Gc.
Then

(Kc)τ = (Uστ )τ = Uσ ∩ U τ = Kτ .

Now assume that k ∈ K ∩ exp ia. Then k = σ(k) = k−1, so that k2 = 1.
Conversely, if k ∈ exp ia and k2 = 1, we have σ(k) = k−1 = k, i.e., k ∈ G.
But we also have θu(k) = k, whence k ∈ G ∩ U = K.

Note that τ(k) = k−1 = k implies that F ⊂ Kτ . It is clear that F ⊂
ZK(a), so it only remains to show that Gτ ⊂ F (Gτ )0. To this end we fix
h ∈ Gτ and write it as

h = k expX ∈ K exp p.

Now the τ -invariance of the Cartan decomposition shows that k ∈ Kτ =
(Kc)τ andX ∈ hp.Note that (kc, τ) is a compact Riemannian symmetric Lie
algebra and ia is a maximal abelian subspace in kc ∩ qC = i(qp). According
to [44], Chapter 7, Theorem 8.6, we have Kc = (Kτ )o(exp ia)(Kτ )o, so we
can write k = lal′ with a ∈ exp ia and l, l′ ∈ (Kτ )o. Applying τ , this yields
lal′ = la−1l′ and thus a = a−1 ∈ F . Now the claim follows from

k ∈ (Kτ )oF (Kτ )o(K
τ )o ⊂ F (Kτ )o.

4) Lemma 3.1.19 implies Ha = KτZG(X0)o, so 3) proves the first two
equalities. For the last equality, note that 3) implies M = FMo and hence
M ⊂ Ha. 2
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3.2 The Classification of Causal

Symmetric Pairs

In this section we give a classification of the causal symmetric pairs (g, τ).
Remark 3.1.9 shows that in order to do that it suffices to classify the non-
compactly causal symmetric pairs and then apply c-duality to find the
compactly causal symmetric pairs. The same remark also shows that we
may assume g to be a simple Lie algebra.

Let g be a noncompact simple Lie algebra with Cartan involution θ and
corresponding Cartan decomposition g = k + p. As was noted in Remark
1.1.15, to each involution τ on g there exists a Cartan involution θ1 on g

commuting with τ . Let g = k1 +p1 be the Cartan decomposition belonging
to θ1. According to [44], p. 183, there exists a ϕ ∈ Aut(g)o such that
ϕ(k) = k1 and ϕ(p) = p1. But then

θ = ϕ−1 ◦ θ1 ◦ ϕ,

and ϕ−1 ◦ τ ◦ ϕ commutes with θ. Thus, in order to classify the causal
symmetric pairs (g, τ) up to isomorphism, it suffices to classify those causal
involutions on g that commute with the fixed Cartan involution θ.

Proposition 3.2.1 Let g be a simple Lie algebra with Cartan involution
θ and τ : g → g be an involution commuting with θ. If (g, τ) is irreducible,
then the following statements are equivalent:

1) (g, τ) is noncompactly causal.

2) There exists an X ∈ qp such that

g = g(0, X)⊕ g(+1, X)⊕ g(−1, X)

and τ = θτiX (cf. Lemma 1.2.1).

Proof: 1) ⇒ 2) is an immediate consequence of Proposition 3.1.11 and
Theorem 3.1.14. For the converse, note that comparing the eigenspaces of
adX and τiX , condition (2) implies that X ∈ zqp

(hk) and hence X ∈ qHo∩K
p

for any symmetricM = G/H associated to (g, τ). But then Theorem 3.1.3
and Theorem 3.1.5 imply that M̃ is noncompactly causal, and this proves
the claim. 2

Proposition 3.2.2 Let (g, τ) be a noncompactly causal symmetric pair
with τ = θτiX , where X ∈ qp such that

g = g(0, X)⊕ g(+1, X)⊕ g(−1, X).
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Further, let a be a maximal abelian subspace of p containing X and ∆ =
∆(g, a) the corresponding set of restricted roots. Pick a system ∆+ of pos-
itive roots in ∆ such that α(X) ≥ 0 for all α ∈ ∆+ and denote the corre-
sponding set of simple roots by Σ. Then there exists a unique αX ∈ Σ with
αX(X) = 1. In particular, αX determines X completely.

Proof: Let ∆0 = {α ∈ ∆ | α(X) = 0} and ∆+
0 := ∆0 ∩∆+. Then we have

∆0 = ∆(g(0, X), a) = ∆(ha, a) and

∆+ = {α ∈ ∆ | α(X) = 1} ∪∆+
0 .

Consider the set Σ0 ⊂ ∆0 of simple roots for ∆+
0 . We claim that

Σ0 ⊂ Σ and #(Σ \ Σ0) = 1. (3.5)

In fact, let α ∈ ∆+
0 . Assume that α = β + γ with β, γ ∈ ∆+. Then

α(X) = β(X) + γ(X) = 0. As β(X) ≥ 0 and γ(X) ≥ 0, this implies
β(X) = γ(X) = 0 and hence β, γ ∈ ∆+

0 . Thus we have Σ0 ⊂ Σ. Proposition
3.1.11 shows that RX = z(ha) and

dim(a ∩ [ha, ha]) = dim(a)− 1.

But ha = g(0, X), so dim(a) = #(Σ) and dim(a ∩ [ha, ha]) = #(Σ0). This
proves (3.5) and the claim follows if we let αX be the only root in Σ which
is not contained in Σ0. 2

Remark 3.2.3 Let g be a noncompact simple Lie algebra with Cartan
involution θ. Consider a maximal abelian subspace a of p and ∆ = ∆(g, a),
the corresponding set of restricted roots. Pick a system ∆+ of positive roots
in ∆ and denote the corresponding set of simple roots by Σ. Let δ be the
highest root of ∆+ (cf. [44], p. 475) and denote by d(α) the multiplicity
of α ∈ ∆+ in δ. This means that δ =

∑

α∈Σ d(α)α. Given α ∈ Σ with
d(α) = 1, define X(α) ∈ a via

β (X(α)) =
{

1 for β = α
0 otherwise.

Suppose that α ∈ Σ and d(α) = 1. We claim that

g = g(0, X(α))⊕ g(−1, X(α))⊕ g(+1, X(α)).

In fact, if γ ∈ ∆, then γ =
∑

β∈Σmβ(γ)β with mβ(γ) ∈ Z, and γ
(

X(α)
)

=
mα(γ). But d(α) = mα(δ) = 1 and |mα(γ)| ≤ d(α), since δ is the highest
root. There we have mα(γ) = 0, 1, or −1, and this implies the claim. Now
we can apply Proposition 3.2.2 to X(α) and obtain

α = αX(α).
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We denote the involution on g obtained from X(α) via Proposition 3.2.1
by τ(α) and its algebra of fixed points by h(α). 2

Theorem 3.2.4 Let g be a noncompact simple Lie algebra with Cartan
involution θ. Let a be a maximal abelian subspace of p and ∆ = ∆(g, a) the
corresponding set of restricted roots. Pick a system ∆+ of positive roots in
∆ and denote the corresponding set of simple roots by Σ. Then the following
statements are equivalent:

1) There exists an involution τ : g→ g commuting with θ such that (g, τ)
is noncompactly causal.

2) There exists an element X ∈ p, X 6= 0 such that

g = g(−1, X)⊕ g(0, X)⊕ g(+1, X).

3) ∆ is a reduced root system and there exists an α ∈ Σ such that the
multiplicity d(α) of α in the highest root δ ∈ ∆ is 1.

Proof: 1) ⇒ 2): This follows from Proposition 3.1.11.
2) ⇒ 1): Given X ∈ p as in 2), we apply Lemma 1.2.1 to iX ∈ ip and

find that τiX is an involution on g commuting with θ. Then τ := θτiX also
commutes with θ and τ(X) = −X . Moreover, (g, τ) is irreducible since g

is simple. Thus we can apply Proposition 3.2.1 and conclude that (g, τ) is
non-compactly causal.

2) ⇒ 3): Conjugating by an element of K, we may assume that X ∈ a.
If ∆ is nonreduced, then [44], Theorem 3.25, p. 475, says that ∆ is of type
(bc)n, i.e., of the form

∆(g, a) = ±{ 1
2αj , αj ,

1
2 (αi ± αk) | 1 ≤ i, j, k ≤ r; i < k}

(cf. also Moore’s Theorem A.4.4). But this contradicts the fact that

spec(adX) = {−1, 0, 1} .

Hence ∆ is reduced.
Now let αX ∈ Σ be the element determined by Proposition 3.2.2. Then

αX(X) = 1 and δ(X) = d(αX). As δ(X) ∈ {−1, 0, 1}, it follows that
d(αX) = 1. Thus 3) follows.

3) ⇒ 2): This follows from Remark 3.2.3. 2

Remark 3.2.5 The maximal abelian subspaces of p are conjugate underK
and the positive systems for ∆ = ∆(g, a) are conjugate under the normalizer
NK(a) of a in K. Therefore Theorem 3.2.4, Propositions 3.2.1 and 3.2.2,
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and Remark 3.2.3 show that the following procedure gives a complete list
of representatives (g, τ) for the isomorphy classes of noncompactly causal
symmetric spaces. Some of the symmetric pairs obtained will be isomorphic
due to outer automorphisms of the relevant diagrams.

Step 1: List the simple noncompact real Lie algebras g together with
the Dynkin diagrams of the restricted root systems and the multiplicies of
the highest root δ.

Step 2: Given a simple root α whose multiplicity in δ is 1, construct
the symmetric pair

(

g, τ(a)
)

.
Note that after removing α from the set Σ of simple roots one obtains

the Dynkin diagram for the restricted roots of the commutator algebra of
h(α)

a
and the corresponding set of simple roots is Σ0 = Σ \ {α}. If one

wants to read of h(α)
a

and h(α) from diagrams directly, one has to use the
full Satake diagram instead of the Dynkin diagram of the restricted root
system. 2

Example 3.2.6 We show how the procedure of Remark 3.2.5 works in the
case that g has a complex structure.

The type An: (sl(n+ 1,C))

1•α1

1•α2 · · ·
1•αn−1

1•αn

Here d(αk) = 1 for all k = 1, . . . , n. Thus k can be any number between 1
and n. Furthermore, Σ0 = Σ(ak−1)× Σ(an−k−1). In particular,

gC(0, Xk) = sl(k,C)⊕ sl(n− k,C)⊕ CXk

' su(k)C ⊕ su(n− k)C ⊕ CXk .

Hence h = su(k, n− k).

The type Bn: (so(2n+ 1,C))

1•α1

2•α2 · · ·
2•αn−1 〉

2•αn

In this case k = 1. Then Σ0 = Σ(bn−1) and

g(0, X1) = so(2n− 1,C)⊕ CX1

' so(2n− 1)C ⊕ CX1 .

Thus h = so(2, 2n− 1).
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The type Cn: (sp(n,C))

2•α1

2•α2 · · ·
2•αn−1 〈

1•αn

Hence k = n, Σ0 = Σ(an−1) and

g(0, Xn) = sl(n,C)⊕ RXn

' su(n)C ⊕ RXn .

Thus h = sp(n,R).

The type Dn: (so(2n,C))

1•α1

2•α2 · · ·
2, αn−2
•

•
1, αn−1

1•αn

Here we can take k = 1, n− 1, n. But k = n− 1 and k = n give isomorphic
h’s. Thus we only have to look at k = 1 and k = n . For k = 1 we get Σ0

of type dn−1 and

g(0, X1) = so(2n− 2,C)⊕ CX1

' so(2n− 2)C ⊕ CX1 .

Thus h = so(2, 2n− 2).
For k = n we get Σ0 = Σ(an−1) and

g(0, Xn) = sl(n,C)⊕ CXn

' uC .

Thus h = so∗(2n).

The type E6:
1•α6

2•α5

2, α2
•

•
3, α4

2•α3

1•α1

Here k = 1, 6. As both give isomorphic h, we may assume that k = 1. Then
Σ0 = Σ(d5). Thus

g(0, X1) = so(10,C)⊕ CX1

' so(10)C ⊕ CX1 .
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Hence h = e6(−14).

The type E7:

1•α7

2•α6

3•α5

2, α2
•

•
4, α4

3•α3

2•α1

Thus k = 1, Σ0 is of type e6 and g(0, X7) = e6 ⊕ CX7. Hence h = e7(−25).
2

Example 3.2.7 To conclude this chapter we work out the real groups of
type AI, AII, and AIII, i.e., SL(n,R), SU∗(2n), and SU(p, q). We fix a
maximal abelian subalgebra a of p and denote a set of positive roots in
∆ = ∆(g, a) by ∆+. Let Σ = {α1, . . . , αr} be the set of simple restricted
roots.

SL(n,R):. In this case Σ is of type An−1, so we can take out any αj . It
follows that ha is of type Ap−1 × Aq−1, with p+ q = n. In particular,

g(0, Xk) = sl(p,R)× sl(q,R)× RXk .

Thus hk = so(p) × so(q). There are thus two possibilities for h. Either
h = g(0, Xk) or h = so(p, q). We can exclude the first case, as h ' ha is
possible only for n = 2, in which case both a and aa are one-dimensional
and abelian.

SU∗(2n): In this case Σ = Σ(an−1) and mλ = dim gλ = 4 for every λ ∈
Σ. Once again we can take out any one of the simple roots. It follows
that Σo = Σ(ap−1) × Σ(aq−1) and multiplicities equal 4. It follows that
g(0, Xk) = su∗(2p) × su∗(2q) × RXk. Thus kk = sp(p) × sp(q). We can
exclude that h ' ha, therefore h = sp(p, q).

SU(p, q): The root system ∆ is nonreduced if p 6= q. So the only possibility
is p = q. In that case Σ = Σ(cn) and the multiplicities are mλj

= 2, j < n
and mλn

= 1. The only possibility is to take out γn, and we are left with
Σ(an−1) and all multipicities equal 2. But then g(0, Xn) = sl(n,C)×RXn.
This leaves us with h = sl(n,C)×R except in the case n = 8. In that case
h = e7(7) would be another possibility. But adXk is an isomorphism hp →
qk, which shows that dimH/(H ∩K) = dimK/(K ∩H). The dimension of
e7(7)/ su(8) is 70, which is bigger than dim un = s(un × un)/sn. 2
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The procedure described in Remark 3.2.5 yields the following theorem.

Theorem 3.2.8 (The Causal Symmetric Pairs)The irreducible semi-
simple causal symmetric spaces are given up to covering by the following
symmetric pairs.

g with Complex Structure
g = hC gc = h× h h

noncompactly causal compactly causal

sl(p+ q,C) su(p, q)× su(p, q) su(p, q)
so(2n,C) so∗(2n)× so∗(2n) so∗(2n)
so(n+ 2,C) so(2, n)× so(2, n) so(2, n)
sp(n,C) sp(n,R)× sp(n,R) sp(n,R)
e6 e6(−14) × e6(−14) e6(−14)

e7 e7(−25) × e7(−25) e7(−25)

g without Complex Structure
g gc h

noncompactly causal compactly causal

sl(p+ q,R) su(p, q) so(p, q)
su(n, n) su(n, n) sl(n,C)× R

su∗(2(p+ q)) su(2p, 2q) sp(p, q)
so(n, n) so∗(2n) so(n,C)
so∗(4n) so∗(4n) su∗(2n)× R

so(p+ 1, q + 1) so(2, p+ q) so(p, 1)× so(1, q)
sp(n,R) sp(n,R) sl(n,R)× R

sp(n, n) sp(2n,R) sp(n,C)
e6(6) e6(−14) sp(2, 2)
e6(−26) e6(−14) f4(−20)

e7(−25) e7(−25) e6(−26) × R

e7(7) e7(−25) su∗(8)

Notes for Chapter 3

Most of the material in Section 3.1 appeared for the first time in [129, 130].

Definition 3.1.16 is due to E. van den Ban [1]. Theorem 3.1.18 can be found in

[131, 136]. The idea of using a simple root with d(α) = 1 for classifying the causal

symmetric spaces was pointed out to us by S. Sahi, cf. [85]. There are other ways
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of classification. In [129] this was done by reducing it, as in Theorem 3.2.4, to

the classification of para-Hermitian symmetric pairs. The para-Hermitian and

para-Kähler spaces were introduced by Libermann in 1951-1952 [95], [96]. The

para-Hermitian symmetric spaces were classified by S. Kaneyuki [75] by reducing

it to the classification of graded Lie algebra of the first kind by S. Kobayashi and

T. Nagano in [80] (see [77] for the general classification). A list may be found

in [78], [111], and also [138]. Another method is to use Lemma 1.3.8 to reduce

it to the classification of real forms of bounded symmetric domains. This was

done by H. Jaffee using homological methods in the years 1975 [69] and 1978

[70]. Compactly causal symmetric spaces were also introduced by Matsumoto

[103] via the root structure. These spaces were classified the same year by Doi in

[21]. Later, B. Ørsted and one of the authors introduced the symmetric spaces of

Hermitian type in [133] with applications to representation theory in mind. The

connection with causal spaces was pointed out in [129, 130].



Chapter 4

Classification of

Invariant Cones

LetM = G/H be causal symmetric space with H essentially connected. In
this chapter we classify the H-invariant regular cones in q, i.e., all possible
causal structures on M. Because of c-duality, we can restrict ourselves to
noncompactly causal symmetric spaces.

The crucial observation is that regular H-invariant cones in q are com-
pletely determined by their intersections with a suitable Cartan subspace
a. We give a complete description of the cones in a which occur in this
way. Further, we show how H-invariant cones can be reconstructed from
the intersection with an a. An important fact in this context is that the in-
tersection of a cone with a is the same as the orthogonal projection onto a.
In order to prove this, one needs a convexity theorem saying that for X in
an appropriate maximal cone cmax in a, pr(Ad(h)X) ∈ conv(W0 ·X) +c∗max.

We also prove an extension theorem for H-invariant cones saying that
these cones are all traces of Gc-invariant cones in igc.

An important basic tool in this chapter is sl(2,R) reduction, which is
compatible with the involution τ .

4.1 Symmetric SL(2,R) Reduction

LetM = G/H be a noncompactly causal symmetric space with involution
τ . In this section we describe a version of the usual SL(2,R) reduction that
commutes with the involutions on G and SL(2,R).

Recall the decomposition ∆ = ∆− ∪ ∆0 ∪ ∆+ associated to the choice
of a cone-generating element X0 ∈ qp and the corresponding nilpotent

91
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subalgebras n± from Remark 3.1.17.

Lemma 4.1.1 Let (g, τ) be a noncompactly causal symmetric pair. Then
we have τ = −θ on n+ ⊕ n−.

Proof: From g(0, X0) = hk ⊕ qp and ad(X0) (qk ⊕ hp) ⊂ qk ⊕ hp we obtain

n+ ⊕ n− = qk ⊕ hp , (4.1)

and this implies the claim. 2

Recall that a ⊂ qp is maximal abelian in p. Therefore the Killing form
and the inner product (· | ·) := (· | ·)θ agree on a. We use this inner product
to identify a and a∗. This means that

B(X,λ) = (X | λ) = λ(X)

for all X ∈ a and λ ∈ a∗. For λ 6= 0 we set

Xλ :=
λ

|λ|2 ∈ a, (4.2)

where | · | denotes the norm corresponding to (· | ·). We obviously have
λ(Xλ) = 1.

Lemma 4.1.2 Let α ∈ ∆ and X ∈ gα. Then [X, θ(X)] = −|X |2α.

Proof: Note first that θ(X) ∈ g−α. Hence [X, θ(X)] ∈ zg(a) ∩ p = a. Let
Y ∈ a. Then

B(Y, [X, θ(X)]) = B([Y,X ], θ(X))

= α(Y )B(X, θ(X))

= −|X |2α(Y )

= B(Y,−|X |2α),

and the claim follows. 2

Let α ∈ ∆+ and choose Yα ∈ gα such that

|Yα|2 =
2

|α|2 . (4.3)

We set Y−α := τ(Yα). By Lemma 4.1.1 we have Y−α = τ(Yα) = −θ(Yα).
Thus Lemma 4.1.2 implies

[Yα, Y−α] = 2Xα. (4.4)
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Finally, we introduce

Y α :=
1

2
(Yα + Y−α) ∈ hp, (4.5)

Zα :=
1

2
(Y−α − Yα) ∈ qk, (4.6)

and
X±α := Xα ± Zα ∈ q. (4.7)

Example 4.1.3 Let M = SL(2,R)/ SOo(1, 1). We use the notation from
Example 1.3.12. Then a := qp = RX0 is abelian and the corresponding
roots are ∆ = {α,−α}, where α(X0) = 1. We choose α to be the positive
root. As root spaces we obtain

gα = g(+1, X0) = RY+ and g−α = g(−1, X0) = RY− .

The Killing form on sl(2,R) is given by B(X,Y ) = 4tr(XY ). In particular,
we find

|xX0 + zZ0|2 = 2(x2 + z2)

and
|Y+|2 = 4, |X0|2 = 2.

This shows that α = 1
2X

0 and |α|2 = 1
2 . Now we obtain

Y±α = Y±, X±α = X±,

and

Xα = X0, Y α = Y 0, Zα = Z0. 2

Remark 4.1.4 Note that we can rescale the inner product without chang-
ing Xα. Also, the norm condition on Yα is invariant under rescaling. On
the other hand, the construction of Y α, Zα and X±α depends on the choice
of Yα (recall that in general dim(gα) > 1). 2

Define a linear map ϕα : sl(2,R)→ g by

1

2

(

1 0
0 −1

)

7→ Xα,

(

0 1
0 0

)

7→ Yα and

(

0 0
1 0

)

7→ Y−α. (4.8)

Then ϕα is a Lie algebra monomorphism such that θ induces the usual Car-
tan involution X 7→ −tX on sl(2,R), whereas τ induces the involution on
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sl(2,R) described in Example 1.3.12 (denoted also by τ there). In particu-
lar, sα := Imϕα is τ and θ-stable. As a consequence, we have ϕα(Y 0) = Y α

and ϕα(Z0) = Zα.
Of course, ϕα exponentiates to a homomorphism of S̃L(2,R), the univer-

sal covering group of SL(2,R), into G. Similarly, ϕα defines a homomor-
phism ϕα : SL(2,C)→ GC, since SL(2,C) is simply connected.

The notation in Example 1.3.12 was set up in such a way that X0 ∈
sl(2,R) plays the role in the noncompactly causal space (sl(2,R), τ) that
it should play in Proposition 3.1.11. Unfortunately, this property is not
carried over by the maps ϕα just constructed. In other words, Xα is in
general not a cone-generating element. All we have is the following remark:

Remark 4.1.5 Let X0 ∈ z(ha) with α(X0) = 1. Then

Xα −X0 ∈ α⊥ = {X ∈ α | α(X) = 0}. 2

Theorem 4.1.6 LetM = G/H be a noncompactly causal symmetric space
and C ∈ ConeH(q) the cone defining the causal structure.

1) There exists a unique cone-generating element X0 ∈ C ∩ qH∩K
p ⊂

z(ha).

2) Let a be a maximal abelian subspace of qp and ∆ = ∆(g, a) the cor-
responding set of restricted roots. Then for all α ∈ ∆+ = {β ∈ ∆ |
β(X0) = 1} and for any choice of Yα ∈ gα satisfying (4.3), we have
Xα, Xα, X−α ∈ C.

Proof: 1) According to Corollary 3.1.6, we can find an element ofX ∈ qH∩K
p

in the interior Co of C. But then Proposition 3.1.11 shows that a multiple of
X satisfies the conditions of 1), since qH∩K

p is one-dimensional and contains
z(ha).

2) Note first that [X0−Xα, Y α] = 0 for all α ∈ ∆+ since Y α ∈ gα +g−α.
Hence by sl(2,R)-reduction we have

Ad(exp tY α)X0 = Ad(exp tY α)
[1

2
(Xα +X−α) + (X0 −Xα)

]

=
1

2

(

etXα + e−tX−α

)

+ (X0 −Xα). (4.9)

Thus
2 lim

t→∞
e−t Ad(exp tY α)X0 = Xα ∈ C

and
2 lim

t→−∞
et Ad(exp tY α)X0 = X−α ∈ C .
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As 2Xα = Xα +X−α, the lemma follows. 2

Let (g, τ) be a noncompactly causal symmetric pair. We choose a cone
generating element X0 ∈ a ⊂ qp. According to Remark 3.1.9, (gc, τ) is
compactly causal and either simple Hermitian or the product of a simple
Hermitian algebra with itself. In either case we can choose a Cartan sub-
algebra tc of gc containing ia and contained in kc = hk + iqp. Note that
Zc := iX0 ∈ z(kc) and the centralizer of Zc in gC is kc

C (cf. Proposition
3.1.12). Let (pc)± be the ±i-eigenspaces of adZc in pc

C = (hp + iqk)C. Then

(pc)± ∩ g = n±. (4.10)

In addition to the notation from Remark 3.1.17, we use the following
abbreviations

∆̃ := ∆(gC, t
c
C), ∆̃± := ∆((pc)±, tcC), and ∆̃0 := ∆(kc

C, t
c
C). (4.11)

Then we obtain
∆ = {α̃|a | α̃ ∈ ∆̃, α̃|a 6= 0},

∆± = {α̃|a | α̃ ∈ ∆̃±},
and

∆0 := {α̃|a | α̃ ∈ ∆̃0, α̃|a 6= 0} .
Moreover, we can choose a positive system ∆̃+ for ∆̃ such that ∆̃+

0 :=
∆+ ∩ ∆̃0 is a positive system in ∆0 and

∆+
0 = {α̃|a | α̃ ∈ ∆̃+

0 , α̃|a 6= 0} and ∆+ = {α̃|a | α̃ ∈ ∆̃+, α̃|a 6= 0}.
(4.12)

Lemma 4.1.7 Let α̃ ∈ ∆̃+ be such that −τα̃ 6= α̃. Then α̃ and −τα̃ are
strongly orthogonal.

Proof: Let α̃ ∈ ∆̃+ be such that −τα̃ 6= α̃. Then −τα̃ ∈ ∆̃+ and α̃ − τα̃
is not a root. Assume that γ := α̃ + τα̃ is a root. Since γ|a = 0, we have
(gC)γ ⊂ zgC

(a) ⊂ aC ⊕ (hk)C. It follows that (gC)γ ⊂ kC ∩ hC because (gC)γ

is τ -invariant. Let X ∈ (gC)α̃, X 6= 0 . As tcC is a Cartan subalgebra of
gC, it follows that dimC(gC)α̃ = 1 and 0 6= [X, τ(X)] ∈ (gC)γ . But then
[X, τ(X)] ∈ qC gives a contradiction. 2

Remark 4.1.8 The τ -invariance of tc shows that also ∆̃ is invariant. Let
σc = σθ be the complex conjugation of gC w.r.t. gc. Then tcC is σc invariant.
Since the elements of ∆̃ take real values on tc, it follows that σcα̃ = −α̃ for
all α̃ ∈ ∆̃. Therefore we can choose Ẽα̃ ∈ (gC)α̃ such that

Ẽ−α̃ = Ẽσcα̃ = σcẼα̃ and Ẽτα̃ = τẼα̃
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for all α̃ ∈ ∆̃. Moreover, the normalization can be chosen such that the
element

H̃α̃ = [Ẽα̃, Ẽ−α̃] = [Ẽ−τα̃, Ẽτα̃] = H̃−τα̃

satisfies α̃(H̃α̃) = 2 (cf. Appendix A.4).
Fix a maximal set

Γ̃ = {γ̃1, . . . , γ̃rc} ⊂ ∆̃+ (4.13)

of strongly orthogonal roots (cf. Appendix A.4). In fact, Lemma 4.1.7 shows
that we may assume Γ̃ to be invariant by −τ simply by adding −τ(γ̃k) after
each inductive step.

Recall from (A.27) and Lemma A.4.3 that the space

ac = pc ∩
∑

γ̃∈Γ̃

RỸγ̃ ,

where Ỹγ̃ = −i(Ẽγ̃ − Ẽ−γ̃), is maximal abelian in pc. Note that ∆̃+ is

invariant under −τ and renormalize Ỹγ̃ :

Yγ̃ := rγ̃ Ỹγ̃ ∈ gγ , (4.14)

where γ = γ̃|a. Here we choose rγ̃ in such a way that Yγ̃ satisfies the
condition (4.3), i.e.,

rγ̃ =
2

|γ|2|Ỹγ̃ |2
.

Now we see that

Y γ̃ :=
1

2
(Yγ̃ + τYγ̃) ∈ hp ∩ ac

h

and

ac
h := ac ∩ g =

∑

γ̃∈Γ̃

RY γ̃ . 2

Lemma 4.1.9 The space ac
h is maximal abelian in hp.

Proof: Let GC be a simply connected Lie group with Lie algebra gC and
G,Gc, H,K,Kc, Ac, Ac

h, etc., the analytic subgroups of GC corresponding
to g, gc, h, k, kc, ac, ac

h, etc. Recall the Cartan decomposition

KcAcKc = Gc

from [44], p. 402. The Ac-component is unique up to a conjugation by a
Weyl group element. Let σ:GC → GC be the complex conjugation with
fixed point set G. Then Gc, Kc and Ac are σ-invariant. Thus we have

(G ∩Kc)(G ∩Ac)(G ∩Kc) = G ∩Gc.
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The Lie algebras of G ∩ Gc, G ∩Kc, and G ∩ Ac are h, hk, and ac
h. Since

ac
h is an abelian subspace of hp and hk is maximal compact in h, this shows

that
(K ∩H)Ac

h(K ∩H) = H (4.15)

is a Cartan decomposition and hence ac
h is maximal abelian in hp. 2

Remark 4.1.10 We set

Γ := {γ̃|a | γ̃ ∈ Γ̃} ⊂ ∆+. (4.16)

View γ̃ as an element of (itc)∗ and write γ̃ = γ + γ′ with γ = γ̃|a and
γ′ = γ̃|(itc)∩h. Then, under the identification of dual spaces via (· | ·), the
restriction means orthogonal projection to the respective space. Note that
−τ γ̃ = γ − γ′ ∈ Γ̃, so the orthogonality of the elements of Γ̃ implies also
that their restrictions to a are orthogonal.

Γ actually consists of strongly orthogonal roots. To see this, suppose that
γi = γ̃i|a and γj = γ̃j |a with γi−γj ∈ ∆. Since γi and γj are orthogonal we
have sγj

(γi−γj) = γi+γj, where sγj
is the reflection in a∗ at the hyperplane

orthogonal to γj . But sγj
is an element of the Weyl group of ∆ and hence

leaves ∆ invariant. Therefore we have γi + γj ∈ ∆, a contradiction.
Suppose that γo ∈ ∆+ is strongly orthogonal to all γ ∈ Γ. Then there

exists a γ̃o ∈ ∆̃+ such that γo = γ̃o|a and 0 6= γj − γo ∈ ∆ whenever

γ̃j − γ̃o ∈ ∆̃. Therefore γ̃o is strongly orthogonal to all γ̃j , in contradiction

to the maximality of Γ̃. Thus Γ is a maximal set of strongly orthogonal
roots in ∆+.

Note that the orthogonality of the elements of Γ̃ together with γ =
1
2 (γ̃−τ γ̃) shows that the only elements of Γ̃ restricting to a given γ = γ̃|a ∈ Γ
on a are γ̃ and −τ γ̃.

The definition of ac
h shows that each element Y ∈ ac

h can be written in
the form

Y =
∑

γ∈Γ

rγ Y
γ (4.17)

constructed via (4.5) from pairwise commuting elements Yα ∈ gα satisfying
the normalization condition (4.3). Moreover, the images of the correspond-
ing sl(2,R)-embeddings ϕα commute, since the images of the sl(2,C) em-
beddings corresponding to the different elements of G̃ (cf. Appendix A.4)
commute. 2

Lemma 4.1.11 1) L := X0 −∑γ∈ΓX
γ ∈ ⋂γ∈Γ kerγ.

2) If Y =
∑

γ∈Γ tγY
γ ∈ ac

h is chosen as in Remark 4.1.10, then we have

ead YX0 = L+
∑

γ∈Γ

cosh(tγ)Xγ +
∑

γ∈Γ

sinh(tγ)Zγ .
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Proof: 1) Fix γ ∈ Γ and note that γ(X0 −Xγ) = 0 because of the normal-
ization of Xγ . On the other hand, γ(Xβ) = 0 for all γ 6= β ∈ Γ by Remark
4.1.10. This proves 1).

2) Using sl(2,R) reduction we calculate

ead Y X0 = ead Y (L+
∑

γ∈Γ

Xγ)

= L+





∑

γ∈Γ

ead tγY γ

Xγ





= L+
∑

γ∈Γ

[

etγ (Xγ + Zγ) + e−tα(Xγ − Zγ)
]

as X±γ = Xγ ± Zγ . From this the claim now follows. 2

4.2 The Minimal and Maximal Cones

In this section we study certain convex cones which will turn out to be min-
imal and maximal H-invariant cones in q, respectively their intersections
with a.

Definition 4.2.1 Let M = G/H be a noncompactly causal symmetric
space and (g, τ) the corresponding symmetric pair. Further, let X0 ∈ qp

be a cone-generating element. Then the closed convex cones

Cmin(X
0) := Cmin := conv [Ad(Ho) (R+X0)] . (4.18)

and

Cmax(X
0) := Cmax := {X ∈ q | ∀Y ∈ Cmin : B(X,Y ) ≥ 0} (4.19)

in q are called the minimal and the maximal cone in q determined by the
choice of X0. A reference to the space M = G/H is not necessary, since
the definitions depend only on the group generated by ead h in GL(q). 2

Definition 4.2.2 Let (g, τ) be a noncompactly causal symmetric pair and
a ⊂ qp a maximal abelian subspace. Choose a cone-generating element
X0 ∈ a and recall the set ∆+ of restricted roots taking the value 1 on X0.
Then the closed convex cones

cmin(X
0) := cmin :=

∑

α∈∆+

R
+
0 X

α =
∑

α∈∆+

R
+
0 α (4.20)
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and

cmax(X
0) := cmax := {X ∈ a | ∀α ∈ ∆+ : α(X) ≥ 0} = c∗min (4.21)

in a are called the minimal and the maximal cone in a determined by the
choice of X0. 2

It follows from Proposition 3.1.11 that there are only two minimal and
maximal cones.

Remark 4.2.3 It follows from the definition of Cmin that θ(Cmin)=−Cmin.
This shows that we can replace the definition of Cmax by

Cmax = {X ∈ q | ∀Y ∈ Cmin : (X | Y ) ≥ 0}. 2

Lemma 4.2.4 Let M = G/H is a noncompactly causal symmetric space.
Then Cmin is minimal in ConeH(q) and Cmax is maximal in ConeH(q).

Proof: Note first that, by duality via the Killing form, we only have to show
the assertion concerning Cmin.

Theorem 4.1.6 implies thatX0 is (H∩K)-invariant, so thatCmin is indeed
H-invariant by Lemma 3.1.1. Since any element of ConeH(q) contains either
X0 or −X0, again by Theorem 4.1.6, it only remains to show that Cmin is
regular. If q is h-irreducible this follows from Theorem 2.1.21. If q is not h

irreducible, then the only elements in ConeH(q) intersecting p nontrivially
are ±Cp (cf. Section 2.6). But the contruction of Cp shows that it contains
X0. This implies Cp = Cmin and hence the claim. 2

The following proposition is an immediate consequence of Theorem
4.1.6.

Proposition 4.2.5 Let M = G/H be a noncompactly causal symmetric
space and (g, τ) the corresponding symmetric pair. Suppose that the causal
structure is given by C ∈ ConeH(q) and let X0 be the unique cone generat-
ing in C. Then

cmin(X
0) ⊂ C . 2

Lemma 4.2.6 Assume thatM is a noncompactly causal symmetric space.
Let a be maximal abelian in qp. Let ∆0 = ∆(ha, a) and W0 be the Weyl
group of the root system ∆0. Then

W0 = NH∩K(a)/ZH∩K(a) .
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Proof: Recall from [44], p. 289, that W0 = NHo∩K(a)/ZHo∩K(a). But
Theorem 3.1.18 implies that H ∩K = ZH∩K(a)(Ho ∩K) and that proves
the lemma. 2

Proposition 4.2.7 cmin and cmax are regular W0-invariant cones in a.
Furthermore, cmin ⊂ cmax and

comax = {X ∈ a | ∀α ∈ ∆+ : α(X) > 0} .

Proof: As the Weyl group W0 fixes X0, it follows that W0 permutes ∆+.
We have w(Xα) = Xwα and hence cmin is W0-invariant. By duality also
c∗max is W0-invariant.

If α, β ∈ ∆+, then α(Xβ) = (α | β)/(β | β) ≥ 0 for otherwise α + β
would be a root. Hence cmin ⊂ c∗min.

The equality comax = {X ∈ a | ∀α ∈ ∆+ : α(X) > 0} is an immediate
consequence of the definitions. It shows that cmax is generating and hence
that cmin is proper (cf. Lemma 2.1.3 and Lemma 2.1.4). It only remains
to show that cmin is generating. If < cmin > 6= a, then we can find a non-
zero element X ∈ a with α(X) = 0 for all α ∈ ∆+. Thus iX ∈ ia ⊂ gc

centralizes (n+ ⊕ n−)C = (qk ⊕ hp)C = pc
C, which is absurd. 2

Lemma 4.2.8 X0 ∈ cmin(X
0)o.

Proof: Let X ∈ cmin(X
0)o and define X̃ := [1/#W0]

∑

w∈W0
w ·X . Then

X̃ 6= 0 is W0-invariant and contained in cmin(X
0)o. Let α ∈ ∆0 and

sα ∈ W0 the reflection at the hyperplane orthogonal to α. Then

α(X̃) = α(sα(X̃)) =< sα(α), X̃ >= −α(X̃) ,

i.e., α(X̃) = 0 for all α ∈ ∆0. Therefore X̃ ∈ z(ha) and hence X̃ is a multiple
of X0. On the other hand, X0 ∈ cmax(X

0)o so that cmin(X
0)o ⊂ cmax(X

0)o

implies the claim. 2

For later use we record an application a convexity theorem due to Kostant
(cf. [45], p. 473) to the Lie algebra ha.

Proposition 4.2.9 Let M = G/H be a noncompactly causal symmetric
space and pr: qp → a the orthogonal projection. Then for X ∈ a we have

pr(Ad(K ∩Ho)X) = conv(W0 ·X) .

Proposition 4.2.10 Let M = G/H be a noncompactly causal symmetric
space. Choose a maximal abelian subspace a of qp and a cone-generating
element X0 ∈ a. Denote the orthogonal projection q→ a by pr. Then
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1) pr(Cmin) ⊂ cmin.

2) pr(Cmax) ⊂ cmax.

Proof: 1) Let X = Ad(h)X0 for some h ∈ Ho. The Cartan decomposition
(4.15)

Ho = (Ho ∩K)Ac
h(Ho ∩K)

shows that we can write h = k(expY )k1 with k, k1 ∈ K ∩Ho and Y ∈ ac
h.

We can write Y =
∑

γ∈Γ tγY
γ as in Remark 4.1.10 and then Lemma 4.1.11

shows that

pr(Ad(h)X0) = pr
(

Ad(k)ead Y X0
)

= pr



Ad(k)



L+
∑

γ∈Γ

cosh(tγ)Xγ









= pr



Ad(k)X0 + Ad(k)
∑

γ∈Γ

[cosh(tγ)− 1]Xγ





= X0 + pr



Ad(k)
∑

γ∈Γ

[cosh(tγ)− 1]Xγ





It follows that pr(Ad(h)X0) ∈ comin as pr(Ad(k)Xγ) ∈ convW0 ·Xγ ⊂ cmin

by Proposition 4.2.9. Since Cmin is the closed convex cone generated by
Ad(Ho), the claim follows.

2) Let Y ∈ cmin. By Lemma 4.2.5 we have Y ∈ Cmin. Thus (Y | pr(X)) =
(Y |X) ≥ 0, which implies that pr(X) ∈ c∗min = cmax. 2

Recall the intersection and projection operations from Section 2.1. We
set I := Iq

a and P := P q
a .

Proposition 4.2.11 Let M = G/H be a noncompactly causal symmetric
space with cone-generating element X0 ∈ qH∩K

p . Then

1) cmin = I(Cmin) = P (Cmin).

2) cmax = I(Cmax) = P (Cmax).

Proof: 1) According to Proposition 4.2.5 we have

cmin ⊂ I(Cmin) ⊂ P (Cmin).

Proposition 4.2.10 now shows that P (Cmin) = cmin.
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2) Lemma 2.1.8 and part 1) show

I(Cmax) = P (C∗
max)

∗ = P (Cmin)
∗ = c∗min = cmax

and hence the claim again follows from Proposition 4.2.10. 2

Recall that for any noncompactly causal symmetric pair (g, τ), the sym-
metric pair (gC, σ

c), where σc: gC → gC is the complex conjugation w.r.t.
gc, is either noncompactly causal (if g carries no complex structure) or the
direct sum of two isomorphic noncompactly causal pairs. In particular, any
symmetric space GC/G

c associated to (gC, σ
c) admits a causal structure.

We assume for the moment that g carries no complex structure. Then
any cone-generating element for (g, τ) is automatically a cone-generating
element for (gC, σ

c). Fix a Cartan subalgebra tc of kc containing a, which
then is also a Cartan subalgebra of gc. Further, we choose a cone-generating
element X0 ∈ qp ⊂ ihk + qp and a positive system ∆̃+ for ∆̃ = ∆(gC, t

c) as
in (4.12). The corresponding minimal and maximal cones in the maximal
abelian subspace itc of ihk + qp are then given by

c̃min =
∑

α̃∈∆̃+

R+
0 α̃ (4.22)

and
c̃max = {X ∈ itc | ∀α̃ ∈ ∆̃+ : α̃(X) ≥ 0} = c̃∗min. (4.23)

Proposition 4.2.12 The cones cmin(∆̃+) and cmax(∆̃+) are −τ-invariant.
Moreover,

1) Iitc

a (c̃min) = P itc

a (c̃min) = cmin;

2) Iitc

a (c̃max) = P itc

a (c̃max) = cmax.

Proof: The −τ -invariance follows from the −τ -invariance of ∆̃+. In view of
duality and Lemma 2.1.9, it only remains to show that P itc

a (c̃min) = cmin.
But that is clear, since P itc

a (α̃) = α̃|a. 2

Lemma 4.2.13 Let X ∈ comax. Then

1) zg(X) ⊂ qp.

2) Let h ∈ H be such that Ad(h)X ∈ a. Then h ∈ K ∩H.

Proof: 1) Let Y =
∑

α∈∆+
[Lα − τ(Lα)] with Lα ∈ gα. As X ∈ comax we

have
[X,Y ] =

∑

α∈∆+

α(X)(Lα + τ(Lα)) 6= 0
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which implies the claim.
2) Let Y ∈ a. Then

[Ad(h−1)Y,X ] = Ad(h−1)[Y,Ad(h)X ] = 0 .

Thus Ad(h−1)Y ∈ ha∩q = qp. In particular, Ad(h−1)a is a maximal abelian
subalgebra of qp. Thus there is a k ∈ K ∩ H such that Ad(kh−1)a = a.
This implies that

kh−1 ∈ NH(a) ⊂ K ∩H .

Thus h ∈ K ∩H as claimed. 2

Let GC/G
c be any symmetric space with corresponding symmetric pair

(gC, σ
c). Then the maximal and the minimal cones in igc are given by

C̃min(X0) = C̃min = conv [Ad(Gc
o) (R+X0)] (4.24)

and

C̃max(X
0) = C̃max = {X ∈ q | ∀Y ∈ C̃min : B(X,Y ) ≥ 0}. (4.25)

Remark 4.2.14 In order to be able to treat the cases of complex and non-
complex g simultaneously, we make the following definitions. Suppose that
g = lC and τ the corresponding complex conjugation, so that gc = l× l and
τc is the switch of factors. More precisely, gC = lC × lC with the opposite
complex structure on the second factor and the embedding

g = lC 3 X 7→
(

X, τ(X)
)

∈ lC × lC = gC.

The involution σc: gC → gC is given by

σc(X,Y ) = (τ(X), τ(Y )).

The algebra l is Hermitian and we can choose the maximal abelian sub-
space of qp to be a = it, where t is a Cartan subalgebra of l ∩ k. Then
tc := t× t is a Cartan subalgebra of gc. Choose a cone-generating element
X0 ∼=

(

X0, τ(X0)
)

= (X0,−X0) ∈ a. We set ∆̃ := ∆(lC × lC, tC × tC) and

∆̃+ := {(α, β) ∈ t∗C × t∗C | α(X0) = 1 = β(−X0)} = ∆+ ×∆−,

where ∆ = ∆(lC, it) and ∆+ = {α ∈ ∆ | α(X0) = 1}. Now the formulas
(4.22) and (4.23) make sense and yield

c̃min(X0,−X0) = cmin(X
0)× cmin(−X0) ⊂ itc

and
c̃max(X

0,−X0) = cmax(X
0)× cmax(−X0) ⊂ itc.
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Note that both cones are −τ -invariant. It follows directly from these defi-
nitions and the embedding of q = il→ il× il = igc that

Iitc

a (C̃min) = Cmin, Iitc

a (C̃max) = Cmax.

In particular, we see that the conclusions of Proposition 4.2.12 stay valid.
Let LC be a simply connected complex Lie group with Lie algebra lC and

L the analytic subgroup of LC with Lie algebra l. Then the involution σc

integrates to an involution of GC = LC × LC, again denoted by σc, whose
group of fixed points is Gc := L × L. Now also the equations (4.24) and
(4.25) for the minimal and maximal cones in igc make sense and yield

C̃min(X
0,−X0) = Cmin(X0)× Cmin(−X0)

and
C̃max(X

0,−X0) = Cmax(X
0)× Cmax(−X0).

Note that both cones are invariant under −τ and

Iigc

q (C̃min) = Cmin, Iigc

q (C̃max) = Cmax. 2

Lemma 4.2.15 LetM = G/H be a noncompactly causal symmetric space
and X ∈ C̃o

max.

1) X is semisimple and adX has real eigenvalues.

2) If GC/G
c is any symmetric space corresponding to (gC, σ

c), then there
exists a g ∈ Gc

o such that Ad(g)X ∈ c̃omax.

3) If X ∈ q, then there exists an h ∈ Ho such that Ad(h)X ∈ cmax.

Proof: By Theorem 2.1.13 the centralizer of X in Gc
o is compact. Since

every compact subgroup in Gc
o is conjugate to one contained in Kc

o, we
may assume that ZGc

o
(X) ⊂ Kc

o. But then zgc(iX) ⊂ kc. As iX ∈ zgc(iX),
it follows that iX is semisimple with purely imaginary eigenvalues. Hence
X is semisimple with purely real eigenvalues. Note that ah⊕ ia is a Cartan
subalgebra of kc, so there is a k ∈ Kc

o such that Ad(k)(iX) ∈ ah ⊕ ia. This
proves 1) and 2).

Now assume that X ∈ q. According to Theorem 1.4.1, we can find an
h ∈ Ho and a θ-stable A-subspace b = bk ⊕ bp in q such that Ad(h)X ∈ b

and bp ⊂ a. Proposition 4.2.11 implies that

pritc(Ad(h)X) ∈ c̃omax.

Then Proposition 4.2.12 shows that pra(Ad(h)X) ∈ comax and hence Lemma
4.2.13 implies that bk = {0}. Thus Ad(h)X is actually contained in comax.
2
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Theorem 4.2.16 (Extension of Cmin and Cmax) Let M = G/H be a
noncompactly causal symmetric space. Then C̃min and C̃max are −τ-stable
and satisfy

Iigc

q (C̃min) = Cmin, Iigc

q (C̃max) = Cmax.

Proof: We may assume that g carries no complex structure, since the case
of complex g was already treated in Remark 4.2.14.

Let GC/G
c be any symmetric space corresponding to (gC, σ

c). Then
GC/G

c is noncompactly causal. Let Hc be the analytic subgroup of GC

with Lie algebra h and X0 the cone-generating element in cmin. Then
Hc ⊂ Gc and Cmin ⊂ C̃min, since they are the Hc-invariant, respectively
Gc-invariant, cones generated by X0. But then

Cmin ⊂ Iigc

q (C̃min) ⊂ P igc

q (C̃min) .

Let now X ∈ Iigc

q (C̃o
min). By Lemma 4.2.15 we can find an h ∈ Hc such

that Ad(h)X ∈ a. But then, by Proposition 4.2.11, and Proposition 4.2.12:

Ad(h)X ∈ a ∩ C̃min ⊂ a ∩ (itc ∩ C̃min) = a ∩ c̃min = cmin .

Consequently, the Hc-invariance of Cmin proves Iigc

q (C̃min) = Cmin. By

duality we get P igc

q (C̃max) = Cmax. Now Lemma 2.1.9 implies the claim. 2

4.3 The Linear Convexity Theorem

This section is devoted to the proof of the following convexity theorem,
which generalizes the convexity theorem of Paneitz [147] and which is an
important technical tool in the study of H-invariant cones in q.

Theorem 4.3.1 (The Linear Convexity Theorem) LetM = G/H be
a noncompactly causal symmetric space and a a maximal abelian subspace
of qp. Further, let pr: q → a be the orthogonal projection, X ∈ cmax and
h ∈ Ho. Then

pr (Ad(h)X) ∈ conv(W0 ·X) + cmin.

Lemma 4.3.2 Let (g, τ) be a noncompactly causal symmetric pair. Then

1) hp = Im(id +τ)|n+ and qk = Im(id−τ)|n+ .

2) dim hp = dim n+ = dim qk.
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Proof: 1) Recall from Lemma 4.1.1 that τ = −θ on n+. ThusX+τ(X) ∈ hp

for X ∈ n+. Conversely, let X ∈ hp. Then we can find Lα ∈ gα, α ∈ ∆+

such that X =
∑

α [Lα + τ(Lα)]. In order to show that Lα ∈ n+ for all
α ∈ ∆+, we only have to show that Lα 6∈ ha = g(0, X0), where X0 is a cone
generating element in qp. But for Lα ∈ ha we have Lα + τ(Lα) ∈ h ∩ k, so
X ∈ p implies Lα + τ(Lα) = 0. Therefore these Lα can be omitted in the
representation of X .

The second statement is proved in the same way.
2) ker(id +τ) = q and q ∩ n+ = {0}, since no element in q can be an

eigenvector of ad(X0) ∈ q. Similarly, ker(id−τ) = h and h ∩ n+ = {0}.
Now the claim follows from 1). 2

Lemma 4.3.3 Let L ∈ Co
max and X ∈ Ad(Ho)L. If X 6∈ qp, then there is

a Z ∈ Ad(Ho)L such that

1) | prqk
Z| < | prqk

X |,

2) pr(X) ∈ conv(W0 · pr(Z)) + cmin.

Proof: Assume that X = Ad(h)L and let

Y := pr(X) = pr(Ad(h)L) ∈ pr(Co
max) = comax.

Assume for the moment that Y = prqp
(X), i.e., X ∈ Y + qk. Proposition

4.2.7 shows that α(Y ) > 0 for all α ∈ ∆+. By Lemma 4.3.2 we may write
X as a linear combination,

X = Y +
∑

α∈∆+

[Yα − τ(Yα)],

with Yα ∈ gα. As X 6= Y , there is a β ∈ ∆+ such that Yβ 6= 0. Define

W := − 1

β(Y )
(Yβ + τYβ) ∈ hp

and

W1 :=
∑

α6=β

(Yα − τ(Yα)) ∈ qk.

Now a simple calculation gives

[W,Y ] = − 1

β(Y )
([Yβ , Y ] + [τ(Yβ), Y ])

= Yβ − τ(Yβ) ∈ qk.
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From Lemma 4.1.1 and Lemma 4.1.2 we derive

[W,Yβ − τ(Yβ)] = − 1

β(Y )
([Yβ + τ(Yβ), Yβ − τ(Yβ)])

= λXβ,

where λ = |Yβ |2|β|2/β(Y ) > 0. Furthermore, W2 := [W,W1] ∈ qp ∩ a⊥.
Let Zt = Ad(exp tW )X ∈ Ad(Ho)L. It follows from the above calculations
that

Zt = X − t[W,X ] +O(t2)

= (Y − tλHβ) + (1− t)(Yβ − τYβ) +W1 − tW2 +O(t2).

Thus

| prqk
(Zt)|2 ≤ (1− t)2|Yβ − τYβ |2 + |W1|2 + µt2

= | prqk
X |2 − t

(

(2− t) |Yβ − τYβ |2 − µt
)

< | prqk
X |2

for t > 0 sufficiently small.

We claim that for t > 0 small enough,

Y − prZt = tλHβ +O(t2) ∈ cmin = c∗max .

To see this, let V ∈ cmax. Then V = γHβ + L, with β(L) = 0 and γ > 0.
Thus

(Y − pr(Zt)|V ) = tλγ|Hβ |2 +O(t2),

and this is positive for small t. This proves the lemma if prqp
X ∈ a.

Assume now that Xp := prqp
(X) 6= Y . There exists a k ∈ Ho ∩ K

such that Ad(k)Xp ∈ a, since a is maximal abelian in qp. On the other
hand, Ad(K ∩Ho) is a group of isometries commuting with prqp

and prqk
.

Therefore we get

prqp
(Ad(k)X) = Ad(k)Xp

and

| prqk
(Ad(k)X)| = |Ad(k) prqk

(X)| = | prqk
(X)| .

In particular, Ad(k)X 6∈ qp. By the first part of the proof we may find a
Z ∈ Ad(Ho)Ad(k)X = Ad(Ho)X such that

| prqk
(Z)| < | prqk

(Ad(k)X)| = | prqk
(X)| .
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Now Proposition 4.2.9 shows that

Y = pr(Ad(k−1)Ad(k)Xp)

∈ conv[W0 ·Ad(k)Xp]

⊂ conv [W0 · (pr(Z) + cmin)]

= conv[pr(Z)] + cmin ,

and this implies the claim. 2

Recall that adjoint orbits of semisimple elements in semisimple Lie al-
gebras are closed according to a well-known theorem of Borel and Harish-
Chandra (cf. [168], p. 106). The following lemma, taken from [20], p. 58,
is a generalization of this fact.

Lemma 4.3.4 Let G/H be a symmetric space with G semisimple. If X ∈ q

is semisimple, then the orbit Ad(H)X is closed in q. 2

Define a relation � on q via

X � Y :⇐⇒
{ | prqk

(Y )| ≤ | prqk
(X)|

pr(X) ∈ conv[W0 · pr(Y )] + cmin

Lemma 4.3.5 Let X ∈ q. Then the set {Y ∈ q | X � Y } is (Ho ∩ K)-
invariant and closed in q.

Proof: The (Ho ∩ K)-invariance follows from Proposition 4.2.9 and the
(Ho ∩ K)-equivariance of prqk

. Now assume that Yj ∈ {Y ∈ q | X �
Y }, j ∈ N, and that Yj → Y0 ∈ q. As | prqk

(Yj)| ≤ | prqk
(X)|, it follows that

| prqk
(Y0)| ≤ | prqk

(X)|. Furthermore, there are Zj ∈ conv[W0 · pr(Yj)] and
Lj ∈ cmin such that prX = Zj + Lj . But the union of conv [W0 · pr(Yj)],
j ≥ 0 is bounded, so {Zj} has a convergent subsequence and one easily
sees that the limit point is in conv(W0 ·Y ). Thus we can assume that {Zj}
converges to Z0 ∈ conv(W0Y ). Therefore Lj = pr(X)−Zj → pr(X)−Z0 ∈
cmin, since cmin is closed. 2

Lemma 4.3.6 Let X ∈ comax and let L ∈ Ad(Ho)X. Then the set

MX(L) := {Y ∈ Ad(Ho)X | L � Y }

is compact.

Proof: By Lemma 4.3.4 and Lemma 4.3.5 it follows that M(L) = MX(L)
is closed. Thus we only have to show that M(L) is also bounded. Let
Ad(h)X ∈ M(L). Write h = k expZ with k ∈ K ∩ Ho and Z ∈ hp.
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As Ad(k) is an isometry, |Ad(h)X | = |Ad(expZ)X |. Thus we may as
well assume that h = expZ. Since adq(Z) is symmetric, we may write
X =

∑

λ∈R Xλ, with Xλ ∈ q(λ, Z). Thus

Ad(h)X =
∑

λ

eλXλ .

Now θ(q(λ, Z)) = q(−λ, Z) as Z ∈ hp. From θ(X) = −X we get

X = X0 +
∑

λ>0

[Xλ +X−λ] = X0 +
∑

λ>0

[Xλ − θ(Xλ)] , (4.26)

with X0 ∈ qp. Thus

Ad(h)X = X0 +
∑

λ>0

[

eλXλ − e−λθ(Xλ)
]

= X0 +
∑

λ>0

sinh(λ) [Xλ + θ(Xλ)]+
∑

λ>0

cosh(λ) [Xλ − θ(Xλ)] .

In particular,

prqk
(Ad(h)X) =

∑

λ>0

sinh(λ) (Xλ + θ(Xλ))

and
prqp

(Ad(h)X) = X0 +
∑

λ>0

cosh(λ) (Xλ − θ(Xλ)) .

The eigenspaces are orthogonal to each other and Ad(h)X ∈ M(L), so we
find

∑

λ>0

sinh(λ)2|Xλ + θ(Xλ)|2 = | prqk
(Ad(h)X)|2

≤ | prqk
(L)|2

≤ |L|2 .
Furthermore, |Xλ ± θ(Xλ)|2 = |Xλ|2 + |θ(Xλ)|2. Hence |Xλ − θ(Xλ)|2 =
|Xλ + θ(Xλ)|2 . From cosh(t)2 = 1 + sinh(t)2 we now obtain

|prqp
(Ad(h)X)|2 = |X0|

2 +
∑

λ>0

cosh(λ)2|Xλ + θ(Xλ)|2

= |X0|
2 +
∑

λ>0

|Xλ − θ(Xλ)|2 +
∑

λ>0

sinh(λ)2|Xλ + θ(Xλ)|2

= |X|2 + |prqk
(Ad(h)X)|2

≤ |X|2 + |L|2 .
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Thus |Ad(h)X |2 ≤ 2|L|2 + |X |2, which proves the claim. 2

Now we are ready to prove Theorem 4.3.1: Let X ∈ cmax. As conv(W0 ·
X) + cmin is closed, we may assume that X ∈ comax. Let L = Ad(h)X ∈
Ad(H)X . Since H is essentially connected, we have Ad(H)X = Ad(Ho)X ,
so we may assume that h ∈ Ho. Since MX(L) is compact, the map

MX(L) 3 Y 7→ | prqk
(Y )|2 ∈ R

attains its minimum at a point Y = Ad(a)L, a ∈ H . By Lemma 4.3.3 we
must have Y ∈ qp. Moreover,

pr(L) ∈ conv(W0 · pr(Y )) + cmin .

Because of Y ∈ qp, we can find a k ∈ K ∩ Ho such that Ad(k)Y =
Ad(kah)X ∈ a. By Lemma 4.2.13, part 2), it follows that kah ∈ K ∩Ho.
But then ah ∈ K ∩H . Hence Proposition 4.2.9 shows that

pr(Y ) ∈ conv(W0 ·X) ,

which in turn yields

pr(Ad(h)X) = pr(L) ∈ conv[W0 · pr(Y )] + cmin

= conv[W0 · (convW0 ·X)] + cmin

= conv(W0 ·X) + cmin

and therefore proves the theorem. 2

4.4 The Classification

LetM = G/H be a noncompactly causal symmetric space and a a maximal
abelian subspace of qp. Recall the orthogonal projection pr: q→ a and the
corresponding intersection and projection operations for cones. Theorem
4.1.6 implies that any C ∈ ConeH(q) contains one of the two minimal cones
and consequently is contained in the corresponding maximal cone. Then
Proposition 4.2.11 implies that

cmin ⊂ I(C) ⊂ P (C) ⊂ cmax.

Clearly I(C) is W0-invariant, but Theorem 4.3.1 shows that P (C) is also
W0-invariant. The goal of this section is to show that any W0-invariant
cone between cmin and cmax arises as I(C) for some C ∈ ConeH(q) and
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that C is uniquely determined by I(C). We start with a closer examination
of the projection pr.

Let tc be a Cartan subalgebra of kc containing ia. Then tc is a Cartan
subalgebra of gc since the simple factors of gc are Hermitian and the analytic
subgroup T c of ead(gC) with Lie algebra ad(tc) is compact. Consider the
closed subgroup {ϕ ∈ T c | τϕτ = ϕ−1} of T c. Its connected component
Ta := ead(ia) then is a compact connected subgroup of T c with Lie algebra
ad(ia). We normalize the Haar measure on Ta in such a way that it has
total mass of 1.

Lemma 4.4.1 Let X ∈ q. Then pr(X) =
∫

Ta
ϕ(X) dϕ.

Proof: Write X = pr(X) +
∑

α∈∆+ [Lα − τ(Lα)], with Lα ∈ gα. Then

ϕ(X) = pr(X) +
∑

α∈∆+

[

ϕα(Lα)− ϕ−ατ(Lα)
]

,

where (ead Y )α = eα(Y ) for Y ∈ aC. As Ta 3 ϕ 7→ ϕα ∈ C∗ is a unitary
character, it follows that

∫

Ta
ϕα dϕ = 0. Hence

∫

Ta

ϕ(X)dϕ = pr(X)+
∑

α∈∆+

[(∫

Ta

ϕαdϕ

)

Lα −
(∫

Ta

ϕ−αdϕ

)

τ(Lα)

]

= pr(X) .

This implies the claim. 2

For g ∈ G define the linear map Φg : gC → gC by

Φg(X) :=

∫

Ta

ϕAd(g)ϕ−1(X) dϕ (4.27)

and set H := {Φh ∈ End(a) | h ∈ Ho}. Then Lemma 4.4.1 implies that

H = {Φ ∈ End(a) | ∃h ∈ Ho : Φ = pr ◦Ad(h)} . (4.28)

Lemma 4.4.2 1) Let Y ∈ a and g ∈ G. Then Φg ◦ adY = adY ◦ Φg.

2) τ ◦Φg = Φτ(g) ◦ τ for all g ∈ G. In particular, τ ◦Φh = Φh ◦ τ for all
h ∈ H.

3) Φb(zg(a)) ⊂ zg(a). If h ∈ H and X ∈ a, then Φh(X) = pr(Ad(h)X).

4) Let k ∈ NK∩H(a) and h ∈ H. Then Ad(k)Φh(X) = Φkh(X) .
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Proof: 1) Let Y ∈ a. Then ead tiY ∈ Ta for all t ∈ R. Hence Φge
ti ad Y =

eti ad Y Φg. Differentiating at t = 0 yields Φg ◦ adY = adY ◦ Φg.
2) Since τϕτ = ϕ−1 for all ϕ ∈ Ta and Ta is unimodular, it follows that

τΦgτ(X) :=

∫

Ta

τϕAd(g)ϕ−1τ(X) dϕ

=

∫

Ta

ϕ−1 Ad(τ(g))ϕ(X) dϕ

= Φτ(g)(X) .

3) From part 1) we get Φg(zg(a)) ⊂ zg(a). If X ∈ a, then ϕ(X) = X for
all ϕ ∈ Ta. Hence

Φh(X) =

∫

T

ϕ (Ad(h)X) dϕ .

and this equals pr(Ad(h)X) by Lemma 4.4.1.
4) Note first that pr is NK∩H(a)-equivariant by Lemma 4.2.6. Now the

claim follows from part 3). 2

Lemma 4.4.3 Let h ∈ H. Then Φ∗
h = Φθ(h−1). In particular, H∗ = H.

Proof: Note that Ad(g)∗ = Ad(θ(g)−1) with the usual inner product on g.
Thus for X,Y ∈ a:

(Φh(X)|Y ) = (pr(Ad(h)X)|Y )

= (Ad(h)X |Y )

= (X |Ad(θ(h−1))Y )

= (X | prAd(θ(h−1))Y )

= (X |Φθ(h−1)(Y )) .

From this the lemma follows. 2

Remark 4.4.4 Theorem 4.3.1 shows that a convex cone c with cmin ⊂ c ⊂
cmax is W0-invariant if and only if it is H-invariant. 2

Lemma 4.4.5 Let c be an H-invariant cone in a. Then

1) c∗ is H-invariant.

2) If c is closed and regular, then we can choose a cone-generating ele-
ment X0 ∈ c so that

cmin(X
0) ⊂ c ⊂ cmax(X

0).
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Proof: Let X ∈ c\{0}. Let X̃ := [1/#W0]
∑

w∈W0
w ·X . By Remark 4.4.4,

X̃ ∈ c. Since c is proper, we see that X 6= 0. The W0-invariance of X̃
shows that all α ∈ ∆0 vanish on X̃ and hence X̃ ∈ z(ha). Thus we may
choose a cone-generating element X0 ∈ c. Set cmin := cmin(X

0) etc. Then
the H-invariance of c shows that

cmin = pr(Cmin) = pr
(

conv [Ad(Ho) (R+X0)]
)

⊂ H · c = c.

The regularity of c is equivalent to the regularity of c∗. But c∗ isH-invariant
by Lemma 4.4.3. Applying what we have already proved to c∗ implies that
cmin ⊂ c∗ hence by duality c ⊂ cmax. 2

We now turn to the question of which cones in a occur as intersections
I(C) with C ∈ ConeH(q). Recall the extension operators for cones from
Remark 2.1.12. We set E := Eq,H

a . Then we have

Cmin(X0) = E(R+X0)

and
P (E(U)) = cone {H(U)}. (4.29)

Theorem 4.4.6 (Extension, Intersection and Projection) Let M =
G/H be a noncompactly causal symmetric space and a a maximal abelian
subspace of qp. Then for any c ∈ ConeW0(a) we have E(c) ∈ ConeH(q) and

c = P (E(c)) = I(E(c)).

Proof: It follows from Lemma 4.4.5 that there exists a cone-generating
element X0 ∈ c. As Cmin := Cmin(X0) is generated by the H-orbit of X0 ∈
cmin := cmin(X

0) (cf. Lemma 4.2.8), it follows that Cmin ⊂ E(cmin). On the
other hand, cmin ⊂ Cmin so that E(cmin) ⊂ Cmin and hence E(cmin) = Cmin.
Now cmax ⊂ Cmax (cf. Proposition 4.2.11) implies, E(cmax) ⊂ Cmax.

So far we know Cmin⊂E(c) ⊂ Cmax. But E(c) is generated by Ad(H)c =
Ad(Ho)c (cf. Theorem 3.1.18), so E(c) ∈ ConeH(q).

Now let X ∈ c and h ∈ H . Then Lemma 4.4.2, part 3, implies

pr(Ad(h)X) = Φh(X) ∈ H ·X ⊂ c.

Moreover, P (E(c)) ⊂ c, since E(c) is generated by Ad(H)c = Ad(Ho)c
and c is H-invariant by Remark 4.4.4. But clearly c ⊂ E(c), which implies
c ⊂ P (E(c)). Thus P (E(c)) = c. Finally, c ⊂ I(E(c)) ⊂ P (E(c)) = c
proves I(E(c)) = c. 2

Theorem 4.4.7 LetM = G/H be a noncompactly causal symmetric space
and a a maximal abelian subspace of qp. Then for a closed cone c in a the
following conditions are equivalent:
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1) c is W0-invariant and cmin ⊂ c ⊂ cmax for a suitable chosen minimal
cone.

2) c is regular and H-invariant.

3) There exists a cone C ∈ ConeH(q) such that P (C) = c.

4) There exists a cone C ∈ ConeH(q) such that I(C) = c.

Proof: If 1) holds, then by the convexity theorem 4.3.1, Φh(X) ∈ c for all
h ∈ Ho and X ∈ c. Thus 2) follows. 3) and 4) follow from 2) by Theorem
4.4.6. If 3) holds, then cmin ⊂ I(C) ⊂ c ⊂ cmax, which implies 2) and 1).
Similarly, 4) implies 2) and 1). 2

The last step in our classification program is to show that H-invariant
regular cones in q are indeed completely determined by their intersections
with any maximal abelian subspace of qp. In order to do this we again
have to use the structure theory provided by the fact that gc has Hermitian
simple factors.

Definition 4.4.8 Let M = G/H be a noncompactly causal symmetric
space and GC/G

c be any symmetric space corresponding to (gC, σ
c). A cone

C ∈ ConeH(q) is calledGc-extendable if there exists a cone C̃ ∈ ConeGc(igc)
such that C = Iigc

q (C̃). 2

If C ∈ ConeH(q) is Gc-extendable, we can find C̃ ∈ ConeGc(igc) such
that C = Iigc

q (C̃) and −τ(C̃) = C̃. In fact, if C̃1 ∈ ConeGc(igc) satisfies

C = Iigc

q (C̃1), we simply set C̃ := C̃1 ∩
(

− τ(C̃1)
)

.
We have seen in Theorem 4.2.16 that the minimal and the maximal cones

in q are Gc-extendable for any symmetric space GC/G
c corresponding to

(gC, σ
c). We will see in the next section that this is indeed true for all cones

in ConeH(q). What we need now is a much weaker statement.

Lemma 4.4.9 Let C ∈ ConeH(q). Then Eigc,Gc

q (C) ∈ ConeGc(igc).

Proof: As Cmin ⊂ C for a suitable cone-generating element, it follows that

C̃min = Eigc,Gc

q (Cmin) ⊂ Eigc,Gc

q (C).

But C̃max is Gc-invariant, so C ⊂ Cmax ⊂ C̃max implies

Eigc,Gc

q (C) ⊂ C̃max.

Therefore Eigc,Gc

q (C) is regular. 2
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Theorem 4.4.10 Let M = G/H be a noncompactly causal symmetric
space and C ∈ ConeH(q). If X ∈ Co, then X is semisimple and adX has
real eigenvalues and there exists an element h ∈ Ho such that Ad(h)X ∈
I(Co).

Proof: According to Lemma 4.4.9, we know that C ⊂ C̃max for a suitable
choice of a cone-generating element X0. Since X0 is contained in the in-
teriors of C and C̃max, we see that Co ⊂ C̃o

max. But then Lemma 4.2.15
shows that there exists an h ∈ Ho such that Ad(h)X ∈ a ∩Co = I(Co). 2

From Theorem 4.4.10 we immediately obtain the following theorem,
which completes our classification program:

Theorem 4.4.11 (Reconstruction of Cones) LetM = G/H be a non-
compactly causal symmetric space and C ∈ ConeH(q). Then

Co = Ad(H)I(Co)

and

C = Eq,H
a,{1}

(

Ia
q (Co)

)

= Ad(H)I(Co) . 2

Corollary 4.4.12 Let M = G/H be a noncompactly causal symmetric
space and C ∈ ConeHo

(q). Then C ∈ ConeH(q).

Proof: According to Theorem 3.1.18, we have

H = HoZH∩K(a)

and ZH∩K(a) acts trivially on I(Co). Therefore the claim follows from
Theorem 4.4.11. 2

4.5 Extension of Cones

Assume thatM is a noncompactly causal symmetric space and GC/G
c any

symmetric space corresponding to (gc, σc). The goal of this section is to
show that any C ∈ ConeH(q) is Gc-extendable. We note first that Remark
4.2.14 shows that this is the case if g carries a complex structure, since then
gc is Hermitian. So we may assume that GC/G

c is noncompactly causal and
by Corollary 4.4.12 we only have to show Gc

o-extendability. In particular,
we may assume that GC is simply connected and that Gc and G are the
analytic subgroups of GC with Lie algebras gc and g.

Fix a Cartan subalgebra tc of kc as before and consider

W̃ 0 = NKc(tc)/ZKc(tc) ,
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where Kc is the analytic subgroup of Gc corresponding to the Lie algebra
kc. Then Kc is compact and W̃ 0 is the Weyl group for the pair (kc, tc). We
choose a cone-generating element X0 ∈ qp ⊂ ihk +qp and a positive system

∆̃+ for ∆̃ = ∆(gC, t
c) as in (4.12). Let

C(∆+
0 ) := {X ∈ a | ∀α ∈ ∆+

0 : α(X) > 0}

be the corresponding open Weyl chamber in a. Similarly, let C̃(∆̃+
0 ) be the

chamber in itc. We define C := C(∆+
0 ) and C̃ := C̃(∆̃+

0 ).

Remark 4.5.1 Let C′ be the closure of the Weyl chamber in a′ := a ∩
[ha, ha] corresponding to ∆+

0 . Then C = C′ ⊕ RX0 and C∗ = (C′)∗ ⊂ a′,
where (C′)∗ is the dual of C′ in a′. If X = X1 +X2 ∈ C with X1 ∈ C′ and
X2 ∈ RX0, then

s(X) = s(X1) +X2

for all s ∈ W0. Similar things hold for C̃ and W̃ 0. 2

Lemma 4.5.2 1) Let α ∈ ∆̃0 be such that α|a 6= 0. Then α is positive
if and only if −τ(α) is positive.

2) C = C̃ ∩ a = pr(C̃), where pr: itc → a is the orthogonal projection.

3) C∗ = pr(C̃∗).

Proof: 1) This follows from (4.12).
2) Obviously C ⊂ C̃ ∩ a ⊂ pr(C̃). Thus we only have to show that

pr(C̃) ⊂ C. Let X ∈ C̃. Then

pr(X) =
1

2
[X − τ(X)] .

Let α ∈ ∆+
0 and choose β ∈ ∆̃+

0 such that β|a = α. Then

α =
1

2
(β − τβ) .

Then 1) shows −τβ ∈ ∆̃+
0 . Thus

α(pr(X)) = β

(

1

2
[X − τ(X)]

)

=
1

2
(β(X) + [−τβ(X)]) ≥ 0 .

Thus pr(X) ∈ C as claimed.



4.5. EXTENSION OF CONES 117

3) This follows from 2) and Lemma 2.1.8. 2

Consider the following groups (cf. Theorem 4.2.6):

W̃ 0(τ) := {w ∈ W̃ 0 | τ ◦ w = w ◦ τ} (4.30)

W̃
a

0 := {w ∈ W̃ 0 | w|a = id}. (4.31)

Lemma 4.5.3 The restriction to a induces an exact sequence

{1} −→ W̃ 0(τ) ∩ W̃
a

0 −→ W̃ 0(τ) −→W0 −→ {1}.

Proof: We only have to show that the restriction to a induces a surjec-
tive map W̃ 0(τ) → W0. So let w ∈ W0 and k ∈ NK∩H(a) be such that
Ad(k)|a = w. Note that Ad(k)(itc ∩ ik) is a maximal abelian subspace of
im = izk(a). Therefore there exists an h ∈ Mo := ZK(a)o = ZK∩H(a)o

such that Ad(h) [Ad(k)(itc ∩ im)] = itc ∩ im. But then hk ∈ NK∩H(a) ∩
NK∩H(itc ∩ im) ⊂ NK∩H(itc) and therefore hk corresponds to an element
w̃ of W̃ 0. As w̃ leaves a and ã ∩ im invariant, it commutes with τ . Thus
w̃ ∈ W̃ 0(τ). Finally, we note that

w̃ ·X = Ad(hk)(X) = Ad(h)Ad(k)(X) = Ad(h)(w ·X) = w ·X

for X ∈ a, which implies the claim. 2

Remark 4.5.4 Let w̃ ∈ W̃ 0(τ) and w = w̃|a. Then we have w ◦ pra =
pra ◦w̃. 2

In view of Remark 4.5.1, the following lemma is a consequence of Lemma
8.3 in [45], p. 459:

Lemma 4.5.5 1) Let X ∈ C̃. Then

conv(W̃ 0 ·X) =
⋃

w∈W̃ 0

w
[

C̃ ∩ (X − C̃∗)
]

=
⋂

w∈W0

w
(

X − C̃∗
)

.

2) Let X ∈ C. Then

conv(W0 ·X) =
⋃

w∈W0

w [C ∩ (X − C∗)] =
⋂

w∈W̃ 0

w (X − C∗). 2

Theorem 4.5.6 Let (g, τ) be a noncompactly causal pair, a a maximal
abelian subspace of qp, and tc a Cartan subalgebra of kc containing ia. Fur-

ther, let W0 and W̃ 0 be the Weyl groups of (g, a) and (kc, tc), respectively.
Then pr(conv W̃ 0 ·X) = conv(W0 · X) for all X ∈ a, where pr: itc → a is
the orthogonal projection.
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Proof: Set L̃ = conv(W̃ 0 ·) ⊂ itc, L = conv(W0 ·X) ⊂ a and F := pr(L̃).
Fix w ∈ W0. According to Lemma 4.5.3 we can choose a w̃ ∈ W̃ 0(τ) such
that w̃|a = w. Then Remark 4.5.4 and the W̃ 0-invariance of L̃ imply that

w(F ) = w · [pr(L̃)] = pr(w̃L̃) = F.

Therefore F is convex and W0-invariant. As X ∈ F , it follows that L ⊂ F .
To show the converse, we choose w ∈W0 such that

w(X) ∈ C ⊂ C̃ .

Choose w̃ ∈ W̃ 0 with w̃|a = w. Using Lemma 4.5.5 and Lemma 4.5.2, part
3), we find

F ⊂ pr(w̃(X)− C̃∗) = w(X)− C∗.
This together with Lemma 4.5.5, part 2), shows

F ∩ C ⊂ [w(X)− C∗] ∩ C ⊂ conv[W0 · w(X)] = conv(W0 ·X)

and hence the claim. 2

Corollary 4.5.7 Let c be a W0-invariant cone contained in a. Then c̃ :=
conv{W̃ 0(c)} is a W̃ 0-invariant cone in ã with pr(c̃) = c = c̃∩a.

Proof: We obviously have c ⊂ c̃∩a ⊂ pr(c̃). Let X ∈ c. Then

pr(conv W̃ 0(X)) = convW0 ·X ⊂ c

and hence also pr(c̃) ⊂ c. 2

Theorem 4.5.8 (Extension of Cones) Suppose that M = G/H is a
non-compactly causal symmetric space. Let GC/G

c be any noncompactly
causal symmetric space corresponding to (gC, σ

c). If C ∈ ConeH(q), then

1) Eigc,Gc

q (C) ∈ convGc(igc),

2) −τ(Eigc,Gc

q (C)) = Eigc,Gc

q (C), and

3) Eigc,Gc

q (C) ∩ q = prq(E
igc,Gc

q (C)) = C.

In particular, every cone in ConeH(q) is Gc-extendable.

Proof: We may assume that g carries no complex structure and all groups
are contained in the simply connected group GC.

2) is obvious, as −τ(C) = C. We prove 1) and 3) together. Fix a
Cartan subalgebra tc of kc containing a maximal abelian subspace a of qp.
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Let C ∈ ConeH(q). We may assume that cmin ⊂ C ∩ a ⊂ cmax. Now
we apply Corollary 4.5.7 to find a W̃ 0-invariant cone c̃ in itc such that
pr(c̃) = C ∩ a = c̃ ∩ a, where pr: itc → a is the orthogonal projection.
Replacing c̃ by c̃+ c̃min if necessary we may assume that c̃min ⊂ c̃ ⊂ c̃max.
By Theorem 4.4.7 applied to GC/G

c there is a cone C̃ ∈ convGc(igc) such
that C̃ ∩ itc = P itc

a (C̃) = c̃. In particular, we have C̃ ∩ a = C ∩ a. Thus
C̃ ∩ q and C are both cones in ConeHo

(q), and their intersections with a

agree. Thus Theorem 4.4.11 proves that C̃∩q = C. Since C̃ is Gc-invariant
and contains C, it also contains Eigc,Gc

q (C). Therefore C = Eigc,Gc

q (C) ∩ q

and then Theorem 4.4.11 implies the claim, since Eigc,Gc

q (C) is regular by
Lemma 4.4.9. 2

Notes for Chapter 4

The material in this chapter is taken mainly from Chapter 5 in [129]. The relation

between the strongly orthogonal roots in Section 4.1 is from [130]. A more alge-

braic proof of Lemma 4.1.9 can be found in [133]. The convexity theorem in the

group case was proved by Paneitz in [147]. The linear convexity theorem, which

was proved in [129], can also be viewed as an infinitesimal version of the convex-

ity theorem of Neeb [116]. It can be derived from general symplectic convexity

theorems applied to suitable coadjoint orbits (cf. [62]). The proof presented here

is based on the proof of the convexity theorem of Paneitz by Spindler [158]. The

classification for simple groups is due to Ol’shanskii [139], Paneitz [147, 148], and

Vinberg [165]. Their results were generalized to arbitrary Lie groups by Hilgert,

Hofmann, and Lawson in [50]. The extension theorem for invariant cones was

proved in [48] for the classical spaces and in [129] for the general case using the

classification. The idea of the proof given here is due to Neeb [116]. The invariant

cones in the group case have been described quite explicitly by Paneitz in [147]

for the classical groups. Thus Theorem 4.5.8 can also be used to obtain explicit

descriptions in the general case.



Chapter 5

The Geometry of

Noncompactly Causal

Symmetric Spaces

IfM = GC/G is a causal symmetric space, then G/K is a bounded symmet-
ric domain. It is well known that in this case G/K can be realized via the
Harish-Chandra embedding as a complex symmetric domain in p−, which
in our notation for noncompactly causal symmetric spaces corresponds to
n−. We generalize this embedding to the general case in the first section.
More precisely, we show that if G/H is a noncompactly causal symmetric
space, then H/H ∩ K is a real symmetric domain Ω− in n− which can
also be realized as an open subset O in a certain minimal flag manifold
X = G/Pmax of G. The importance of this observation lies in the fact that
the semigroup S(C) associated to the causal orientation of M = G/H is
essentially equal to the semigroup S(Gτ , Pmax) of compressions of O. This
semigroup consists of all elements in G mapping O ⊂ X into itself. We
show that S(C) = (expC)H is homeomorphic to C ×H . With this infor-
mation at hand, one easily sees that noncompactly causal symmetric spaces
are always ordered and have good control over the geometric structure of
the positive domainM+ ofM which consists of the elements greater than
the base point with respect to the causal ordering. In particular, we prove
that intervals in this order are compact. Finally, we give a proof of Neeb’s
non-linear analog of Theorem 4.3.1 which turns out to be extremely useful
in the harmonic analysis of noncompactly causal symmetric spaces.

120
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5.1 The Bounded Realization of H/H ∩K

In this section we fix a noncompactly causal symmetric space M = G/H
and assume that G is contained in a simply connected complex group GC

with Lie algebra gC. Recall the abelian subalgebras n± ⊂ g which form
the irreducible pieces of the ha-module q = n− + n+ (cf. Remark 3.1.17
and Lemma 1.3.4) and let N± = exp n± be the corresponding analytic
subgroups of G which are automatically closed. Similarly, we have a closed
nilpotent subgroup N0 = exp n0 in G. Since Ha centralizes X0 ∈ qp, it also
normalizes n± and N±. Therefore

Pmax = HaN+ = HaN (5.1)

defines a maximal parabolic subgroup of G (cf. Appendix A.2 and Lemma
1.3.4).

Consider the involutive anti-automorphism

]:G→ G, g 7→ τ(g)−1 (5.2)

and denote its derivative at 1 also by ]. From τa|a = id we obtain the
following.

Lemma 5.1.1 Both Pmin and Pmax are τa-stable. Furthermore,

θ(Pmin) = τ(Pmin) = MAN ]

and

θ(Pmax) = τ(Pmax) = HaN ]
+ = HaN− = HaN ]. 2

Recall the maximal set Γ of strongly orthogonal roots in ∆+ = ∆(n+, a)
from Remark 4.1.10 and the corresponding maximal abelian subspace ac

h =
∑

γ∈Γ RY γ of hp. We set

Ac
h = exp ac

h. (5.3)

Lemma 5.1.2 Let the notation be as above. Then HPmin = HPmax =
GτPmax = (Gτ )oPmax and H ∩ Pmax = H ∩ K. Furthermore, HPmax is
open in G.

Proof: Lemma 3.1.22 implies that

Ha = (H ∩K)MAN0

so H = (exp hp)(H ∩K) (cf. (1.8)) proves the first part.
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Let h ∈ H ∩ Pmax. Write h = k1ak2 with kj ∈ K ∩ H and a ∈ Ac
h.

From K ∩H ⊂ Pmax it follows that a ∈ H ∩ Pmax. But then τ(a) = a−1 ∈
Pmax ∩ Pmax = MA. But Ac

h ∩MA = {1}, which implies that a = 1.
A simple calculation shows that the differential of

Gτ ×A×N 3 (h, a, n) 7→ han ∈ G
is bijective everywhere. Thus GτAN = GτPmax = HPmax is open in G, cf.
[99]. 2

The generalized Bruhat decomposition (cf. [168], p.76) shows that both
N−Pmax and N ]Pmin are open and dense in G and the maps

N− ×Ha ×N+ 3 (n−, g, n+) 7→ n−gn+ ∈ N−Pmax

and
N ] ×M ×A×N 3 (θn1,m, a, n2) 7→ θn1man2 ∈ G

are diffeomorphisms onto their images.

Example 5.1.3 Recall the situation of the Examples 1.3.12 and 3.1.13,
i.e., G = SL(2,R). Then M = {±1} and

(

a b
c d

)]

=

(

a −c
−b d

)

.

Moreover, we have

N ] = N− =

{(

1 0
y 1

)∣

∣

∣

∣

y ∈ R

}

,

Pmin = Pmax =

{(

a r
0 a−1

)∣

∣

∣

∣

r ∈ R, a ∈ R \ {0}
}

,

and

N−Pmax =

{(

a b
c d

)∣

∣

∣

∣

a 6= 0

}

. (5.4)

If

(

a b
c d

)

=

(

1 0
y 1

)(

e 0
0 1/e

)(

1 x
0 1

)

∈ N−Pmax, then

e = a y = c/e and x = b/e . 2

Lemma 5.1.2 implies that the set O = (Gτ )o ·oX in the real flag manifold
X = G/Pmax, where oX := 1Pmax/Pmax, is open. Moreover, we have

H/H ∩K ' HPmax/Pmax = GτPmax/Pmax =

= (Gτ )oPmax/Pmax = (Gτ )o.oX = O. (5.5)

We will now describe O in more detail using the symmetric SL(2,R)-
reduction from Section 4.1.
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Lemma 5.1.4 H ⊂ N−Pmax. Furthermore,

exp
∑

γ∈Γ

tγY
γ

=



exp
∑

γ∈Γ

tanh tγY−γ







exp
∑

γ∈Γ

log cosh tjX
γ







exp
∑

γ∈Γ

tanh tγYγ





Proof: The polar decomposition for H gives H = (H ∩ K)Ac
h(H ∩ K).

As H ∩ K ⊂ Gτa

and H ∩ K normalizes N−, we only have to show that
Ac

h ⊂ N−G
τa

. But Example 5.1.3 implies that

exp
∑

γ∈Γ

tγY
γ =



exp
∑

γ∈Γ

tanh tγY−γ







exp
∑

γ∈Γ

log cosh tγX
γ





·



exp
∑

γ∈Γ

tanh tγYγ



 .

This shows that Ac
h ⊂ N−Pmax and the lemma follows. 2

Define a map κ : n− → X by

κ(X) = (expX) · Pmax . (5.6)

Using H/H ∩K = HPmax/Pmax ⊂ N−Pmax/Pmax ' N− ' n− we see that
κ is injective and find for h ∈ H :

hPmax = exp(κ−1(h(H ∩K))Pmax)Pmax.

Let
Ω− := κ−1(O) ⊂ n− . (5.7)

By Lemma 5.1.4 we have the following.

Lemma 5.1.5 Let a = exp
∑

γ∈Γ tγY
γ ∈ Ac

h. Then

κ−1(aPmax) =
∑

γ∈Γ

tanh tγY−γ . 2

Lemma 5.1.6 Let h ∈ H and X ∈ Ω−. Then h ·X = Ad(h)X.

Proof : Let X ∈ Ω− and h ∈ H . Then h expX = [exp Ad(h)X ]h and the
claim follows from Ad(h)X ∈ n−. 2
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Lemma 5.1.7 Let Y ∈ n−. Then there exists a k ∈ K ∩ Ho such that
Ad(k)Y ∈∑r

j=1 RY−γ .

Proof: τ = −θ on n− (cf. Lemma 4.1.1) implies that Y + τ(Y ) ∈ hp. Hence
there exists a k ∈ K ∩Ho such that

Ad(k)[Y + τ(Y )] =
∑

γ∈Γ

tγ(Yγ + Y−γ) ∈ ah .

But then Ad(k)Y =
∑

γ∈Γ tγY−γ and the claim follows. 2

Theorem 5.1.8 Let the notation be as above. Then

Ω− = Ad(K ∩H)







∑

γ∈Γ

yγY−γ

∣

∣

∣

∣

∣

∣

− 1 < yγ < 1, γ ∈ Γ







.

Proof: Let h = k1ak2 ∈ H with kj ∈ K ∩H and a = exp
∑

γ∈Γ tγY
γ ∈ Ac

h.
Then

κ−1(h(H ∩K)) = Ad(k1)κ
−1
(

exp
∑

γ

tγY
γ(Pmax)

)

= Ad(k1)
∑

γ∈Γ

tanh tγY−γ ∈ Ω− .

On the other hand let X = Ad(k)
∑

γ∈Γ yγY−γ be in Ω− and tγ =
arctanh(yγ). Then

κ(X) =



k exp
∑

γ∈Γ

tγY
γ



Pmax .

This proves the theorem. 2

Remark 5.1.9 As τ interchangesN− and N+ in such a way that τ(Y−γ) =
Yγ and Y γ ∈ hp we see that for Ω+ := τ(Ω) ⊂ n+ we have

Hτ(Pmax)/τ(Pmax) ' Ad(K ∩H)







∑

γ∈Γ

yγYγ

∣

∣

∣

∣

∣

∣

− 1<yγ<1, γ ∈ Γ







= Ω+

2

Example 5.1.10 Let G be a Hermitian Lie group, i.e., G is semisimple
and G/K is a bounded symmetric domain. Then GC/G is a noncompactly
causal symmetric space. In this case a = it, where t ⊂ k is a Cartan
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subalgebra of k and of g. Furthermore, ∆+ = ∆n is the set of noncompact
roots, ∆0 = ∆k the set of compact roots, and n± = p± in the notation of
Appendix A.4. Hence the above result states that G ⊂ P−KCP

+ and G/K
can be realized as an bounded symmetric domain in p−. In other words,
Theorem 5.1.8 is a generalization of the Borel–Harish-Chandra realization
of Hermitian symmetric spaces as bounded domains in p−. 2

Let σ and η be the involutions on GC with fixed point groups G and Gc

(cf. Section 1.1). Then Gc/Kc is a bounded symmetric domain. We want
to relate Ω− and O to the Borel–Harish-Chandra realization of Gc/Kc.

Recall that gc = h + iq is a Hermitian Lie algebra. Moreover, let tc =
tm + ia be a compactly embedded Cartan algebra in gc and kc = hk + iqp

the uniquely determined maximal compactly embedded subalgebra of gc

containing tc (cf. [50], Theorem A.2.40, and Section 4.1). As before, we
write ∆̃ = ∆(gC, t

c
C) for the corresponding set of roots. Then ∆̃0 denotes

the roots of kc
C which we call compact and ∆̃+ the corresponding set of

noncompact roots. The Cartan decomposition of gc with respect to θσ is

gc = kc+pc with pc = hp+iqk. Note that (kc)C = (ha)C and (pc)C =
∑

α∈∆̃p

gα
C.

For

(pc)± =
∑

α∈∆̃±
p

gα
C

we have

(pmax)C = (kc)C + (pc)+C .

The theory of Hermitian symmetric spaces (cf. Appendix A.4) says that
Gc/Kc embeds as an open Gc-orbit OC into the complex flag manifold
XC = GC/(Pmax)C and then as a bounded symmetric domain (Ω−)C in
(pc)− (and (Ω+)C in (pc)+).

The complex parabolic (Pmax)C is stable under the conjugation σ. Hence
σ yields a complex conjugation on GC/(Pmax)C which we still denote by σ.
We write

(

GC/(Pmax)C

)σ
for the set of σ-fixed points.

Lemma 5.1.11 X σ
C = X .

Proof: (N−)C.oX is open dense in XC and invariant under σ. If x ∈ X σ
C ,

then there exists a sequence of nj ∈ (N−)C such that nj .oX converges
to x. But then σ(nj).oX converges to x as well, whence njσ(nj)

−1.oX

converges to oX . Thus njσ(nj)
−1 converges to 1 in (N−)C. Now, the fact

that (N−)C is a vector group shows that the imaginary part of nj converges
to zero (identifying (n−)C and (N−)C) and we can replace nj by its real
part without changing the limit. This proves x ∈ X and hence the claim.2
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Lemma 5.1.12 1) OC ∩ X = O.

2) (Ω−)C ∩ n− = Ω−.

Proof: 1) Let g ∈ Gc with σ(g.o) = g.o. Since Kc ⊂ (Pmax)C, we may
w.l.o.g. assume that g = expX with X ∈ pc. Then the hypothesis implies
that exp

(

σ(X)
)

∈ exp(X)Kc, so that the Cartan decomposition of Gc

yields that σ(X) = X . Therefore X ∈ hp and consequently g ∈ Gτ .
2) follows immediately from 1). 2

Example 5.1.13 We continue the SL(2,R)-Example 5.1.3. In that context
we have XC = CP1 and X = RP1. Under the Harish-Chandra embedding
we find

OC = (Ω−)C =

{(

0 0
z 0

) ∣

∣

∣

∣

|z| < 1, z ∈ C

}

and

O = Ω− =

{(

0 0
r 0

) ∣

∣

∣

∣

|r| < 1, z ∈ R

}

.

The action of GC on (Ω−)C is given by

(

a b
c d

)

·
(

0 0
z 0

)

=

(

0 0
dz+c
bz+a 0

)

. 2

5.2 The Semigroup S(C)

If G is an arbitrary Lie group, then the differential of the exponential map
at the point X ∈ g is given by

dX exp = (d1`expX)
1− e− ad X

adX
= (d1`expX) f(adX)

where f(t) =
∑∞

n=0(−1)n tn/(n + 1)! and `g:G → G denotes left multi-
plication by g. We derive similar formulas for arbitary symmetric spaces
G/H . Define

fh(t) :=
1− cosh t

t
= −

∞
∑

n=1

t2n−1

(2n)!
(5.8)

fq(t) :=
sinh t

t
=

∞
∑

n=0

t2n

(2n+ 1)!
. (5.9)

Lemma 5.2.1 1) The functions fq and fh are analytic in the complex
plane.
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2) f−1
h (0) = 2πiZ \ {0}.

3) f−1
q (0) = πiZ \ {0}.

4) f = fh + fq. 2

Lemma 5.2.2 Let the notation be as above and X,Y ∈ q. Then

f(adX)Y = fh(adX)Y + fq(adX)Y

and fh(adX)Y ∈ h, fq(adX)Y ∈ q.

Proof: This follows immediately from Lemma 5.2.1 and ad(X)kq ⊂ h if k
is odd and ad(X)kq ⊂ q if k is even. 2

Lemma 5.2.3 Define ϕ : q×H → G by ϕ(X,h) = (expX)h. Then for all
X,Y ∈ q, Z ∈ h, and h ∈ H the following holds:

d(X,h)ϕ(Y, Z) =
[

Z + Ad(h−1)(fh(adX)Y )
]

+ Ad(h−1) [fq(adX)Y ] .

Here we identify ThH with h and TgG with g via the left multiplication.

Proof: It is clear that d(X,h)ϕ(0, Z) = Z. Let F ∈ C∞(G). Let a(h,X) :=

expXh[exp(−Ad(h−1)X ]. Then

d

dt
F (exp(X + tY )h)t=0 =

d

dt
F (expXh[h−1 exp(−X) exp(X + tY )h])t=0

=
d

dt
F (a(h,X) exp(Ad(h−1)X + t Ad(h−1)Y ))t=0

from which the lemma follows. 2

If we identify To(M) with q, then the exponential map Exp : q→ G/H
is given by ExpX = (expX)H = π(ϕ(X, 1)), where π : G → M is the
canonical projection. Identify TX(q) with the vector space q in the usual
way. Then, using that d1`a : T1G→ TaG is an isomorphism, we have

dX Exp = d1`expX ◦ fq(adX), X ∈ q . (5.10)

Hence Exp is a local diffeomorphism for all X such that spec(adX)∩(πiZ\
{0}) = ∅. We will actually need more than this. Define for λ > 0

U(λ) := {X ∈ q | max
µ∈spec(ad X)

| Imµ| < λ} (5.11)

V (λ) := Exp(U(λ)) (5.12)

W (λ) := {exp(X)h | X ∈ U(λ), h ∈ H} = π−1(V (λ)) (5.13)

Let H act on V (λ)×H by h · (X, k) = (Ad(h)X,hkh−1).
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Lemma 5.2.4 Let the notation be as above. Then the following hold:

1) U(λ) is an open H-invariant 0-neighborhood in q.

2) If λ < π
2 , then W (λ) is an open H-invariant 1-neighborhood in G and

ϕ : V (λ)×H → W (λ) is an H-equivariant diffeomorphism, where H
acts on G by conjugation.

3) If λ < π
2 , then V (λ) is an open H-invariant o-neighborhood in M

and Exp : U(λ)→ V (λ) is an H-equivariant diffeomorphism.

Proof: The first part is obvious. To prove 2) assume that λ < π
2 . We first

show that ϕ is a local diffeomorphism. This will imply that W (λ) is open.
By Lemma 5.2.3 we have

d(X,h)ϕ(Y, Z) =
[

Z + Ad(h−1)(fh(adX)Y )
]

+ Ad(h−1)[fq(adX)Y ] .

If d(X,h)ϕ(Y, Z) = 0, then

Z + Ad(h−1) (fh(adX)Y )) = 0 and Ad(h−1)(fq(adX)Y ) = 0

according to Lemma 5.2.2. But then Y = 0 as ϕq(adX) : q → q is an
isomorphism for X ∈ U(λ). Therefore Z = 0, too and it follows that
d(X,h)ϕ is an isomorphism. Thus – by the implicit function theorem – ϕ
is a local diffeomorphism. Now we only have to show that ϕ is injective.
Assume that

g = exp(X)h = exp(Y )k, X, Y ∈ U(λ), h, k ∈ H .

Then gτ(g)−1 = exp 2X = exp2Y . By [163], p. 193, it follows that X = Y .
But then also h = k. The H-equivariance follows from

ϕ(Ad(k)X, khk−1) = exp(Ad(k)X)khk−1 = kϕ(X,h)k−1.

3) As dX Exp is a local diffeomorphism for X ∈ U(λ), we only have to
show that Exp is bijective. Assume that Exp(X) = Exp(Y ) for X,Y ∈
U(λ). Then expX = (expY )h for some h ∈ H . By (2) this shows that
X = Y . 2

Theorem V.4.57 in [50] says

Theorem 5.2.5 Let G/H be a symmetric space. Let C ⊂ q be a regular
H-invariant cone in q such that spec ad(X) ⊂ R for all X ∈ C. If (expC)H
is closed in G, then S(C) := (expC)H is a semigroup in G with L(S(C)) =
C + h. 2
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From now on we will always assume that M is a noncompactly causal
irreducible semisimple symmetric space.

Theorem 5.2.6 LetM = G/H be a noncompactly causal semisimple sym-
metric space. Let C ∈ ConeH(q). Define

S = S(C) = (expC)H = ϕ(C,H) . (5.14)

Then S is a closed semigroup in G. Furthermore, the following hold:

1) S ∩ S−1 = H.

2) C ×H 3 (X,h)→ exp(X)h ∈ S is a homeomorphism.

3) So = exp(Co)H and Co × H 3 (X,h) → exp(X)h ∈ So is a diffeo-
morphism.

4) S = H(S ∩A)H.

Proof: As C ⊂ U(λ) for all λ > 0, 2) and 3) follow from Lemma 5.2.4.
Assume that s = exp(X)h ∈ S ∩ S−1. Then s−1 = (expY )k for some
Y ∈ C and k ∈ H . Hence

(expY )k = h−1 exp(−X) = exp(−Ad(h−1)X)h−1

As −Ad(h−1)X ∈ U(λ), it follows that Y = −Ad(h−1)X ∈ C∩−C = {0}.
Hence Y = 0 and s ∈ H . This implies 1).

As C × H is closed in U(λ), it follows that (expC)S is closed. Now
Theorem 5.2.5 shows that S(C) is a semigroup.

The last assertion now follows from the reconstruction theorem 4.4.11.
2

The cone C defines a G-invariant topological causal orientation � on
M. From Theorem 2.3.3 we obtain

Theorem 5.2.7 Let M be a noncompactly causal symmetric space, C ∈
ConeH(q) and � the corresponding causal orientation on M. Then � is
antisymmetric and

S(C) = {s ∈ G | o � s · o},
i.e., S(C) is the causal semigroup of M. 2

In particular, Theorem 5.2.7 shows that � and the order ≤S(C) defined
in Section 2.3 agree (cf. Remark 2.3.2), so that the positive cone is simply
the S(C)-orbit of o:

M+ = S(C) · o. (5.15)

We conclude this section with the observation that one can view the
noncompactly causal space M̌ as a subspace of GC/Ǧ (cf. Section 1.1).
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Proposition 5.2.8 N := GC/Ǧ
c is a causal symmetric space and the

canonical map

π : M̌ → N , g(Gσ
C ∩Gτ

C) 7→ gǦc

is a Ǧ-equivariant homeomorphism onto its (closed) image and preserves
the causal orientation.

Proof: It follows directly from the definitions that the map is well defined,
Ǧ-equivariant, and injective. Let C ∈ ConeH(q) and C̃ be the minimal
Gc-invariant extension to igc, cf. Section 4.5. As C is H-stable, it follows
that C̃ is in ConeGc(igc). In particular, N is causal and π is a causal map.
Theorem 5.2.6 implies that M̌+ andN+ is homeomorphic to C, respectively
C̃. But then homogeneity and G-equivariance show that π is a proper map.
In particular, it is closed, which implies the claim. 2

5.3 The Causal Intervals

In this section we will show that the causal intervals [x, y], x, y ∈ M are
compact. Fix x and choose g ∈ G such that g · x = o. Since `g :M→M
is an order-preserving diffeomorphism, it follows that

`g([x, y]) = [o, g · y]

and [x, y] is compact if and only if [o, g ·y] is compact. Thus we may assume
that x = o and y ∈ [o,∞) = S(C) · o.

Let λ < π
2 ; then Exp : U(λ)→ V (λ) is a diffeomorphism. In particular,

we may define Log : V (λ)→ U(λ) to be the inverse of Exp.

Theorem 5.3.1 Log : [o,∞)→ C is order-preserving.

We prove this theorem in several steps. Consider the function

ϕ(x) =
x

sinhx
.

Then ϕ = 1/fq, with fq as in (5.9).

Lemma 5.3.2 Let ϕ be as above. Then

ϕ(x) =
π

4

∫ ∞

−∞

eixy 1

cosh2 (πy/2)
dy .

In particular, ϕ is positive definite.
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Proof: It is well known that

π tanhπy =

∫ ∞

0

sin yx

sinh(x/2)
dx.

As sinh is an odd function, the integral on the right-hand side equals

1

2i

∫ ∞

−∞

eixy 1

sinh(x/2)
dx.

Differentiating with respect to y gives

π2

cosh2(πy)
=

1

2

∫ ∞

−∞

eixy x

sinh(x/2)
dx .

Taking the inverse Fourier transforms now yields:

x

sinh(x/2)
= π

∫ ∞

−∞

e−ixy 1

cosh2(πy)
dy .

Finally, we replace x by 2x to obtain

x

sinhx
=
π

4

∫ ∞

−∞

e−ixy 1

cosh2 (πy/2)
dy . 2

Lemma 5.3.3 Let C ∈ ConeH(q). Then

adX

sinhX
C ⊂ C

for every X ∈ C.

Proof: Let X and C be as in the lemma. We may assume that X ∈ Co

as ϕ is continuous. Then adX has only real eigenvalues. Let GC be the
complex Lie group generated by exp(adX), X ∈ gC. Further, let Gc be the
closed subgroup of GC generated by exp(adX), X ∈ gc = h⊕ iq. Consider
the minimal extension D of C to a Gc-invariant cone in igc = ih ⊕ q (cf.
Section 4.5). Then D ∩ q = prq D = C. As iX ∈ gc, it follows that

eiy(ad X)C ⊂ D

for all y ∈ R. But 1/ cosh2((πy)/2) > 0 for all y ∈ R, so

eiy ad X 1

cosh(πy/2)
C ⊂ D
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for all y ∈ R and Lemma 5.3.2 shows that ϕ(adX)C ⊂ D. But obviously
ϕ(adX)C ⊂ g. Hence

ϕ(adX)C ⊂ D ∩ g = D ∩ q = C ,

which proves the lemma. 2

Proof of Theorem 5.3.1 : We have to show that dExpX Log(CExp X) ⊂ C
for all X ∈ C. Using (5.10) we calculate

dExp X Log = (dX Exp)−1

= (d1`expX ◦ fq(adX))
−1

= ϕ(adX) ◦ (d1`expX)
−1
.

The claim now follows from Lemma 5.3.3, since CExp X = d1`expX(C). 2

Definition 5.3.4 Let G/H be an ordered symmetric space. Then G/H is
called globally hyperbolic if all the intervals [m,n], m,n ∈ G/H are compact.
2

Theorem 5.3.5 Let M be a noncompactly causal symmetric space. Then
M is globally hyperbolic.

Proof: Let γ : [0, a] → M be a causal curve with γ(0) = o. By Theorem
5.3.1, Log ◦γ is a causal curve in q with Log ◦γ(0) = 0. In particular,
Log(γ(t)) ∈ C ∩ [C − Log(γ(a))] for all t ∈ [0, a]. It follows that

Log([o,ExpX ]) ⊂ C ∩ (C −X),

As C ∩ (C −X) is compact and Log is a homeomorphism, it follows that
[o,ExpX ] is compact. 2

5.4 Compression Semigroups

In this section we show how closely related the semigroups of type S(C)
are to the semigroup of self-maps of the open domain O in X . Recall that
we assumed G to be contained in a simply connected complexification GC.

Lemma 5.4.1 Let Fτ ⊂ F ⊂M be a set of representatives for
(

Ho∩F
)

\F .
Then the group multiplication gives a diffeomorphism

Ho × Fτ ×A×N → HoPmax
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Proof: Lemma 3.1.22 implies that multiplication gives a diffeomorphism
Ho×Fτ → Gτ , since F is a finite subgroup ofGτ normalizingHo. According
to Lemma 5.1.2 we have

Gτ ∩AN ⊂ K ∩AN = {1}.

This shows that the map is injective. The surjectivity is also a consequence
of Lemma 5.1.2. Finally, we recall that the bijectivity of the differential has
already been observed in the proof of Lemma 5.1.2. 2

Recall the cones cmax, c̃max, and C̃max from (4.21), (4.23), and (4.25).
We know that

C̃max = Ad(Gc)c̃max = Eigc,Gc

ã,{1} (c̃max)

is a closed convex Gc-invariant cone in igc whose intersection with and
projection to ã is c̃max (cf. Theorem 4.4.6). One associates the Ol’shanskii
semigroup

S(C̃max) := Gc exp(C̃max) (5.16)

with C̃max and observes that it is closed and maximal in GC (cf. [52],
Corollaries 7.36 and 8.53).

Definition 5.4.2 Let X be a locally compact space on which a locally
compact group G acts continuously. Further, let O be a nonempty subset
of X . Then S(O) is defined by

S(O) := {g ∈ G | g · O ⊂ O}. 2

From this definition and Proposition C.0.8 we immediately obtain the
following.

Lemma 5.4.3 S(O) is a subsemigroup of G. If G acts transitively on X ,
then the interior S(O)o of S(O) is given by

S(O)o = {g ∈ G | g · O ⊂ O}. 2

Recall the special situation from Section 5.1. If g ∈ S(O) and X ∈ Ω−,
then we define g ·X by

g ·X = κ−1 (gκ(X)) . (5.17)

This turns κ into a S(O)-equivariant map. We note that H ⊂ S(O).
For any group G and any pair of closed subgroups L,Q of G we write

S(L,Q) := {g ∈ G: gL ⊂ LQ} = {g ∈ G: gLQ ⊂ LQ} = S(LQ/Q)
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and called it the compression semigroup in G of the L-orbit in G/Q. Then
it follows from [52], Proposition 8.45, that S(C̃max) coincides with the sub-
semigroup S(Gc, B), where B is the Borel subgroup belonging to hC and
∆̃+. It is important for the cases we are interested in to observe that [52],
Lemma 8.41, implies S(Gc, B) = S

(

Gc, (Pmax)C

)

(this also follows from

Lemma 5.1.2 applied to GC/G
c). Thus we have S(C̃max) = S

(

Gc, (Pmax)C

)

.

Lemma 5.4.4 Fix any parabolic subgroup Q between Pmin and Pmax. Then

S
(

Gτ , Q
)

= S
(

Ho, Q
)

= S
(

Ho, Pmin

)

= S
(

Gτ , Pmin

)

.

Proof: This follows from Lemma 3.1.22, Lemma 5.1.2, and the observation
that

S(Gτ , Pmin) ⊂ S(Gτ , Q) ⊂ S(Gτ , Pmax)

as well as the corresponding relation for Ho. 2

Consider Cmax = C̃max ∩ q and S(Cmax) = H exp(Cmax).

Remark 5.4.5 The cone Cmax is Gτ -invariant because

Gτ = GτC

C ∩Gσ
C = GτC

C ∩GστC

C = GτC

C ∩Gc = (Gc)σ

and C̃max is Gc-invariant. Note also that

G ∩ S(C̃max) = Gσ
C ∩ S(C̃max)

= (Gc)σ exp(Cmax)

= Gτ exp(Cmax) = FS(Cmax).

This is sometimes helpful to reduce questions concerning the semigroups
H exp(Cmax) to similar problems for S(C̃max). 2

The closed subsemigroup S(Cmax) is called the real maximal Ol’shanskii
semigroup.

Lemma 5.4.6 S(Cmax) ⊂ S(Gτ , Pmax).

Proof: Let g ∈ S(Cmax) and x ∈ O = Gτ · oX ⊂ X ⊂ XC. Then

S(Cmax) ⊂ S(C̃max) = S(Gc, (Pmax)C)

implies
g.oX ∈ Gc · oX ∩ X σ

C = O = Gτ · oX

(Lemma 5.1.11 and Lemma 5.1.12). This shows that

S(Cmax) = G ∩ S(C̃max) ⊂ S(Gτ , Pmax) . 2
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Theorem 5.4.7 1) S(C) ⊂ HAN ∩N ]AH.

2) S(C) = H(S(C) ∩AN) =
(

S(C) ∩N ]A
)

.

3) Gτ exp(C) ∩AN = S(C) ∩AN = S(C)o ∩AN is connected.

Proof: 1) Lemma 5.4.6 shows that S(C) ⊂ HPmax. In particular, we have
S(C)o ⊂ (HPmax)o, which is equal to (Gτ )oAN = HoAN by Lemma 5.4.1.
But then S(C) = HS(C)o ⊂ HAN . Since S(C) = τ(S(C)−1) we also have
S(C) ⊂ τ(N)AH .

2) This follows from 1) in view of H ⊂ S(C).
3) Since Ho ⊂ S(C)o, Lemma 5.4.1 shows that S(C)o∩AN is connected.

Now the claim follows from Gτ exp(C) = GτS(C)o, S(C) = HS(C)o, and
Gτ ∩AN = {1}. 2

Theorem 5.4.8 1) S(Cmax) ∩ B] is a generating Lie semigroup in B]

with the pointed generating tangent cone

L(S(Cmax) ∩B]) = (Cmax + h) ∩ (n] + a) ⊃ cmax.

2) S(Cmax) ∩B] ⊂ N ] exp(cmax).

Proof: 1) Let G1 := N ]A × H act on G by (t, h) · g = tgh−1. Then the
orbit of 1 is the open subset N ]AH of G. Moreover, the stabilizer of 1 is
trivial. We define the field Θ of cones on N ]AH by

Θ(g) := d1λg(Cmax + h) ∀g ∈ N ]AH,

where λg : G→ G, x 7→ gx denotes left multiplication by g.
We claim that Θ is invariant under the action of G1, i.e., that

d1µ(t,h)Θ(1) = Θ(th−1),

where µ(t,h) : N ]AH → N ]AH, g 7→ tgh−1. To see this, we first note that

µ(t,h) = λt ◦ ρh−1 = λth−1 ◦ Ih,

where Ih : g 7→ hgh−1. Therefore

dµ(t,h)(1)Θ(1) = dλth−1(1)Ad(h)(Cmax + h) = Θ(th−1)

is a consequence of Ad(H)(Cmax + h) = Cmax + h.
The semigroup S(Cmax)o is the set of all points in N ]AHo for which

there exists a Θ(1)-causal curve. Since this set is closed, the inverse image
of S(Cmax)o under the orbit mapping

Φ : G1 → G, (t, h) 7→ th−1



136 CHAPTER 5. THE GEOMETRY

is a Lie semigroup whose tangent wedge agrees with

dΦ−1(1) (Θ(1)) = dΦ−1(1)(Cmax + h) = h + (Cmax + h) ∩ (a + n])

([114], p. 471).
We know that S(Cmax)o = (S(Cmax) ∩B])Ho and therefore

Φ−1(S(Cmax)o) = (S(Cmax)o ∩B])×Ho

is a Lie semigroup. We conclude with Theorem 5.4.7 that S(Cmax ∩B]) =
S(Cmax)o ∩ B] is a Lie semigroup with L(S(Cmax ∩ B])) = L(S(Cmax)) ∩
(a + n]) = (Cmax + h) ∩ (a + n]).

2) The mapping p:B] → A, n]a 7→ a is a group homomorphism because
N ] is a normal subgroup of B]. Therefore p(S(Cmax) ∩ B]) is a subsemi-
group of A which is contained in the Lie semigroup generated by

V := dp(1)L(S(Cmax) ∩B]) =
[

(Cmax + h) ∩ (a + n]) + n]
]

∩ a

= (Cmax + h + n]) ∩ a .

This cone is the projection of Cmax along h+ n] onto a. Let w ∈ Cmax ⊂ q.
Then there exists X ∈ a and Y ∈ n] such that w = X + Y − τ(Y ). Hence

w ∈ X + 2Y − [τ(Y ) + Y ] ∈ X + n] + h.

Therefore V is the orthogonal projection of Cmax in a. Thus V = a ∩
Cmax = cmax and hence p(S(Cmax) ∩ B]) = exp(cmax). Consequently, we
find S(Cmax) ∩B] ⊂ N ] exp(cmax). 2

Lemma 5.4.9 S(Gτ , Pmax) ∩ exp a = exp cmax.

Proof: The inclusion exp cmax ⊂ S(Gτ , Pmax) is clear. To show the converse
direction, we let X ∈ a \ cmax. Then there exists an α ∈ ∆+ such that
α(X) < 0. Consider the subalgebra sα = ϕα(sl(2,R)) described in (4.8).
Then exp(RY α) ⊂ (Gτ )o, and it suffices to show that exp(X) exp(RY α) · o
cannot be contained in O.

Lemma 5.4.1 shows that the map

aH :GτAN = GτPmax → a, han 7→ log(a) (5.18)

is well defined and analytic. We call it the causal Iwasawa projection.
When we restrict this map to the group generated by exp(sα), a simple
SL(2,R)-calculation shows that

aH (exp(tXα) exp(sY α) =

[

t+
1

2
log(1 + (1− e−2t) sinh2(

s

2
))

]

Xα.
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Now choose X ′ := X − toXα, where to = α(X). Then X ′ commutes with
sα and hence we calculate

aH (exp(X) exp(sY α)) = aH

(

exp(toX
α) exp(sY α) exp(X ′)

)

= aH (exp(toX
α) exp(sY α)) + X ′

= X ′ +

[

to +
1

2
log

(

1 +
(e2to − 1) sinh2( s

2
)

e2to

)]

Xα.

But this function in the parameter s is not extendable to all of R so that
exp(X) exp(sY α) · o cannot be contained in O for all s ∈ R. 2

So far we know that the semigroup S(Gτ , Pmax) contains the Ol’shanskii
semigroup S(Cmax) and that the intersection of A with S(Gτ , Pmax) is not
bigger than the intersection with the Ol’shanskii semigroup. The remainder
of this section will be devoted to the proof of the equality S(Gτ , Pmax) =
S(Cmax).

We start with a description of the open H-orbits in the flag manifolds
G/Pmin.

Lemma 5.4.10 Let a′, a′′ ⊂ p be τ-invariant maximal abelian subspaces
such that a′ ∩ qp and a′′ ∩ qp are maximal abelian in qp. Then there exists
k ∈ (Kτ )o such that Ad(k)a′ = a′′.

Proof: (cf. also Lemma 7 in [99], p. 341.) Since the maximal abelian sub-
spaces of qp are conjugate under Kτ

0 ([44], p.247), we even may assume that
a′ ∩ qp = a′′ ∩ qp.

Set g0 := zg(a
′′). We consider the symmetric Lie algebra (g0, τ) which is

invariant under θ and therefore reductive ([168], Corollary 1.1.5.4). Then
g0 ∩ qp = a′′ is central in g0 and a′ = (a′′ ∩ qp)⊕ (a′ ∩ hp). Hence a′ ∩ hp ⊂
g0 ∩ hp is maximal abelian in hp ∩ g0. The same holds for a′′ ∩ h ⊂ hp ∩ g0.
The pair (h∩ g0, θ) is Riemannian symmetric, hence a′′ ∩hp and a′ ∩hp are
conjugate under exp(hk∩g0) ([44], p.247). We conclude that a′ is conjugate
to a′′ under (Kτ )o. 2

Note that H-orbits in G/Pmin correspond to H-conjugacy classes of
minimal parabolic subalgebras of g. According to [99], p. 331, each minimal
parabolic subalgebra of g is (Gτ )o-conjugate to one of the form m + a + n

for some τ -invariant maximal abelian subspace a of p and some positive
system in ∆(g, a). Let a1, a2, . . . , as be a set of representatives of the Kτ–
conjugacy classes of maximal abelian τ -invariant subspaces of p. [99], §3,
Proposition 1 (cf. also [156], Proposition 7.1.8), among other things, says:

Lemma 5.4.11 Let ∆+
j be a positive system for ∆j := ∆(g, aj). Denote

the corresponding minimal parabolic subalgebra by p(aj ,∆
+
j ). Then the H-
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conjugacy class of p(aj,∆
+
j ) corresponds to an open H-orbit in G/Pmin if

and only if the following conditions are satisfied:

1) aj ∩ q is maximal abelian in qp.

2) ∆+
j is q-compatible, i.e., the set ∆+

j \ (aj ∩ q)⊥ is −τ-invariant. 2

We call a τ -invariant maximal abelian subspace a′ of p a q-maximal
subspace if a′ ∩ q is maximal abelian in qp (cf. [156], p. 118). Note that
according to Lemma 5.4.10, q-maximal maximal abelian subspaces of p

are conjugate under (Kτ )o. This shows that only one of the aj can be
q-maximal; i.e., condition 1) can be satisfied only by one of the aj.

The part of [99], §3, Proposition 1 we have not yet stated here concerns
the number of open H-orbits. For a fixed τ -invariant maximal abelian
subspace a of p we consider the Weyl groups

W (a) = NK(a)/ZK(a),

Wτ (a) := {s ∈ W (a) | s(a ∩ h) = a ∩ h},
W0(a) := NK∩H(a)/ZK∩H(a).

Then

W0(a) ⊂Wτ (a) ⊂W (a),

and [99], §3, Proposition 1 says that the number of openH-orbits in G/Pmin

is the number of cosets in Wτ (a)/W0(a).

Remark 5.4.12 Let a be a τ -invariant q-maximal abelian subspace of p

and ∆+ a positive system for ∆(g, a). Then ∆+ is q-compatible if and only
µ|a∩q 6= 0 implies −τ(µ) ∈ ∆+ for all µ ∈ ∆+ (cf. [156], p. 120, and [99],
p. 355). 2

Lemma 5.4.13 1) Let a be a τ-invariant q-maximal abelian subspace of
p and ∆+

1 ,∆
+
2 two q-compatible positive systems for ∆(g, a). Then the

corresponding minimal parabolic subalgebras belong to the same open
H-orbit if and only if there exists a s ∈W0(a) such that s ·∆+

1 = ∆+
2 .

2) Let a be a τ-invariant q-maximal abelian subspace of p. Assume that
∆+(g, a) is q-compatible. Then the open H-orbits in G/P are pre-
cisely the HsPmin/Pmin with s ∈ Wτ (a). The orbits Hs1Pmin/Pmin

and Hs2Pmin/Pmin agree if and only if there exists an s ∈ W0(a)
with ss1 = s2. In particular, HgPmin/Pmin is open if and only if
g ∈ HWτ (a)Pmin. The union of open H-orbits is dense in G/Pmin.
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Proof: 1) The Weyl group Wτ (a) acts simply transitively on the set of
q-compatible positive systems (cf. [156], Proposition 7.1.7]). Clearly, two
q-compatible positive systems belong to the same H-orbit if they are conju-
gate under W0(a). Now the formula for the number of open orbits implies
the claim.

2) Only the last claim remains to be shown. But that follows from the
fact that there are only finitely many H-orbits (cf. [99], Theorem 3, and
[52], Proposition 8.10(ii)), since each orbit is an immersed manifold. 2

Lemma 5.4.14 If P1 ⊂ P2 are parabolic subgroups of G, Fi = G/Pi the
corresponding flag manifolds, xi ∈ Fi, and π:F1 → F2 the natural projec-
tion, then the following assertions hold:

1) If H · x1 is open in F1, then π(H · x1) = H · π(x1) is open in F2.

2) If H ·x2 is open in F2, then π−1(H ·x2) contains an open H-orbit in
F1.

Proof: 1) follows from the fact that π is open and G-equivariant.
2) π−1(H · x2) is open by continuity. Suppose for a moment that P1 is

a minimal parabolic. Then Lemma 5.4.13.2) says that the union of open
H-orbits is dense in F1 and therefore π−1(H ·x2) intersects, hence contains,
an open H-orbit. If we now apply 1), this argument shows that for any flag
manifold the union of the open H-orbits is dense, and we can prove our
claim for arbitrary P1. 2

Lemma 5.4.15 Let P ′ be an arbitrary parabolic, x ∈ G/P ′, and P ′
x the

stabilizer of x in G. Then the following statements are equivalent:

1) H · x is open in G/P ′.

2) There exist a q-maximal maximal abelian subspace a] of p and a q–
compatible positive system ∆+

] of ∆(g, a]) such that P ′
x is H-conjugate

to a standard parabolic associated to ∆+
] .

Proof: In the case where P ′ is a minimal parabolic, our claim is just Propo-
sition 5.4.11.

“1) ⇒ 2)”: For the general case recall that G/P ′ can be identified with
the set of parabolic subgroups of G conjugate to P ′ and the natural pro-
jection π:G/Pmin → G/P ′ maps a conjugate gPming

−1 of Pmin to gP ′g−1.
Identifying x and P ′

x, one has that π−1(x) consists of all minimal parabol-
ics contained in P ′

x. Lemma 5.4.14 says that there is one such minimal
parabolic P] that lies in an open H-orbit. But then Proposition 5.4.11
shows that p] is of the form p(a],∆

+
] ) for suitable a] and ∆+

] , and thus P ′
x

must have the right form since it contains P].
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“2) ⇒ 1)”: For the converse we invoke Lemma 5.4.14.1) to see that the
H-orbits of the parabolic group associated to a q-compatible system ∆+

]

are always open. 2

Lemma 5.4.16 Recall the flag manifold X := G/Pmax with base point oX .
Then the following assertions hold:

1) The open orbit H · oX is contained in the open Bruhat cell N− · oX .

2) Every other open H-orbit is not entirely contained in N− · oX .

3) H ·oX is the largest open subset of the open cell which is H-invariant.

Proof: 1) This is a consequence of Lemma 5.1.12.
2) Let y ∈ X and suppose that the H-orbit of y is open and different

from the H-orbit of the base point. Then it follows from Proposition 5.4.15
that there exists a point in this H-orbit which is fixed by the subgroup A.
Since the base point is the only A-fixed point in the open Bruhat–cell, we
conclude that H · y cannot be contained in the open cell.

3) Since the set of all elements in X whose H-orbit is open is dense ([52],
Proposition 8.10(ii)), this follows from the fact that H · oX is the interior
of its closure. 2

Lemma 5.4.17 The following assertions hold:

1) HPmax = exp(Ω−)HaN+ is the largest open H-left-invariant subset
of N−H

aN+ = N−Pmax.

2) There exists an open bounded subset Ω+ ⊂ n+ such that P ]
maxH =

N−H
a exp(Ω+). This set is the largest open H-right-invariant subset

of N−H
aN+.

3) Every H-biinvariant open subset of N−H
aN+ is contained in the open

set exp(Ω−)Ha exp(Ω+).

Proof: 1) Lemma 5.1.12 showsHPmax = exp(Ω−)HaN+ andHaN+ = Pmax

follows from Lemma 3.1.22. Now the claim follows from Lemma 5.4.16.3).
2) This follows from 1) by applying the automorphism τ .
3) This is a consequence of 1) and 2). 2

Lemma 5.4.18 S(Gτ , Pmax)
o is the largest open H-biinvariant subset of

N−H
aN+.

Proof: It follows from Lemma 5.4.16.1) that S(Gτ , Pmax) ⊂ HPmax ⊂
N−H

aN+. Moreover, for every s ∈ S(Gτ , Pmax) the double coset HsH
is contained in S(Gτ , Pmax) and therefore in N−H

aN+. This shows that
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S(Gτ , Pmax)
o is an open H-biinvariant subset of N−H

aN+. Now suppose
that E ⊂ N−H

aN+ is an open H-biinvariant set. Then we first use Lemma
5.4.17 to see that

EH ⊂ E ⊂ exp(Ω−)Ha exp(Ω+) ⊂ exp(Ω−)Pmax = HPmax.

It follows in particular that E ⊂ S(Gτ , Pmax). Thus S(Gτ , Pmax) is the
unique maximal open H-biinvariant subset of N−H

aN+. 2

Corollary 5.4.19 S(Gτ , Pmax) is invariant under the involution s 7→ s].

Proof: This is a consequence of Lemma 5.4.18 because the set N−H
aN+

is invariant under this involution and therefore the same is true for the
maximal H-biinvariant subset of this set. 2

Theorem 5.4.20 Let M = G/H be a noncompactly causal symmetric
space and τ the corresponding involution on G. Assume that G embeds
into a simply connected complex group GC and let Q be a parabolic sub-
group between Pmin and Pmax = HaN+. Then

S(H,Q) = Gτ exp(Cmax) = S(Gτ , Pmax).

Proof: It follows from Lemmas 5.1.2 and 5.4.4 that we may w.l.o.g. assume
that Q = Pmax and that H = Gτ . First we apply Theorem 1.4.2 to obtain
further information on the semigroup S(Gτ , Pmax). Recall the notation
from Section 1.4 and let aq ⊂ q be a θ-invariant A-subspace. Suppose that
π−1(A′

q) ∩ S(Gτ , Pmax)
o 6= ∅. In view of Corollary 5.4.19, the semigroup

S(Gτ , Pmax) is invariant under the mapping π and therefore we find s ∈
So

τ ∩A′
q. Next we recall that Aq = (Aq ∩K)Ap

q , where Ap
q := exp(aq ∩ qp).

We consider the semigroup SA := S(Gτ , Pmax)
o ∩Aq. Then the semigroup

SAA
p
q/A

p
q is an open subsemigroup of a compact group, so that it must

contain the identity element (cf. [52], Corollary 1.21). We conclude that
SA intersects the subgroup Ap

q . This subgroup is conjugate to a subgroup
of A (Lemma 5.4.10). Suppose that Aq ∩ K is nontrivial. Then aq ∩ p

is not maximal abelian in qp and the description of the W0(a)-conjugacy
classes of A-subspaces given in [143], p. 413 shows that the conjugate of
Ap

q in A lies in the exponential image of the set
⋃

α∈∆+
p

kerα. It follows

that this set contains interior points of S(Gτ , Pmax). On the other hand,
we know already that S(Gτ , Pmax) ∩ A = exp(cmax) (Lemma 5.4.9). This
is a contradiction because every element in cmax which is in the kernel of a
noncompact root lies on the boundary. Thus we have shown that the only
A-subspaceAq for which the open subsetHφ−1(Aq) intersects S(Gτ , Pmax)

o

is Ã := Zφ(G)(a). Let s ∈ S(Gτ , Pmax) ∩Hφ−1(Ã). Then

π(s) = ss] ∈ Ã.



142 CHAPTER 5. THE GEOMETRY

We have to get a better picture of the set Ã. So we first remark that Ã =
Zφ(G)(A) = (M∩φ(K))A (Theorem 1.4.2). Let k ∈ φ(K)∩M . Then k] = k
and on the other hand τ(k) = k by Lemma 3.1.22. Therefore k = k−1,
i.e., k2 = 1. Moreover, the surjectivity of the exponential function of the
Riemannian symmetric space K/Kτ ∼= φ(K) yields that π(K) = exp(qk).

We write ss] = k exp(Z) with k ∈ φ(K) ∩ M and Z ∈ a. Then we
we find Y ∈ qk with k = exp(2Y ). We set k′ := expY . We claim that
Ad(k′)a ⊂ qp. To see this, pick X ∈ a. Then

τ (Ad(k′)X) = Ad(k′)−1τ(X) = −Ad(k′)−1X = −Ad(k′)X

and similarly

θ
(

Ad(k′)X
)

= Ad(k′)θ(X) = −Ad(k′)X.

This proves our claim. Now we find that

[

k′ exp(
1

2
eadY Z)

] [

k′ exp(
1

2
ead Y Z)

]]

= k′ exp(ead Y Z)k′

= k exp(Z)

= ss] .

We conclude that

k exp(
1

2
Z)(k′)−1 = k′ exp

(

1

2
ead Y Z

)

∈ φ−1(s)

= sH ⊂ S(Gτ , Pmax).

We have already seen that Ad(k′)a ⊂ qp. Hence there exists k′′ ∈ (Kτ )0
such that Ad(k′′)Ad(k′)a = a (Lemma 5.4.10). This means that k′′k′ ∈
NK(a). Multiplying with k′′ on the left, we find that

k′′k′ exp(Z) · x0 ∈ NK(a).x0,

so that this point is an A-fixed point in G/Pmax. On the other hand, the
semigroup S(Gτ , Pmax) is contained in the set N−Pmax, so x0 is the only
A-fixed point in the set S(Gτ , Pmax) · x0. Thus

k′′k′ ∈ Pmax ∩NK(a) ⊂ Ha ∩K = ZK(c) ⊂ H ⊂ Gτ .

It follows that k′′k′ ∈ H and therefore that k′ ∈ H . Thus exp(Z) ∈
A ∩ S(Gτ , Pmax) ⊂ Gτ expCmax and hence s ∈ Gτ expCmax, which finally
shows that S(Gτ , Pmax) is contained in the semigroup Gτ expCmax. 2
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Corollary 5.4.21 Recall the open domain O = Gτ
o · oX in X = G/Pmax.

Then

S(Cmax) = {s ∈ G | s · O ⊂ O} and S(Cmax)
o = {s ∈ G | s · O ⊂ O}. 2

Remark 5.4.22 One can show that Gτ exp(Cmax) is actually a maximal
subsemigroup of G (cf. [58], Theorem V.4). 2

Example 5.4.23 In the situation of SL(2,R)-Example 5.1.13 we have

S(Cmax) ∩B] =

{(

a 0
c a−1

)∣

∣

∣

∣

∀|r| < 1 :
∣

∣

∣

r

a2
+
c

a

∣

∣

∣
< 1

}

.

An elementary argument shows that the condition on c and a can be refor-
mulated as

S(Cmax) ∩B] =

{(

a 0
c a−1

)∣

∣

∣

∣

|c| < a− a−1; 0 < a

}

. 2

5.5 The Nonlinear Convexity Theorem

In this section we again consider a noncompactly causal symmetric space
M = G/H such that G is contained in a simply connected complexification
GC. We will prove Neeb’s nonlinear convexity theorem, which says that

aH(aH) = conv(W0 · log a) + cmin

for all a ∈ exp(cmax). This will be done first for the special caseN = GC/Ǧ
c

(cf. Section 1.1). Then the general result can be obtained via the suitable
intersections with smaller spaces. Note that in our situation G = Ǧ. We
write Gc for Ǧc.

Recall the situation described in Section 4.5. In particular, let tc be a
Cartan subalgebra of kc containing ia and ∆̃ = ∆(gC, t

c
C). We set

ñ :=
∑

α̃∈∆̃+

(gC)α̃, (5.19)

where ∆̃+ is chosen as on p. 95. Further we set ã := itc, Ã := exp ã and
Ñ := exp ñ. Then (5.18) yields a causal Iwasawa projection aGc :GcÃÑ →
ã. The derivative d1aGc : gC → ã is simply the projection along gc + ñ.

Lemma 5.5.1 Let p̃ : gC → tcC denote the projection along the sum of the
root spaces. Then p̃|igc = d1aGc |igc .
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Proof: Let X ∈ igc. Then we can write X = Y + Z − Z, where Y ∈ ã and
Z ∈ ñ. Therefore p̃(X) = p̃

(

Y + Z − σc(Z)
)

= Y and

d1aGc(X) = d1aGc (Y + Z − σc(Z))

= Y − d1aGc (σc(Z))

= Y − d1aGc

(

Z + σc(Z)
)

= Y .

From this the lemma follows. 2

We note that for g ∈ Gc, a ∈ Ã and n ∈ Ñ we have

aGc ◦ λg = aGc and aGc ◦ ρan = aGc + log a,

where as usual λg(x) = gx and ρg(x) = xg denote left and right multipli-
cation.

We briefly recall the basic definitions concerning homogeneous vector
bundles. Let L/U be a homogeneous space of L and V a vector space on
which U acts by the representation τ :U → GL(V ). Then we obtain an
action of U on L×V via u.(l, v) :=

(

lu−1, τ(u).v
)

and the space of U -orbits
is denoted L×U V and called a homogeneous vector bundle. We write [l, v]
for the element of L×U V which corresponds to the orbit of (l, v) in L× V
and note that L acts from the left on L ×U V by l.[l′, v] := [ll′, v]. If L
is a complex group, U is a complex subgroup, and the representation τ is
holomorphic, the corresponding vector bundle is holomorphic.

Fix a linear functional ω ∈ ic̃max = ic̃∗min (cf. (4.22)) such that iω
integrates to a character χ of T c = exp(tc) and ω(i[σc(X), X ]) ≥ 0 for X ∈
(gC)α̃ with α̃ ∈ ∆̃+

0 . We put Σ := {α̃ ∈ ∆̃ | (∀X ∈ (gC)α̃) ω(i[σc(X), X ]) ≥
0}. Then the subalgebra

b̃ := tcC ⊕
∑

α̃∈Σ

(gC)α̃

is a (complex) parabolic subalgebra of gC. Let B̃ be the corresponding
parabolic subgroup of GC and Gc

ω the stabilizer of ω in Gc w.r.t. the
coadjoint action. Then B̃∩Gc = Gc

ω by Theorem I.3 in [56], and we obtain
a complex structure on the coadjoint orbit Gc · ω ∼= Gc/Gc

ω by embedding
Gc · ω as the open orbit Gc · oB̃ of the base point oB̃ in the complex

homogeneous space GC/B̃.
We find a holomorphic character χ : B̃ → C with χ(expX) = eiω(X)

for X ∈ b̃, where we set ω(X) = 0 if X belongs to the sum of root spaces.
Thus we obtain two homogeneous holomorphic line bundles: the line bundle
E := Gc×Gc

ω
Cχ and the line bundle E′ := GC×B̃Cχ. The bundle E embeds

as the open subset E′|Gc·oB̃
of E′.
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Let q : Gc × C → E denote the quotient mapping which identifies the
elements (g, z) and

(

gh−1, χ(h)z
)

for h ∈ Gc
ω. We define a function h on E

by h([g, z]) := |z|2 for g ∈ Gc, z ∈ C.
We have already seen that the bundle E inherits a complex structure by

its embedding in the complex bundle E′. We write I for the tensor field
denoting multiplication by i in each tangent space. For a 1-form α on a
complex manifold Y we define a 1-form Iα by 〈Iα, v〉 := 〈α,−Iv〉 on each
tangent space Tp(Y).

Let Gc,] := Gc ×C∗ and G]
C := GC ×C∗. Then Gc,] acts transitively on

the complement E0 of the zero section in E and similarly G]
C acts transi-

tively on E′
0 by (g, ζ) · [g′, v] = [gg′, ζv].

Lemma 5.5.2 The 1-form α = I(d log h) = 1
hIdh on E0 is invariant under

the action of Gc,].

Proof: Since the action of Gc,] on E0 is holomorphic and Gc preserves the
function h, the Gc-invariance is clear. On the other hand, we have for
z ∈ C∗ and µz([g, x]) = [g, zx] that h ◦ µz = |z|2h. Hence log(h ◦ µz) =
log h+ log |z|2. Thus

µ∗
z(d log h) = d log(h ◦ µz) = d(log h+ log |z|2) = d log h.

This proves the assertion. 2

To calculate the 1-form α, we have to calculate its pull-back q∗α to
the group Gc × C∗ which is a left-invariant 1-form on this group. Its
value in the unit element (1, 1) is given by (q∗α)(1, 1) = α([1, 1])d(1,1)q =
−d(log h)Id(1,1)q. To calculate this expression, we have to pass from q to the
mapping q′ : GC×C→ E′, which restricts to q on Gc×C. The calculation
of q′∗α on GC × C∗ in the unit element is easier since q′ is a holomorphic
mapping:

(q′∗α)(1, 1) = −d(log h)Id(1,1)q
′ = −d(log h)d(1,1)q

′I = −d(1,1) log(h ◦ q′)I.

The function h ◦ q′ is given on the subset GcÃÑ × C∗ of GC by

h ◦ q′(gan, z) = h([gan, z]) = h([an, z]) = h([1, χ(an)z])

= h([1, χ(a)z]) = |χ(a)|2|z|2

and therefore
h ◦ q′(s, z) = e2〈iω,aGc (s)〉|z|2 (5.20)

for s ∈ GcÃÑ . This entails that log(h ◦ q′)(s, z) = 2〈iω, aGc(s)〉 + log |z|2
and permits us to compute the differential of log(h ◦ q′) in (1, 1):

d(1,1) log(h ◦ q′)(Y, ζ) = 2iω ◦ d1aGc(Y ) + 2 Re(ζ).
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Finally, we use Lemma 5.5.1 to calculate the form q∗α in (1, 1):

(q∗α)(1, 1)(X, ζ) = −2iω ◦ d1aGc(iX)− 2 Re(iζ)

= −2iω ◦ p̃(iX) + 2 Im ζ

= −2iω(iX) + 2 Im ζ

= 2ω(X) + 2 Im ζ .

This proves the assertion. 2

Lemma 5.5.3 For X ∈ gc, ζ ∈ C, and z ∈ C∗ we have

α([g, z])d(g,z)q(d1ρg(X), zζ) = 2〈Ad∗(g).ω,X〉+ 2 Im ζ.

Proof: We write [g, z] = (g, z) · [1, 1] = µ(g,z)([1, 1]). Therefore Lemma 5.5.2
yields that

α([g, z])d(g,z)q(d1ρg(X), zζ) = (q∗α)(g, z)(d1ρg(X), zζ)

= (q∗α)(g, z)(d1λg(Ad(g−1)X), zζ)

= (q∗α)(1, 1)
(

Ad(g−1)X, ζ
)

= 2〈Ad∗(g) · ω,X〉+ 2 Im ζ.

Now the Lemma follows. 2

Corollary 5.5.4 For X ∈ igc, g ∈ Gc, ζ ∈ C, and z ∈ C∗ we have

−d log h([g, z])Id(g,z)q(d1ρg(iX), zζ) = 2〈Ad∗(g) · ω, iX〉+ 2 Im ζ.

Proposition 5.5.5 For X ∈ igc let mX := sup〈Gc · ω, iX〉 and define the
vector field σ̇(iX) on E by

σ̇(iX)(p) := d/dt exp(−tiX) · p|t=0

for p ∈ E. Then 〈dp log h, Iσ̇(iX)(p)〉 ≤ 2mX for all p ∈ E0.

Proof: Let p = [g, z] ∈ E0. Then

σ̇(iX)([g, z]) = d/dt exp(−tiX) · [g, z]|t=0

= d/dt[exp(−tiX)g, z]|t=0

= d(g,z)q
(

− d1ρg(iX), 0
)

and therefore

〈dp(log h), Iσ̇(iX)(p)〉 = 〈dp log h, Id(g,z)q
(

− d1ρg(iX), 0
)

= 2〈Ad∗(g) · ω, iX〉 ≤ 2mX .
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From this the proposition follows. 2

Consider the compression semigroup S := S(Gc, B̃) in GC. Then S acts
holomorphically on the bundle E′ and since S leaves Gc · oB invariant, the
action on E′ leaves the subbundle E invariant. Note that S ⊂ GcB̃ =
GcÃÑ since iã ⊂ gc. Therefore we can write each s ∈ S as s = gan with
g ∈ Gc, a ∈ Ã, and n ∈ Ñ and we find with (5.20) that

log h([s, 1]) = 2〈iω, aGc(s)〉.
It follows in particular that logh([a, 1]) = 2〈iω, log a〉 for a ∈ Ã ∩ S =
exp(c̃max) (cf. Lemma 5.4.9).

Fix g ∈ Gc and X ∈ c̃max = (∆̃+)?. We set F (t) := log h(exp(tX)·[g, 1]).
Then exp R+X ⊂ S and therefore exp tX · [g, 1] = [exp tXg, 1] ∈ E0 for all
t ≥ 0. Hence we can use Proposition 5.5.5 to see that

F ′(t) = 〈d(log h), Iσ̇(iX)〉([exp tXg, 1]) ≤ 2mX .

Therefore

2〈iω, aGc(expXg)〉 = log h(expX ·[g, 1]) = F (1) ≤ 2mX ·1 = 2mX . (5.21)

We want to use the linear convexity theorem (Theorem 4.3.1) to calculate
mX for X ∈ c̃max. To this end we recall that our assumptions on ω, say
in particular that ω ∈ ic̃∗min = ic̃max, cf. (4.23). Let pr: igc → ã be the
orthogonal projection. Then Theorem 4.3.1 implies that

pr(Gc · [−iω]) ⊂ conv[W̃0 · (−iω)] + c̃min,

where W̃0 is the Weyl group for (kc, tc) (cf. Section 4.5). Since X ∈ c̃max =
c̃∗min, it follows that

mX = sup〈iX,Gc · ω〉 = sup〈iX, conv(W̃0 · ω)〉. (5.22)

Now we obtain with (5.21) and (5.22)

〈iω, aGc(expXg)〉 ≤ sup〈X, W̃0 · (iω)〉 (5.23)

for X ∈ c̃max.
Recall the cone (∆̃+

0 )∗ = C̃ from Section 4.5 and consider the set

R := {ω ∈ ã∗ | ∀α̃ ∈ ∆̃+
0 :

2(iω | α)

(α | α)
∈ Z}

of integral weights in ã∗. Then

R+ := {ω ∈ ã∗ | ∀α̃ ∈ ∆̃+
0 :

2(iω | α)

(α | α)
∈ N

+
0 }

is the set of dominant integral weights.
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Lemma 5.5.6 The cone icmax∩(−iC̃) is generated by its dominant integral
elements which integrate to a character of T c.

Proof: Let Υ := {α̃0, α̃1, . . . , α̃k} be a basis for ∆̃+ such that Υ0 :=
{α̃1, . . . , α̃k} is a basis for ∆̃+

0 . Recall that there is an element X0 ∈ iz(kc)
such that α̃1(X

0) = 1. Let λ0 ∈ (tcC)∗ be determined by λ0(X
0) = 1 and

λ0(X) = 0 for all X ∈ tc ∩ [kc, kc]. According to [79], p. 85, each dominant
integral element of the lattice

R′ := R∩ i(Zλ0 +

k
∑

j=1

Zα̃j)

integrates to a character of T c. Let d be the maximal distance between
elements of R′. Then, given ε > 0 and an element ω in the interior of
icmax ∩ (−iC̃), we can find an n ∈ N and a ν ∈ R′ such that |nω − ν| < d
and d

n < ε. Thus

|ω − 1

n
ν| < ε

and ν ∈ icmax ∩ (−iC̃) for ε small enough. Therefore it suffices to show
that ν is dominant. But that is clear since ν ∈ −i(∆̃+

0 )∗. 2

Proposition 5.5.7 Let X ∈ (∆̃+)∗. Then aGc(exp(X)Gc) ⊂ X + c̃min −
C̃∗.

Proof: Let ω ∈ icmax ∩ (−iC̃) be dominant integral and such that it inte-
grates to a character of T c. Then W̃0 · (iω) ∈ iω − C̃∗ by Lemma 4.5.5, so
that

sup〈X, W̃0 · (iω)〉 = iω(X). (5.24)

Combining this with (5.23) yields 〈iω,X − aGc(expXGc)〉 ⊂ R+. Now
Lemma 5.5.6 proves that

X − aGc(exp(X)Gc) ⊂
[

ic̃∗min ∩ (−iC̃)
]∗

= −c̃min + C̃∗,

i.e., aGc(expXG) ⊂ X + c̃min − C̃∗. 2

Proposition 5.5.8 Let X ∈ cmax and a = exp(X). Then the set aGc(aGc)
is invariant under the Weyl group W̃0. Moreover, if Y ∈ aGc(aGc), then

conv(W̃0 · Y ) ⊂ aGc(aGc).

Proof: Set F := aGc(aGc). The Weyl group W̃0 is generated by the reflec-
tions sα̃, where α̃ is a root contained in the set Υ0 simple roots in ∆̃+

0 . We
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claim that the line segment {Y, sα̃(Y )} between Y and sα̃(Y ) is contained
in F whenever Y ∈ F (cf. [45], p. 477). Let α̃ ∈ Υ0 and denote the
complex image of the homomorphism ϕα̃: sl(2,C) → gC by sα̃

C. Note that
sα̃

C ⊂ kc
C. We set

ñ′ :=
∑

β∈∆̃+\{α̃}

(gC)β .

Note that α̃ ∈ Υ0 implies sα̃

(

∆̃+ \ {α̃}
)

⊂ ∆̃+ since ∆̃+ is W̃0-invariant.
Therefore

ñ = ñ′ + (gC)α̃ and [sα̃
C, ñ

′] ⊂ ñ′. (5.25)

According to [45], pp. 440, 477, we have the semidirect decomposition Ñ =
Ñ ′ × Ñ α̃, where Ñ ′ = exp ñ′ and Ñ α̃ = exp(gC)α̃.

Let Y ∈ F and b = exp(Y ). Then there exist g, v ∈ Gc and n ∈ Ñ
such that av = gbn. We decompose Y = Yα̃ + Y ⊥

α̃ , where Yα̃ ∈ RXα̃ and
Y ⊥

α̃ ∈ ker α̃. Then

sα̃(Y ) = sα̃(Yα̃) + Y ⊥
α̃ = −Yα̃ + Y ⊥

α̃

and {Y, sα̃(Y )} = [−1, 1]Yα̃ + Y ⊥
α̃ . We put bα̃ := exp(Yα̃), b⊥α̃ := expY ⊥

α̃

and write n = nα̃n
′ in accordance with Ñ = Ñ α̃Ñ ′. Then

g−1av = bn = bα̃b
⊥
α̃nα̃n

′ = bα̃nα̃b
⊥
α̃n

′. (5.26)

Let cα̃ ∈ exp([−1, 1]Yα̃) and let Sα̃
C be the group generated by exp sα̃

C.
Then Sα̃

C ⊂ Kc
C. Using Lemma 10.7 in [45], p. 476, we find elements

kα̃, vα̃ ∈ Sα̃
C ∩Kc and n0

α̃ ∈ Ñ α̃ such that

kα̃bα̃nα̃vα̃ = cα̃n
0
α̃. (5.27)

Now [Y ⊥
α̃ ∩ a, (gC)α̃] = {0} and (5.26) imply that

kα̃g
−1avvα̃ = cα̃n

0
α̃v

−1
α̃ b⊥α̃n

′vα̃ = cα̃b
⊥
α̃n

0
α̃v

−1
α̃ n′vα̃.

We use (5.25) to see that n0
α̃v

−1
α̃ n′vα̃ ∈ n0

α̃Ñ
′ ⊂ Ñ . Thus

aGc(kα̃g
−1avvα̃) = aGc(avvα̃) = log(cα̃b

⊥
α̃ ) = log cα̃ + Y ⊥

α̃ .

Since cα̃ was arbitrary in exp([−1, 1]Yα̃), we conclude that

{Y, sα̃(Y )} ⊂ aGc(aGc).

This proves the W̃0-invariance of aGc(aGc) because W̃0 is generated by the
reflections sα̃ for α̃ simple. Let β̃ ∈ ∆̃0. Then there exists w ∈ W̃0 such
that w · β̃ ∈ Υ and we have for each Y ∈ F that

w{w−1Y, sβ̃w
−1 · Y } = {Y,wsβ̃w

−1 · Y } = {Y, sw·β̃ · Y } ⊂ F.
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Now Lemma 10.4 in [Hel84, p. 474] implies that conv(W̃0 ·Y ) ⊂ F for every
element Y ∈ F . 2

Proposition 5.5.9 Let a ∈ exp(cmax). Then

aGc(aGc) ⊂ conv(W̃0 · log a) + c̃min.

Proof: Applying a suitable element of W̃0, we may assume thatX := log a ∈
(∆̃+)∗ because the sets on the right- and left-hand sides do not change if
we replace X by w ·X for w ∈ W̃0 (Proposition 5.5.8).

Now Proposition 5.5.7 entails that

aGc(aGc) ⊂ X + c̃min − C̃∗

and since the set on the left-hand side is invariant under W̃0, again by
Proposition 5.5.8, we conclude with Lemma 4.5.5 that

aGc(aGc) ⊂
⋂

w∈W̃0

w ·
(

X + c̃min − C̃∗
)

= conv(W̃0 ·X) + c̃min

since c̃min is W̃0-invariant. 2

Recall that Gτ ⊂ Gc, A ⊂ Ã and N ⊂ Ñ are the σc-fixed points
of the respective groups. Therefore aGc commutes with σc and the map
aGτ :GτAN → a is simply the restriction of aGc to GτAN . In view of
Theorem 4.5.6, this implies that

aGτ (aGτ ) ⊂ a∩
[

conv(W̃0 · log a) + c̃min

]

= conv(W0 · log a)+ cmin (5.28)

for a ∈ exp(cmax).
In order to prove the converse inclusion we need some additional infor-

mation. Note first that Proposition 3.2.2 yields the following lemma.

Lemma 5.5.10 Let Υ be a basis of the system ∆+ . Then Υ0 := Υ ∩∆+
0

is a basis of ∆+
0 and Υ contains exactly one root not contained in ∆0. 2

Lemma 5.5.11 Let C = (∆+
0 )∗. Then the highest root γ in ∆+ satisfies

cmin ⊂ R+γ − C∗.

Proof: We note first that the considerations in Section 4.1 show that ∆ is
an irreducible root system. Further, we note that the highest root automat-
ically is contained in ∆+. Let Υ = {α0, α1, . . . , αk} be the simple system
for ∆+ such that Υ0 = {α1, . . . , αk} is the simple system for ∆+

0 . Now sup-

pose that β =
∑k

j=0mjαj ∈ ∆+ and γ =
∑k

j=0 njαj . Then n0 = m0 = 1

and γ − β =
∑k

j=1(nj −mj)αj ∈ ∆+
0 ⊂ C∗. Therefore β ∈ γ − C∗ for all

β ∈ ∆+ which implies the claim since cmin = cone(∆+). 2
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Lemma 5.5.12 Let log a = X ∈ cmax and α ∈ ∆+ be such that α(X) > 0.
Then

X + R+Xα ⊂ aGτ (aGτ ).

Proof: sl(2,R)-reduction yields

aGτ (exp(X) exp RY α) = X + R+Xα

and this implies the claim (cf. Lemma 5.4.9 and its proof). 2

Theorem 5.5.13 (The Nonlinear Convexity Theorem) Let M be a
noncompactly causal symmetric space, a ⊂ qp a maximal abelian subspace,
and aH :HAN → a the corresponding projection. Then

aH(aH) = conv(W0 · log a) + cmin

for 1 6= a ∈ exp(cmax).

Proof: Note first that Lemma 3.1.22 implies that we may assume H = Gτ .
In view of (5.28), we only have to show the inclusion⊃. ReplacingX = log a
by a suitable W0-conjugate, we may also assume that X ∈ C = (∆+

0 )∗.
Since X 6= 0, there exists a α ∈ ∆+ such that α(X) > 0. Let γ ∈ ∆+ be
the highest root of ∆+. Then γ(X) ≥ α(X) > 0 and hence Lemma 5.5.12
implies that X + R+Xγ ⊂ aH(aH). Now Proposition 5.5.8 implies that it
suffices to show

conv
[

W0 · (X + R+Xγ)
]

= conv(W0 ·X) + cmin. (5.29)

To do this, note first that R+Xγ = R+γ ⊂ cmin and that both sides of
(5.29) are closed, convex, and W0-invariant. Thus it remains to verify

[conv(W0 ·X) + cmin] ∩ C ⊂ conv
(

W0 · (X + R+Xγ)
)

∩ C. (5.30)

According to Lemma 5.5.11 and Lemma 4.5.5 we have

conv(W0 ·X) + cmin ⊂ (X − C∗) + (R+γ − C∗) = (X + R+γ)− C∗.

Note that (Y −C∗)∩C ⊂ conv(W0 ·Y ) for all Y ∈ C by Lemma 4.5.5. But
[8], §1.8, Proposition 25 implies that γ ∈ C. Thus for any r > 0 we have

[

(x+ rγ)− C∗
]

∩C ⊂ conv
[

W0 · (X + rγ)
]

∩ C.

This implies (5.30) and hence the claim. 2

Corollary 5.5.14 1) Let a ∈ exp(cmax) and n] ∈ N ] ∩ HAN . Then
an]a−1 ⊂ HAN and

aH(an]a−1)− aH(n]) ∈ cmin.
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2) aH

(

N ] ∩HAN
)

⊂ icmin.

Proof: 1) Let pH : HAN → P be the projection onto the H-factor. Then

aH(xy) = aH

(

xpH(y)
)

+ aH(y).

Therefore
aH(an]a−1) = aH

(

apH(n])
)

+ aH(n])− log a.

Now Theorem 5.5.13 shows that

aH

(

apH(n])
)

∈ aH(aH) ⊂ log a+ cmin

and this implies the claim.
2) Let X ∈ (cmax ∩C)o and n] ∈ N ] ∩HAN . Then

lim
t→∞

exp(tX)n] exp(−tX) = 1

and therefore
−aH(n]) = lim

t→∞
aH

(

exp(tX)n] exp(−tX)
)

− aH(n]) ∈ cmin. 2

Example 5.5.15 For G = SL(2,R) the nonlinear convexity theorem can
made very explicit. In the situation of Example 5.1.3 we have W0 = {1}
and cmax = cmin = R+X0. The causal Iwasawa projection is given by

aH

(

a b
c d

)

=
√

a2 − c2

whenever it is defined. 2

5.6 The B]-Order

Let M = G/H still be a noncompactly causal symmetric space such G is
contained in a simply connected complexification GC. We write S for the
maximal real Ol’shanskii semigroup S(Cmax). Then Theorem 5.2.7 implies
thatM+ = S ·o = (S∩B]) ·o. This shows that many questions concerning
the positive cone of M can be treated via B], which has a fairly simple
structure.

Remark 5.6.1 Theorem 5.2.7 implies that S∩B] = {b] ∈ B] | o � b] ·o}.
Therefore the restriction of ≤S , cf. (2.14), to B] defines an order. On the
other hand, S ∩B] defines an order ≤S∩B] on B] via

b ≤S∩B] b′ :⇔ b′ ∈ b(S ∩B]).
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We claim that the two orders agree. This follows from

↓ b] ∩B] = b]S−1 ∩B] = b]
(

S−1 ∩B]
)

= b]
(

S ∩B]
)−1

.

This means that in particular we can use the notation ↓ b] without any
ambiguity. 2

Proposition 5.6.2 The map

IB] :F↓(G)→ F↓ (B) , F 7→ F ∩B]

is B]-equivariant, continuous, and surjective. It is injective on the closed
set {F ∈ F↓(G) | F o ⊂ N ]AH}.

Proof: The equivariance is obvious. Let F ∈ F↓(G) ⊂ F(G)H (cf. Lemma
2.4.1). Then IB](F ) = F ∩B] is closed and for s ∈ S ∩B] we have that

(

F ∩B]
)

s−1 ⊂ F (S ∩B])−1 ∩B] = F ∩B],

whence
F ∩B] ∈ F↓

(

B]
)

.

Let Fn → F in F↓(G) and assume that Fn ∩ B] → E. To see that E =
IB](F ), let e ∈ E and fn ∈ Fn ∩ B] with fn → e (cf. Lemma C.0.6).
Then e = lim fn ∈ limFn = F . On the other hand, for f ∈ F ∩ B]

there exists a sequence fn ∈ Fn with fn → f . Since FnH = Fn, we have
that Fn =

(

Fn ∩B]
)

H , so we find that bn ∈ Fn ∩ B] and hn ∈ H with
fn = bnhn. According to Lemma 5.4.1 we get that bn → f and hn → 1.
Thus

f = lim bn ∈ limα(Fn) = E.

It follows that E = IB](F ).
For E ∈ F↓

(

B]
)

we set β(E) := EH. Let s = gh ∈ S, where g ∈ B] ∩S
and h ∈ H . Moreover,

Hg−1 ⊂ S−1 =
(

S−1 ∩B]
)

H

by Theorem 5.4.7. Thus

β(E)s−1 = EHh−1g−1 = EHg−1 ⊂ E (S−1 ∩B])H = (↓S∩B]E)H = EH

shows ↓ β(E) = β(E). The inclusion

E ⊂ IB] (β(E)) = EH ∩B]
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is clear. Let b] ∈ EH ∩ B] and en ∈ E, hn ∈ H with enhn → b]. Then
en → b and b ∈ E = E. It follows that β(E) ∩ B] = E, and hence IB] is
surjective.

If F ∈ F↓(G) with F o ⊂ N ]AH , then

F = F o = [F o ∩B]]H

= ((F ∩B])o)H

= (F ∩B])H = IB](F )H.

Here we used that F ∩B] ∈ F↓

(

B]
)

, so F ∩B] has dense interior by Lemma
2.4.7.

Now we see that IB](F ′) = IB](F ) and (F ′)o ⊂ N ]AH imply F ′ = F .
It remains to show that the set {F ∈ F↓(G) | F o ⊂ N ]AH} is closed. We
let Fn ∈ F↓(G) with Fn → F and F o

n ⊂ B]H . We have to show that
F o ⊂ B]H . For f ∈ F o there exist an f ′ ∈ (↑ f)o ∩ F o and n0 ∈ N with

Fn ∩ (↑ f)o ∩ F o 6= ∅ ∀n ≥ n0.

Pick fn in this set. Then

f ∈ (↓ fn)o ⊂ F o
n ⊂ B]H

which proves that F o ⊂ B]H . 2

Lemma 5.6.3 Consider the order compactification map

ηB] :B] → F↓(B
]), g 7→ g(S ∩B])−1

(cf. Lemma 2.4.2).

1) If X ∈
(

L(S ∩B])
)o

, then limt→∞ ηB] (exp(−tX)) = ∅.

2) ηB](B]) = {∅} ∪B] · ηB](S ∩B])

Proof: 1) We consider the projection

p:B] ∼= N ] oA→ A (5.31)

and set X ′ := d1q(X). Note that ηB] (exp(−tX)) is decreasing in t, so
it has a limit by Lemma C.0.6. Suppose that g ∈ lim ηB] (exp(−tX)),
t → ∞. Then there exist tn ∈ R and sn ∈ S ∩ B] with tn → ∞ and
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g = limn→∞ exp(−tnX)s−1
n . Thus

p(g) = lim
n→∞

exp(−tnX ′)p(sn)−1

= lim
n→∞

exp(−tnX ′) exp(−cmax)

= exp (− lim[tnX
′ + cmax]) = ∅

because of Theorem 5.4.8.3) and the fact that tnX
′ + cmax → ∅ whenever

X ′ ∈ comax = d1p
(

L(S ∩B])o
)

and tn →∞.
2) In view of 1), this is just a special case of Lemma 2.4.3.3). 2

Lemma 5.6.4 The restriction of IB] to η(B]) ⊂ F↓(G) yields a homeo-
morphism

η (B])→ ηB] (B]) ⊂ F↓(B
]).

Proof: Remark 5.6.1 implies that IB] (η(g)) = ηB](g) for all g ∈ B]. Using
the continuity of IB] we find that

IB](η (B])) ⊂ IB] (η(B])) = ηB] (B]).

Since IB] is B]-equivariant and η is even G-equivariant we have

IB]

(

η(B])
)

= B] · ηB](1)

and hence IB](η(B])), which is closed because of compactness, contains the

closure of the B]-orbit of ηB](1), i.e., all of ηB] (B]).
Recall that for F ∈ η

(

B]
)

we have

F = ↓ g = gS−1 ⊂ B](B]H) = B]H

and therefore also F o ⊂ B]H since B]H is open in G. Now again by
the continuity of IB] we get F o ⊂ B]H for all F ∈ η (B]H), and then

Proposition 5.6.2 shows that IB] restricted to η (B]) is injective. Finally,
compactness yields the claim. 2

Lemma 5.6.5 We have

η(A) = ∅ ∪A · η (exp(cmax)).

If η(an) → F 6= ∅, then the sequence an ∈ A is bounded from below with
respect to the restriction of the ordering ≤S to A.
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Proof: Using Lemma 5.6.4 and Lemma 5.6.3, we see that

∅ =
[

lim
t→∞

ηB] (exp(−tX))H
]

= lim
t→∞

ηB] (exp(−tX))H

= lim
t→∞

η (exp(−tX))

for all X ∈ L(S ∩B])o. Suppose that η(an)→ F 6= ∅. Then Lemma 5.6.3
and Lemma 5.6.4 yield

ηB](an)→ F ∩B] 6= ∅.

Let f ∈ IntB] F and a := p(f) ∈ A. Then there exists n0 ∈ N with f ≤S an

for all n ≥ n0. Hence a = p(f) ≤S an for all n ≥ n0. Pick t0 with
exp(−t0Y 0) ≤ a. Then

exp(t0Y
0)an ∈ S ∩A = exp(cmax)

(cf. Lemma 5.4.9) and

η(an)→ exp(−t0Y 0) lim
n→∞

η
(

exp(t0Y
0)an

)

∈ A · η (exp(cmax)).

This proves the claim. 2

Theorem 5.6.6 1) Mcpt = G ·Mcpt
+ ∪ {∅}.

2) Mcpt has only finitely many G-orbits.

Proof: 1) follows from Lemma 5.6.5 and Lemma 2.4.3.
2) is a consequence of 1) and (6.8). 2

The point of Lemma 5.6.5 and Theorem 5.6.6 is that they will enable us
to derive the G-orbit structure of Mcpt from the structure of η(S ∩A) ⊂
Mcpt

+ .
We conclude this section with the useful observation that the projection

p:B] ∼= N ] o A → A defined in (5.31) is proper. This is an immediate
consequence of the following more general lemma.

Lemma 5.6.7 Let B be a connected Lie group and N a closed normal
subgroup such that A := B/N is a vector group. Suppose that C ⊂ b

is a pointed closed convex cone such that C ∩ n = {0} and S the closed
subsemigroup of B generated by C. Then the homomorphism φ:B → A, b 7→
bN induces a proper semigroup homomorphism π:S → φ(S).
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Proof: Let D := d1φ(C). Then the condition C ∩ n = {0} shows that D is
a pointed cone in the abelian Lie algebra a. Since A is a vector group, we
can identify α with A.

Let ω ∈ Int{ν ∈ a∗ | ∀X ∈ D : ω(X) ≥ 0}. Then ω can be viewed as
a function on A and then the function f := ω ◦ φ satisfies the hypothesis
of Theorem 1.32 in [Ne91] because it is a group homomorphism, hence has
biinvariant differential. So we find that the order intervals sS−1 ∩ S in B
are compact. Let K ⊂ φ(S) be compact and L the maximal value of ω on
K. Then π−1(K) ⊂ f−1([0, L]) ∩ S. Now Theorem 1.32 in [114] implies
also that there exists a left invariant Riemannian metric d on B such that
the length L(γ) of γ is not bigger than L for all curves γ [0, T ] → B with
γ(0) = 1 and f

(

γ(T )
)

≤ L, which are monotone w.r.t. ≤S . Therefore
d(x, 1) ≤ L holds for all x ∈ π−1(K). Finally, the theorem of Hopf-Rinow
shows that these sets are compact. 2

5.7 The Affine Closure of B]

Retain the hypotheses and notation from Section 5.6. In this section we
realize S∩B] as a semigroup of affine selfmaps and in this way find a suitable
compactification which helps us to make the abstract order compactification
much more concrete.

Lemma 5.7.1 1) B] is a twofold semidirect product B] ∼= N− o (N ]
0 o

A).

2) Let α ∈ ∆+, β ∈ ∆+
0 , and Xβ ∈ gβ. Then [Xβ , gα+nβ ] 6= {0}

whenever α+(n+1)β ∈ ∆. In particular, if (α | β) 6= 0, we find that
[Xβ,

∑

n∈Z gα+nβ ] 6= {0}.

3) The mapping

B] → N− o Aut(N−), (n−, n
]
0, a) 7→ (n−, In]

0a),

where In]
0a denotes the automorphism n− 7→ (n]

0a)n−(n]
0a)

−1, is an

injective homomorphism.

Proof: 1) The first assertion follows immediately from the fact that n =

n− o n
]
0, which is a consequence of n

]
0 = zn](Y 0).

2) Recall the algebra sβ
∼= sl(2,R) from Section 4.1. The space

Vα,β :=
⊕

n∈Z

gα+nβ
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is an sβ-module. The above decomposition of Vα,β is precisely the Hβ-
weight decomposition. Suppose that α + (n + 1)β ∈ ∆. Then there exists
a simple sβ-submodule V of Vα,β with

V ∩ gα+(n+1)β 6= {0}.
But now the classification of sl(2,R) modules says that

V =

m+
⊕

m=m−

V α+mβ,

where V α+mβ = gα+mβ ∩V is one-dimensional. If gα+nβ ⊂ ker adXβ , then
n = m− − 1, since gα+(n+1)β ∩ V 6= {0}, and [Xβ, V

α+mβ ] = V α+(m+1)β

for m = m−,m− + 1, ...,m+. Thus

(α + nβ)(Hβ) < (α+m−β)(Hβ) < 0.

Now [10], Chapter VIII, §7, no. 2, Proposition 3(iii), yields a contradiction
to gα+nβ ⊂ ker adXβ .

3) It follows from the fact that cmax is pointed and generating that the
kernel intersects A trivially. Now 2) shows that the kernel also intersects

N ]
0 trivially and the assertion follows as In]

0a = In]
0
Ia is the Jordan decom-

position when we identify n− with N−. 2

Recall the flag manifold XC = GC/(Pmax)C and its base point oX =
1(Pmax)C from Section 5.1.

Lemma 5.7.2 The mapping ζ : n− → (N−) · oX , X 7→ exp(X) · oX is an
equivariant mapping of B]-spaces. Here the action of B] on n− is given by

(N−)N ]
0A× n− → n−, (exp(X) exp(Y ) exp(Z), E) 7→ X + eadY ead ZE.

For E =
∑

α∈∆−
Eα with Eα ∈ gα we have that

eadZE =
∑

α∈∆−

eα(Z)Eα, ∀Z ∈ a

Proof: Let X,E ∈ n−, Y ∈ n
]
0, and Z ∈ a. Using that n− is abelian, we

have

exp(X) = exp(Y ) exp(Z) exp(E)(Pmax)C

= exp(X) exp(Y ) exp(Z) exp(E) exp(−Z) ·
· exp(−Y ) exp(Y ) exp(Z)(Pmax)C

= exp(X + ead Y ead ZE) exp(Y ) exp(Z)(Pmax)C

= exp(X + ead Y ead ZE)(Pmax)C
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because exp(Y ) exp(Z) ∈ Ha ⊂ (Pmax)C. 2

Recall the domain Ω− ⊂ n− from (5.7) on p. 123. We set

Aff(N−) := N− o End(N−) = N− o End(n−) (5.32)

and

Affcom(N−) := {(n−, γ) ∈ Aff(N−) | n−γ(Ω−) ⊂ Ω−}. (5.33)

Here we identify N− and n− via the exponential function ofN−. We refer to
these semigroups as the affine semigroup of N− and the affine compression
semigroup of Ω−.

Proposition 5.7.3 Affcom(N−)∩B] = S∩B], where B] is identified with
a subgroup of Aff(N−) via Lemma 5.7.1.

Proof: In view of Lemma 5.7.2, the claim follows from S ∩B] = {b] ∈ B] |
b] · O ⊂ O} and O = exp(Ω−) · oX . 2

Proposition 5.7.4 Affcom(N−) is compact.

Proof: Note first that Affcom(N−) is closed in Aff(N−). Now let (n−, γ) ∈
Affcom(N−). Then

n− = (n−, γ) · 1 ∈ Ω− ⊂ N−

so that
γ(Ω−) ⊂ n−1

− Ω− ⊂ (Ω−)−1(Ω−).

Since Ω− is a compact neighborhood of 0 in n−, we can find a norm on n−

and a constant c > o such that ||γ|| ≤ c for all (n−, γ) ∈ Affcom(N−). In
other words,

Affcom(N−) ⊂ {(n−, γ) ∈ Aff(N−) | n∈Ω−, ||γ|| ≤ c}

is relatively compact, hence compact. 2

Lemma 5.7.5 The action of Affcom(N−) on Ω− extends to a continuous
action of Affcom(N−) on F(Ω−).

Proof: This follows from the more general fact that End(N−) acts con-
tinuously on C(N−), the set of compact subsets of N− equipped with the
Vietoris topology for the one-point compactification of N−. To see this,
let Kn → K in C(N−) and sn → s in End(N−). Let U be a symmetric
neighborhood of 1 in θ(N) and V another symmetric 1-neighborhood with
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V ⊂ U and sn(V ) ⊂ U for all n ∈ N. Take n0 ∈ N such that Kn ⊂ KV and
sn(K) ⊂ s(K)U for n ≥ n0. (Note that sn converges uniformly on compact
sets). Then (cf. C.0.7)

sn(Kn) ⊂ sn(KV ) = sn(K)sn(V ) ⊂ s(K)U2.

Since U2 is symmetric, we also conclude that s(K) ⊂ sn(Kn)U2. Hence
sn(Kn)→ s(K). 2

Let B] denote the closure of B] in Aff(N−) and Scpt
A the closure S ∩A =

exp cmax ⊂ B] of S ∩ A in B]. Then B], S ∩B] and Scpt
A are compact

semigroups.
We describe the structure of Scpt

A .

Theorem 5.7.6 (The structure of Scpt
A ) Let the notation be as above.

Then the following assertions are true:

1) Scpt
A = exp(R+X1) · ... · exp(R+Xn), where cmax =

∑n
i=1 R+Xi.

2) For F ∈ Fa(−c∗max) = Fa(cone(∆−)) we define eF ∈ End(n−) by

eF (X) =

{

0, if X ∈ gα, α 6∈ F ∩∆− ,
X, if X ∈ gα, α ∈ F ∩∆− .

Then the mapping F 7→ eF defines an isomorphism of Fa(−c∗max) and
the lattice of idempotents E(Scpt

A ) of the compact abelian semigroup

Scpt
A .

3) For X ∈ cmax we have that

lim
t→∞

exp(tX) = eF , where F = X⊥ ∩ (−c∗max), (5.34)

and conversely,

eF = lim
t→∞

exp(tX) for every X ∈ IntF⊥(cmax ∩ F⊥).

4) Scpt
A = (S ∩A) · E(Scpt

A ).

Proof: 1) is obvious.
2), 3) Let F ∈ Fa(−c∗max). Then there exists an element X ∈ cmax

with F = X⊥ ∩ (−c∗max). The functions t 7→ eα(tX) are decreasing for all
α ∈ −c∗max. More precisely,

α(X)

{

= 0, if α ∈ F
< 0, if α 6∈ F .



5.7. THE AFFINE CLOSURE OF B] 161

This shows that
lim

t→∞
exp(tX) = eF .

It is clear that e2F = eF and therefore eF ∈ E(Scpt
A ). Let e ∈ E(Scpt

A ). Then
there exists an element X ∈ cmax such that e = limt→∞ exp(tX) because
cmax is polyhedral ([154], pp. 11, 26). Thus e = eF for F = X⊥∩cone(∆−)
and with

IntF⊥(cmax ∩ F⊥) = {Y ∈ cmax | Y ⊥ ∩ −c∗max = F} (5.35)

we find that

IntF⊥(cmax ∩ F⊥) = {X ∈ cmax | lim
t→∞

exp(tX) = eF }.

This proves that F 7→ eF is a bijection. Since it is clearly order-preserving,
the claim follows.

4) Let s = s1 · ... · sn ∈ Scpt
A with si ∈ exp(R+Xi). Then either si ∈

exp(R+Xi) ⊂ exp(cmax) or si = limt→∞ exp(tXi) ∈ E(Scpt
A ). Thus s ∈

exp(cmax)E(Scpt
A ). 2

Example 5.7.7 In the situation of the SL(2,R) Example 5.4.23,we identify
Aff(N−) with R× R, where the multiplication is

(n, γ)(n′, γ′) = (n+ γn′, γγ′)

and the action on R = n− is given by

(n, γ) · n′ = n+ γn′.

Then Affcom(N−) corresponds to the set

{(n, γ) ∈ R× R | ∀|r| < 1 : |n+ γr| < 1}
= {(n, γ) ∈ R× R | |γ| ≤ 1, |n| ≤ 1− |γ|} .

The embedding of B] into Aff(N−) is

(

a 0
c a−1

)

7→ (
c

a
,

1

a2
)

so the image of B] is simply

{(n, γ) | γ > 0, ν ∈ R}.

Thus we obtain

S ∩B] = {(n, γ) ∈ R× R | 0 < γ ≤ 1, |n| ≤ 1− γ}
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and
S ∩A = {(0, γ) ∈ R× R | 0 < γ ≤ 1}.

The faces of −c∗max = −cmax = R−X0 = −R+α are F1 = {0} and
F2 = −R+α. Therefore we have eF1 = (0, 0) and eF2 = (0, 1). Thus

Scpt
A = {(0, γ) ∈ R× R | 0 ≤ γ ≤ 1}

= {(0, 0)} ∪ (S ∩A)

= (S ∩A)eF1 ∪ (S ∩A)eF2

by direct calculation. 2

Let a+ := {X ∈ a | ∀α ∈ ∆+ : α(X) ≥ 0} ⊂ cmax be the closure of the

positive Weyl chamber. Our next goal is to find the idempotents in S ∩B]

which occur as limits of elements in exp a+. The results will be useful when
we determine the isotropy group of a point inMcpt

+ under the action of G.
Suppose that X ∈ a+. We write EX := (RX − cmax) ∩ cmax for the face

of cmax generated by X and

FX = X⊥ ∩ −c∗max = E⊥
X ∩ −c∗max (5.36)

for the (up to a minus sign) opposite face. For any subset Σ of ∆ we
consider cone(Σ) =

∑

α∈Σ R+α (cf. Remark 2.1.7). In particular, we have

cone(∆−) = −c∗max. We set ∆X := E⊥
X ∩ ∆ , ∆X,± := E⊥

X ∩ ∆± , and
∆X,0 := E⊥

X ∩ ∆0. Then Remark 2.1.7 shows that FX = cone(∆X,−)
because

∆X,+ = {α ∈ ∆+ | α ∈ FX} = {α ∈ ∆+ : α(X) = 0}.

An element X ′ ∈ EX ∩ a+ is said to be relatively regular in EX if all roots
in ∆0 which do not vanish on EX , are nonzero on X ′. We note that if
X is relatively regular in EX , then ∆+

X = ∆X ∩∆+ = X⊥ ∩∆+ because
∆X,+ = X⊥ ∩∆+, and ∆+

X,0 = ∆+
0 ∩ X⊥ follows from relative regularity

(recall that X ∈ a+).

Lemma 5.7.8 Let X ∈ a+ and EX ∈ Fa(cmax) the face generated by X.
Then the following assertions hold.

1)
[

∆+ + (∆+ \ E⊥
X)
]

∩∆+ ⊂ ∆+ \ E⊥
X = ∆+ \∆+

X and

cone(∆+
X) = E⊥

X ∩ cone(∆+) ∈ Fa(cone(∆+)) .

2) There exists a relatively regular element X ′ ∈ a+ ∩ algint(EX) with
EX = EX′ .
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Proof: 1) In view of Remark 2.1.7.5), we have that

E⊥
X = FX − FX = cone(∆X,−)− cone(∆X,−). (5.37)

If γ ∈ ∆+
X,0, then the reflection sγ at ker γ leaves ∆− invariant and sγ(X) =

X . Therefore sγ(∆X,−) = ∆X,− and consequently E⊥
X is invariant under

the subgroup WX of the Weyl group W0 = W (∆0), which is generated by
the reflections leaving X fixed. If X ∈ comax, then EX = cmax, E

⊥
X = {0},

and ∆+
X = ∅. So we may assume that X ∈ ∂cmax. Let Σ = {α0, α1, ..., αl}

be a basis of ∆+ with α0 ∈ ∆+ (cf. Lemma 5.5.10). Since X ∈ ∂cmax,
there exists a root γ ∈ ∆+ with γ(X) = 0. Therefore X ∈ a+ and γ =

α0 +
∑l

i=1 niαi entail that

0 = γ(X) ≥ α0(X) ≥ 0,

consequently α0 ∈ E⊥
X . Note that the coefficient of α0 must be 1 because

γ(Y 0) = 1. Hence we may assume that

ΣX := X⊥ ∩ Σ = {α0, α1, ..., αk}. (5.38)

So α = α0 +
∑l

i=1 niαi ∈ ∆X,+ is equivalent to ni = 0 for i > k. Conse-
quently, α0 ∈ E⊥

X and (5.37) imply that

E⊥
X = Rα0 ⊕ EX,0

with

EX,0 := E⊥
X ∩ span{α1, ..., αk} = E⊥

X ∩ span{α1, ..., αl}. (5.39)

Next we claim the existence of a set of simple roots which span EX,0.
To see this, we first note that EX,0 is invariant under the finite group WX

because WX also fixes span{α1, ..., αl} = span∆0. We recall that WX is
generated by the reflections sα1 , ..., sαk

at the hyperplanes kerαj (cf. [168],
1.1.2.8). Therefore

EX,0 = EX,0,eff ⊕ EX,0,fix,

where
EX,0,fix = {Y ∈ EX,0 | (∀w ∈WX) w · Y = Y }

and
EX,0,eff = span{w · Y − Y | w ∈ WX , Y ∈ EX,0}.

For Y ∈ EX,0,fix the relations sαi
(Y ) = Y imply that αi⊥Y for i = 1, ..., k.

Hence
Y ∈ span{α1, ..., αk}⊥ ∩ EX,0 ⊂ E⊥

X,0 ∩ EX,0 = {0}.
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In addition, the fact that WX is generated by the reflections sαi
, i = 1, ..., k

implies that

EX,0 = EX,0,eff = span{sαi
(Y )− Y | i = 1, ..., k, Y ∈ EX,0}

= span{αj | αj 6∈ E⊥
X,0}.

This proves our claim, and from now on we may assume that EX,0 =
span{α1, ..., αj} with j ≤ k. Now E⊥

X = span{α0, ..., αj} and therefore

∆+ \E⊥
X =

{

l
∑

i=1

niαi

∣

∣

∣

∣

∣

∃i > j : ni > 0

}

.

This implies the first assertion of the lemma. The second assertion is trivial.

2) From E⊥
X = span{α1, ..., αj} it follows that

{β|EX
| β ∈ ∆+} = {β|EX

| β ∈ R+αj+1 + . . .+ R+αl}

lies in a pointed cone. Whence

c := {Y ∈ spanEX | ∀β ∈ ∆+ : β(Y ) ≥ 0} = (spanEX) ∩ a+

has nonempty interior in spanEX . But X ∈ a+ ∩ algint(EX). Hence there
exists

X ′ ∈ algintEX ∩ algint(c).

It follows that EX = EX′ , X ′ ∈ a+, and that X ′ is relatively regular. 2

Lemma 5.7.9 Let X ∈ a+ and

eX = lim
t→∞

exp(tX) = (1, γ) ∈ S ∩B] .

Then the following assertions hold:

1) g(∆+ \∆+
X)] is an ideal in n] = g(∆+)] and

n] ∼= g(∆+ \∆+
X)] o g(∆+

X)].

2) Ad(N ]
0A) ker γ ⊂ ker γ ⊂ n−.

Proof: 1) is immediate from Lemma 5.7.8.



5.7. THE AFFINE CLOSURE OF B] 165

2) Note that (5.36) implies that

ker γ = {Y ∈ n− | lim
t→∞

ead tXY = 0}

=
∑

α∈∆−,α(X) 6=0

gα

= g(∆+ \ (∆+ ∩X⊥))]

= g(∆+ \ (∆+ ∩ E⊥
X))]

= n− ∩ g(∆+ \∆+
X)].

Thus ker γ is an ideal in n] by 1) and therefore invariant under N ]
0 . Since

it is a sum of root spaces, ker γ is also invariant under Ad(A). 2

Lemma 5.7.10 Let X ∈ a+ and eX = limt→∞ exp(tX) = (1, γ) ∈ S ∩B].

If λeX
, ρeX

:B] → B] are the left and right multiplications with eX in B],
then we have:

1) λ−1
eX

(eX) ∩ B] = ker γ o exp
(

g(∆+
0 \∆+

X)
)]

exp(∆⊥
X,+), where ∆⊥

X,−

is identified with the corresponding subset of a.

2) Let Σ(X) :=
[

(

X⊥ ∩∆+
0

)

\∆+
X,0

]

∪
[(

∆+
0 ∩∆⊥

X,+

]

\X⊥
)

. Then

ρ−1
eX

(eX) ∩B] = exp (g (Σ(X)))
]
exp(∆⊥

X,+)

where ∆+
0 ∩∆⊥

X,+ = {α ∈ ∆+
0 | ∀β ∈ ∆X,+ : (α | β) = 0}.

Proof: 1) The formula

eX(g, δ) = (1, γ)(g, δ) = (γ(g), γδ)

shows that λeX
(g, δ) = eX is equivalent to g ∈ ker γ and γδ = γ, i.e.,

δ(ker γ) ⊂ ker γ and δ(x) ∈ x ker γ for x ∈ Im γ. According to Lemma
5.7.9.2), the first condition on δ is satisfied if δ ∈ Ad(B]). For δ = ead Y

with Y ∈ n0 + a the second condition is satisfied by all elements of ead RY

if and only if [Y, Im γ] ⊂ ker γ. The set {g ∈ Aut(N−) : γg = γ} is a
pseudo-algebraic semigroup. Whence γeadY = γ implies that

γet ad Y = γ ∀t ∈ R

whenever Spec(adY ) ⊂ R ([94], Lemma 5.1). This implies in particular

that λ−1
eX

(eX) ∩N ]
0A is a connected normal subgroup and therefore

λ−1
eX

(eX) ∩N ]
0A = exp{Y ∈ n0 + a | [Y, Im γ] ⊂ ker γ}.
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For Y ∈ a this condition means that Y ∈ ∆⊥
X,− since

Im γ = g(∆X,+)] = γ(∆X,−). (5.40)

If Y ∈ gα with α ∈ ∆+
0 \ ∆+

X , then clearly [Y, Im γ] ⊂ ker γ (Lemma
5.7.9.1)). This shows the inclusion ⊇. Conversely, suppose that α ∈ ∆+

X,0 ⊂
E⊥

X . By Remark 2.1.7 and (5.37) we have that

∆⊥
X,+ = ∆⊥

X,− = F⊥
X = EX − EX .

Now (EX − EX) ∩ E⊥
X = {0} implies the existence of β ∈ ∆X,− with

(α | β) 6= 0. Hence Lemma 5.7.1.2) shows that [Y, Im γ] 6= {0} for Y ∈ gα

because
⊕

n∈Z gβ+nα ⊂ Im γ. But then

(∆X,+ + ∆+
X,0) ∩∆ ⊂ ∆X,+

shows that [Y, Im γ] 6⊂ ker γ.
2) First we note that geX = g′eX = eX implies that (gg′)eX = eX and

g−1(geX) = g−1eX = eX for g, g′ ∈ B]. So ρ−1
eX

(eX) ∩ B] is a subgroup.
Moreover, for (n−, δ) ∈ B] the condition

(n−, δ)(1, γ) = (n−, δγ) = (1, γ)

is equivalent to n− = 1 and δγ = γ. Thus

ρ−1
eX

(eX) ∩B] = {(1, δ) : δ|Im γ = idIm γ}. (5.41)

This is a pseudo-algebraic subgroup of the group Ad(B]) which consists
of real upper triangular matrices. So it is connected by [94], Lemma 5.1,
because the exponential function of B] is surjective. Therefore it only
remains to compute the Lie algebra of this analytic subgroup. First we
note that ead RY |Im γ = idIm γ is equivalent to [Y, Im γ] = {0}.

For Y ∈ a this means that Y ∈ ∆⊥
X,+. Let Y ∈ gα with α ∈ ∆+

0 . We
have to consider several cases:

a) α(X) = 0 and α 6∈ E⊥
X . Let β ∈ ∆X,+ ⊂ E⊥

X . Then α+ β 6∈ ∆ since
otherwise (5.36) implies that

β + α ∈ ∆+ ∩X⊥ = ∆X,+ ⊂ E⊥
X .

This shows that [Y, Im γ] = {0}.

b) α ∈ E⊥
X . Then we have already seen in the proof of 1) that [Y, Im γ] 6=

{0}.
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c) α(X) > 0 and α 6∈ ∆⊥
X,+. Let β ∈ ∆X,+ with (α | β) 6= 0. Then

β(X) = 0 and therefore (β − α)(X) < 0. So β − α is no root because
X ∈ cmax. Hence (α | β) < 0 and β + α ∈ ∆+. Now Lemma 5.7.1.2)
implies that [Y, gβ ] 6= {0}.

d) α(X) > 0 and α ∈ ∆⊥
X,+. As in c) we see that β − α 6∈ ∆ for all

β ∈ ∆X,+. The reflection sα interchanges the two ends of the α-
string through β and it fixes β because (α | β) = 0. So β agrees also
with the upper end of this root string and α+β 6∈ ∆. But this clearly
implies that [Y, Im γ] = {0}. 2

Remark 5.7.11 The formula for ρ−1
eX

(eX) is relatively complicated. This
comes from the fact that in general X is not relatively regular in the face
EX . Since every face of cmax contains relatively regular elements (they
form an open dense subset), every idempotent may be reached by such
an element. An example for an element which is not relatively regular in
general is Y 0. The face it generates is cmax, all compact roots vanish on
Y 0, but no compact root vanishes on cmax.

Now suppose that X is relatively regular and in a+. Then

X⊥ ∩∆+ = ∆+
X = E⊥

X ∩∆+.

Therefore

(X⊥ ∩∆+
0 ) \∆+

X,0 = ∅ and (∆0 ∩∆⊥
X,+) ∩X⊥ = ∅

because ∆0 ∩X⊥ ⊂ E⊥
X = span∆X,+. So the formula for ρ−1

eX
(eX) becomes

easier:
ρ−1

eX
(eX) ∩B] = exp

(

g(∆+
0 ∩∆⊥

X,+)
)]

exp(∆⊥
X,+). (5.42)

2

Lemma 5.7.12 Let L be a connected Lie group and γ an idempotent en-
domorphism of L. Then

L ∼= ker γ o Im γ.

In particular, kerγ is connected.

Proof: It is clear that Im γ = {g ∈ L | γ(g) = g} and ker γ are closed sub-
groups. Obviously, kerγ is normal in L, so ker γ ·Im γ is a subgroup and the
intersection of Im γ and ker γ is trivial. If g ∈ L, then g = γ(g)

[

γ(g)−1g
]

and
γ
[

γ(g)−1g
]

= γ2(g)−1γ(g) = γ(g)−1γ(g) = 1.

Hence L ∼= ker γ · Im γ is a semidirect product decomposition. 2
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Lemma 5.7.13 Let L be a connected Lie group and e = (1, γ) be an idem-
potent in Lo End(L). Further, let s = (a, δ). Then L1)–L4) and R1)–R4)
are equivalent:

L1) ese = es.

L2) e(es) = (es)e.

L3) es ∈ eAff(L)e.

L4) δ(ker γ) ⊂ ker γ.

R1) ese = se.

R2) e(se) = (se)e.

R3) se ∈ eAff(L)e.

R4) a ∈ Im γ and δ(Im γ) ⊂ Im γ.

Proof: The equivalence of L1)–L3) and R1)–R3) is trivial. To see that L1)
is equivalent to L4), we compute

es = (1, γ)(a, δ) = (γ(a), γ ◦ δ)

and

ese = (γ(a), γ ◦ δ) (1, γ) = (γ(a), γ ◦ δ ◦ γ) .
So es = ese is equivalent to γδ = γδγ. On the image of γ this relation is
trivial. According to Lemma 5.7.12, it holds if and only if it holds on the
kernel of γ, i.e., if and only if δ(ker γ) ⊂ ker γ.

For the equivalence of R1) and R4), we compute se = (a, δγ). So se = ese
is equivalent to γ(a) = a and δγ = γδγ. The first condition means that
a ∈ Im γ. On the kernel of γ, the second relation is trivial. In view of
Lemma 5.7.12, it holds if and only if it holds on the image of γ, i.e., if and
only if δ(Im γ) ⊂ Im γ. 2

A face F of a topological monoid (i.e., semigroup with identity) T is a
closed subsemigroup whose complement T \ F is a semigroup ideal. The
lattice of faces of T is denoted Fa(T ). The group of units in T will be
denoted U(T ). In particular, if e ∈ T is idempotent, then eT e is a monoid
with unit e and U(eT e) is the unit group of this monoid.

Lemma 5.7.14 Let T be a topological semigroup. For e ∈ E(T ) we set

Te := {t ∈ T : et ∈ eT e}
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and
Fe := {t ∈ T : et ∈ U(eT e)}.

Suppose that U(eT e) is closed in eT e. Then Te is a closed subsemigroup of
T with identity e, the mapping

λe : Te → eT e, t 7→ et

is a semigroup homomorphism, and Fe is a face of Te.

Proof: Let t, t′ ∈ Te. Then

e(tt′)e = (et)(t′e) = (ete)(t′e) = (et)(et′e) = (et)(et′) = ett′.

Hence Te is a closed subsemigroup of T and the mapping λe is a homomor-
phism. Now it is clear that Fe := λ−1

e (U(eT e)), as the inverse image of a
face, is a face of Te. 2

Lemma 5.7.15 Let X ∈ a+ and eX = limt→∞ exp(tX) = (1, γ) ∈ B].
Then the following assertions hold:

1) B]
eX

:= {s ∈ B] : eXs = eXseX} = B].

2) eX is an identity element in the semigroup eXB].

3) γ(Ω) = Ω ∩ Im γ.

4) eXS ∩B] = {eXs ∈ eXB] | eXs(γ(Ω−)) ⊂ γ(Ω−)}.

5) B] ∼= (kerλeX
∩B]) oB]

X , where

B]
X := Im γ o exp

(

g(∆+
X,0)

)]

exp(E⊥
X).

6) eXB] = eXB
]
X .

7) U(eXB]) = eXB
] and U(eXS ∩B]) = {eX}.

Proof: 1) In view of Lemma 5.7.13, we only have to recall from Lemma
5.7.9 that

δ(ker γ) ⊂ kerγ ∀δ ∈ Ad(B]).

2) Lemma 5.7.14 shows that eXB] is a semigroup. The other assertion
is a consequence of 1).

3) Since eX ∈ S ∩B], we have that

eX ·Ω− = γ(Ω−) ⊂ Ω− ∩ Im γ.
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But γ|Im γ = idIm γ . Hence

Ω− ∩ Im γ ⊂ γ(Ω−).

4) Let s ∈ S ∩B]. Then

eXs · γ(Ω−) = eXseX · Ω− ⊂ Ω−

because eXseX ∈ S ∩B]. Thus ⊂ holds. If, conversely, s is contained in
the right-hand side, then, in view of 2),

s(Ω−) = seX(Ω−) = s · γ(Ω−) ⊂ γ(Ω−) ⊂ Ω−.

5) It follows from (5.40) that B]
X is a subgroup of B]. Since B]

X ∩
λ−1

eX
(eX) = {1} by Lemma 5.7.10, we conclude that

B] ∼= (kerλeX
∩B]) oB]

X .

6) The relation eXB
]
X ⊂ eXB] is trivial. But eXB

]
X is closed. Therefore

5) implies that

eXB
]
X = eXB

]
X = eXB] ⊃ eXB

]
.

7) First we prove that U(eXB
]
X) = eXB

]
X . The inclusion eXB

]
X ⊂

U(eXB
]
X) is trivial. For the converse, we consider the homomorphism φ :

eXB
]
X → Aff(Im γ) defined by φ(s) := s|Im γ . Since s(ker γ) = seX(ker γ) =

s(1) = {1} for all s ∈ eXB
]
X , it follows that φ is a homeomorphism onto a

closed subsemigroup of Aff(Im γ) which satisfies φ(eX) = id. Therefore

U(eXB
]
X) = φ−1

(

H
(

φ(eXB
]
X)
))

.

On the other hand, φ(eXB
]
X) = Im γ o Q, where Q is a subgroup of

Aut(Im γ) consisting of upper triangular matrices with respect to the root
decomposition of the Lie algebra of Im γ. Hence Q is closed in Aut(Im γ)
and it suffices to show that U(Q) = Q, where Q is the closure of Q in
End(Im γ). But if

lim un = u ∈ U (End(Im γ)) = Aut(Im γ),

then u ∈ Q. This proves that U(eXB
]
X) = eXB

]
X . Therefore

U
(

(eX(S ∩B])
)

⊂ U
(

eXB
]
X

)

⊂ eXB
]
X .
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The semigroup eX(S ∩B]) is compact since S ∩B] is. Thus 4) shows that

φ
(

U
(

(eX(S ∩B])
))

is a compact subgroup of the simply connected solvable group Im γoQ and
therefore trivial. 2

Notes for Chapter 5

The material in Section 5.1 was first proved in [129]. Part of it can also be

found in the work of Ol’shanskii, e.g., [138]. There is extensive literature on

the exponential map for symmetric spaces, e.g., in [29, 44, 104]. The semigroup

H expC was first introduced by Ol’shanskii [137, 138] for the group case. In

recent years they have become increasingly important in geometry and analysis,

as we will see in the next chapters. References to applications will be given in

the notes to those chapters. Further sources are [50, 52, 64, 63, 93, 129, 130] and

the work of Ol’shanskii and Paneitz. That M is globally hyperbolic was first

proved by J. Faraut in [25] for the case GC/G. This was generalized in [129]

to arbitrary noncompactly causal symmetric spaces using the causal embedding

from Lemma 5.2.8. The proof presented here is an adaptation of that in [25]. A

different approach can be found in [114]. The characterization of Gτ exp(Cmax)

as a compression semigroup was noted first by Ol’shanskii. The proof presented

here appeared in [58]. The nonlinear convexity theorem was proven by Neeb in

[116]. The proof given is taken from [124]. The results on B] have been proved

in [55].



Chapter 6

The Order

Compactification of

Noncompactly Causal

Symmetric Spaces

The order compactification of ordered homogeneous spaces defined in Sec-
tion 2.4 is a fairly abstract construction. In this chapter we show that for
the special case of noncompactly causal symmetric spaces, many features
of the order compactification can be made quite explicit. In particular, the
orbit structure can be determined completely and described in terms of the
restricted root system. The basic idea is to identify gH ∈ M with the
compact set g · O ⊂ X , where O is the open domain in the flag manifold
X defined in Section 5.1. Similarly as for the order compactification, this
yields a compactification ofM via the suitable Vietoris topology. The point
is that this compactification is essentially the same as the order compact-
ification but easier to treat, since it deals with bounded convex sets in a
finite-dimensional linear space rather than translates of a “nonlinear cone.”

6.1 Causal Galois Connections

In this section we suppose that G is a connected Lie group and S an ex-
tended Lie subsemigroup of G with unit group H . Let M = G/H and
consider the order ≤ onM induced by ≤S (cf. Section 2.4). In the follow-
ing, X denotes a metrizable compact G-space and O ⊂ X an open subset

172
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with the property

S = {g ∈ G | g · O} and So = {g ∈ G | g · O ⊂ O}. (6.1)

(cf. Corollary 5.4.21 for an example of this situation.)
We endow the set F(X ) of closed (hence compact) subsets of X with the

Vietoris topology (cf. Appendix C). We write 2G for the set of all subsets
of G, and define the mappings

Γ : F(X )→ F(G), F 7→ {g ∈ G | g−1 · F ⊂ O} (6.2)

and

Γ̂ : 2G → F(X ), A 7→
⋂

a∈A

a · O. (6.3)

We call Γ a causal Galois connection. That this is no misnomer is a conse-
quence of the following lemma.

Lemma 6.1.1 The mappings

Γ̂ : (F(G),⊂)→ (F(X ),⊂) and Γ : (F(X ),⊂)→ (F(G),⊂)

are antitone and define a Galois connection between the above partially
ordered sets. Moreover, the following assertions hold:

1) ↓Γ(F ) = Γ(F ) for every F ∈ F(X ).

2) Γ(F )o = {g ∈ G | g−1 · F ⊂ O}.

3) For every subset A ⊂ G we have that Γ̂(A) = Γ̂(A) and Γ̂(↓A) =
Γ̂(A).

4) Γ̂(
⋃

i∈I Ai) =
⋂

i∈I Γ̂(Ai).

5) Γ(
⋃

i∈I Fi) =
⋂

i∈I Γ(Fi).

6) Γ(
⋂

n∈N

Fn) =
⋃

n∈N

Γ(Fn) for every decreasing sequence Fn in F(X ).

7) Γ̂(g ·A) = g · Γ̂(A) and Γ(g · F ) = g · Γ(F ) for all g ∈ G,A ∈ 2G, F ∈
F(X ).

8) Γ(g · O) = ↓ g for all g ∈ G.

9) Γ̂(↓ g) = g · O for all g ∈ G.
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Proof: The fact that Γ and Γ̂ define a Galois connection follows from the
fact that

A ⊂ Γ(F ) ⇔ A ⊂ {g ∈ G | F ⊂ g · O}
⇔ F ⊂ ⋂g∈A g · O = Γ̂(A).

1) Let g ∈ Γ̂(F ) and s ∈ S. Then g−1 · F ⊂ O and therefore

(gs−1)−1 · F = sg−1 · F ⊂ s · O ⊂ O,

hence ↓ g = gS−1 ⊂ Γ(F ).
2) Let g ∈ Γ(F )o. Then, since S has dense interior, there exists an s ∈ So

with gs ∈ Γ(F ). Therefore

g−1 · F = s(gs)−1 · F ⊂ s · O ⊂ O.

Conversely, suppose that g−1 · F ⊂ O. Then we find a neighborhood U of
g in G such that U−1 · F ⊂ O because F is compact and O is open. Thus
g ∈ U ⊂ Γ(F ).

3) It is clear that Γ̂(A) ⊂ Γ̂(A) = Γ̂(↓A) because

as−1 · O = a · (s−1 · O) ⊃ a · O for every a ∈ G, s ∈ S.

Let x ∈ Γ̂(A) and a ∈ A with a = limn→∞ an and an ∈ A. For every
n ∈ N we find an element fn ∈ O with x = an · fn. We may assume that
f := limn→∞ fn exists in the compact set O. Then

x = lim
n→∞

an · fn = a · f ∈ a · O.

4), 5) These assertions are trivial.
6) Set F :=

⋂

n∈N Fn. First we note that Γ(Fn) ⊂ Γ(F ) and therefore
that the right-hand side of 6) is contained in the left. Let g ∈ Γ(F ) and
sn ∈ So be a sequence with limn→∞ sn = 1. For every n ∈ N we have that

sng
−1 · F ⊂ sn · O ⊂ O,

i.e., F ⊂ gs−1
n · O. Note that Fn → F in the Vietoris topology. Hence we

find n0 ∈ N such that Fn0 ⊂ gs−1
n · O, which implies that gs−1

n ∈ Γ(Fn0 ).
This shows that gs−1

n ∈ ⋃k∈N Γ(Fk) for every n ∈ N. Now

g = lim
n→∞

gs−1
n ∈

⋃

k∈N

Γ(Fk).
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7) This is immediate from

Γ(g ·F ) = {x ∈ G | x−1g ·F ⊂ O} = {x ∈ G | (g−1x)−1 ·F ⊂ O} = g ·Γ(F )

and from
Γ̂(g · A) =

⋂

a∈g·A

a · O =
⋂

a∈A

ga · O = g · Γ̂(A).

8) We deduce from 7) that Γ(gO) = g · Γ(O), and therefore it remains
to show that S−1 = {g ∈ G | g−1 · O ⊂ O}. First, according to our
assumptions aboutO and X , we have that S−1 ⊂ Γ(O) because g−1 ·O ⊂ O
implies that g−1 · O ⊂ O. We claim that g ∈ S−1 for every g ∈ Γ(O). Let
sn ∈ So be a sequence with limn→∞ sn = 1. Then

sng
−1 · O = sn · (g−1 · O) ⊂ sn · O ⊂ O

and therefore sng
−1 ∈ So. Thus g−1 = limn→∞ sng

−1 ∈ So = S.
9) In view of 3), we have Γ̂(↓ g) = Γ̂({g}) = g · O. 2

Corollary 6.1.2 For two elements g, g′ ∈ G we have

g ≤S g
′ ⇐⇒ g′ · O ⊂ g · O

and
g ∈ (↓ g′)o ⇐⇒ g′ · O ⊂ g · O.

Proof: These are direct consequences of the fact that

So = {g ∈ G | g · O ⊂ O} and S−1 = Γ(O). 2

Lemma 6.1.3 The mapping Γ:F(X ) → F(G) is continuous with respect
to the Vietoris topologies on F(X ) and F(G).

Proof: Suppose that Fn → F in F(X ). We split up the proof into two
steps.

1) Γ(F )o ⊂ liminfn→∞Γ(Fn): Let g ∈ Γ(F )o. According to Lemma
6.1.1.2), we have g−1 · F ⊂ O, hence F ⊂ g · O. Consequently, we find
n0 ∈ N such that Fn ⊂ g · O for n ≥ n0. Thus g−1 · Fn ⊂ O ⊂ O and
g ∈ Γ(Fn) for n ≥ n0.

2) limsupn→∞Γ(Fn) ⊂ Γ(F ): Let g ∈ limsupn→∞Γ(Fn) and choose a
subsequence Fnk

and gk ∈ Γ(Fnk
) with gk → g. Then F = limk→∞ Fnk

.
Pick f ∈ F . If fk ∈ Fnk

with fk → f , then fk ∈ gk · O so f ∈ limk→∞ gk ·
O = g · O. Thus g ∈ Γ(F ), since f was arbitrary. As liminfn→∞F̂ (fn) is
closed, we now have

Γ(F )o ⊂ liminfΓ(Fn) ⊂ limsupΓ(Fn) ⊂ Γ(F ).

But Γ(F ) is closed and satisfies Γ(F ) = ↓Γ(F ), so Lemma 2.4.7 implies
Γ(F ) = Γ(F )o and hence Lemma C.0.6 shows that Γ(Fn)→ Γ(F ). 2
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Definition 6.1.4 We setMO := {g · O | g ∈ G} ⊂ F(X ). The map

ι:G→MO, g 7→ g · O

is called a causal orbit map. 2

Note that Lemma 6.1.1.8) implies that

Γ ◦ ι = η ◦ π, (6.4)

where π:G → G/H is the quotient map and η the order compactification
from Lemma 2.4.2.

Lemma 6.1.5 (Fixed Points of the Galois Connection) The follow-
ing assertions hold:

1) Γ ◦ Γ̂(A) = A for every A ∈ Γ(MO).

2) Γ̂ ◦ Γ(F ) = F for every F ⊂ X for which there exists a decreasing
sequence Fn = gn · O with

F = lim
n→∞

Fn =
⋂

n∈N

gn · O.

Proof: 1) There exists a compact subset F ∈ MO with A = Γ(F ). The
fact that Γ̂ and Γ define a Galois connection (Lemma 6.1.1) implies that

ΓΓ̂(A) = ΓΓ̂Γ(F ) = Γ(F ) = A.

2) We use Lemma 6.1.1.6) to see that Γ(F ) =
⋃

n∈N Γ(Fn). According
to Lemma 6.1.1.3), this leads to

Γ̂Γ(F ) = Γ̂

(

⋃

n∈N

Γ(Fn)

)

= Γ̂(
⋃

n∈N

↓ gn) =
⋂

n∈N

Γ̂(↓ gn) =
⋂

n∈N

gn · O = F . 2

Proposition 6.1.6 The mapping Γ :MO →Mcpt is a quotient morphism
of compact G-spaces, where G acts on MO by (g, F ) 7→ g · F . Moreover,
the action of G on MO is continuous.

Proof: We show first that Γ(MO) =Mcpt. In fact, consider g · O ∈ MO.
Then, according to Lemma 6.1.1.8),

Γ(g · O) = ↓ g = gS−1 = η(gH).
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This proves the claim, since Γ:MO → Φ(G) and η:M→ Φ(G) are contin-
uous and {g · O | g ∈ G} is dense in MO just asM is dense in Mcpt.

It follows from Lemma 6.1.1.7) that Γ is equivariant. Lemma 6.1.3 to-
gether with the above implies that Γ is a quotient mapping of compact
spaces. The action of G on Φ(X ) is continuous by Lemma C.0.7. Thus
MO is G-invariant and the restriction is obviously a continuous action on
MO. 2

Theorem 6.1.7 Let

MO
+ := (Γ|MO )−1(Mcpt

+ ). (6.5)

Then the following holds:

1) ι(S) =MO
+.

2) S = {g ∈ G | g · (MO
+)o ⊂ (MO

+)o}.

3) So = {g ∈ G | g ·MO
+ ⊂ (MO

+)o}.
Proof: 1) This follows from Γ (ι(S)) = η(M+).

2) and 3): First we note that Γ(MO
+) =Mcpt

+ by Proposition 6.1.6. We

claim that [Mcpt
+ ]o = Γ([MO

+ ]o) and [MO
+ ]o = Γ−1([Mcpt

+ ]o). In fact, we
have

F ∈MO
+ ⇔ Γ(F ) ∈ Mcpt

+ ⇔ 1 ∈ Γ(F )⇔ F ⊂ O
because of Lemma 2.4.4, and, using Lemma C.0.7, we see that F ∈ [MO

+ ]o

implies that there exists a neighborhood U of 1 in G such that U · F ⊂ O.
On the other hand, Γ(F ) ∈ [Mcpt

+ ]o holds if and only if there exists a

neighborhood U of 1 in G such that U · F ⊂ O because of Proposition
2.4.4. This shows that

Γ([MO
+ ]o) ⊂ [Mcpt

+ ]o.

The reverse inclusion follows from the continuity of Γ. Now we have
Γ([MO

+ ]o) = [Mcpt
+ ]o, which upon taking the preimage under Γ also shows

that [MO
+ ]o = Γ−1([Mcpt

+ ]o). Now we see that g ∈ S is equivalent to

g · [Mcpt
+ ]o ⊂ [Mcpt

+ ]o ⇐⇒ g · Γ([MO
+ ]o) ⊂ Γ([MO

+ ]o)

⇐⇒ Γ(g · [MO
+ ]o) ⊂ Γ([MO

+ ]o)

⇐⇒ g · [MO
+ ]o ⊂ [MO

+ ]o.

Similarly, g · Mcpt
+ ⊂ [Mcpt

+ ]o ⇐⇒ g · MO
+ ⊂ [MO

+ ]o. An application of
Proposition 2.4.4 completes the proof of the last two claims. 2
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6.2 An Alternative Realization of Mcpt
+

From now on we assume thatM = G/H is a noncompactly causal symmet-
ric space such that G is contained in a simply connected complexification
GC. Moreover, the semigroup S = S(Cmax), the flag manifolds XG/Pmax

and XC = GC/(Pmax)C, and the open domain O ⊂ X , are the ones from
Section 6.1.

Recall the causal orbit map ι:G→MO from Definition 6.1.4.

Theorem 6.2.1 ι(S) =
[

KA · ι (S ∩A)
]

∩ F(O).

Proof: ⊂: Let E = limn→∞ sn · O ∈ ι(S) ⊂ F(O). From [115], 2.9, we
know that G = KAH. Therefore we find elements kn ∈ K, an ∈ A, and
hn ∈ H such that sn = knanhn. Then sn ·O = knan ·O because H ·O = O.
According to [66], p. 198, the group K is compact since k+ ip is a compact
real form of the complex semisimple Lie algebra gC and G ⊂ GC. Therefore
we may assume that k0 = limn→∞ kn exists in K and we find that

E = lim
n→∞

knan · O = k0 · lim
n→∞

an · O

because k−1
0 ·E = limn→∞ k−1

0 knan · O = limn→∞ an · O. Thus

∅ 6= Γ(k−1
o ·E) = k−1

o Γ(E) = lim
n→∞

Γ(an · O) = lim
n→∞

↓ an = lim
n→∞

η(an)

since Γ(E) ∈ η(S) contains S−1. Now we use Lemma 5.6.5 to find an a ∈ A
such that ana

−1 ∈ S ∩A for all n ≥ n0. Then

E = koa lim
n→∞

(a−1an) · O ∈ KA · ι (S ∩A) ∩ F(O).

⊃: Let E = ka · limn→∞ an · O ⊂ O. Taking s ∈ So, we find that

lim
n→∞

skaan · O ⊂ s · O ⊂ O.

Therefore we find an n0 ∈ N such that skaan · O ⊂ O for n ≥ n0. Thus
skaan ∈ S and consequently

s ·E = lim
n→∞

skaan · O ∈ ι(S).

The fact that 1 ∈ So now implies that E ∈ ι(S). 2
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Remark 6.2.2 Consider the commutative diagram

O −→ N− · oX −→ X
↑ ↑

Ω− −→ n− ' N−

The vertical maps are G-equivariant homeomorphisms and O, respectively
Ω−, is relatively compact in the open setN−·oX , respectively n−. Therefore
F(Ω−) can be identified with the compact set

F(O) = {F ∈ F(X ) | F ⊂ O}

(cf. Lemma C.0.6). In particular, we have an action of Affcom(N−) on
F(O) and can considerMO as a subset of F(Ω−). 2

Next we consider the set ι(S ∩A) ⊂ F(O).

Lemma 6.2.3 Recall the closure B] of B] in Aff(N−) and the closure Scpt
A

of S ∩A in B]. Then the following assertions hold:

1) S ∩B] = {γ ∈ B] | γ · O ⊂ O} is a compact semigroup.

2) MO
+ = ι(S) = S ∩B] · O.

3) MO
+ =⊂ KA · (Scpt

A · O).

Proof: 1) In view of Theorem 5.4.8 and Remark 5.7.4, we only have to show

that S ∩B] ⊃ {γ ∈ B] | γ · O ⊂ O}, because the other inclusion is clear.

Let γ ∈ {α ∈ B] | α · O ⊂ O} and γn ∈ B] with γn → γ. We choose
X ∈ comax and set a(t) = exp(tX). Then ead tX(Ω−) ⊂ Ω− for every t > 0.
Therefore Ω− ⊂

[

e− ad tX(Ω−)
]o

entails the existence of n0 ∈ N such that

γn(Ω−) ⊂ e− ad tX(Ω−) for all n ≥ n0. Then a(t)γn ∈ S ∩B]. We conclude
that

γ = lim
n→∞

a(t)−1[a(t)γn] ∈ a(t)−1S ∩B].

Letting t→ 0, we find that γ ∈ S ∩B] because S ∩B] is compact.
2) Note that compactness shows

(S ∩B]) · Ω− ⊂ S ∩B] · Ω− = S ∩B] ·Ω− ⊂ (S ∩B]) · Ω−

so that
ι(S) = (S ∩B]) · Ω− = S ∩B] ·Ω−.

The first equality follows from Theorem 6.1.7.
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3) Since Scpt
A is a compact subsemigroup of S ∩B] which contains S∩A,

Theorem 6.2.1 and Proposition 5.7.5 entail that

ι(S) ⊂ KA · ι(S ∩A) = KA · (Scpt
A · O). 2

Lemma 6.2.3 shows that information on the orbit structure of ι(S) =
MO

+ may be obtained from Scpt
A · O, which is an orbit of a compact abelian

semigroup. The topological structure of ι(S) is encoded in the compact

semigroup S ∩B].
For a face F ∈ Fa(cone(∆−)), we set

ΩF := eF ·Ω− (6.6)

and note that we may view ΩF as a subset,

OF ⊂ X ⊂ XC. (6.7)

Theorem 6.2.4 The causal Galois connection Γ:F(X ) → F(G) defined
in (6.2) induces a homeomorphism MO

+ →Mcpt
+ .

Proof: We note first that

ι(S) ⊂ KA · {ΩF | F ∈ Fa(cone(∆−))} (6.8)

which is a consequence of Lemma 6.2.3.3) and recall that

Scpt
A = exp(cmax)E(Scpt

A ) = exp(cmax){eF | F ∈ Fa(cone(∆−))}

from Theorem 5.7.6
Further, we know from Theorem 6.1.7 that Mcpt

+ = Γ(MO
+). Since

Γ:MO → Mcpt is a quotient map by Theorem 6.1.6, it only remains to
prove that Γ|

ι(S)
is injective. Let E ∈ ι(S). Then there exists g ∈ G and

F ∈ Fa(cone ∆−) such that E = g ·ΩF ⊂ O. Thus

Γ̂Γ(E) = Γ̂Γ(g ·ΩF ) = g · Γ̂Γ(ΩF ) = g · ΩF = E

because ΩF = limt→∞ exp(tX) ·O for X ∈ IntF⊥(cmax ∩F⊥) (cf. Theorem
5.7.6, Lemma 6.1.5). This proves the claim. 2

6.3 The Stabilizers for Mcpt
+

We remain in the situation of Section 6.2. This section is devoted to the
study of the stabilizer groups in G of points in Mcpt

+ .
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Let X be an element of a+. We determine the connected component of
the isotropy group of the element limt→∞(exp tX)·O inMO

+ . We endow the
space of vector subspaces of g with the Vietoris topology which coincides
with the usual topology coming from the differentiable structure on the
Graßmann manifold.

Proposition 6.3.1 The limit hX := limt→∞ ead tXh exists and

hX = zh(X) + g(∆+ \X⊥).

Proof: We write g = m + a +
⊕

α∈∆ gα and

prh : g→ h, Y 7→ 1

2
[Y + τ(Y )]

for the projection of g onto h. Then

h = m +
⊕

α∈∆+

prh(gα)

because prh(gα) = prh(g−α). The subspace m = zh(a) is fixed under A and
for Y ∈ gα, α ∈ ∆+ we find that

lim
t→∞

ead tXprh(RY ) = lim
t→∞

ead tXR [Y + τ(Y )]

= lim
t→∞

R

[

etα(X)Y + e−tα(X)τ(Y )
]

=

{

prh(RY ), if α(X) = 0
RY, if α(X) > 0.

We conclude that limt→∞ et ad Xh exists and equals

hX = m⊕
⊕

α∈∆+∩X⊥

prh(gα)⊕
⊕

α∈∆+\X⊥

gα = zh(X)⊕ g(∆+ \X⊥). 2

Lemma 6.3.2 hX ∩ (a + n]) = {0} and g = hX + a + n].

Proof: Let Y = Y1 + Y2 = Z1 + Z2 ∈ hX ∩ (a + n]) with Y1 ∈ zh(X),
Y2 ∈ g(∆+ \X⊥), Z1 ∈ a, and Z2 ∈ n] = g(∆+)]. Then

Y1 = Z1 + Z2 − Y2 ∈ (a + n] + n) ∩ zg(X) = a⊕
⊕

α∈∆∩X⊥

gα.

We conclude that Y2 = 0 because the sum a + n] + n is direct. Then
Y1 ∈ (a + n]) ∩ h = {0} and therefore Y = 0. This proves that
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hX ∩ (n] + a) = {0}. The second assertion follows from dim h =
dim hX = dim g− (dim a + dim n]). 2

Note that Lemma C.0.10 implies

HX ⊂ HF := {g ∈ G | g · ΩF = ΩF }, (6.9)

where HX = 〈exp hX〉 because ΩF = limt→∞ exp(tX) · O.

Proposition 6.3.3 Let hF be the Lie algebra of HF . Then

hF = hX +
[

hF ∩ (a + n])
]

and
HF ∩B] = ρ−1

eX
(eX) ∩B].

Proof: The first assertion follows from Lemmas 6.3.2 and C.0.10. Write
eX = (1, γ). We know already that ΩF corresponds to γ(Ω−) ⊂ n− (cf.
Lemma 5.7.2 and Theorem 5.4.8) and that

HF ∩B] = {(n−, δ) ∈ B] | (n−, δ) · γ(Ω−) = γ(Ω−)}.

Let (n−, δ) ∈ HF ∩B]. Then

eX(n−, δ) · γ(Ω−) = eX · γ(Ω−) = γ(Ω−).

Therefore eX(n−, δ) ∈ U
(

eX(S ∩B])
)

= {eX} (Lemma 5.7.15.7)). We

conclude that (n−, δ) ∈ λ−1
eX

(eX) ⊂ kerγ o N ]
0A (Lemma 5.7.10.1)). Now

(a, δ) · 1 = a ∈ γ(Ω−) ⊂ Im γ implies that

a ∈ Im γ ∩ ker γ = {1}.

Next we have δ
(

γ(Ω−)
)

⊂ γ(Ω−), which implies that δ(Im γ) ⊂ Im γ and
δ ∈ λ−1

eX
(eX) entails that γδ|Im γ = γ. Thus δ|Im γ = idIm γ , so (5.41) implies

that
HF ∩B] ⊂ ρ−1

eX
(eX).

Conversely, (n−, δ)eX = eX entails that

(n−, δ) · γ(Ω−) = (n−, δ)eX ·Ω− = eX ·Ω− = γ(Ω−). 2

Corollary 6.3.4 Suppose that X ∈ a+ is relatively regular. Then

hF = m⊕∆⊥
X,+ ⊕ g(∆+ \X⊥)⊕ g(∆+

0 ∩∆⊥
X,+)] ⊕

⊕

α∈∆+
X

ph(gα)].

Proof: Remark 5.7.11, Proposition 6.3.1, and Proposition 6.3.3. 2
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6.4 The Orbit Structure of Mcpt

We retain the hypotheses of Section 6.2. In this section we finally determine
the orbit structure of the order compactification ofM.

Proposition 6.4.1 Let w ∈ NK∩H(a) and X ∈ cmax with

lim
t→∞

exp(tX) · O = ΩF .

Then
lim

t→∞
exp (tAd(w)X) · O = w ·ΩF .

Proof: We have that

lim
t→∞

exp (tAd(w) ·X) · O = lim
t→∞

w exp (tX)w−1 · O

= lim
t→∞

w exp (tX) · O = w · ΩF .

which proves the assertion. 2

Corollary 6.4.2 For every orbit G · ΩF there exists X ∈ a+ such that

lim
t→∞

exp(tX) · O ∈ G ·ΩF .

Proof: Since cmax = W0 · a+ this follows from Proposition 6.4.1. 2

Let X ∈ a+, eX = (1, γ) the corresponding idempotent of S ∩B], and
F = FX . We set

nX,− := g(∆X,−) = Im γ and NX,− := exp(nX,−). (6.10)

Remark 6.4.3 Let L be a group acting on a space X and Y ⊂ X be a
subset. We define

NY(L) := {g ∈ L | g · Y = Y},
ZY(L) := {g ∈ L | ∀y ∈ Y : g · y = y} .

Then the subgroupZY(L) ofNY(L) is normal. In fact, let y ∈ Y, h ∈ NY(L)
and g ∈ ZY(L). But then

hgh−1 · y = h ·
[

g · (h−1 · y)
]

= h · (h−1 · y) = y

because h−1 · y ∈ Y and this implies the claim. 2

Recall from (6.7) that the ΩF correspond to compact subsets OF of
O ⊂ X .
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Lemma 6.4.4 The following assertions hold:

1) ΩF is a compact subset of NX,− · oX with dense interior.

2) Set ZF := {g ∈ G | ∀x ∈ ΩF : g · x = x}. Then

ZF = {g ∈ G | ∀x ∈ NX,− · o : g · x = x}
=

⋂

g∈NX,+

gPmaxg
−1.

3) The normalizer of ZF contains A, M , and HF .

Proof 1) This follows from the fact that ΩF =
[

eF · exp(Ω−)
]

·oX and that
eF · exp(Ω) = exp(Ω) ∩NX,− is open in NX,− (cf. Lemma 5.7.15).

2) The equality

{g ∈ G | ∀y ∈ NX,− · oX : g · y = y} =
⋂

g∈NX,+

gPmaxg
−1

is clear, since gPmaxg
−1 is the stabilizer of g · oX . It is also clear that

ZF contains this subgroup. To see that the converse inclusion holds, let
g ∈ ZF . Then the mapping

Φ : NX,− → X , n− 7→ n−1
− gn− · oX

is analytic and constant on the open subset exp(Ω)∩NX,−. Therefore it is
constant becauseNX,− is connected. We conclude that g·(n−·oX ) = n−·oX

for all n− ∈ NX,−.
3) Lemma 6.4.3 shows that ZF is a normal subgroup of HF . That MA

normalizes ZF follows from 2) and the invariance of NX,− · oX under MA.
To see this invariance, let g ∈MA. Then g ·oX = oX because MA ⊂ Pmax

and therefore

gNX,− · oX = gNX,−g
−1 · oX = NX,− · oX . 2

Lemma 6.4.5 Let PF be the normalizer of zF . Then PF is a parabolic
subgroup of G containing Pmin = MAN .

Proof: Let pF be the Lie algebra of PF . Then, by Lemma 6.4.4.3), hF +a ⊂
pF and MA ⊂ PF . The subalgebra generated by prh(gα) and a contains

gα + g−α for every α ∈ ∆+
X with X relatively regular (cf. Corollary 6.3.4).

So
m + a + g(∆+) = m + a + n ⊂ pF .

Therefore Pmin = MAN ⊂ PF and consequently PF is a parabolic sub-
group. 2
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Lemma 6.4.6 Let ΩF , ΩF ′ be such that F 6= F ′ and F⊥∩cmax, F
′⊥∩cmax

are faces of cmax generated by relatively regular elements X,X ′ in a+. Then
G ·ΩF 6= G ·ΩF ′ .

Proof: Suppose that G · ΩF = G · ΩF ′ . Then there exists g ∈ G such that
g · ΩF = ΩF ′ . Therefore HF ′ = gHF g

−1 and gZFg
−1 = ZF ′ . This implies

also that gPF g
−1 = PF ′ . But PF and PF ′ are parabolic subgroups of G

containing Pmin. Hence they are equal ([168], p. 46). Moreover, PF is its
own normalizer. So g ∈ PF and ZF ′ = ZF . Thus

∆⊥
X,+ = zF ∩ a = zF ′ ∩ a = ∆⊥

X′,+.

Then the faces ∆⊥
X,+∩cmax and ∆⊥

X′,+∩cmax are equal and F = F ′ follows
from Remark 2.1.7. 2

Proposition 6.4.1 and Lemma 6.4.6 now yield the following.

Theorem 6.4.7 The G-orbits of ΩF and ΩF ′ for F, F ′ ∈ Fa(cone(∆−))
agree if and only if F and F ′ are conjugate under the Weyl group W0.

Lemma 6.4.8 1) G ·Ω− ⊂ KA · {ΩF | F ∈ Fa(cone(∆−))}.

2) For all F ∈ Fa(cone(∆−)) we have G ·ΩF = KA · ΩF .

Proof: 1) In view of Theorem 5.7.6.2) and Theorem 5.7.6.4) this is exactly
what was shown in the first part of the proof of Theorem 6.2.1.

2) Using Corollary 6.4.2 and 1), we find

G · ΩF ⊂ G · Ω− = KA · {ΩF ′ | F ′ ∈ Fa(cone(∆−))}.

If g ·ΩF ∈ KA ·ΩF ′ , then we have G ·ΩF = G ·ΩF ′ so Lemma 6.4.6 implies
that F = w · F ′ for some element w ∈ W0. But W0 ·A = A and the action
of W0 on A is induced by conjugation with elements from K, so

KA ·ΩF = KA · Ωw·F ′ = KAw · ΩF ′ = Kw(w−1Aw) · ΩF ′ = KA · ΩF ′ .

It follows in particular that g ·ΩF ∈ KA ·ΩF . 2

Lemma 6.4.9 Suppose that G · Γ(ΩF ′) ⊂ G · Γ(ΩF ) for some F ′, F ∈
Fa(cone(∆−)). Then there exists a Weyl group element w ∈ W0 with
w · F ′ ⊂ F , i.e., w · F ′ is a face of F .

Proof: The hypothesis means that there exists a sequence of elements gn ∈
G such that ΩF ′ = limn→∞ gn · ΩF . Lemma 6.4.8 shows that we can find
kn ∈ K and an ∈ A satisfying ΩF ′ = limn→∞ knan · ΩF . Without loss of
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generality we may assume that the kn converge to some ko ∈ K, so that

k−1
o · ΩF ′ = limn→∞ an · ΩF ∈ A · ΩF . This implies that eF (k−1

o · ΩF ′) =
k−1

o ·ΩF ′ . On the other hand, we know that Γ(k−1
o ·ΩF ) = k−1

o ·Γ(ΩF ) 6= ∅.
Therefore Lemma 5.6.5 tells us that there exists an ao ∈ A with k−1

o ΩF ′ ∈
aoΩF ′ ⊂ ao(S ∩A)O. Thus

k−1
o · ΩF ′ ∈ eFAS

cpt
A · O = AScpt

A · ΩF =
⋃

F ′′⊂F

A ·ΩF ′′ .

Pick F ′′ ⊂ F with k−1
o ·ΩF ′ ∈ A ·ΩF ′′ . Then G ·ΩF ′ = G ·ΩF ′′ entails that

F ′′ ∈ W0 · F ′ (cf. Theorem 6.4.7). 2

Lemma 6.4.10 Let F ∈ Fa(cone(∆+)). Then the following assertions are
equivalent.

1) F = F̃ ∩ cone(∆−) for an F̃ ∈ Fa(cone(−∆+)).

2) There exists an X ∈ a+ such that F = X⊥ ∩ cone(∆−).

3) There exists a relatively regular X ∈ a+ such that

F = X⊥ ∩ cone(∆−) .

4) F⊥ ∩ cmax is generated by a relatively regular element of a+.

Proof: 1)⇒ 2): F̃ ∈ Fa(cone(−∆+)) means that F̃ = op(E) for some E ∈
Fa(cone(−∆+)∗) = Fa(−a+). If X ∈ algint(E), then F̃ = X⊥∩cone(−∆+)
and hence F = F̃ ∩ cone(∆−) = X⊥ ∩ cone(∆−).

2)⇒ 3) follows from Lemma 5.7.8.2).
3)⇒ 4): If F = X⊥ ∩ cone(∆−), then

cmax ∩ F⊥ = cmax ∩ a[RX+cone(∆−]∗)

= cmax ∩ a[RX+cmax] = cmax ∩ [R+X − cmax],

where aC for cone C in a is the edge of the cone, is generated by X (cf.
Section 2.1 for the notation).

4)⇒ 1): If F⊥∩cmax is generated by X ∈ a+, then F = X⊥∩cone(∆−).
Let F̃ := X⊥ ∩ cone(−∆+) ∈ Fa(cone(−∆+)). Then F̃ ∩ cone(∆−) = F .
2

Remark 6.4.11 For all F ∈ Fa(cone(∆−)) one can find a γ ∈ W such
that γ(F ) satisfies the conditions from Lemma 6.4.10. If γ(F ) and γ′(F )
both satisfy these conditions, then Lemma 6.4.6 shows that γ(F ) = γ′(F ).
2
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The space Fa(cone(∆−)) carries a natural partial order �. It is given
by inclusion. The corresponding strict order will be denoted by ≺. On the
other hand, we introduce an ordering on the set of G-orbits inMcpt via

G ·m ≺ G ·m′ :⇔ G ·m ⊂ G ·m′, G ·m 6= G ·m′;

G ·m � G ·m′ :⇔
{

G ·m ≺ G ·m′

or
G ·m = G ·m′.

It is clear that the relation � on G\Mcpt is reflexive and transitive. For
the antisymmetry, note that G · m ≺ G · m′ ≺ G · m implies that G ·m
is strictly contained in G ·m′, which in turn is contained in G ·m. This
shows that G ·m = G ·m′, in contradiction to the hypothesis. Thus � is
a partial order. Note that G ·m ≺ G ·m′ means that m ∈ G ·m′ and the
G-orbit of m is not dense in G ·m′.

Lemma 6.4.12 Let F ′ ⊂ F be faces of c∗max. Then Γ(ΩF ′) ∈ G · Γ(ΩF ).

Proof: F ⊂ F ′ implies that

eF eF ′ = eF ′eF = eF ′ = lim
t→∞

exp tX ′

for X ′ ∈ Int(F ′)⊥(cmax ∩ (F ′)⊥) (cf. Theorem 5.7.6). Using Lemma 5.7.2,
we can calculate

ΩF ′ = eF ′Ω− = lim
t→∞

exp tX ′ · eF Ω−

= lim
t→∞

exp tX ′ · ΩF ∈ G · ΩF .

Thus Γ(ΩF ′) ∈ G · Γ(ΩF ). 2

For an element E ∈ MO
+ we define the degree d(E) := dim ker eF ,

where E ∈ G · ΩF . We note that eF : n− → n− is a projection and
m := dim n− − dimker eF agrees with the topological dimension of the set
E ∼= ΩF

∼= eF · Ω−, which is an m-dimensional compact convex set. Upon
identification ofMO

+ withMcpt
+ via Γ, we have the function d also onMcpt

+ .

Proposition 6.4.13 Suppose that F, F ′ ∈ Fa(cone(∆−)) and F ′ is strictly
contained in F . Then

G · Γ(ΩF ′) ≺ G · Γ(ΩF ).
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Proof: Recall that −c∗max is a polyhedral cone spanned by the elements
of ∆−. Thus the hypothesis shows that F ′ ∩ ∆− is strictly contained in
F ∩∆−. But then we have

d(ΩF ′) = dim ker eF ′ < dimker eF = d(ΩF ).

So ΩF ′ ∈ {y ∈ MO
+ | d(y) ≥ d(ΩF ) + 1} and hence G · ΩF ′ ∩MO

+ ⊂ {y ∈
MO

+ | d(y) ≥ d(ΩF ) + 1} or

G · Γ(ΩF ′) ∩Mcpt
+ ⊂ {x ∈ Mcpt

+ | d(x) ≥ d
(

Γ(ΩF )
)

+ 1}. (6.11)

But since Γ(ΩF ) is not contained in the right-hand side of this inclusion, it
is also not contained in G · Γ(ΩF ′) ∩Mcpt

+ , whence G · Γ(ΩF ′) 6= G · Γ(ΩF )
and the assertion follows from Lemma 6.4.12. 2

Theorem 6.4.14 Let F := {F ∈ Fa(cone(∆−)) | ∃F̃ ∈ Fa(cone(−∆+)) :
F̃ ∩ cone(∆−) = F}. Then the mapping

Υ:F → (Mcpt \ {∅})/G, F 7→ G · ΩF

is an order isomorphism.

Proof: The surjectivity of Υ follows from Lemma 6.4.8 and the injectivity
from Lemma 6.4.6 and Remark 6.4.11. According to to Proposition 6.4.13
it is order-preserving, and that the inverse is also order-preserving is a
consequence of Lemma 6.4.9. 2

We describe the structure of the lattice F in more detail. Note first that
F is isomorphic to −F . Since cone(∆+) is polyhedral and ∆+ is generated
by a set Υ = {α0, . . . , αl} of linearly independent elements (cf. Lemma
5.5.10), it is clear that the mapping

Fa(cone(∆+))→ 2Υ, F 7→ F ∩Υ

is an order isomorphism. So we have to determine the image of the mapping

2Υ → F , D 7→ cone(D) ∩ cone(∆+).

To each subset D ⊂ Υ there corresponds a subgraph of the Dynkin graph
of ∆. Recall that Υ contains only one noncompact root α0. Let D0 ⊂ D
correspond to the connected component of α0 in the Dynkin graph. Then

(spanD) ∩∆ = [(spanD0) ∩∆]∪̇[span(D \D0) ∩∆]

and therefore

cone(D) ∩ cone(∆+) = cone(D0) ∩ cone(∆+).
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Hence it suffices to consider subsets D ⊂ Υ such that α0 ∈ D and the cor-
responding subgraph is connected. The resulting lattices have been listed
in [55].

Example 6.4.15 In the situation of the SL(2,R) Example 5.7.7 we have

ΩF1 = {0} and ΩF2 = Ω−

and F = {F1, F2}. In particular,Mcpt \ {∅} has two SL(2,R) orbits. 2

Corollary 6.4.16 G · Γ(ΩF ) =
⋃

F ′⊂F G · Γ(ΩF ′).

Proof: G · Γ(ΩF ) is the disjoint union ofG-orbits. For each of theseG-orbits

G·x we haveG·x ⊂ G · Γ(ΩF ), so Lemma 6.4.9 implies thatG·x = G·Γ(ΩF ′)
for some face F ′ of F . This proves the inclusion ⊂, whereas the reverse
inclusion is clear from Corollary 6.4.2. 2

Theorem 6.4.17 For F ∈ Fa(cone(∆−)) we have

g · ΩF ∈MO
+ ⇔ g · ΩF ⊂ Ω−.

Proof: Recall that Theorem 5.7.6.3) shows that ΩF = limt→∞ exp(tX) ·Ω−

for X ∈ IntF⊥(cmax ∩ F⊥).

⇐: If g · ΩF ∈ MO
+ and s ∈ So, then we have sg · ΩF ∈ (MO

+)o by

Theorem 6.1.7 and hence sg exp(tX) · Ω− ∈ MO
+ for large t. We choose

sn ∈ So with sn → 1 and tn such that tn →∞ and

sng exp(tnX) · Ω− ∈MO
+ . (6.12)

Now the calculation in the proof of Lemma 6.1.5 shows that (6.12) holds
precisely when η(sng exp(tnX)H) ∈ Mcpt

+ because of Theorem 6.1.7. But
this in turn is equivalent to sng exp tnX ∈ S and hence to sng exp(tnX) ·
Ω− ⊂ Ω−. If we let n tend to ∞ we obtain g ·ΩF ⊂ Ω−.
⇒: This time we choose sn ∈ So and tn ∈ R with sn → 1, tn → ∞

and sng exp(tnX) ·Ω− ⊂ Ω−. Reading the argument in the first part of the
proof backwards, we find sng exp(tnX) · Ω− ∈ MO

+ and upon taking the

limit, g · ΩF ∈ MO
+ . 2

Corollary 6.4.18 Let F ∈ Fa(cone(∆−)). Then

G · Γ(ΩF ) ∩Mcpt
+ = G · Γ(ΩF ) ∩Mcpt

+ .
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Proof: The inclusion ⊂ is obvious. To show the reverse inclusion, let F ′

be a face of F and note that Γ(ΩF ′) = limt→∞ exp tX ′ · Γ(ΩF ) for X ′ ∈
IntF ′⊥(cmax∩F ′⊥). If x ∈ G ·Γ(ΩF ′)∩Mcpt

+ , then there exists a g ∈ G such

that x = g · Γ(ΩF ′) ∈Mcpt
+ and Theorem 6.4.17 implies that g ·ΩF ′ ⊂ Ω−.

Choose sn ∈ So and tn > 0 with sn → 1, tn →∞ and sng exp tnX
′ ·ΩF ⊂

Ω−. Then Theorem 6.4.17 shows that sng exp tnX
′ · Γ(ΩF ) ∈ Mcpt

+ and in

the limit we find g · Γ(ΩF ′) ∈ Mcpt
+ . In other words,

G · Γ(ΩF ′) ∩Mcpt
+ ⊂ G · Γ(ΩF ) ∩Mcpt

+ .

Finally, Corollary 6.4.16 shows that

Mcpt
+ ∩G · Γ(ΩF ) =

⋃

F ′⊂F

[G · Γ(ΩF ′) ∩Mcpt
+ ] ⊂ G · Γ(ΩF ) ∩Mcpt

+ 2

For k ∈ No we set

(Mcpt
+ )k := {x ∈Mcpt

+ | d(x) = k}. (6.13)

Corollary 6.4.19 1) (Mcpt
+ )k =

⋃

d(ΩF )=k(G · Γ(ΩF ) ∩Mcpt
+ ).

2) Each G · Γ(ΩF ) with d(ΩF ) = k is open in (Mcpt
+ )k with respect to

the induced topology.

Proof: 1) is obvious.
2) It suffices to show that each G ·Γ(ΩF )∩Mcpt

+ is closed inMcpt
+ , since

the union is finite. Using Corollary 6.4.16 and Corollary 6.4.18, we calculate

G · Γ(ΩF ) ∩Mcpt
+ ∩ (Mcpt

+ )k = G · Γ(ΩF ) ∩ (Mcpt
+ )k

=
⋃

F ′⊂F

[G · Γ(ΩF ′ ] ∩ (Mcpt
+ )k)

= G · Γ(ΩF ) ∩Mcpt
+

since d(ΩF ′) < d(ΩF ) for F ′ strictly contained in F . 2

6.5 The Space SL(3,R)/ SO(2, 1)

We conclude this chapter with a detailed discussion of the space M =
SL(3,R)/ SO(2, 1). Thus we let G = SL(3,R), g = sl(3,R). As a Cartan
involution g we use θ : g → g, X 7→ −tX , which yields K = SO(3), k =
so(3,R) and

p =
{

(

A c
tc −TrA

)∣

∣

∣

∣

tA = A, c ∈ R2
}

.
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As a maximal abelian subspace a of p we choose

a =











r + s 0 0
0 −r + s 0
0 0 −2s





∣

∣

∣

∣

∣

∣

r, s ∈ R







,

so that

A = exp a =











a1 0 0
0 a2 0
0 0 a3





∣

∣

∣

∣

∣

∣

ai > 0, a1a2a3 = 1







.

Moreover, we have

M = ZK(a)

=

{

I3,

(

−I2 0
0 1

)

,

(

I1,1 0
0 −1

)

,

(

1 0
0 −I2

)}

.

Now consider the involution τ : g→ g given by

X =

(

A b
tc d

)

7→
(

−tA c
tb −d

)

=

(

1 0
0 −1

)

θ(X)

(

1 0
0 −1

)

and its global counterpart, which is given by the same formula. Then

H = SO(2, 1)

=







(

A b
tc d

)

∈ SL(3,R)

∣

∣

∣

∣

∣

∣

b, c ∈ R2,
d ∈ R, tAA− ctc = 1,

tAb = dc, ||b||2 − |d|2 = −1







,

h = so(2, 1) =

{(

A b
tb 0

)∣

∣

∣

∣

tA = −A, b ∈ R2

}

,

q =

{(

A c
−tc −TrA

)∣

∣

∣

∣

tA = A, c ∈ R2

}

.

The c-dual objects are

Gc = SU(2, 1)

=











(

A b
tc d

)

∈ SL(3,C)

∣

∣

∣

∣

∣

∣

∣

A ∈ M(2,C),
b, c ∈ C2, d ∈ C,
A∗A− ctc = 1

A∗b = dc, ||b||2 − |d|2 = −1











,
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gc = h + iq = su(2, 1)

=

{(

A+ iB b+ ic
tb− itc −iTrB

)∣

∣

∣

∣

tA = −A, tB = B

}

,

Kc =

{(

A 0
0 detA−1

)∣

∣

∣

∣

A ∈ U(2)

}

,

kc =

{(

A 0
0 −TrA

)∣

∣

∣

∣

A∗ = −A
}

.

We write a = RH1 + RH2 with

H1 :=





1 0 0
0 −1 0
0 0 0



 and H2 :=





1 0 0
0 1 0
0 0 −2





and note that X0 = 1
3H2 is a cone-generating element in qp. As a system

of positive roots we choose

∆+ = {α13, α23, α12}
and note that

α12(rH1 + sH2) = 2r

α23(rH1 + sH2) = −r + 3s

α13(rH1 + sH2) = r + 3s,

so that
∆+ = {α13, α23}, ∆+

0 = {α12}.
The corresponding root vectors are

E12 =





0 1 0
0 0 0
0 0 0



 ,

E23 =





0 0 0
0 0 1
0 0 0



 ,

E13 =





0 0 1
0 0 0
0 0 0



 .

Therefore we have

n+ =











0 0 x
0 0 y
0 0 0





∣

∣

∣

∣

∣

∣

x, y ∈ R







,
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N+ =











1 0 x
0 1 y
0 0 1





∣

∣

∣

∣

∣

∣

x, y ∈ R







,

n0 =











0 x 0
0 0 0
0 0 0





∣

∣

∣

∣

∣

∣

x ∈ R







,

N0 =











1 x 0
0 1 0
0 0 1





∣

∣

∣

∣

∣

∣

x ∈ R







,

N =











1 ∗ ∗
0 1 ∗
0 0 1











and

N ] =











1 0 0
∗ 1 0
∗ ∗ 1











.

Moreover,

aC =











a 0 0
0 b 0
0 0 −a− b





∣

∣

∣

∣

∣

∣

a, b ∈ C







is a Cartan algebra of gC = sl(3,C). This leads to

(P c)+ =

{(

1 b
0 1

)∣

∣

∣

∣

b ∈ C2

}

, (pc)+ =

{(

0 b
0 0

)∣

∣

∣

∣

b ∈ C2

}

,

(P c)− =

{(

1 0
tc 1

)∣

∣

∣

∣

c ∈ C2

}

, (pc)− =

{(

0 0
tc 0

)∣

∣

∣

∣

c ∈ C2

}

,

Kc
C =

{(

A 0
0 detA−1

)∣

∣

∣

∣

A ∈ GL(2,C)

}

,

and

Kc
C(P c)+ =

{

(

A c
0 detA−1

)

|A ∈ GL(2,C), c ∈ C2
}

.

Now we can write down the maximal parabolic,

Pmax = G ∩Kc
C(P c)+ =

{(

A b
0 detA−1

)∣

∣

∣

∣

A ∈ GL(2,R), b ∈ R2

}

,

and identify the corresponding flag manifold as

G/Pmax = K/K ∩ Pmax = SO(3)/O(2) = RP2.
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The domain (Ω−)C is given by

(Ω−)C =

{(

1 0
tz 1

)∣

∣

∣

∣

z ∈ C2

}

and the action of GC = SL(3,C) on (Ω−)C can be described by

(

A b
tc d

)

· z = (tc+ dtz)(A+ btz)−1

because
(

A b
tc d

)

.

(

1 0
tz 1

)

=

(

1 0
(tc+ dtz)(A+ btz)−1 1

)(

A′ b′

0 d′

)

.

Next we compute the H-orbit of 0 ∈ n−. Since (H∩K)·0 = {0}, we have

to consider only symmetric elements g =

(

A b
tb d

)

∈ H . Since H = −H ,

we may also assume that d > 0. Then d =
√

1 + ||b||2 and tA = A implies

that A =
√

1 + btb, where b ∈ R2 is arbitrary. In particular, we find that

g · 0 = tb(
√

1 + ||b||2)−1.

Since the spectrum of btb is {0, ||b||2} and Ω− is rotations-invariant, we see
that

Ω− = H · 0 = {z ∈ R2 : ||z|| < 1}.
In order to compute the affine semigroup we consider the group

B] = N ]A ∼= N− ×sdir (N ]
0A) =











a1 0 0
0 a2 ∗
∗ ∗ (a1a2)

−1





∣

∣

∣

∣

∣

∣

ai > 0







,

which acts on N−
∼= R2 via





a1 0 0
z a2 0
x y (a1a2)

−1



 · (x′, y′) =
1

a1a2

(

1

a1
x′ − zy′ + (a2 − a1)x,

1

a2
y′
)

.

The linear contractions A of Ω− are those with ||A|| ≤ 1. Using the fact
that ‖A‖2 = ||AA∗||, one obtains for example that

∥

∥

∥

∥

(

a b
0 c

)∥

∥

∥

∥

2

=
1

2

(

(

a2 + b2 + c2
)

+
√

|(a2 + b2 + c2)2 − 4a2c2|
)

.
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For g =





a1 0 0
z a2 0
0 0 (a1a2)

−1



 ∈ N ]
0A we have that

g · (x, y) = (a1a2)
−1

(

a−1
1 −z
0 a−1

2

)(

x
y

)

.

So g · Ω− ⊂ Ω− if and only if

1

2a2
1a

2
2

(

(

a−2
1 + a−2

2 + z2
)

+

√

|(a−2
1 + a−2

2 + z2)2 − 4(a1a2)−2|
)

≤ 1.

For z = 0 this is equivalent to max{a−2
1 , a−2

2 }/(a2
1a

2
2) ≤ 1. So we find for

g = exp(rH1 + sH2) =





er+s 0 0
0 e−r+s 0
0 0 e−2s





the condition
e2|r|−6s ≤ 1 ⇐⇒ |r| − 3s ≤ 0.

Because of

cmax = {rH1 + sH2 | |r| ≤ 3s}
= R+(3H1 +H2) + R+(−3H1 +H2),

cmin = c∗max = {rH1 + sH2 | |r| ≤ s}
= R+(H1 +H2) + R+(−H1 +H2),

this condition is also equivalent to rH1 + sH2 ∈ cmax.
The cone cone(∆−) = −c∗max = −cmin has four faces:

F0 = {0} ,
F1 = −R+(H1 +H2) ,

F ′
1 = −R+(H1 −H2) ,

and
F2 = −cmin .

The faces F1 and F ′
1 are conjugate under the Weyl group which acts by

reflections on the line R+H1. Corresponding to these faces we have four
idempotents in Scpt

A . Clearly eF0 is the identity, whereas eF2 = 0. We have
eF1 = eX with

X = −3H1 −H2 =





−4 0 0
0 2 0
0 0 2



 ∈ a−.



196 CHAPTER 6. THE ORDER COMPACTIFICATION

An interesting feature in this example is that the causal Galois connection
Γ:F(X )→ F(G) is not injective. To see this, let

at :=





e−4t 0 0
0 e2t 0
0 0 e2t



 and a′t :=





e2t 0 0
0 e−4t 0
0 0 e2t



 .

Then at · (x, y) = (e6tx, y),

lim
t→∞

at ·Ω− = R× [−1, 1],

and a′t · (x, y) = (x, e6ty), so

lim
t→∞

a′t ·Ω− = [−1, 1]× R.

The sequences an and a′n are not bounded in the order induced on A, hence

Γ(at · Ω−) = η(at)→ ∅

and
Γ(a′t · Ω−) = η(a′t)→ ∅

in F(G). since
lim

t→∞
at ·Ω− 6= lim

t→∞
a′t ·Ω−,

we see that Γ is not injective.
We now describe the groups HX and HF . Let X = −3H1 − H2 be as

before. Then ∆X,+ = {α23} and

hX = lim
t→∞

ead tXη = prh(gα23)⊕ gα12 ⊕ gα13

= zh(X) + gα12 ⊕ gα13

=











0 x y
0 0 z
0 z 0





∣

∣

∣

∣

∣

∣

x, y, z ∈ R







.

This is a solvable Lie algebra of the type R2 ×sdir R, where R2 is the sum
of two real root spaces. The stabilizer algebra is given by

hF = RX + hX = RX ⊕ prh(gα23)⊕ gα12 ⊕ gα13 .

Let us write eX = eF1 = (1, γ). Then

Im γ = g−α23 ,

kerγ = g−α13 ,

ρ−1
eX

(eX) = exp(RX),
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and
L(kerλeX

) = g−α13 ×sdir (g−α12 ⊕ RX).

The maximal parabolic Lie algebra pmax of dimension 6 is

pmax = m⊕ a⊕ g(∆0)⊕ g(∆+)

=











a11 a12 a13

a21 a22 a23

0 0 −a11 − a22





∣

∣

∣

∣

∣

∣

aij ∈ R







.

The set ΩF1 is γ(Ω−) =]− 1, 1[·E32, and its pointwise stabilizer has the
Lie algebra

⋂

y∈Im γ

Ad(y)pmax = RX ⊕ gα12 ⊕ gα13 .

The normalizer of its nilradical is the maximal parabolic algebra

pF = m⊕ a⊕ g(∆+)⊕ g−α23 .

Notes for Chapter 6

The material of this chapter has been developed in [55] in order to get a hold of

the ideal structure of the groupoid C∗-algebra naturally associated to any ordered

homogeneous space (cf. [54], [108], and the notes for Chapter 9).



Chapter 7

Holomorphic

Representations

of Semigroups,

and Hardy Spaces

In the next three chapters we will give an overview of some of the applica-
tions of the theory of semigroups and causal symmetric spaces to harmonic
analysis and representation theory. We present here only a broad outline
of the theory, i.e., the main definitions and results, but mostly without
proofs. We refer to the original literature for more detailed information.
In the notes following each chapter the reader will find comments on the
history of the subject and detailed references to the original works.

In this chapter we deal with highest-weight modules, holomorphic repre-
sentations of semigroups, the holomorphic discrete series, and Hardy spaces
on compactly causal symmetric spaces. The original idea of the theory
goes back to the seminal article by Gelfand and Gindikin in 1977 [34], in
which they proposed a new approach for studying the Plancherel formula
for semisimple Lie group G. Their idea was to consider functions in L2(G)
as the sum of boundary values of holomorphic functions defined on domains
in GC. The first deep results in this direction are due to Ol’shanskii [139]
and Stanton [159], who realized the holomorphic discrete series of the group
G in a Hardy space of a local tube domain containing G in the boundary.
The generalization to noncompactly causal symmetric spaces was carried
out in [63, 133, 135]. This program was carried out for solvable groups in

198
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[64] and for general groups in [91].

7.1 Holomorphic Representations

of Semigroups

Let GC be a complex Lie group with Lie algebra gC and let g be a real form
of gC. We assume that G, the analytic subgroup of GC with Lie algebra g,
is closed in GC. Let C be a regular G-invariant cone in g such that the set
S(C) = G exp iC is a closed semigroup in GC. Moreover, we assume that
the map

G× C 3 (a,X) 7→ a exp iX ∈ S(C)

is a homeomorphism and even a diffeomorphism when restricted to G ×
Co. Finally, we assume that there exists a real automorphism σ of GC

whose differential is the complex conjugation of gC with respect to g, i.e.,
σ(X + iY ) = X − iY for X,Y ∈ g. All of those hypotheses are satisfied for
Hermitian Lie groups and also for some solvable Lie groups; cf. [64].

Let π : G→ U(V) be a unitary, strongly continuous representation of G
in a Hilbert space V. A vector v ∈ V is called a smooth or C∞-vector if the
map

R 3 t 7→ v̂(t) := π(exp tX)v ∈ V

is smooth for all X ∈ g. Here a map f : U → V, U ⊂ Rn open, is called
differentiable at the point xo ∈ V if there exists a linear map Df(xo) :=
Txo

f : V→ V such that

f(x) = f(xo) +Df(xo)(x− xo) + o(‖x− xo‖) .

The function f is of class C1 if f is differentiable at every point in V and
x 7→ Df(x) ∈ Hom(V,V) is continuous. Moreover, f is of class C2 if
Df(x) is of class C1. We denote the differential of Df(x) by D2f(x). We
say that f is of class Ck+1 if Dkf is of class C1. In that case we define
Dk+1f := D(Dkf). Finally, we say that f is smooth if f is of class Ck for
every k ∈ N.

Let V∞ be the set of smooth vectors. V∞ is aG-invariant dense subspace
of V. We define a representation of g on V∞ by

π∞(X)v = lim
t→0

π(exp tX)v − v
t

.

We denote this representation simply by π or use the module notation,
π(X)v = X · v. We extend this representation to gC by complex linearity,
π(X + iY ) = π(X) + iπ(Y ), X,Y ∈ g. Let U(g) denote the universal
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enveloping algebra of gC. Then π extends to a representation on U(g),
again denoted by π. The set V∞ is a topological vector space in a natural
way, cf. [168]. Furthermore V∞ is G-invariant and U(g)-invariant. As
π(g) exp(tX)v = exp(tAd(g)X)π(g)v, we get

π(g)π(X)v = π(Ad(g)X)π(g)v

for all g ∈ G and all X ∈ g. Define Z∗ = −σ(Z), Z ∈ gC. Then a simple
calculation shows that for the densely defined operator π(Z), Z ∈ gC, we
have π(Z)∗ = π(Z∗). Define

C(π) := {X ∈ g | ∀u ∈ V∞ : (iπ(X)u|u) ≤ 0},

where (·|·) is the inner product on V. Thus C(π) is the set of elements
of g for which π(iX) is negative. The elements of C(π) are called negative
elements for the representation π.

Lemma 7.1.1 C(π) is a closed G-invariant convex cone in g. 2

Let C be an invariant cone in g. We denote the set of all unitary represen-
tations π : G → U(V) with C(π) ⊂ C by A(C). A unitary representation
π is called C-admissible if π ∈ A(C).

Let S be a semigroup with unit and let ] : S → S be a bijective involutive
antihomomorphism, i.e.,

(ab)] = b]a] and a]] = a

We call ] an involution on the semigroup S and we call the pair (S, ]) for a
semigroup with involution or involutive semigroup.

Example 7.1.2 The most important example will be the semigroup S(C)
with the involution

s] = σ(s)−1

(this is a special case of the involution ] on p. 121 for general symmetric
pair). In this case (a exp iX)] = a−1 exp iAd(a)X ∈ S(C). 2

Example 7.1.3 (Contraction Semigroups on a Hilbert Space)
Another example is the semigroup C(V) of contractions on a complex
Hilbert space V:

C(V) = {T ∈ Hom(V) | ‖T ‖ ≤ 1}

Denote by T ∗ the adjoint of T with respect to the inner product on V.
Then (C(V), ∗) is a semigroup with involution. 2
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Definition 7.1.4 Let (S, ]) be a topological semigroup with involution,
then a semigroup homomorphism ρ : S → C(V) is called a contractive
representation of (S, ]) if ρ(g]) = ρ(g)∗ and ρ is continuous w.r.t. the
weak operator topology of C(V). A contractive representation is called
irreducible if there is no closed nontrivial subspace of V invariant under
ρ(S). 2

Definition 7.1.5 Let ρ be a contractive representation of the semigroup
S(C) ⊂ GC. Then ρ is holomorphic if the function ρ:S(C)o → Hom(V) is
holomorphic. 2

The following lemma shows that, if a unitary representation of the group
G extends to a holomorphic representation of S(C), then this extension is
unique.

Lemma 7.1.6 If f :S(C) → C is continuous and f |S(C)o is holomorphic
such that f |G = 0, then f = 0. 2

To construct a holomorphic extension ρ of a representation π we have to
assume that π ∈ A(C). Then for any X ∈ C, the operator iπ(X) generates
a self adjoint contraction semigroup which we denote by

TX(t) = etiπ(X) .

For s = g exp iX ∈ S(C) we define

ρ(s) := ρ(g)TX(1)

Theorem 7.1.7 ρ is a contractive and holomorphic representation of the
semigroup S(C). In particular, every representation π ∈ A(C) extends
uniquely to a holomorphic representation of S(C) which is uniquely deter-
mined by π. 2

For the converse of Theorem 7.1.7, we remark the following simple fact.
Let (S, ]) be a semigroup with involution and let ρ be a contractive repre-
sentation of S. Let

G(S) := {s ∈ S | s]s = ss] = 1}

Then G(S) is a closed subgroup of S and π := ρ|G(S) is a unitary represen-
tation of G(S). Obviously,

G ⊂ G(S(C)) .

Thus every holomorphic representation of S(C) defines a unique unitary
representation of G by restriction.
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Theorem 7.1.8 Let ρ be a holomorphic representation of S(C). Then
ρ|G ∈ A(C) and the ρ agrees with the extension of ρ|G to S(C). 2

Two representations ρ and π of the Ol’shanskii semigroup S(C) are (uni-
tarily) equivalent if there exists a unitary isomorphism U :Vρ → Vπ such
that

Uρ(s) = π(s)U ∀s ∈ S(C)

In particular, two contractive representations ρ and π of S(C) are equivalent
if and only if ρ|G and π|G are unitarily equivalent. We call a holomorphic
contractive representation ρ of S(C) admissible if ρ|G ∈ A(C) and write

ρ ∈ A(C). We denote by Ŝ(C) the set of equivalence classes of irreducible
holomorphic representations of S(C).

Lemma 7.1.9 Let π be an irreducible holomorphic representation of S(C).
Then the function

Θπ(s) := Trπ(s)

is well defined for every s ∈ S(C)o. Furthermore Θπ : S(C)o → C is
holomorphic and positive definite. 2

Theorem 7.1.10 (Neeb) Let π and ρ be irreducible holomorphic repre-
sentations of S(C). Then π and ρ are equivalent if and only if Θπ = Θρ.
2

A nonzero function α:S(C) → R+ is called an absolute value if for all
s, t ∈ S(C) we have α(st) ≤ α(s)α(t) and α(s]) = α(s). Let α be an
absolute value. A representation ρ of S(C) is α-bounded if

‖ρ(s)‖ ≤ α(s)

for all s ∈ S(C). Note that this depends only on the unitary equivalence

class of ρ. We denote by Ŝ(C)(α) the subset in Ŝ(C) of α-bounded repre-

sentations. If π ∈ Ŝ(C), then, by abuse of notation, α(s) := ‖π(s)‖ is an
absolute value of S(C). Let (ρ,V) and (π,W) be holomorphic represen-
tations of S(C). Let V⊗̂W be the Hilbert space tensor product of V and
W. Define a representation of S(C) in V⊗̂W by

[ρ⊗ π](s) := ρ(s)⊗ π(s)

Then ρ⊗ π ∈ A(C). We denote the representation s 7→ id by ι.

Theorem 7.1.11 (Neeb, Ol’shanskii) Let (ρ,V) be a holomorphic rep-
resentation of the Ol’shanskii semigroup S(C) and let α(s) = ‖ρ(s)‖. Then
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there exists a Borel measure µ on Ŝ(C) supported on Ŝ(C)(α) and a direct
integral of representations

(

∫ ⊕

Ŝ(C)(α)

ρωdµ(ω),

∫ ⊕

Ŝ(C)(α)

Vωdµ(ω)

)

such that:

1) (ρ,V) is equivalent to
(

∫ ⊕

Ŝ(C)(α)
ρωdµ(ω),

∫ ⊕

Ŝ(C)(α)
Vωdµ(ω)

)

.

2) There exists a subset N ⊂ Ŝ(C)(α) such that µ(N) = 0 and if ω ∈
Ŝ(C)(α)\N , then (ρω ,Vω) is equivalent to (πω⊗ ι,Hω⊗̂Wω), where
πω ∈ ω and Wω is a Hilbert space.

3) If ω ∈ Ŝ(C)(α) then set n(ω) := dimWω. Then n is a µ-measurable

function from Ŝ(C)(α) to the extended positive axis [0,∞] which is
called the multiplicity function. 2

7.2 Highest-Weight Modules

Representations with negative elements can exist only if there exists a non-
trivial G-invariant cone in the Lie algebra g. If g is simple, this implies in
particular that g is Hermitian. We will thus assume from now on that g is
a semisimple Hermitian Lie algebra. Thus G is a semisimple Hermitian Lie
group. For simplicity we will assume that G is contained in a simply con-
nected complexification GC. Then G = Gσ

C and (GC, G) is a noncompactly
causal symmetric pair. Let Z0 be a central element in k defining a complex
structure on p. Then X0 = −iZ0 is a cone-generating element for (GC, G)
and the corresponding eigenspace decomposition is

gC = n+ ⊕ ha ⊕ n−

as before. A comparision with the standard notation for Hermitian Lie
algebras (cf. Example 5.1.10, p. 124) yields

n+ = p+, n− = p−, and ha = kC .

Thus N+ corresponds to P+ = exp p+, N− corresponds to P− := exp p−,
and G0 corresponds to KC = Gθ

C. Thus

G ⊂ P+KCP
−
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(cf. Lemma 5.1.4, Remark 5.1.9, and Example 5.1.10). Let us recall some of
the notation introduced in Section 2.6.1. For x = pkq ∈ P+KCP

− we write
p+(x) = p, p−(x) = q and kC(x) = k. By Lemma 5.1.2, the set GKCP

−

is an open submanifold of the complex flag manifold XC = GC/KCP
− and

G∩KCP
− = K. This implies that G/K is holomorphically equivalent to an

open submanifoldD of XC. We also have the map x 7→ ζ(x) = log(x), which
mapsG/K biholomorphically into an open symmetric domain Ω+ ⊂ Ω+ (cf.
Theorem 5.1.8). If Z ∈ p+ and g ∈ GC is such that g expZ ∈ P+KCP

−,
then g ·Z = z(g expZ). Moreover, we have the universal automorphic factor
j(g, Z) := kC(g expZ). For j we find

j(k, Z) = k,

j(p, Z) = 1,

j(ab, Z) = j(a, b · Z)j(b, Z),

if k ∈ KC, Z ∈ p+, p ∈ P+, and a, b ∈ G are such that the expessions above
are defined.

A (g,K)-module is a complex vectorspace V such that

1) V is a g-module.

2) V carries a representation of K, and the span of K · v is finite-
dimensional for every v ∈ V.

3) For v ∈ V and X ∈ k we have

X · v = lim
t→0

exp(tX)v − v
t

.

4) For Y ∈ g and k ∈ K the following holds for every v ∈ V:

k · (X · v) = (Ad(k)X) · [k · v] .

Note that (3) makes sense, as K · v is contained in a finite dimensional
vector space and this space contains a unique Hausdorff topology as a topo-
logical vector space.

The (g,K)-module is called admissible if the multiplicity of every irre-
ducible representation of K in V is finite. If (π,V) is an irreducible unitary
representation of G, then the space of K-finite elements in V, denoted by
VK , is an admissible (g,K)-module.

Let t be a Cartan subalgebra of k and g. In this section, let ∆ denote
the root system ∆(gC, tC).
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Definition 7.2.1 Let V be a (g,K)-module. Then V is a highest-weight
module if there exists a nonzero element v ∈ V and a λ ∈ t∗C such that

1) X · v = λ(X)v for all X ∈ t.

2) There exists a positive system ∆+ in ∆ such that gC(∆+) · v = 0.

3) V = U(g) · v.

The element v is called a primitive element of weight λ. 2

Let now C ∈ ConeG(g) and let (ρ,V) ∈ A(C). We assume that −Zo ∈
Co. We assume furthermore that ρ is irreducible. Then VK is an irreducible
admissible (g,K)-module, and

VK =
⊕

λ∈t∗
C

VK(λ)

where VK(λ) = VK(λ, tC). Let v ∈ VK(λ) be nonzero. Let α ∈ ∆(p+, tC)
and let X ∈ p+

α \ {0}. Then

Xk · v ∈ VK(λ+ kα).

In particular,

−iZ0 · (Xk · v) = [−iλ(Z0) + k]v.

This yields the following lemma.

Lemma 7.2.2 Let the notation be as above. Then the following holds:

1) −iλ(Z0) ≤ 0.

2) There exists a λ such that p+ ·VK(λ) = {0}. 2

Furthermore, the following holds.

Lemma 7.2.3 Let Wλ be the K-module generated by VK(λ). Then Wλ

is irreducible and VK = U(p−)Wλ. 2

Let ∆k = ∆(kC, tC) and let ∆+
k be a positive system in ∆K . Let µ be the

highest weight of Wλ with respect to ∆+
k and let vλ be a nonzero highest

weight vector. Then vλ is a primitive element with respect to the positive
system ∆+

k ∪∆+
n , where ∆n = ∆(pC, tC) and ∆+

n = ∆(p+, tC). As −iZ0 is a
positive linear combination of the vectors Hα, α ∈ ∆+

n , we get the following
theorem.
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Theorem 7.2.4 Let (ρ,V) ∈ A(C) be irreducible. Then the corresponding
(g,K)-module is a highest-weight module and equals U(p−)Wλ. In partic-
ular, every weight of VK is of the form

ν −
∑

α∈∆(p+,tC)

nαα .

Furthermore, (ν|α) ≤ 0 for all α ∈ ∆+
n . 2

We will now show how to realize highest-weight modules in a space of
holomorphic functions on G/K. We follow here the geometric construction
by M. Davidson and R. Fabec [18]. For a more general approach, see [119].
To explain the method we start with G = SU(1, 1). We set according to

Example 2.6.16: E = E1 =

(

0 1
0 0

)

, F = E−1 =

(

0 0
1 0

)

and H := H1 =
(

1 0
0 −1

)

. Thus Z0 = i
2H and p+ = CE, kC = CH and p− = CF . Let

g =

(

ᾱ β
β̄ α

)

∈ SU(1, 1)

and let

γ =

(

a b
c d

)

∈ SL(2,C) .

We identify p+ with C by zE 7→ z and similarily kC ' C by zH 7→ z. Then
ζ induces an isomorphism ζ(g) = β

α of G/K onto the unit disc D = {z ∈
C | |z| < 1}. Furthermore,

γ · z =
az + b

cz + d

and

j(g, z) = (cz + d)−1 .

The finite-dimensional holomorphic representations of KC are the charac-
ters

χn(exp ziH) = einz .

In particular,

χn(Z0) =
in

2
or

−iχn(Z0) =
n

2
.
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Let (π,V) be a unitary highest-weight representation of SU(1, 1) and as-
sume that (π,V) ∈ A(C). Then n ≤ 0. Let V(n) be the one-dimensional
space of χn-isotropic vectors. Then

VK =
⊕

k∈N

V(n− 2k),

and the spaces V(m) and V(k) are orthogonal if m 6= k.
Let σ be the conjugation of sl(2,C) with respect to su(1, 1). Then σ is

given by

σ

((

a b
c −a

))

=

(

−ā c̄
b̄ −ā

)

so that σ(E) = F . By π(T )∗ = −π(σ(T )) for all T ∈ sl(2,C) we get

π(F )∗ = π(−E).

Finally, it follows from [F,E] = −H that for v ∈ V (n):

‖π(F )kv‖2 = (π(F )kv | π(F )kv)

= (π((−X)kF )v | v)

Lemma 7.2.5 Let the notation be as above. Then

π(−E)kπ(F )kv = (−1)kk!
Γ(n+ 1)

Γ(n− k + 1)
v

= (−n)kv

where (a)k = a(a+ 1) · · · (a+ k − 1). 2

As
∞
∑

k=0

(−n)k
|z2|k
k!

= (1− |z|2)n,

(cf. [36]) converges if and only if |z| < 1, it follows that

q(zE)v :=

∞
∑

k=0

zkF
kv

n!

converges if and only if zX ∈ Ω+.
Let now G be arbitrary. Let σ : gC → gC be the conjugation with

respect to g. We use the notation from earlier in this section. Using the
usual sl(2,C) reduction, we get the following theorem.
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Theorem 7.2.6 (Davidson–Fabec) Let T ∈ p+. Define qT : Wλ → V
by the formula

qT v :=

∞
∑

k=0

σ(T )kv

n!
v .

1) If v 6= 0, then the series that defines qT converges in the Hilbert space
V if and only if T ∈ Ω+.

2) Let πλ be the representation of K on Wλ. Let

Jλ(g, Z) := πλ(j(g, Z)) .

Then
π(g)v = qg·0Jλ(g, 0)∗−1v

for g ∈ G and v ∈Wλ. 2

It follows that the span of the qZWλ with Z ∈ Ω+ is dense in V, since V
is assumed to be irreducible. Define Q : Ω+ × Ω+ → GL(Wλ) by

Q(W,Z) = q∗W qZ .

Then the following theorem holds.

Theorem 7.2.7 (Davidson–Fabec) Let the notation be as above. Then
the following hold:

1) Q(W,Z) = Jλ(exp(−σ(W )), T )∗−1.

2) Q(W,Z) is holomorphic in the first variable and antiholomorphic in
the second variable.

3) (Q(W,Z)u|v) = (qZu|qW v) for all u, v ∈Wλ.

4) Q is a positive-definite reproducing kernel.

5) Q(g ·W, g · Z) = Jλ(g,W )Q(W,Z)Jλ(g, Z)∗. 2

For Z ∈ Ω+ and u ∈ Wλ, let FZ,u : Ω+ → Wλ be the holomorphic
function

FZ,u(W ) := Q(W,Z)u

and define
(FZ,u|FT,w)Q := (Q(T, Z)u,w) .

Let H(Ω+,W
λ) be the completion of the span of {FZ,u | Z ∈ Ω+, u ∈Wλ}

with respect to this inner product. Then H(Ω+,W
λ) is an Hilbert space
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consisting of Wλ-valued holomorphic functions. Define a representation of
G in H(Ω+,W

λ) by

(ρ(g)F )(W ) := Jλ(g−1,W )−1F (g−1 ·W ) .

Then ρ is a unitary representation of G in H(Ω+,W
λ) called the geometric

realization of (π,V).

Theorem 7.2.8 (Davidson–Fabec) The map qZv 7→ FZ,v extends to a
unitary intertwining operator U between (π,V) and the geometric realiza-
tion (ρ,H(Ω+,W

λ)). It can be defined globally by

[Uw](Z) = q∗Zw, w ∈ V, Z ∈ Ω+. 2

As the theorem stands, it gives a geometric realization for every unitary
highest-weight module. What is missing is a natural analytic construction
of the inner product on H(Ω+,W

λ). This is known only for some special
representations, e.g., the holomorphic discrete series of the group G. For
that, let ρ = 1

2

∑

α∈∆+ α and let µ denote the highest weight of the rep-

resentation of K on Wλ. Furthermore, let dZ denote the usual Euclidean
measure on p+. For f, g ∈ H(Ω+,W

λ), let

(f |g)λ :=

∫

G/K

(Q(Z,Z)f(Z)|g(Z))WλdZ

Theorem 7.2.9 (Harish-Chandra) Assume that (µ + ρ|α) < 0 for all
α ∈ ∆+

n . Then (f |g)λ is finite for f, g ∈ H(Ω+,W
λ) and there exists a

positive constant cλ such that

(f |g)Q = cλ(f |g)λ .

Moreover, (ρ,H(Ω+,Wλ)) is unitarily equivalent to a discrete sumand in
L2(G). 2

7.3 The Holomorphic Discrete Series

In this section we explain the construction of the holomorphic discrete series
of a compactly causal symmetric spaceM = G/H . In the next section we
will see that those are the admissible representations of the Ol’shanskii
semigroup that can be realized as discrete summands in L2(M). We start
with a simple structural fact about SU(1, 1).
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Define an involution on SU(1, 1) by τ(a) = ā, cf. Section 2.6.16:

HC := SL(2,C)τ =

{

hz =

(

cosh z sinh z
sinh z cosh z

)∣

∣

∣

∣

z ∈ C

}

=

{(

a b
b a

)∣

∣

∣

∣

a, b ∈ C, a2 − b2 = 1

}

and H = SU(1, 1)τ = ±{ht | t ∈ R}. Let ap be the maximal abelian
subalgebra of qp given by ap = RXo. Let

at = exp tXo =

(

cosh
(

t
2

)

−i sinh
(

t
2

)

i sinh
(

t
2

)

cosh
(

t
2

)

)

, t ∈ R .

Define

a =
cosh (t/2)√

cosh t
,

b =
−i sinh (t/2)√

cosh t
,

γ =
1√

cosh t
,

and

z =
γ cosh(t/2)− aγ2

b
=
iγ sinh(t/2)− bγ2

a
.

Then

h :=

(

a b
b a

)

∈ HC,

k :=

(

γ 0
0 γ−1

)

∈ KC,

p :=

(

1 0
z 1

)

∈ P−,

and at = hkp .
Now we go back to the general case. Let a be a maximal abelian

subalgebra of qk. Then ia is a maximal abelian subspace of qc
p. Since

Gc/H ⊂ GC/HC is a noncompactly causal symmetric space as in Section
4.1 and 4.2, we find homomorphisms ϕj : SL(2,C) → GC intertwining the
above involution on SL(2,C) and the given involution τ on GC. We may
assume that our algebra ap is spanned by the elements

Xj := −i(Ej − E−j) = ϕj

(−i
2

(

0 i
−i 0

))

,
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where γ1, . . . , γr are the strongly orthogonal roots. Let Ap := exp ap. Using
G = HApK (cf. [97]) and the fact that KC normalizes P−, σ(P+) = P−

and G = G−1 = σ(G), we get the following theorem.

Theorem 7.3.1 Let the notation be as above. Then

1) Let a(t1, . . . , tr) = exp(
∑r

j=1 tj) ∈ Ap = exp ap. Then

a(t1, . . . , tr) ∈ HC



exp
1

2

r
∑

j=1

− log(cosh tj)Hj



P−

2) G ⊂ HCKCP
− ∩HCKCP

+ ∩ P−KCHC ∩ P+KCHC. 2

If x = hkp ∈ HCKCP
−, we write

h(x) = h, kH(x) = k, and p−H(x) = p .

Note that h(x) and kH(x) are only well defined modulo HC ∩KC.
Let π be a holomorphic representation of KC with nonzero (HC ∩KC)-

fixed vector. Denote the highest weight of π by µπ. A simple general-
ization of Theorem A.3.2 and Lemma A.3.5 to the reductive Lie group
(K ∩H) exp iqk gives the following lemma.

Lemma 7.3.2 µπ ∈ ia and VHC∩KC

π is one-dimensional. 2

Let vo be a nonzero (HC∩KC)-fixed vector. Define Φπ : P−KCHC → Vπ

by
Φπ(x) := π(kH(x−1)−1)vo .

We define a map Vπ → O(P+KCHC) v 7→ ϕ(π, v) by

ϕ(π, v)(x) := (v|Φπ(x̄)), (7.1)

where O(P+KCHC) denotes the holomorphic functions on P+KCHC. By
construction we have the following lemma.

Lemma 7.3.3 Let the notation be as above. Then the following hold:

1) Let p ∈ P+, h ∈ HC, and x ∈ P+KCHC. Then ϕ(π, v)(pxh) =
ϕ(π, v)(x).

2) For k ∈ KC we have ϕ(π, v)(k−1x) = ϕ(π, π(k)v)(x); i.e., the map
v 7→ ϕ(π, v) is a KC-intertwiner. 2
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As ϕ(π, v) is right HC-invariant, we view it as a function on

P+KCHC/HC = P+KC · o ⊂MC.

As G ⊂ P+KCHC, we can by restriction view ϕ(π, v) as a function on M.
To decide when ϕ(π, v) is in L2(M), we write the G-invariant measure on
M in polar coordinates using G = KApH . Let α ∈ ∆(g, ap). Let

pα = dim{X ∈ gα | θτ(X) = X},
qα = dim{X ∈ gα | θτ(X) = −X}.

Then there is a positive constant c such that

dx = c
∏

α∈∆+(g,ap)

∣

∣

∣
sinh

(

∑

j
sjα(Lj)

)∣

∣

∣

pα
[

cosh
(

∑

j
sjα(Lj)

)]qα

ds1 . . . dsr dk

cf. [32], where ∆+(g, ap) is a positive system in ∆(g, ap). Recall that
∆ = ∆(gC, aC) = ∆(gC, tC). Then

∆ = ∆(kC, aC)∪̇∆(p+, aC)∪̇∆(p−, aC) .

Let ∆+
k be a positive system in ∆(kC, aC), let ∆+

n := ∆(p+, aC), and finally,
let ∆+ = ∆+

k ∪∆+
n . Let

ρ =
1

2

∑

α∈∆+

[dimC(gC)α]α .

By Lemma 7.3.1.1), we get the following theorem.

Theorem 7.3.4 Let v ∈ Vπ, v 6= 0. Then ϕ(π, v)|M ∈ L2(M) if and only
if (µπ + ρ|α) < 0 for all α ∈ ∆+

n . 2

Theorem 7.3.5 Assume that (µπ + ρ|α) < 0 for all α ∈ ∆+
n . Let Eπ be

the closed, G-invariant module in L2(M) generated by {ϕ(π, v) | v ∈ Vπ}.
Then the following hold.

1) Eπ is irreducible.

2) Eπ is a highest-weight module with a primitive element ϕ(π,w), where
w is a nonzero highest-weight vector for π.

3) The multiplicity of Eπ in L2(M) is 1. 2

Denote the representation ofG in Eπ by ρπ. The representations (ρπ,Eπ)
are called holomorphic discrete series of M.
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As Eπ is a highest-weight module, there exists an G-intertwining opera-
tor

Tπ : Eπ → H(Ω+,Vπ).

To construct such an operator, define

Ψπ(g, x) := π(kC(g))Φπ(g−1x), g ∈ G, x ∈ P+KCHC.

Then g 7→ Ψπ(g, x) is right K-invariant and defines a holomorphic function
on G/K.

Theorem 7.3.6 The map T : Eπ → H(Ω+,Vπ), defined by

Tf(z) :=

∫

M

f(x)Ψπ(z, x) dx,

is a nonzero intertwining operator and

HomG(Eπ,H(Ω+,Vπ)) = CT . 2

Example 7.3.7 Let G be a connected semisimple Lie group and let G1 =
G × G, H = diag(G). As we have seen, G = G1/H in this case. Further-
more, q = {(X,−X) | X ∈ g}. The Cartan subspace a is constructed by
taking t to be a compact Cartan subalgebra of g, t ⊂ k, and then setting
a = {(X,−X) | X ∈ t}. Let α ∈ ∆(gC, tC) and let X±α ∈ (gC)±α. Then

[(X,−X), (Xα, X−α)] = α(X)(Xα, X−α)

for every (X,−X) ∈ a. In this way we get a bijective map,

∆(gC, tC) 3 α 7→ (α,−α) ∈ ∆ ⊂ a∗C.

We see also that the root spaces are exactly (gC)α × (gC)−α. In particular,
Z0

1 = (Z0,−Z0) and the space p+
1 , where p1 = p × p ⊂ g1, is given by

p+
1 = p+×p−. The bounded realization of G1/K1 is G1/K1 = G/K×G/K,

where means the opposite complex structure. So a holomorphic function
on G1/K1 is the same as a function f : Ω+ × Ω+ → C that is holomorphic
in the first variable and antiholomorphic in the second variable.

If π1 is an irreducible unitary representation of K1 = K × K, then π1

is of the form π ⊗ δ, where π and δ are irreducible representations of K.
In particular, Vπ1 ' Vπ ⊗ Vδ. Assume that uo is a nonzero diag(K) =
(K1 ∩H)-invariant element in Vπ1 . Define ϕ : Vδ → V∗

π by

< u,ϕ(v) >= (u⊗ v|uo) ,
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where (·|·) is the K1-invariant inner product on Vπ1 . Then, for k ∈ K,

< u,ϕ(ρ(k)v) > = (u⊗ ρ(k)v|uo)

= (π1(k, k)(π(k−1)u⊗ v)|uo)

= (π(k−1)u⊗ v|uo)

= < π(k−1)u, ϕ(v) >

= < u, π∨(k)ϕ(v) >

Thus ϕ : Vδ → V∗
π is a K-intertwining operator. As both spaces are

irreducible, it follows that ϕ is an isomorphism. In particular, we have the
following lemma.

Lemma 7.3.8 Let π1 be an irreducible representation of K1 with a nonzero
diag(K)-fixed vector. Then there exists an irreducible representation π of
K such that π1 ' π ⊗ π∨. 2

Now Vπ ⊗V∗
π ' HomC(Vπ,Vπ) and the representation is carried over

to
π1(k, h)T = π(k)Tπ(h)−1 .

The invariant inner product on HomC(Vπ,Vπ) is (T |S) = TrTS∗ . In this
realization the invariant element uo is (up to constant) the identity id and

(T |uo) = Tr(T ) .

Let µ be the highest weight of π. Then < π + ρ, α >< 0 for every α ∈
∆(p+, tC). Thus π corresponds to a unique holomorphic discrete series
representation Eπ of G. We have (cf. [135]) the following theorem.

Theorem 7.3.9 The holomorphic discrete series Eπ1 is canonically iso-
morphic to Eπ ⊗E∗

π. 2

7.4 Classical Hardy Spaces

In this section we explain the construction of the Hardy space related to a
regular cone field on a compactly causal symmetric space. We start with a
short overview of the classical theory as it can be found, e.g., in the book
by Stein and Weiss [160].

Let C be a regular cone in Rn and let Ω = Co. Let Ξ(Ω) := Rn + iΩ.
Then Ξ(Ω) is an open subset of Cn. Let O(Ω) be the space of holomorphic
functions on Ξ(Ω). If f ∈ O(Ω) and u ∈ Ω, then

Rn 3 x 7→ fu(x) := f(x+ iu) ∈ C
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is well defined. We define the Hardy norm of f with respect to C be

‖f‖22 := sup
u∈Ω
‖fu‖2L2(Rn) = sup

u∈Ω

∫

Rn

|f(x+ iu)|2 dx .

We can now define the Hardy space H2(C) by

H2(C) = {f ∈ O(Ξ(Ω)) | ‖f‖2 <∞}. (7.2)

Define the boundary value map β : H2(C)→ L2(Rn) by

β(f) = lim
Ω3u→0

f(·+ iu)

Then β is an isometry into L2(Rn). To describe the image of β let

F :L2(Rn)→ L2(Rn)

be the Fourier transform, i.e.,

F(f)(v) =
1

(2π)n/2

∫

Rn

f(x)e−i(x|v) dx, ∀f ∈ Cc(Rn) .

To simplify the notation we define the function eu, u ∈ Cn, by

Cn 3 x 7→ eu(x) = e(x|u)

.

Theorem 7.4.1 Let E = {f ∈ L2(Rn) | Supp(F(f)) ⊂ C∗} ' L2(C∗).
Then Im(β) = E. 2

Let us sketch the construction of the map E → Im(β). Consider f ∈
E,F = F(f) and let u ∈ Ω. As Supp(F ) ⊂ C∗, it follows that |Fe−u| ≤ |F |.
Hence Fe−u ∈ L2(Rn), and we may define g : Ξ(Ω)→ C by

g(x+ iu) = F−1(Fe−u)(x) .

Formally, this is

g(x+ iu) =
1

(2π)n/2

∫

Rn

F (λ)ei(x+iu|λ) dλ

=
1

(2π)n/2

∫

C∗

[

F (λ)e−(u|λ)
]

ei(x|λ) dλ

By construction, g ∈ H2(Ω), and one has to show that β(g) = f .
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We define the Cauchy kernel associated with the tube domain Ξ(Ω) by

K(x+ iu) =
1

(2π)n/2

∫

Ω∗

ei(x+iu|λ) dλ

= F−1(χΩ∗e−u),

where χA denotes the characteristic function of a set A ⊂ Rn and x+ iu ∈
Ξ(Ω). Then ‖K(· + iu)‖2 = K(2iu) < ∞. Thus K(· + iu) ∈ L2(Rn).
Furthermore, we get the following theorem.

Theorem 7.4.2 Let F ∈ H2(C). Then

F (z) =

∫

Rn

f(x)K(z − x) dx

for all z ∈ Ξ(Ω), where f = β(F ). 2

We define the Poisson kernel by

P (x, y) =
|K(x+ iy)|2
K(2iy)

, x+ iy ∈ Ξ(Ω)

Theorem 7.4.3 Let f ∈ H2(Ω). Then

F (x+ iy) =

∫

Rn

P (x− t, y)f(t) dt,

where f = β(F ). 2

7.5 Hardy Spaces

In this section G/H is a compactly causal symmetric space. Let C ∈
ConeH(q) be such that Co∩k 6= ∅. There are two different ways to generalize
the tube domain Ξ(Ω) from the last section to this setting. First, we may
construct a local tube domain in T (M)C by G ×H iCo. Second, we may
view Ξ(Ω) as the orbit of 0 ∈ Rn under the semigroup Rn + iΩ. The
corresponding construction in this setting is to consider the semigroup S =
G exp iDo, where D ∈ ConeG(g). Then Ξ(Ω) = S−1o ⊂ GC/HC. Here we
have to assume that G ⊂ GC, where GC is a complex Lie group with Lie
algebra gC. The inverse is necessary, as we want the semigroup to act on
functions on Ξ(Co).

We will use the second approach (cf. [64, 63]). In particular, we will
assume that G ⊂ GC, where GC is a complex Lie group with Lie algebra gC

such that τ integrates to an involution on GC. We assume that H = Gτ .
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Let HC = Gτ
C and define MC := GC/HC. Then M ⊂ MC, and MC is

a complexification of M. Let C ∈ ConeH(q) and D be an extension of
iC to a G-invariant closed cone in ig such that D ∩ iq = priq D = iC,
cf. Section 4.5. Let S(D) be the Ol’shanskii semigroup G expD. Then
S(D)o = S(Do) := G expDo ' G × Do 6= ∅. Define an open complex
submanifold Ξ(Co) ⊂MC by

Ξ(Co) := S(Do)−1o. (7.3)

Then Ξ(C) := S(D)−1o ⊂ Ξ(Co), where the bar denotes the closure in
MC. Furthermore, M ⊂ ∂Ξ(C). For simplicity we will write S for S(C),
So for S(Co), Ξ for Ξ(C), and Ξo for its interior Ξ(Co). That Ξ and
Ξo depend only on C and not on the extension as indicated in the above
notation follows from the next lemma, which shows that Ξo locally is a tube
domain.

Lemma 7.5.1 The manifold Ξ(C) is independent of the extension D, and
Ξ(C) ' G×H −iCo. 2

As SoS ⊂ So, it follows that (So)−1Ξ ⊂ Ξo. In particular,

γ−1M⊂ Ξo, ∀γ ∈ S(Co) (7.4)

Thus, if f is a function on Ξo and s ∈ So, we can define a function s · f on
Ξ by

[s · f ](x) = f(s−1x) .

Let f ∈ O(Ξo) and let s ∈ S. By (7.4) the function s · f |M is well defined
as long as s ∈ So. In particular, ‖s · f‖ is well defined, where ‖ · ‖ stands
for the L2-norm on M. Define the Hardy norm of a holomorphic function
f on Ξo by

‖f‖2 := sup
s∈So

‖s · f‖

We define the Hardy space H2(C) by

H2(C) := {f ∈ O(Ξo) | ‖f‖2 <∞}. (7.5)

As we are using a G-invariant measure onM and GSo ⊂ So, it follows that

‖s · f‖2 ≤ ‖f‖2 .

Define the “boundary value map” β : H2(C)→ L2(M) by

β(f) = lim
s→1

(s · f)|M,

where the limit is taken in L2(M).
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Theorem 7.5.2 Let the notation be as above. Then the following hold:

1) H2(C) is a Hilbert space, and the action of G is unitary.

2) The map β : H2(C)→ L2(M) is an isometric G-intertwing operator.

3) Let ρπ be the holomorphic discrete series representation of G in Eπ.
Then

Imβ =
⊕

ρπ∈A(D)

Eπ,

where D is some extension of C to a G-invariant cone in g. If C =
Cmin, then the sum is over the full holomorphic discrete series. 2

Assume now that G/K is a tube domain and that τ = τiYo
. We also

assume that G is contained in the simply connected group GC. We know
from Section 2.6 that

G/H = G · (E,−E) = {ξ ∈ S1 | Ψm(ξ) 6= 0} .

We also have the following lemma.

Lemma 7.5.3 The G-invariant measure on G/K is given by

∫

G/H

f(g · (E,−E)) dġ =

∫

S1

f(ξ)|Ψ2(ξ)|−1 dµ(ξ)

where dµ is a suitably normalized K ×K-invariant measure on S1. 2

By the right choice of the cone C = Ck we also know that the semigroup
S is just the contraction semigroup of the bounded domain G/K ' Ω+. In
particular, Ξo ⊂ Ω+×Ω+. By construction Ψm is holomorphic on Ω+×Ω+.
We then have the following theorem.

Theorem 7.5.4 Ξo = {ξ ∈ Ω+ × Ω+ | Ψm(ξ) 6= 0}. 2

The classical Hardy space H2 can, via the biholomorphic Cayley trans-
form Ch, be viewed as space of holomorphic function on Ω+ × Ω+. The
semigroup acts on this space via

s · f(z, w) = j(s−1, z)ρnj(s−1, w)ρnf(s−1 · z, s−1 · w)

which is well defined if −ρn is the lowest weight of a holomorphic represen-
tation of GC. In that case we also have a holomorphic square rooth Ψ1 of
Ψ2. The result is Theorem 7.5.5.
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Theorem 7.5.5 (Isomorphism of Hardy Spaces) Denote by H2(Ω+×
Ω+) the classical Hardy space on the bounded symmetric domain Ω+×Ω+.
Assume that g is not isomorphic to sp(2n,R) or so(2, 2k + 1), k, n ≥ 1.
Then

H2(Ω+ × Ω+) 3 f 7→ f

Ψ1
∈ H2(C)

is an isometric G-isomorphism. 2

For the remaining two cases one has to construct a double covering of
Ξo, M, G, and S and define the corresponding Hardy space. The classical
Hardy space is then isomorphic to the space of odd functions in that Hardy
space. Refer to [136] for the exact statements.

7.6 The Cauchy–Szegö Kernel

For w ∈ Ξ(Co) the linear form f 7→ f(w) is continuous. Hence there exists
an element Kw ∈ H2(C) such that for f ∈ H2(C) we have f(w) = (f |Kw).
Let

K(z, w) := Kw(z). (7.6)

The kernel (z, w) 7→ K(z, w) is called the Cauchy–Szegö kernel. We note
that K(z, w) depends on the cone C used in constructing the Hardy space.
By Definition 7.1.4 we have

(ρπ(s)f |g) = (f |ρπ(s∗)g)

for s ∈ S(C) and f, g ∈ H2(C). This gives

Lemma 7.6.1 Let z, w ∈ Ξ(Co) and let s ∈ S(C). Then

K(s−1z, w) = K(z, σ(s)w). 2

We collect further properties of the Cauchy–Szegö kernel together in the
following theorem.

Theorem 7.6.2 Let H2(C) be the Hardy space corresponding to an in-
variant regular cone C ⊂ q. Let K(z, w) denote the corresponding Cauchy–
Szegö kernel. Then the following hold:

1) K(z, w) = K(w, z).

2) For fixed z ∈ Ξ(Co), the map

Ξ(Co) 3 w 7→ K(z, w) ∈ C

extends to a smooth map on Ξ(C). If x ∈M, then

K(z, x) = β(Kz)(x) .
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3) Let K(z) := K(z,o), z ∈ Ξ(Co). Then K is holomorphic and

K(s1o, s2o) = K(s]
2s1)

for every s1, s2 ∈ S(Co)−1.

4) The map β−1 : Imβ → H2(C) is given by

(β−1f)(z) =

∫

M

f(m)K(z,m) dm. 2

Let z ∈ Ξ(Co). Then for a suitable u ∈ Vπ we have ϕu(z) 6= 0. Assume
that K(z, z) = 0. As

K(z, w) =

∫

M

K(m,w)K(z,m) dm,

it follows that

K(z, z) =

∫

M

|K(m, z)|2 dm ≥ 0,

and K(z, z) = 0 if and only if K(m, z) = 0 for every m ∈M. But then

ϕu(z) =

∫

M

ϕu(m)K(z,m) dm = 0,

a contradiction. Thus we obtain Lemma 7.6.3.

Lemma 7.6.3 Let z ∈ Ξ(Co). Then K(z, z) 6= 0. 2

We can now define the Poisson kernel by

P (z,m) :=
|K(z,m)|2
K(z, z)

. (7.7)

Theorem 7.6.4 Let f be a continuous function on Ξ(C) which is holo-
morphic on Ξ(Co). Then

f(z) =

∫

M

P (z,m)f(m)dm

for every z ∈ Ξ(Co). In particular,

∫

M

P (z,m)dm = 1. 2
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Notes for Chapter 7

Holomorphic representations of the semigroup S(D) = G exp iD were introduced
by Ol’shanskii [137]. The theory was generalized to the situation we present
here in [64]. For the general theory of holomorphic representations of Ol’shankii
semigroups, refer to the work of K.-H. Neeb, [122] and [121, 123], where the
Theorems 7.1.9, 7.1.10, and 7.1.11 were proved (cf. also [119]).

There is an extensive literature on highest-weight modules and the classifi-
cation of highest-weight modules. Our exposition follows closely the work of
Davidson and Fabec [18]. More general results were obtained by Neeb in [119].
The classification of unitary highest-weight modules can be found in [22, 71].
For the connection between positive-definite operator-valued kernels and unitary
representations, refer to [92].

The articles [38] and [39], where Harish-Chandra constructed the holomorphic
discrete series of the group, were the starting point of the analysis on bounded
symmetric domains, unitary highest-weight modules, and the discrete series of
the group. The analytic continuation was achieved by Wallach in [167].

Most of Section 7.3 is taken from [133] and [135] except for the “only if” part
in Theorem 7.3.4, which is from [63]. The construction of ϕ(π, v) in [135] was by
using the dual representation π∨. The construction here is taken from [82].

The general theory of the discrete series on M was initiated by the seminal
work of M. Flensted-Jensen [32], where he used the Riemannian dual of M to
construct “most” of the discrete series. The complete construction was done by
Oshima and Matsuki in [102, 142, 144]. The first construction of what is now
called the holomorphic discrete series can be found in [103], where S. Matsumoto
used the method of Flensted-Jensen to construct those representations.

The material in Section 7.4 is standard and can be found, e.g., in [160]. Most

of Sections 7.5 and 7.6 are from [63]. The introduction of the Poisson kernel is

new. The part on Cayley-type spaces is taken from [136]. Theorem 7.5.4 was also

proved in [15]. Further results on the H-invariant distribution character of the

holomorphic discrete series representations can be found in [132]. An overview

of the theory of Hardy spaces in the group case can be found in a set of lecture

notes by J. Faraut ([27]). In these notes the definition of the Poisson kernel was

given and Theorem 7.6.4 was proved for the group case. A shorter overview can

also be found in [30].



Chapter 8

Spherical Functions

on Ordered Spaces

In this chapter we describe the theory of spherical functions and the spher-
ical Laplace transform on noncompactly causal symmetric spaces as devel-
oped in [28] and [131]. The theory is motivated by the classical theory
which we explain in the first section. The second motivation is the Harish-
Chandra–Helgason theory of spherical functions on Riemannian symmetric
spaces (cf. [40, 41, 45]).

8.1 The Classical Laplace Transform

Before we talk about the Laplace transform on ordered symmetric spaces,
let us briefly review the classical situation. Let M = Rn and let C be a
closed, regular cone in Rn, e.g., the light cone. As explained in Example
2.2.3, Rn becomes an ordered space by defining

x ≥ y ⇔ x− y ∈ C .
Let

M≤ = {(x, y) ∈M | x ≤ y} .
M≤ is closed in M×M. A causal kernel or Volterra kernel is a map
K :M×M→ C such that K is continuous onM≤ and zero outsideM≤.
Let V(M) be the vector space of causal kernels. For F,G ∈ V(M), define

F#G(x, y) :=

∫

[x,y]

F (x, z)G(z, y) dz (8.1)

222
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With this product V(M) becomes an algebra. The kernel K is invariant
if, for all x, y, z ∈M,

K(x+ z, y + z) = K(x, y).

An invariant causal kernel corresponds to a function of one variable sup-
ported on C via F (x) = K(0, x), K(x, y) = F (y − x). The above product
is then given by the usual convolution of functions, F#G = F ∗G.

Associated to the Volterra algebra is the Volterra integral equation of
the second kind,

A(x, y) = B(x, y) +

∫

[x,y]

K(x, z)A(z, y) dz,

where B and K are given. If A and B are invariant kernels such that a and
b are the corresponding functions, this reads

a(x) = b(x) +

∫

[x,y]

K(x, z)a(z) dz.

Theorem 8.1.1 (M. Riesz) The Volterra equation has a unique solution
given by

A = B +R#B,

where R is the resolvent R =
∑∞

k=1K
(n), with K(n+1) = K(n)#K. The

series defining R converges uniformly on bounded sets and R ∈ V(M). 2

For a, b and K = k invariant, the Volterra equation is

a = b+ k ∗ a.
Recall the exponential functions e−λ from p. 215 and assume that fe−λ is
bounded for λ ∈ C + iRn. Define the Laplace transform of f by

L(f)(λ) :=

∫

e−(λ|x)f(x) dx for λ ∈ C + iRn .

If f has compact support, then L(f) is defined for every λ in Rn. Write
λ = u+ iy, u ∈ C. Then L(f)(u + iy) = (2π)n/2F(feu)(y). Hence

f(x)e−(u|x) =
1

(2π)n

∫

Rn

Lf(u+ iy)ei(y|x) dx

or

f(x) =
1

(2π)n

∫

Rn

Lf(u + iy)e(u+iy|x) dx .

Furthermore, the Laplace transform has the following two properties.
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1) If p(D) is a differential operator with constant coefficients, then

L(p(D)f)(λ) = p(λ)L(f)(λ) .

2) The Laplace transform is a homomorphism:

L(f ∗ g) = L(f)L(g) .

From 2) one sees that the Laplace transform transforms the Volterra
equation into

L(a) = L(b) + L(k)L(a),

which gives

L(a) =
L(b)

1− L(k)
.

8.2 Spherical Functions

In order to generalize the notion of the Laplace transform to ordered sym-
metric spaces, we need to find the functions corresponding to the exponen-
tial function eu. These will be the spherical functions. As one already sees
in the case of Riemannian symmetric spaces (cf. [45]), there are different
ways to define a spherical function.

1) The differential equation: The spherical functions are the normal-
ized, ϕ(o) = 1, eigenfunctions of the commutative algebra D(G/K)
of invariant differential operators on G/K.

2) The integral equation: Spherical functions satisfy the integral equa-
tion

∫

K

ϕ(xky) dk = ϕ(x)ϕ(y) .

3) The algebraic property: Denote the algebra of compactly supported,
K–bi-invariant function on G by C∞c (G//K). Let ϕ be a K–bi-
invariant function on G. Then the map

C∞c (G//K) 3 f 7→
∫

G

f(x)ϕ(x) dx ∈ C .

is a homomorphism if and only if ϕ is a spherical function.
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4) The integral representation: For λ ∈ a∗C and ρ half the sum over the
positive roots, we define

ϕK
λ (x) =

∫

K

eK
λ (kx) dk, (8.2)

where eK
λ (x) = e<λ−ρ,aK(x)> (cf. (5.18) on p. 136), with H replaced

byK. Then ϕK
λ is spherical function, and every spherical function has

an integral representation of this form for a suitable λ. Furthermore,
ϕK

λ = ϕK
µ if and only if there is a w in the Weyl group of A such that

λ = wµ.

We remark here that there is no hope in general of using 4) to define a
function onM if we replaceK byH . This is due to the fact that G 6= HAN
and H is not compact, so the integral does not converge for arbitrary x.

One of the reasons for the fact that all those different definitions give
the same class of functions in the Riemannian case is that D(G/K) con-
tains an elliptic differential operator. Thus every joint eigendistribution
is automatically an analytic eigenfunction. As this does not hold for the
non-Riemannian symmetric spaces, the different definitions may lead to
different classes of functions, distributions, or hyperfunctions.

Let M = G/H be an irreducible, noncompactly causal symmetric space
with G ⊂ GC. We recall some basic structure theory. Let a be maximal
abelian in p contained in qp and ∆ = ∆0 ∪∆+ ∪∆− be the set of roots of
a in g. Choose a positive system ∆+ in ∆ such that ∆+ = ∆+

0 ∪∆+. As
usual, we set

ρ =
1

2

∑

α∈∆+

[dim gα]α .

Let C = C(∆+) be the positive open Weyl chamber in a corresponding to
∆+ (cf. p. 116). Fix a cone-generating element X0 ∈ a such that ∆+ =
{α ∈ ∆ | α(X0) = 1} and ∆0 = {α ∈ ∆ | α(X0) = 0}. Let C = Cmax(X

0),
(cf. (4.19) on p. 98). Finally, let S = S(C) = H expC. Then S is a closed
semigroup and S ⊂ HAN (cf. Theorem 5.4.7). In particular, the function

eλ(s) = eH
λ (s) := e<λ−ρ,aH (s)> , λ ∈ a∗C , (8.3)

is well defined on S.

Definition 8.2.1 A spherical function is a H–bi-invariant function ϕ de-
fined on the interior of S such that for all s, t ∈ So, the function

h 7→ ϕ(sht)
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is integrable over H and

∫

H

ϕ(sht) dh = ϕ(s)ϕ(t). 2

We will often, without further comment, identify the H–bi-invariant
function on S or So with the H-invariant function on M+ and Mo

+, re-
spectively. Thus we may view spherical functions as functions onM.

Let us fix a Haar measure on G and other groups before we go on. We
normalize the Haar measures on A and a∗ such that they are dual to each
other, i.e., the Fourier inversion formula for the abelian group A holds
without constants:

f̂(λ) :=

∫

A

f(a)a−iλ da⇒ f(a) =

∫

a∗

f̂(λ)aiλ dλ

Further, we normalize the measures dn and dn] = τ(dn) on N and N ] such
that

∫

N]

eK
−2ρ(n

]) dn] = 1 .

We normalize the Haar measure on N0 and N ]
0 in the same way by using

ρ0 = 1
2

∑

α∈∆+
0

dim gα α instead of ρ. We choose dn+ on N+ such that

dn = dn+ dn0 .

Let dn− = τ(dn+). We choose the measure dX on n− such that for all
f ∈ Cc(N−),

∫

N−

f(n−) dn− =

∫

n−

f(expX) dX .

Then we relate the measures on G and H by

∫

G

f(x) dx =

∫

H

∫

A

∫

N

f(han)a2ρ dh da dn

for every f ∈ Cc(G) with Supp(f) ⊂ HAN .

Theorem 8.2.2 Let E = {λ ∈ aC | ∀α ∈ ∆+ : Re(λ + ρ|α) < 0}. Let
λ ∈ E and let s ∈ So. Then H 3 h 7→ eλ(sh) ∈ C is integrable and

ϕλ(s) :=

∫

H

eλ(sh) dh ∈ C

is a spherical function. 2
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The idea of the proof is to use the integral formulas in [128] to rewrite
the integral defining ϕλ as an integral over K:

ϕλ(s) =

∫

K∩HAN

eλ(sk)e−λ(k) dk.

As the semigroup So acts by compressions on H/(H ∩K), it follows that
HAN ∩K 3 k 7→ eλ(sk) is actually bounded. A simple sl2 reduction shows
that the exstension of K ∩HAN 3 k 7→ e−λ(k) by zero outside K ∩HAN
is continuous if λ ∈ E . The proof actually shows that ϕλ is a well-defined
spherical function on the set

E ′ :=

{

λ ∈ a∗C

∣

∣

∣

∣

∫

K∩HAN

e−Re λ(k) dk <∞
}

. (8.4)

which in general is bigger than E .
For g ∈ G0, the decomposition g = h(g)a(g)n(g) is just the usual Iwasawa

decomposition. Let

ρ+ =
1

2

∑

α∈∆+

mαα . (8.5)

Then ρ = ρ0 +ρ+. Let ϕ0
λ denote the spherical function on the Riemannian

symmetric space G0/(K ∩H):

ϕ0
λ(x) =

∫

K∩H

eλ+ρ+(xk) dk .

Denote the G0-component of g ∈ HG0N by g0(x).

Lemma 8.2.3 Let s ∈ So and λ ∈ E. Then

ϕλ(s) =

∫

H∩K\H

ϕ0
λ−ρ+

(g0(sh)) dḣ,

where dḣ denotes a suitable normalized invariant measure on H/(H ∩K).
In particular, ϕwλ = ϕλ for every w ∈ W0. 2

Let D(M) be the algebra of invariant differential operators on M. To
λ ∈ a∗C there corresponds a homomorphism χλ : D(M)→ C. In short, this
homomorphism can be constructed by choosing an element u in the univer-
sal enveloping algebra U(g) that corresponds to D by right differentiation.
Then project u to U(a) ' S(a∗) along hU(g)⊕U(g)n and evaluate at λ−ρ.

Lemma 8.2.4 Let λ ∈ E. Let A(C) := exp C ⊂ A. Then ϕλ|HA(C)H is
analytic and Dϕλ = χλ(D)ϕλ on HA(C)H. 2
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8.3 The Asymptotics

In this section we describe the asymptotic behavior of ϕλ on A(C). For
that we need three c-functions. Define

cΩ(λ) =

∫

Ω

e−λ(expX) dX , c0(λ) =

∫

N0

e−λ(n]) dn],

and
c(λ) = cΩ(λ)c0(λ)

The function c0(λ) is the usual Harish-Chandra c-function for the sym-
metric spaceM0 = G0/(K∩H) and has thus a well-known product formula
c0(λ) =

∏

α∈∆+
0
cα(λα), cf. [35] or [45]. On the other hand, the function

cΩ(λ) is known only for some special cases, cf. [26]. The integral defining
cΩ(λ) converges exactly for λ ∈ E ′. The integral defining c0(λ) converges
for λ ∈ a∗C such that Re(λ|α) > 0 for every α ∈ ∆+

0 . One should note that
one can replace λ and ρ by λ|a∩[g0,g0] and ρ0, respectively, in all calculations
involving c0(λ).

Lemma 8.3.1 Let λ ∈ E be such that Re(λ|α) > 0 for every α ∈ ∆+
0 .

Then

c(λ) =

∫

N]∩HAN

e−λ(n]) dn]. 2

Let us introduce the notation

a
A(C)−→ ∞

for the fact that a ∈ A(C) and for all α ∈ ∆+ we have

lim aα =∞.

Rewriting the integral defining ϕλ as an integral over N ∩ HAN , we get
the following theorem.

Theorem 8.3.2 Let λ ∈ E be such that Re(λ|α) > 0 for every α ∈ ∆+
0 .

Then

lim
a

A(C)
→ ∞

aρ−λϕλ(a) = c(λ) .

Furthermore,

lim
t→∞

et<ρ−λ,X0>ϕλ(a exp tX0) = cΩ(λ)ϕ0
λ+ρ+

(a). 2
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Example 8.3.3 (The Hyperboloids) Let G = SOo(1, n) and let H =
SOo(1, n− 1), n ≥ 2, cf. Section 1.5. Let

a =







at =





cosh t 0 sinh t
0 In−1 0

sinh t 0 cosh t





∣

∣

∣

∣

∣

∣

t ∈ R







.

Let X0 = E1,n+1 + En+1,1. Then a = RX0. We choose the positive
root such that α(X0) = 1 and identify a∗C with C by z 7→ −zα. Then
ρ = −(n− 1)/2. The spherical function ϕλ is given by

ϕλ(at) =

∫ ∞

0

(cosh t+ sinh t cosh θ)−λ−(n−1)/2(sinh θ)n−2dθ

Let Qµ
ν be the usual Legendre function of the second kind and let 2F1 be

the hypergeometric function. From [23] we get Theorem 8.3.4

Theorem 8.3.4 The integral defining ϕλ(at) converges for t > 0 and
Reλ < −(n− 3)/2. Furthermore,

ϕλ(at) = γn

Γ(λ− n−3
2 )

Γ(λ+ n−1
2 )(sinh t)

n
2 −1

Q
n
2 −1

λ− 1
2

(cosh t)

= 2n−2Γ

(

n− 1

2

)

Γ(λ− n−3
2 )

Γ(λ+ 1)
(2 cosh t)−λ−n−1

2 ·

·2F1

(

λ+ n+1
2

2
,
λ+ n−1

2

2
, λ+ 1,

1

(cosh t)2

)

where γn is a constant depending only on n. 2

In particular, for n = 2,

ϕλ(at) =
1

λ

1

sinh t
e−λt .

In this case ∆+ = ∆+. Thus c(λ) = cΩ(λ) and

cΩ(λ) = 2n−2Γ

(

n− 1

2

)

Γ(λ − n−3
2 )

Γ(λ+ 1)

= 2n−2B

(

λ− n− 3

2
,
n− 1

2

)

Furthermore,

1

cΩ(λ)
ϕλ(at) = 2F1

(

λ+ n+1
2

2
,
λ+ n−1

2

2
, λ+ 1,

1

cosh2 t

)

which extends to a meromorphic function on a∗C holomorphic for Reλ > −1.
2
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Example 8.3.5 (The Group Case) Let G be a connected semisimple
Lie group such that GC/G is ordered. Let a be a maximal abelian sub-
algebra of q = ig contained in p ⊕ ik. Note that ia is a compact Cartan
subalgebra of g. The Weyl group W0 is given as NK(a)/ZK(a), which is
the Weyl group of a in K. Let ε(w) = detw, w ∈W .

Theorem 8.3.6 The spherical function ϕλ is given by

ϕλ(expX) = c

∑

w∈Wo
ε(w)e−<wλ,X>

∏

α∈∆+ < α, λ >
∏

α∈∆+ sinh < α,X >

for X ∈ Co ∩ a. 2

We get for suitable constants γ, γ0, and γ1 such that γ0γ1 = γ,

c0(λ) =
γ0

∏

α∈∆+
0
< λ,α >

,

cΩ(λ) =
γ1

∏

α∈∆+
< λ,α >

,

and
c(λ) =

γ
∏

α∈∆+ < λ,α >
.

Furthermore,

c(λ)−1ϕλ(expX) =

∑

w∈Wo
ε(w)e−<wλ,X>

∏

α∈−∆+ sinh < α,X >

for X ∈ Co∩a and as a function of λ this function extends to a holomorphic
function on aC. 2

8.4 Expansion Formula

for the Spherical Functions

Let us recall the case of spherical functions on the Riemannian symmet-
ric space G/K, cf. [40, 41, 45], before we talk about the causal symmetric
spaces. Let ϕλ(x) =

∫

K
eλ(xk) dk as before. Let cr(λ) =

∫

N] e−λ(n]) dn]

be the usual Harish-Chandra c-function for the Riemannian symmetric
space G/K, which is isomorphic to the r-dual space Gr/Kr =Mr. Notice
that we can view A as a subset of Mr. If D ∈ D(Mr), then the radial
part ∆Mr (D) of D is a differential operator on A(C), such that for every
K–bi-invariant function F on G we have

(DF )|A(C) = ∆Mr (D)(F |A(C)) .
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In particular, this holds for the spherical functions ϕKr

λ .

∆Mr (D)(ϕKr

λ |A(C)) = χλ(D)(ϕKr

λ |A(C)) .

Let Λ = N∆+ and construct the function Γµ, µ ∈ Λ recursively by

Γ0 = 1,

[(µ|µ)− 2(µ|λ)] Γµ(λ)

= 2
∑

α∈∆+

mα

∑

k≥0

Γµ−2kα(λ) ((µ+ ρ− 2kα|α)− (α|λ)) .

Define for a ∈ A(C):

Φλ(a) := aλ−ρ
∑

µ∈Λ

Γµ(λ)a−µ = aλ−ρ



1 +
∑

µ∈Λ\{0}

Γµ(λ)aµ



 . (8.6)

From [40, 45] we see

Theorem 8.4.1 Let W be the Weyl group of ∆. Then there exists an open
dense set U ⊂ a∗C such that for λ ∈ U , {Φsλ | s ∈ W} is a basis of the
space of functions on A(C) satisfying the differential equation

∆Mr (D)Φ = χλ(D)Φ , ∀D ∈ D(Mr). 2

For an H–bi-invariant function on HA(C)H , define a Kr–bi-invariant
function fγ on KrA(C)Kr ⊂ Gr by fγ(k1ak2) = f(a). Denote the natural
isomorphism D(M) ' D(Mr) by γ. Then (Df)γ = Dγfγ . This, together
with Theorem 8.4.1 and the asymptotics for the spherical function ϕλ (cf.
[130]), gives Theorem 8.4.2

Theorem 8.4.2 Let λ ∈ E ∩ U and a ∈ A(C). Then

ϕλ(a) = cΩ(λ)
∑

w∈W0

c0(wλ)Φwλ(a). 2

As a corollary of this we get the following.

Corollary 8.4.3 The functions

E ×A(C) 3 (λ, a) 7→ 1

cΩ(λ)
ϕλ(a),

1

c(λ)
ϕλ(a)

extend to a∗C ×A(C) as meromorphic functions in λ. 2
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We will denote the H–bi-invariant extension h1ah2 7→ [1/cΩ(λ)]ϕλ(a)
by the same symbol. Similarly we denote the H–bi-invariant function on
HA(C)H (or HA(C)o) that extends Φλ by the same symbol, Φλ. Then the
product formula for c shows that

cr(λ) = c+(λ)c0(λ) ,

where c+(λ) is the part of the product coming from the roots in ∆+. As
∆+ is W0-invariant, it follows that c+(λ) is W0-invariant. Thus

cr(λ)

c(λ)
=
c+(λ)

cΩ(λ)
,

and c+(λ)/cΩ(λ) is W0-invariant. Let

ϕr
λ(x) =

∑

w∈W

cr(wλ)Φwλ(x)

be the spherical function onMr for the parameter λ.

Theorem 8.4.4 Let the notation be as above. Then

ϕr
λ =

∑

w∈Wo\W

c(wλ)

c(wλ)
ϕwλ =

∑

w∈Wo\W

c+(wλ)

cΩ(wλ)
ϕwλ. 2

8.5 The Spherical Laplace Transform

A causal kernel or Volterra kernel onM is a function onM×M which is
continuous on {(x, y) | x ≤ y} and zero outside this set. We compose two
such kernels F and G via the formula

F#G(x, y) =

∫

M

F (x,m)G(m, y) dm

=

∫

[x,y]

F (x,m)G(m, y) dm .

This definition makes sense becauseM is globally hyperbolic (cf. Theorem
5.3.5). With respect to this multiplication, the space of Volterra kernels
V (M) becomes an algebra, called the Volterra algebra of M. A Volterra
kernel is said to be invariant if

F (gx, gy) = F (x, y) ∀g ∈ G .
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The space V (M)] of all invariant Volterra kernels is a commutative subal-
gebra of V (M), cf. [25], Théorème 1. An invariant kernel is determined by
the function

f(m) = F (o,m), m ∈ M+,

which is continuous on M+ and H-invariant. On the other hand, for f a
continuousH-invariant function onM+, we can define an invariant Volterra
kernel F by

F (a · o, b · o) = f(a−1b · o).

Under this identification the product # corresponds to the “convolution”

f#g(m) =

∫

G/H

f(x · o)g(x−1 ·m) dẋ.

So the algebra V (M)] becomes the algebra of continuous H-invariant func-
tions on S · o with the above “convolution” product.

The spherical Laplace transform of an invariant Volterra kernel F is de-
fined by

LF (λ) =

∫

M

F (o,m)eλ(m) dm .

Here, by abuse of notation, we view the H-invariant function eλ as a func-
tion on M+. The corresponding formula for the H-invariant function on
S · xo is

L(f)(λ) =

∫

M

f(x)eλ(x) dx.

Let D(f) be the set of λ for which the integral converges absolutely. Using
Fubini’s theorem, we get Lemma 8.5.1.

Lemma 8.5.1 Let f, g ∈ V (M)] be invariant causal kernels. Then D(f)∩
D(g) ⊂ D(f#g). For λ ∈ D(f) ∩ D(g) we have

L(f#g)(λ) = Lf(λ)Lg(λ). 2

Let M = ZH∩K(A). In “polar coordinates” onM,

H/M ×A(C) 3 (hM, a) 7→ ha · o ∈M+,

we have, for f ∈ Cc(S/H),

∫

S/H

f(x) dx = c

∫

H

∫

A(C)

f(hao)δ(a) dX dh ,
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where c is some positive constant depending only on the normalization of
the measures, and

δ(a) =
∏

α∈∆+

(sinh < α, log a >)
mα .

Theorem 8.5.2 Let c > 0 be the constant defined above. Let f : S/H → C

be continuous and H-invariant. If λ ∈ D(f), then ϕλ exists and

Lf(λ) = c

∫

A(C)

f(a)ϕλ(a)δ(a) da. 2

To invert the Laplace transform, we define the normalized spherical func-
tion ϕ̃λ by

ϕ̃λ(x) :=
1

c(λ)
ϕλ(x)

and the normalized Laplace transform by

L̃(f)(λ) :=

∫

A(C)

f(a)ϕ̃λ(a)δ(a) da.

Then

L̃(f)(λ) =
∑

w∈Wo

c0(wλ)

c0(λ)

∫

A(C)

f(a)Φwλ(a)δ(a) da.

as cΩ(λ) is W0-invariant. Note that the unknown function cΩ(λ) disappears
in this equation.

Let λ ∈ ia∗. Then
c0(−λ) = c0(λ)

and
c0(−λ)c0(λ) = c0(−wλ)c0(wλ) . (8.7)

Thus
∣

∣

∣

∣

c0(wλ)

c0(λ)

∣

∣

∣

∣

=

∣

∣

∣

∣

c0(−λ)
c0(−wλ)

∣

∣

∣

∣

=

∣

∣

∣

∣

c0(λ)

c0(wλ)

∣

∣

∣

∣

and
∣

∣

∣

∣

c0(wλ)

c0(λ)

∣

∣

∣

∣

= 1,

so λ 7→ c0(wλ)/c0(λ) has no poles on ia∗. Let C∞c (HA(C)H//H) be the
space of H–bi-invariant functions with compact support in H\HA(C)H/H .

Theorem 8.5.3 Let f ∈ C∞c (HA(C)H//H). Then E 3 λ 7→ L̃(f)(λ) ∈ C

extends to a meromorphic function on a∗C with no poles on ia∗. 2
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From the functional equation for ϕλ we get

∑

w∈Wo\W

cr(wλ)L̃(f)(wλ) = c1F(fγ)(λ) ,

where c1 is a positive constant independent of f and λ, and F denotes the
spherical Fourier transform onMr:

F(fγ)(λ) =

∫

Gr

fγ(x)ϕr
λ(x) dx .

Let Eλ(h1ah2) := ϕr
λ(a) be the H–bi-invariant function on G with the same

restriction to A(C) as ϕr
λ. By the inversion formula for the spherical Fourier

transform, [45], we have for some constant depending on the normalization
of measures and w = |W |,

cf(a) =
1

w

∫

ia∗
F(fγ)(λ)

E−λ(a)

cr(λ)cr(−λ) dλ

=
1

w

∑

w∈Wo\W

∫

ia∗
L̃(f)(wλ)

cr(wλ)

cr(λ)cr(−λ)E−λ(a) dλ

=
1

w

∑

w∈Wo\W

∫

ia∗
L̃(f)(wλ)

1

cr(−wλ)E−λ(a) dλ

=
1

w

∑

w∈Wo\W

∫

ia∗
L̃(f)(wλ)

E−wλ(a)

cr(−wλ)dλ

=
1

wo

∫

ia∗
L̃(f)(λ)

E−λ(a)

cr(−λ) dλ .

This proves the inversion formula at least for f ∈ C∞c (HA(C)H//H):

Theorem 8.5.4 Let Ẽλ := Eλ/c
r(λ). Let f ∈ C∞c (HA(C)H//H). Then

there exists a positive constant c that depends only on the normalization of
the measures involved such that for every a ∈ A(C),

cf(a) =
1

wo

∫

ia∗
L̃(f)(λ)Ẽ−λ(a )dλ. 2

8.6 The Abel Transform

As in the Riemannian case, we can define the Abel transform and relate
that to the spherical Laplace transform. The main difference is that in
this case A(f) does not have compact support even if the support of f is
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compact. On the contrary, by the nonlinear convexity theorem, the support
of A(f) can be described as a “cone” with a base constructed out of the
support of f .

Let f be an H-invariant function onM+. We define the Abel transform,
Af :A→ C of f , by

A(f)(a) = aρ

∫

N

f(an) dn

whenever the integral exists. Using the nonlinear convexity theorem, p.
151, we prove the following lemma.

Lemma 8.6.1 Let f be a continous H-invariant function on M+ (ex-
tended by zero outsideM+) such that n 7→ f(an) is integrable on N for all
a ∈ A. Let L ⊂ cmax be the convex hull of log(Supp(f |S∩A)). Then

log (Supp(Af)) ⊂ L+ cmin. 2

We rewrite now the Integral overM+ ⊂ M as an integral over AN , cf.
[128], to get Theorem 8.6.2.

Theorem 8.6.2 Let f be an H-invariant function S/H and λ ∈ D(f).
Then

L(f)(λ) =

∫

exp cmax

aλAf(a) da = LA(Af)(−λ),

where LA is the Euclidean Laplace transform on A with respect to the cone
cmax. 2

The Abel transform can be split up further according to the semidirect
product decomposition N = N+N0. Set

A+f(g0) = aρ+

∫

N+

f(g0n+) dn+

for g0 ∈ G0. Then obviously A+(f) is K0–bi-invariant and

Af(a) = aρ0

∫

N0

A+(f)(an0) dn0 .

Denote by A0 the Abel transform with respect to the Riemannian symmet-
ric space G0/K ∩H . Then we have

Af(a) = A0(A+f)(a)

for all continuous, H-invariant functions f : S/H → C such that the above
integrals make sense and all a ∈ A. As it is well known how to invert
the transform A0, at least for “good” functions, the inversion of the Abel
transform associated to the ordered space reduces to inverting A+f .
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Theorem 8.6.3 If f :M+ → C is continuous, H-invariant, and such that
the Abel transform exists, then its Abel transform is invariant under W0,
i.e.,

Af(wa) = Af(a) ∀a ∈ A,w ∈W0. 2

8.7 Relation to Representation Theory

The spherical functions are related to the representation theory on both G
and the dual group Gc. Here we explain the relation to the representation
theory of G.

Let M be the centralizer of A in K and let P be the minimal parabolic
subgroup MAN . For λ ∈ a∗C, let (π(λ),H(λ)) be the principal series rep-
resentation induced from the character χλ : man 7→ aλ of P . The space of
smooth vectors in H(λ) is given by

C∞(λ) = {f ∈ C∞(G) | ∀man ∈MAN, ∀g ∈ G : f(gman) = a−(λ+ρ)f(g)}

and
[π(λ)(g)f ](x) = f(g−1x) .

The bilinear form

C∞(λ)× C∞(−λ) 3 (f, g) 7→< f, g >:=

∫

K

f(k)g(k) dk

defines an invariant pairing C∞(λ)×C∞(−λ). Extend eλ to be zero outside
HAN . Using the above pairing, we find that eλ ∈ C−∞(λ)H for λ ∈ −E ,
where C−∞(λ) is the continuous dual of C∞(λ). Furthermore,

< f, eλ >=

∫

K

f(k)eλ(k) dk =

∫

H

f(h) dh

for f ∈ C∞(λ) and λ ∈ −E . The linear form f 7→< f, eλ > has a mero-
morphic continuation to all of a∗C as an H-invariant element in C−∞(λ),
cf. [2, 3, 128, 140, 141, 145]. Let f ∈ C∞c (G). Then π−∞

λ (f)eλ ∈ C∞(−λ).
Hence

f 7→ Θλ(f) =< π−∞
λ (f)eλ, e−λ >

is well defined.

Definition 8.7.1 A distribution Θ on G is called H-spherical if

1) Θ is H–bi-invariant.
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2) There exists a character χ : D(M) such that D(Θ) = χ(D)Θ. 2

Theorem 8.7.2 Θλ is an H-spherical function and DΘλ = χλ(D)Θλ for
every D ∈ D(M). 2

The relation between the spherical distribution Θλ and the spherical
function ϕλ is given by Theorem 8.7.3.

Theorem 8.7.3 If λ ∈ E and Supp(f) ⊂ (So)−1, then

Θλ(f) =

∫

G

f(x)ϕ−λ(x−1) dx. 2

Notes for Chapter 8

The material in Section 8.1 is standard, but usually Γ is defined as the set {(x, y) ∈
M | x ≥ y}. In that case the product for invariant kernels becomes F#G = G∗F .

Spherical functions on symmetric spaces of the form GC/G were introduced by
J. Faraut in [24], where they were used to diagonalize certain integral equations
with symmetry and causality conditions. Most of the material in Section 8.2,
Section 8.3, and Section 8.5 is from [28]. The proof of Theorem 8.3.6 in [63]
used the relation to the principal series in Section 8.7 and the formula of the
H-spherical character due to P. Delorme [19]. Examples 8.3.3 and 8.3.5 are from
[28]. Lemma 8.2.4 was proved in [131]. A more explicit formula for the spherical
function and the cΩ(λ) function for Cayley-type spaces was obtained by J. Faraut
in [26]. The inversion formula for the Laplace transform was proved in [28] by
using the explicit formula for the spherical functions. In the same article, an
inversion formula was proved for the rank 1 spaces by using the Abel transform.
The general inversion formula presented here was proved in [131].

The first main results on spherical functions on Riemannian symmetric spaces
are in [40, 41]. The theory was further developed by S. Helgason, cf. [43, 45]. The
isomorphism γ : D(M) → D(Mr) was first constructed by M. Flensted-Jensen
in [32].

A Laplace transform associated with the Legendre functions of the second kind
was introduced by [17]. In [164] this transform was related to harmonic analysis
of the unit disc. A more general Laplace-Jacobi transform associated with the
Jacobi functions of the second kind was studied by M. Mizony in [105, 106].

There is by now an extensive literature on the function eλ and its general-

izations. Its importance in harmonic analysis on M comes from the generalized

Poisson transformation, i.e., the embedding of generalized principal series rep-

resentations into spaces of eigenfunctions on M. A further application is the

construction of the spherical distributions Θλ. We refer to [2, 3], [12, 13], [128],

[140, 141, 145] and [161], to mention just a few.



Chapter 9

The Wiener-Hopf Algebra

The classical Wiener-Hopf equation is an equation of the form

[

I +W (f)
]

ξ = η,

where η ∈ L2(R+), ξ is an unknown function on R+, and

[

W (f)ξ
]

(s) =

∫ ∞

0

f(s− t)ξ(t) dt,

where f ∈ L1(R). Equations of this type can be studied using C∗-algebra
techniques because the C∗-algebraWR+ generated by these operators has a
sufficiently tractable structure. It contains the ideal K of compact operators
on L2(R+) and the quotient WR+/K is isomorphic to C0(R).

There is a natural generalization of these Wiener-Hopf operators to op-
erators acting on square integrable functions defined on the positive do-
main in an ordered homogeneous space (cf. [54, 55, 108]). In this section
we consider Wiener-Hopf operators on the positive domain M+ of a non-
compactly causal symmetric space M = G/H . We recall the ordering ≤S

that has been used in the definition of the order compactification Mcpt

and the corresponding positive domain M+ ⊂ M. Next we consider an
invariant measure µM on M and the corresponding unitary action of G on
L2(M) as well as the integrated representation πM of the group algebra
L1(G) on L2(M), i.e.,

[

πM(f)φ
]

(x) =

∫

G

f(g)φ(g−1 · x) dµG(g) φ ∈ L2(M), f ∈ L1(G).

The Wiener-Hopf algebraWM+ is defined to be the C∗-algebra generated
by the compressions of the operators πM(f) to the subspace L2(M+). Our

239
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intention in this chapter is to describe the structure of the Wiener-Hopf
algebra in terms of composition series which are determined by the G-orbit
structure of Mcpt. Further, we explain how the Wiener-Hopf algebra can
be obtained as the homomorphic image of the C∗-algebra of a groupoid.

We start by showing the connection of the order compactification as
described in Section 2.4 with the functional analytic compactification using
the weak-star topology in L∞(G) and characteristic functions, which is
commonly used in the context of Wiener-Hopf algebras.

Lemma 9.1.1 The mapping

Ψ : F↓(G)→ L∞(G), A 7→ χA,

where χA is the characteristic function of A, is a continuous injection.

Proof: 1) Ψ is injective: Let A,B ∈ F↓(G) with χA = χB in L∞(G),
i.e., almost everywhere. Let a ∈ Int(A). If x 6∈ B, then there exists
a neighborhood U of a in A such that U ∩ B = ∅. Therefore µ(U) ≤
µ(A \ B) = 0, a contradiction. We conclude that Int(A) ⊂ B. In view of
Lemma 2.4.7, this implies that A ⊂ B. The inclusion B ⊂ A follows by
symmetry.

2) Ψ is continuous: Let An → A in F↓(G). We have to show that
limχAn

= χA almost everywhere. We proceed in two steps:

a) χInt(A) ≤ liminfχAn
: Let a ∈ Int(A). Then there exists b ∈ Int(A) ∩

Int(↑ a). We choose a neighborhood U of b in ↑ a which is contained in
A. Then there exists nU ∈ N such that An ∩ U 6= ∅ for all n ≥ nU . Let
bn ∈ An ∩ U . Then bn ∈ ↑ a and therefore a ∈↓ bn ⊂↓ An = An. This
shows that liminfχAn

(a) = 1.

b) limsupχAn
≤ χA: Let a ∈ G with limsupχAn

(a) = 1. We have to
show that χA(a) = 1, i.e., a ∈ A. To see this, let U be an arbitrary
neighborhood of a in G. Then the condition limsupχAn

(a) = 1 implies for
every n0 ∈ N the existence of n ≥ n0 with a ∈ An. It follows in particular
that An ∩ U 6= ∅. Hence a ∈ limsupAn = A. 2

Lemma 9.1.2 Let B := {f ∈ L∞(G) | ‖f‖∞ ≤ 1} and set

g · f := f ◦ λg−1 for g ∈ G, f ∈ B,

where λg is left multiplication by g in G. Then the mapping G × B →
B, (g, f) 7→ g · f is continuous, i.e., G acts continuously on the compact
space B.
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Proof: Let g0 ∈ G, f0 ∈ B and h ∈ L1. We have to show that the function
(g, f) 7→ 〈g · f, h〉 is continuous at (g, f). For g ∈ G and f ∈ B we have

〈g · f, h〉 − 〈g0 · f0, h〉 = 〈g · f − g0 · f, h〉+ 〈g0 · f − g0 · f0, h〉
= 〈f, g−1 · h− g−1

0 · h〉+ 〈f − f0, g−1
0 · h〉

and both summands tend to 0 for g → g0 and f → f0 because g−1
0 · h ∈ L1

and ‖g−1 · h− g−1
0 · h‖1 → 0. 2

Lemma 9.1.3 1) The mapping

Ψ : F↓(G)→ B, A 7→ χA

is a G-equivariant continuous and monotone mapping of compact G-
pospaces.

2) The mapping

Mcpt → L∞(G), A 7→ χA

is a homeomorphism onto its image.

Proof: 1) follows from Lemma C.0.7, Proposition 9.1.1, and Lemma 9.1.2.
2) is a direct consequence of 1) and the compactness ofMcpt

2

This lemma shows that there is no essential difference between the com-
pactifications in L∞(G) and in F(G).

Recall from Theorem 2.4.6 thatM is open inMcpt. Thus it is reasonable
to extend µM toMcpt via µM(Mcpt\M) = 0. In particular, we can identify
M+ and Mcpt

+ as measure spaces. We write µM+ for µM |M+ . If now

p : L2(M, µM)→ L2(M+, µM+)

and

j : L2(M+, µM+)→ L2(M, µM)

are given by restriction and extension by 0, respectively, the Wiener-Hopf
operator

WM+(f) : L2(M+, µM+)→ L2(M+, µM+)

associated to the symbol f ∈ L1(G) is given by WM+(f) := p ◦ πM (f) ◦ j,
i.e.,

[

WM+(f)φ
]

(x) =

∫

η(x)

f(g)φ(g−1 · x) dµG(g),
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where µG is a suitable Haar measure on G (cf. Lemma 2.4.2). If we multiply
two such Wiener-Hopf operators we obtain for f1, f2 ∈ Cc(G)

[

WM+(f1) ◦WM+(f2)φ
]

(x)

=

∫

η(x)

[

∫

η(x)

f1(g)f2(g
−1a) dµG(g)

]

φ(a−1 · x) dµG(a) .

Thus the product of two such Wiener-Hopf operators is again some sort of
Wiener-Hopf operator with a two-variable symbol. To construct a domain
on which these symbols are functions, we need the notion of a groupoid. A
locally compact groupoid is a locally compact topological space G together
with a pair of continuous mappings satisfying the following axioms. The
domain of the first mapping is a subset G2 ⊂ G×G called the set of compos-
able pairs, and the image if (x, y) ∈ G2 is denoted xy. The second mapping
is an involution on G denoted by x 7→ x−1. The axioms are as follows.

1) (x, y), (y, z) ∈ G2 =⇒ (xy, z), (x, yz) ∈ G2 and (xy)z = x(yz);

2) (x, x−1), (x−1, x) ∈ G2 for all x ∈ G;

3) (x, y), (z, x) ∈ G2 =⇒ x−1(xy) = y and (zx)x−1 = z.

The maps

d : G → G, x 7→ x−1x, r : G → G, x 7→ xx−1

are called the domain and range maps, respectively. They have a common
image G0 called the unit space of G. Note that a pair (x, y) belongs to G2

if and only if d(x) = r(y), hence G2 is closed in G × G. Also, since u ∈ G0

if and only if (u, u) ∈ G2 and u2 = u, it follows that G0 is closed in G. Let
u ∈ G0. Then r−1(u) ∩ d−1(u) is called the isotropy group in u. It carries
the structure of a locally compact group. We say that two points u, v in
G0 lie in the same orbit if d−1(u) ∩ r−1(v) 6= ∅. Note that this defines a
partition of G0 into orbits because d(x−1) = r(x) for x ∈ G. Finally, we
note that r(xy) = r(x) and that d(xy) = d(y) for x, y ∈ G.

We consider the right action of G onMcpt defined by A ·g := g−1A. Our
groupoid will be the reduction of the transformation group Mcpt × G →
Mcpt to Mcpt

+ (cf. [108], 2.2.4 and 2.2.5). This amounts to the following.
We set

G = {(x, g) ∈Mcpt
+ ×G | g ∈ x}.

The domain of the multiplication is

G2 = {
(

(x, g), (y, h)
)

∈ G × G | x · g = y},
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the multiplication map G2 → G is
(

(x, g), (y, h)
)

7→ (x, g)(y, h) = (x, gh),

and the involution G → G is defined by

(x, g) 7→ (x, g)−1 := (x · g, g−1).

The domain and range maps for this groupoid are given by

d(x, g) = (x · g, 1) and r(x, g) = (x, 1).

Thus the unit space G0 of G is equal to Mcpt
+ × {1}. We note that it

is instructive to visualize the elements (x, g) of the groupoid as arrows
from d(x, g) to r(x, g). Then the involution corresponds to inversion of
arrows and the composable elements are the arrows which fit together.
Moreover, multiplication is composition of arrows. We endow G with the
locally compact topology inherited fromMcpt

+ ×G.
Next we define a convolution product on the set Cc(G) of all compactly

supported complex valued functions on G by

F1 ∗ F2(x, g) =
∫

G F1(x, ga)F2(x · ga, a−1)χMcpt

+
(x · ga) dµG(a)

=
∫

η(x) F1(x, a)F2(a
−1 · x, a−1g) dµG(a)

which is obviously related to the product formula of our Wiener-Hopf op-
erators. We define a map Cc(G)→ Cc(G) via

f 7→ f̃ , f̃(x, g) := f(g).

Note that the compactness ofMcpt
+ implies that f̃ ∈ Cc(G). Then Cc(G) is

a ∗-algebra with respect to the involution

F ∗(x, g) = F
(

(x, g)−1
)

∆G(g)−1 = F (g−1 · x, g−1)∆G(g)−1

(cf. [54], III.6). We define norms on Cc(G) via (cf. [108], 2.7)

‖F‖0 := sup
x∈Mcpt

+

‖F (x, ·)‖1 and ‖F‖1 := max{‖F‖0, ‖F ∗‖0}.

Now we write L1(G) for the normed ∗-algebra obtained form Cc(G) by
completion with respect to the norm ‖ · ‖1 (cf. [150], p. 51). We also
recall from [109], 2.11, that Cc(G) and therefore L1(G) admits a two sided
approximate identity. Thus we obtain a universal enveloping C∗-algebra
C∗(G) as the subalgebra of C∗

(

L1(G)1
)

generated by L1(G). The following
result is proven in [54].
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Theorem 9.1.4 For F ∈ Cc(G), the prescription

[

WM+(F )φ
]

(x) =

∫

η(x)

F (x, g)φ(g−1 · x)
√

s(g−1, x) dµG(g),

where s(g−1, x) is a cocycle depending on the measure chosen onM, defines
a norm-contractive ∗-representation

WM+ : Cc(G)→ B
(

L2(M+)
)

and the extension

WM+ : C∗(G)→ B
(

L2(M+)
)

is a C∗-representation with image WM+ . 2

The preceding theorem shows that it is reasonable to try to describe the
ideal structure of the algebra WM+ of Wiener-Hopf operators via the C∗-
algebra C∗(G) of the groupoid. But it should be noted here that it is an
open problem to determine the kernel of the representation WM+ .

Whenever a subsetMcpt
+

′
ofMcpt

+ is invariant in the groupoid sense, i.e.,
satisfies

d(x, g) ∈Mcpt
+

′ ⇔ r(x, g) ∈ Mcpt
+

′
,

we set

GMcpt

+

′ := r−1(Mcpt
+

′
) = d−1(Mcpt

+

′
).

IfMcpt
+

′
is locally compact inMcpt

+ , then GMcpt

+

′ is again a locally compact

groupoid and one can talk about its groupoid C∗-algebra. Now one can
show (cf. [55]) the following.

Theorem 9.1.5 Let U be an open invariant subset ofMcpt
+ . Then we have

a short exact sequence of C∗-algebras,

0→ C∗(GU )
jU→ C∗(G) βU→ C∗(GMcpt

+
\U )→ 0.

For F ∈ Cc(G) the map βU is given by restriction to r−1(Mcpt
+ \ U). The

sequence splits if U is open and closed in Mcpt
+ . 2

Recall that there are only finitely many different G-orbits inMcpt which
are in addition locally closed, i.e., each orbit is open in its closure, and we
also know that all other orbits in the closure of a given orbit have lower
dimension.
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Let Mk denote the set of all orbits of dimension (dimM) − k in Mcpt

and (Mcpt
+ )k :=Mcpt

+ ∩Mk (cf. Section 6.4). Let

Ik := C∗(G⋃k

j=0
(M+cpt)j

)

for k ∈ N0 and consider this set as an ideal of C∗(G) according to Theorem
9.1.5. Then one finds (cf. [55]) the following theorem.

Theorem 9.1.6 Let xk,i, i = 1, . . . , ik be a set of representatives for the
different invariant subset of (Mcpt

+ )k and Hk,i the stabilizer of xk,i in G.
Then the C∗-algebra C∗(G) has a composition series

I0 ⊂ . . . ⊂ Idim M = C∗(G)

with

Ik/Ik−1
∼=

ik
⊕

i=1

(

C∗(Hi,k)⊗K
(

L2([Mcpt
+ ]k, µk)

))

for k ≥ 1 and
I0 ∼= C∗(H)⊗K

(

L2([Mcpt
+ ]0, µ0)

)

,

where K
(

L2([M+cpt]k, µk)
)

denotes the C∗-algebra of compact operators

on the Hilbert space L2([Mcpt
+ ]k, µk) and µk is a positive Radon measure

on [Mcpt
+ ]k.

The main result of [54] is the following theorem, which contains all the in-
formation one has on the first ideal in the composition series of the Wiener-
Hopf algebra.

Theorem 9.1.7 Let K
(

L2(M+)
)

be the ideal of compact operators on

L2(M+). Then K
(

L2(M+)
)

⊂ WM+ . More precisely, this ideal is the
image of C∗(GM+) under the Wiener-Hopf representation.

Notes for Chapter 9

The groupoid approach to C∗-algebras generated by Wiener-Hopf operators goes

back to Muhly and Renault [108] (cf. also [126, 109]). They also gave definitions

of Wiener-Hopf operators for arbitrary ordered homogeneous spaces, but treated

only the case of vector spaces ordered by polyhedral or homogeneous cones in

detail. First attempts to also deal with nonabelian symmetry groups are due to

Nica [127]. A more systematic approach is given in [54] (cf. also [53]). The case

of noncompactly causal symmetric spaces was developed in [55].



Appendix A

Reductive Lie Groups

In this appendix, on the one hand we collect the basic notation for semisim-
ple and reductive Lie theory used throughout the book. On the other hand
we quote, and in part prove, various results which are purely group theo-
retical but not readily available in the textbooks on Lie groups.

A.2 Notation

Let K be either R or C and b a finite-dimensional abelian Lie algebra
over the field K. Given a finite-dimensional b-module V, we denote the
corresponding representation of b on V by π. If λ ∈ K and T ∈ End(V),
we define

V(λ, T ) := {v ∈ V | Tv = λ v} . (A.1)

For X ∈ b we set

V(λ,X) := V(λ, π(X)) . (A.2)

For α ∈ b∗ we define V(α, b) by

V(α, b) := {v ∈ V | ∀X ∈ b : X · v = α(X)v } =
⋂

X∈b

V(α(X), X). (A.3)

Furthermore,

Vb := V(0, b). (A.4)

If the role of b is obvious, we abbreviate V(α, b) by Vα. Define

∆(V, b) := {α ∈ b∗ \ {0} | Vα 6= {0}} (A.5)

246
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and

V(Γ) :=
⊕

α∈Γ

Vα, ∅ 6= Γ ⊂ ∆(V, b). (A.6)

The elements of ∆(V, b) are called weights, as is the zero functional if
Vb 6= {0}.

If V is a real vector space, we set VC := V⊗C. We define the conjugation
of VC relative to V by

u+ iv := u− iv, u, v ∈ V . (A.7)

Sometimes we also denote this involution by σ.
We denote Lie groups by capital letters G,H,K, etc., and the associated

Lie algebras by the corresponding German lowercase letter. For complexifi-
cations and dual spaces we use the subscript C, respectively the superscript
∗. If ϕ : L→ K is a homomorphism of Lie groups, we use ϕ for the corre-
sponding homomorphism of Lie algebras and complexified Lie algebras. In
particular, we have ϕ(expL(X)) = expK(ϕ(X)) for all X ∈ l.

We call a real Lie group semisimple if its Lie algebra is semisimple. A
Lie algebra is called reductive if it is the direct sum of a semisimple and
an abelian Lie algebra. In contrast to the Lie algebra case, there is no
generally agreed-on definition for real reductive groups. Therefore we make
explicitly clear that we call a real Lie group reductive if its Lie algebra is
reductive.

Let G be a semisimple connected Lie group with Cartan involution θ.
Let K = Gθ be the corresponding group of θ-fixed points in G. The Lie
algebra of K is given by

k = g(1, θ) = {X ∈ g | θ(X) = X}.

Let p = g(−1, θ). Then we have the Cartan decomposition

g = k⊕ p. (A.8)

We denote the Killing form of g by B , i.e. , B(X,Y ) = Tr(adX ◦ adY ).
For X,Y ∈ g set

(X | Y ) := (X | Y )θ := −B(X, θ(Y )). (A.9)

Then (· | ·)θ is an inner product on g. We will denote the corresponding
norm by | · |θ or simply by | · |. With respect to this inner product, the
transpose ad(X)> of ad(X) is given by − ad(θ(X)) for all X ∈ g. In
particular, ad(X) is symmetric if X ∈ p.
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Let a be a maximal abelian subalgebra of p and m be the centralizer of
a in k, i.e.,

m = zk(a) . (A.10)

As {adX | X ∈ a} is a commutative family of symmetric endomorphisms
of g, we get

g = m⊕ a⊕
⊕

α∈∆(g,a)

gα.

The elements of ∆ = ∆(g, a) are called restricted roots. For X ∈ a such
that α(X) 6= 0 for all α ∈ ∆, one can define a set of positive restriced roots
to be

∆+ := {α ∈ ∆ | α(X) > 0}. (A.11)

Set

n =
⊕

α∈∆+

gα = g(∆+).

Then n is a nilpotent Lie algebra and we have the following Iwasawa de-
composition of g:

g = k⊕ a⊕ n. (A.12)

Let N = exp n and A = exp a. Then N and A are closed subgroups of G
and we have the Iwasawa decomposition of G:

K ×A×N 3 (k, a, n) 7→ kan ∈ G . (A.13)

This map is an analytic diffeomorphism. For a subset L of G and a subset
b of g, we denote by ZL(b) the centralizer of b in L:

ZL(b) = {b ∈ L | ∀X ∈ b : Ad(b)X = X}. (A.14)

Similarly, we define the normalizer of b in L by

NL(b) = {b ∈ L | ∀X ∈ b : Ad(b)X ∈ b}. (A.15)

We fix the notation M = ZK(a), M∗ = NK(a) and W := W (a) := M∗/M .
The group W is called the Weyl group of ∆. We will use the following facts
that hold for any connected semisimple Lie group (cf. [44]).

1) If a and b, are maximal abelian in p, then there exists a k ∈ K such
that

Ad(k)b = a. (A.16)

2) If k ∈M∗ and α ∈ ∆, then k · α = α ◦Ad(k−1) is again a root.
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3) Let ∆+ be a set of positive roots in ∆. For k ∈ M∗ we have k ∈ M
if and only if k ·∆+ = ∆+.

4) If Λ ⊂ ∆ is a set of positive roots, then there exists a k ∈ M∗ such
that k · Λ = ∆+.

Let Pmin := MAN . Then Pmin is a group. The groups conjugate to Pmin

are called minimal parabolic subgroups of G. A subgroup of G containing a
minimal parabolic subgroup is called a parabolic subgroup.

If λ ∈ a∗C we define a character a 7→ aλ on A by

aλ := expλ(X), a = expX.

By restriction, (· | ·)θ defines an inner product on a and then also on a∗

by duality. Choose a Cartan subalgebra t containing a. Then t is θ-stable
and t = tk ⊕ a, where tk = t ∩ k ⊂ m. The elements of ∆(gC, tC) are called
roots . Similar to the case of restricted roots, one can choose a system of
positive roots. This can be done in such a way that ∆+(g, a) = {α|a | α ∈
∆+(gC, tC), α|a 6= 0}.

A.3 Finite-Dimensional Representations

Definition A.3.1 Let K be R or C and V a K-vector space. Given a
connected real Lie group G and a subgroup L ⊂ G, a representation π of
G on V is called L-spherical if there exists a nonzero L-fixed vector v ∈ V
generating V as an L-module. We define

VL = {v ∈ V | ∀a ∈ L : π(a)v = v }. (A.17)

Similarly, if l is a subalgebra of the real Lie algebra g and π is a representa-
tion of g on V, then π is called l-spherical if there is a nonzero v ∈ V such
that π(l)v = {0}. 2

If G is semisimple and L = K, then we call π spherical if it isK-spherical.
For the following theorem, see [45], p. 535.

Theorem A.3.2 Let G be a connected semisimple Lie group and π an
irreducible complex representation of G in the finite-dimensional Hilbert
space V.

1) π(K) has a nonzero fixed vector if and only if π(M) leaves the highest-
weight vector of π fixed.
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2) Let λ be a linear form on itk⊕a, where tk = t∩k. Then λ is the highest
weight of an irreducible finite-dimensional spherical representation π
of G if and only if

λ|itk = 0 and ∀α ∈ ∆+(g, a) :
(λ|α)

(α|α)
∈ Z+. (A.18)

Here (· | ·) is the inner product on (itk +a)∗ abtained from the Killing
form by duality. 2

Lemma A.3.3 Let G be a connected semisimple Lie group with Cartan
involution θ and (π,V) be a finite-dimensional (complex or real) represen-
tation of G. Then there exists an inner product on V such that π(x)∗ =
π(θ(x)−1). In particular, π(x) is unitary for all x ∈ K and symmetric for
x ∈ exp p.

Proof: If V is real, we replace V by VC. Since the real part of an inner
product on VC defines an inner product on V by restriction, we may assume
that V is complex. The corresponding representation of gC is again denoted
by π. Consider the compact real form u = k ⊕ ip of gC and let U be a
simply connected Lie group with Lie algebra u. Then U is compact. As U
is simply connected, there exists a representation πU of U whose derived
representation is π|u. Let (· | ·)0 be an inner product on V. Since U is
compact, we can define a new inner product by

(w | v) =

∫

U

(πU (u)w | πU (u)v)0 du .

Relative to this inner product, πU is unitary. From the definition of u, it
now follows easily that for any x ∈ G we have

π(x)∗ = π
(

θ(x)−1
)

, (A.19)

and the lemma follows. 2

Lemma A.3.4 Let G be a group and V an irreducible finite-dimensional
real G-module. Then the following statements are equivalent:

1) The complexified module VC is irreducible.

2) V carries no complex structure making it a complex G-module.

3) The commutant of G in End(V) is R · IdV.
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Proof: Suppose that VC is not irreducible. Then we can find an irreducible
complex submodule W of VC. If W∩V 6= {0}, then W∩V is an invariant
nonzero subspace of V. As V is irreducible, it follows that W∩V = V. But
then W = VC and VC would be irreducible. Thus we have W ∩V = {0}.
Now we have W ∩W = {0} because otherwise there would be a w ∈W,
w 6= 0, such that w ∈ W. Then one of the vectors w + w, i(w − w) is
nonzero and

w + w, i(w − w) ∈ V ∩W ,

which contradicts V ∩W = {0}. This implies that the R-linear map

W 3 w 7→ 1

2
(w + w) ∈ V

is injective and G-equivariant. On the other hand, the image is nonzero.
Therefore the map is an R-linear G-isomorphism W ' V. Thus V is a
complex G-module.

Conversely, if I is a complex structure on V for which V is a complex
G-module, then the complex linear extension of I to VC is an intertwiner
on VC which is not a multiple of the identity. Thus Schur’s lemma implies
that VC is not irreducible.

Clearly, 3) implies 2). Conversely, if 1) holds, the commutant of G in
EndC(VC) is C · IdVC

. Since EndR(V)∩C · IdVC
= R · IdV, we obtain 3). 2

Lemma A.3.5 Let G be a connected semisimple Lie group and V a finite-
dimensional irreducible real G-module.

1) dimVK ≤ 1.

2) If dimVK = 1, then VC is irreducible.

Proof: 1) We apply Theorem A.3.2 to VC. Let λ ∈ a∗ be a maximal weight
of VC and let v be a nonzero weight vector of weight λ. Multiplying by a
suitable scalar, we may assume that v 6= −v. Then

(man) · v = aλv, m ∈M, a ∈ A, n ∈ N.

In particular,
P · v = R+v. (A.20)

It follows that (man)·v = aλv. Thus u := v+v is in V and π(man)u = aλu.
Let now vK ∈ VK \ {0}. As G = KAN and (π(kan)u | vK) = aλ(u | vK),
we find that (u | vK) 6= 0. If dimVK > 1, we can choose a K-fixed vector
wK which is orthogonal to vK . But then (u | wK)vK − (u | vK)wK ∈
VK \ {0}, whereas

(u | (u | wK)vK − (u | vK)wK ) = 0,
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which is impossible by the above argument. Thus dimVK ≤ 1.
2) This is an immediate consequence of Lemma A.3.4 ,since a complex

G-module has even real dimension and VK is a complex subspace of V if
V carries a complex structure commuting with G. 2

Lemma A.3.6 Let G be a connected semisimple Lie group acting irre-
ducibly on V. Assume that V is spherical so that VC is irreducible. Let
λ ∈ a∗ be the highest weight of VC, u be a highest-weight vector, and
vK ∈ VK be such that (u | vK) > 0. Further, let P = MAN be the minimal
parabolic subgroup of G with ∆+(g, a) = ∆(n, a). Then u ∈ P · R+vK .

Proof: Write vK =
∑

vµ with vµ ∈ (VC)µ \ {0}. As different weight spaces
are orthogonal and dimVλ = 1, it follows that λ occurs in the above sum
and that vλ = cu with c > 0. We can write µ = λ −∑nαα with nα ≥ 0
and α ∈ ∆+(gC, tC). But as vK is M -fixed, it follows that all the vµ’s are
M -fixed. Thus α|tk = 0. Now choose H ∈ a such that α(H) > 0 for all
α ∈ ∆+(g, a). Let at := exp tH ∈ P . Then

lim
t→∞

e−tλ(H)at · vK = lim
t→∞



cu+
∑

µ6=λ

exp(−t
∑

nαα(H))vµ



 = cu

which proves the claim. 2

Remark A.3.7 Let L be a connected reductive Lie group with Lie algebra
l and G := L′ the commutator subgroup of L. Then G is a semisimple
connected Lie group, but not necessarily closed in L. However, if L is
linear, then G is closed (cf. [66]). 2

Lemma A.3.8 Let L be a connected reductive Lie group and π a repre-
sentation on the finite-dimensional real vector space V. Suppose that the
restriction of π to the commutator subgroup of L is irreducible and spheri-
cal. Then the center of L acts by real multiples of IdV.

Proof: Since the restriction of π to G := L′ is spherical, Lemma A.3.5
implies that VC is an irreducible G-module. Therefore the commutatant
of π|G is R · IdV by Lemma A.3.4. Let Z := Z(L) be the center of L.
Then π(Z) of L is contained in the commutatant of π|G and this implies
the claim. 2

A.4 Hermitian Groups

A Hermitian group is a real connected simple Lie group G for which the
corresponding Riemannian symmetric space G/K is a complex bounded
symmetric domain. In terms of group theory, this is equivalent to
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z(k) 6= {0}, (A.21)

where z(k) is the center of k and g = k + p is a fixed but arbitrary Cartan
decomposition. We call a Lie algebra Hermitian if it is the Lie algebra of a
Hermitian group. For the results in this section, we refer to [44, 83, 84, 155].

If g is Hermitian, then g and k have the same rank, i.e., there exists a
Cartan subalgebra t of g contained in k. Moreover, z(k) is one dimensional
and every adZ|p, Z ∈ z(k)\{0} is regular (see [44], Chapter 6, Theorem 6.1
and Proposition 6.2). Further, there exists an element Z0 ∈ z(k) with eigen-
values 0, i,−i such that the zero-eigenspace is k, and adp Z

0 is a complex
structure on p. The ±i-eigenspace p± of adZ0|pC

is an abelian algebra.
Let g be Hermitian and GC a simply connected complex Lie group with

Lie algebra gC. Then the analytic subgroup G of GC with Lie algebra g is
Hermitian and closed in GC. Let P± be the analytic subgroup of GC with
Lie algebra p±. The group P± is simply connected, and exp : p± → P±

is an isomorphism of Lie groups. Denote the inverse of exp |p+ by log :
P+ → p+. Then G ⊂ P+KCP

−, where KC is the analytic subgroup of
GC with Lie algebra kC, and we have the following embeddings of complex
manifolds:

G/K ⊂ P+/(KCP
−) ⊂ GC/(KCP

−). (A.22)

Since P+ 3 p 7→ p/KCP
− is injective and holomorphic, we get an embed-

ding

G/K ↪→ P+/(KCP
−) ' P+ log

↪→ p+. (A.23)

We denote this composed map bym 7→ ζ(m) and call it the Harish-Chandra
embedding. Then ζ(G/K) is a bounded symmetric domain in p+. Further-
more, the map

P+ ×KC × P− 3 (p, k, q) 7→ pkq ∈ GC

is a diffeomorphism onto an open dense submanifold of GC and G ⊂
P+KCP

−. If g ∈ G, then g = p+(g)kC(g)p−(g) uniquely with p+(g) ∈ P+,
k(g) ∈ KC and p−(g) ∈ P−.

Let g be a Hermitian algebra and G ⊂ GC a Hermitian group with Lie
algebra g and simply connected GC. We denote the complex conjugation
of gC w.r.t. g and the corresponding complex conjugation of GC by σ and
note that G = Gσ

C (cf. Theorem 1.1.11). Let t be a Cartan subalgebra
of g containing Z0. Then t ⊂ k. Let ∆ = ∆(gC, tC), ∆k = ∆(kC, tC) and
∆n = ∆(pC, tC). The elements of ∆k are called compact roots, whereas the
elements of ∆n are called noncompact roots. Choose a basis Z1, Z2, . . . , Zt
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of t ∩ [k, k]. The lexicographic ordering of it∗ with respect to this basis is
now defined by λ > µ if the first nonzero number in the sequence (λ −
µ)(iZ0), (λ − µ)(iZ1), (λ − µ)(iZ2), . . . , (λ− µ)(iZt) is positive. Denote as
usual by a superscript + the corresponding set of positive roots. Note that
the ordering is chosen such that ∆+

n = ∆(p+, tC). For α ∈ ∆ we choose
Eα ∈ (gC)α such that E−α = σ(Eα). The normalization of the Eα can be
chosen such that the element Hα = [Eα, E−α] ∈ it satisfies α(Hα) = 2 (cf.
[44], p. 387).

Two roots α, β ∈ ∆ are called strongly orthogonal if α±β 6∈ ∆. Note that
strongly orthogonal roots are in fact orthogonal w.r.t. the inner product
on it∗ induced by the Killing form. We recall the standard construction
of a maximal system of strongly orthogonal roots: Let r be the rank of
D = G/K, i.e., the dimension of a maximal abelian subalgebra of p. Let
Γr := ∆(p+, tC) and γr be the highest root in Γr. If we have defined
Γr ⊃ Γr−1 ⊃ · · · ⊃ Γk 6= ∅ and γj ∈ Γj , j = k, . . . r, we define Γk−1 to be
the set of all γ in Γk\{γk} that are strongly orthogonal to γk. If Γk−1 is not
empty (or, equivalently, k > 1), we let γk−1 be the highest root in Γk−1. Set
Γ := {γ1, . . . , γr}. Then Γ is a maximal set of strongly orthogonal roots in
∆(p+, tC). We get a maximal set Γ := {γ1, . . . , γr} of strongly orthogonal
roots. Let E±j := E±γj

and Hj := Hγj
. Further, we set

Xj := −i(Ej − E−j) ∈ p , Xo :=
1

2

r
∑

j=1

Xj , (A.24)

Yj := Ej + E−j ∈ p , Yo :=
1

2

r
∑

j=1

Yj , (A.25)

Eo :=

r
∑

j=1

Ej ∈ p+ (A.26)

and

Zo :=
i

2

r
∑

j=1

Hj ∈ t .

Furthermore, we let

a :=

r
⊕

j=1

RXj ⊂ p ∩
∑

γ∈Γ

((gC)γ + (gC)−γ) , (A.27)

ah :=

r
⊕

j=1

RYj ⊂ p ∩
∑

γ∈Γ

((gC)γ + (gC)−γ), (A.28)
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and

t− := i

r
⊕

j=1

RHj .

The strong orthogonality of the roots γi, γj , i 6= j implies that the inner
automorphisms, Cj ∈ Aut(gC), j = 1, . . . , r, defined by

Cj := Ad(cj), with cj = exp
πi

4
Xj ,

commute. They are called partial Cayley transforms . Their product C :=
C1 ◦ . . . ◦Cr ∈ Aut(gC) is called the Cayley transform . It satisfies

C = Ad(c) with c = exp
πi

2
Xo, (A.29)

so in particular we have c8 = 1.

Example A.4.1 For g = su(1, 1) we get

H1 =

(

1 0
0 −1

)

, E1 =

(

0 1
0 0

)

, E−1 =

(

0 0
1 0

)

and

Zo =
i

2

(

1 0
0 −1

)

, Xo =
1

2

(

0 −i
i 0

)

, and Yo =
1

2

(

0 1
1 0

)

.

This gives

c =
1√
2

(

1 1
−1 1

)

. 2

Define ϕj : sl(2,C)→ gC by

ϕj : H1 7→ Hj , E1 7→ Ej , and E−1 7→ E−j .

Then [Imϕj , Imϕk] = 0 for j 6= k and ϕj ◦ σ = σ ◦ ϕj . Thus, in particu-
lar, ϕj(su(1, 1)) ⊂ g. As SL(2,C) is simply connected, ϕj integrates to a
homomorphism ϕj : SL(2,C)→ GC such that ϕj(SU(1, 1)) ⊂ G.

The use of the ϕj allows to reduce many problems to calculations in
SL(2,C). We give an application of this principle.

Lemma A.4.2 The elements Zo, Xo, and Yo span a three dimensional
subalgebra of g isomorphic to su(1, 1). Set c̃ := exp ([π/2]Zo), ch :=
exp ([iπ/2)Yo), C̃ := Ad(c̃), and Ch := Ad(ch). Then we have
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1) C(Hj) = −Yj, C(Xj) = Xj, C(Yj) = Hj.

2) C̃(Hj) = Hj, C̃(Xj) = Yj, C̃(Yj) = −Xj.

3) Ch(Hj) = Xj, Ch(Xj) = −Hj, Ch(Yj) = Yj.

Proposition A.4.3 a and ah are maximal abelian subalgebras of p. Fur-
thermore,

Ch(t−) = ia and C(t−) = iah. 2

The following theorem of C. C. Moore [110] describes the set of restricted
roots ∆(g, ah). A similar statement is also true for a instead of ah.

Theorem A.4.4 (Moore) Define αj = γj ◦ C−1. Then the set of roots
of a in g is given either by

∆(g, a) = ±{αj,
1

2
(αi ± αk) | 1 ≤ i, j, k ≤ r; i < k}

or by

∆(g, a) = ±{1
2
αj , αj ,

1

2
(αi ± αk) | 1 ≤ i, j, k ≤ r; i < k}.

Taking + gives a positive system of roots. The dimensions of the root spaces
for the roots ± 1

2 (αi ± αk) all agree. 2

Theorem A.4.5 (Korányi–Wolf) The following properties are equiva-
lent:

1) The Cayley transform C ∈ Aut(gC) has order 4.

2) Z0 = Zo.

3) adXo has only the eigenvalues 0 and ±1.

4) The restricted root system is reduced.

If these conditions are satisfied, Ω = Ad(Ch(L))(iEo) is an open convex
cone in g(1, Xo), where L := KC∩(cGc−1). Moreover, the Cayley transform
induces a biholomorphic map

Ch ◦ ch : ζ(G/K)→ g(1, Xo) + iΩ

defined by Z 7→ C−1
h (ch · Z) (cf. [155], p. 137). 2

If the conditions of Theorem A.4.5 hold, the Riemannian symmetric space
G/K is called a tube domain .
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The Vietoris Topology

In this appendix we describe some topological properties of the set of closed
subsets of a locally compact space. This material is needed to study com-
pactifications of homogeneous ordered spaces.

Let (K, d) be a compact metric space. We write C(K) for the set of
compact subsets of K and C0(K) for the set of nonempty compact subsets.
For A ∈ C0(K) and b ∈ K we set

d(A, b) = d(b, A) := min{d(a, b) | a ∈ A} (B.1)

and for A,B ∈ C0(K) we define the Hausdorff distance:

d(A,B) := max
{

max{d(a,B) | a ∈ A},max{d(b, A) | b ∈ B}
}

. (B.2)

This metric defines a compact topology, called Vietoris topology , on C0(K)
([11], Ch. II, §1, Ex. 15). We set

d(A, ∅) = d(∅, A) :=∞. (B.3)

For two open subsets U, V ⊂ K we set

K(U, V ) := {F ∈ C(K) | F ⊂ U,F ∩ V 6= ∅}. (B.4)

Then the sets K(U, V ) form a subbase for the Vietoris topology ([14], p.
162).

Let X be a locally compact space which is metrizable and σ-compact.
We write F(X) for the set of closed subsets of X and C(X) for the set
of compact subsets. To get a compact topology on F(X), we consider
the one-point compactification Xω := X ∪ {ω} and identify X with the
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corresponding subset of Xω. Note that our assumption on X implies that
Xω is metrizable. We define the mapping

β : F(X)→ C0(Xω), F 7→ F ∪ {ω}. (B.5)

Then β is one-to-one and we identify F(X), via β, with the closed subset
Imβ = {K ∈ C0(Xω) | ω ∈ K}. As a closed subspace of C0(Xω), the space
F(X) is a compact metrizable topological space. For a sequence (An)n∈N

in F(X), we define

liminfAn := {x ∈ X | ∀m ∈ N(∃nm), ∀n ≥ nm : d(x,An) < 1
m} (B.6)

and

limsupAn := {x ∈ X | ∀m ∈ N, ∀n0 ∈ N, ∃n ≥ n0 : d(x,An) < 1
m}. (B.7)

We note that these sets are always closed.

Lemma B.1.1 The following assertions hold:

1) If U ⊂ X, then {F ∈ F(X) | F ∩ U 6= ∅} is open; and if A ⊂ X is
closed, then {F ∈ F(X) | F ⊂ A} is closed.

2) Let An be a sequence in F(X). Then An converges to A ∈ F(X) if
and only if

A = limsupAn = liminfAn.

In this case A consists of the set of limit points of sequences (an) with
an ∈ An.

3) If A ⊂ X is closed, then {F ∈ F(X) | A ⊂ F} is closed.

4) If An is a sequence of connected sets, An → A 6= ∅, and for every n ∈
N the set

⋃

m≥nAm is not relatively compact, then every connected
component of A is noncompact.

5) The relation ⊂ is a closed subset of F(X)×F(X).

Proof: 1) The first assertion follows from the observation that

{F ∈ F(X) | F ∩ U 6= ∅} = F(X) ∩ {F ∈ C(Xω) | F ∩ U 6= ∅}

because U is open in Xω. The second assertion follows by applying the
first one with U := X \A.

2) ⇒: Let x ∈ A. Then there exist numbers nm ∈ N such that An

intersects the (1/m)-ball around a if n ≥ nm. W.l.o.g. we may assume that



259

the sequence nm is increasing. For k = nm +1, ..., nm+1 we choose ak ∈ Ak

with distance less than 1/m from a. Then a = limk→∞ ak and therefore
a ∈ liminfAn. If, conversely, a ∈ limsupAn, then there exists a subsequence
nm ∈ N with nm ≥ m and elements am ∈ Anm

with d(a, am) < 1/m. We
conclude that a = lim am ∈ limAnm

= A. This proves that

limsupAn ⊂ A ⊂ liminfAn.

(⇐): We use the compactness of F(X). Let Anm
be a convergent sub-

sequence of An. Then the first part implies that limAnm
= liminfAnm

.
Moreover, we have that

liminfAn ⊂ liminfAnm

and

limsupAnm
⊂ limsupAn.

Hence

A = liminfAn ⊂ liminfAnm
⊂ limsupAnm

⊂ limsupAn = A

implies that limAnm
= A. Finally, the arbitrariness of the subsequence of

An entails that An → A.
3) This is an immediate consequence of 2).
4) Let a ∈ A be arbitrary and C(a) the connected component of a in

A. We have to show that C(a) is noncompact. Suppose this is false. Then
C(a) is a compact subset of X and there exists a relatively compact open
neighborhood V of C(a) in X such that V ∩A is closed ([11], Ch. II, §4.4,
Cor.]) and therefore compact. Let δ := min{d(a′, b) | a′ ∈ V ∩ A, b ∈
X \ V } > 0 and ε := min{δ/4, d(ω, V )/3}. Since a ∈ limAn, there exists
nV ∈ N such that d(An, a) < ε for all n ≥ nV . Moreover, we may assume
that d(An, A ∪ {ω}) < ε. Let an ∈ An with d(an, V ∩ A) < ε. Then
d(an, ω) > ε because d(ω, V ∩ A) > 3ε and therefore d(an, A) < ε. Let
b ∈ A such that d(an, b) < ε. Then d(b, V ∩A) < 3ε < δ. Hence b ∈ V ∩A
and this entails that d(an, V ∩A) < ε. Thus

{c ∈ An | d(c, A ∩ V ) ∈]ε, 2ε[} = ∅.

Since An is connected, this implies that An ⊆ V . This contradicts the
assumption that

⋃

m≥nAm is not relatively compact.
5) Let (An, Bn)→ (A,B) with An ⊂ Bn. Then 2) shows that A ⊂ B. 2

We recall that a Hausdorff space Y endowed with a closed partial order
≤ is called a pospace. Thus we see that (F(X),⊂) is a compact pospace.
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Proposition B.1.2 Let µ : G×X → X be a continuous action of a locally
compact group G on X. Then

F(µ) : G×F(X)→ F(X), (g, F ) 7→ g(F )

defines a continuous action of G on F(X).

Proof: Let (g, F ) = lim(gn, Fn) with gn ∈ G and Fn ∈ F(X). We have
to show that gn(Fn) → g(F ). To see this, we have to show that each
convergent subsequence converges to g(F ). So we may assume that gn(Fn)
is convergent. Let f ∈ F . Then there exists a sequence fn ∈ Fn with
fn → f . Hence gn · fn → g · f implies that g · f ∈ lim gn(Fn). This proves
that g(F ) ⊂ lim gn(Fn). If, conversely, f ′ = lim gn · f ′

n ∈ lim gn(Fn), then

f ′
n = g−1

n · (gn · f ′
n)→ g−1 · f ′

entails that f ′ = lim g · f ′
n ∈ lim g(Fn) = g(limFn) = g(F ). 2

Proposition B.1.3 Suppose that the locally compact group G acts contin-
uously on X. Further suppose that O ⊂ X is open.

1) The set S := S(O) = {g ∈ G | g · O ⊂ O} is a closed subsemigroup of
G.

2) If X is a homogeneous G-space, then the interior of S is given by

So = {g ∈ G | g · O ⊂ O},

where O is the closure of O in X.

Proof: 1) According to Lemma C.0.6 the set {F ∈ F(X) | X \ O ⊂ F} is
closed. Therefore Proposition C.0.7 implies that also

S = {g ∈ G | X \ O ⊂ g(X \ O)}
is closed. Since S obviously is a semigroup, this implies the claim.

2) Let g ∈ So and U be a neighborhood of 1 in G such that Ug ⊂ S.
Then

g · O = g · O ⊂ (Ug) · O ⊂ S · O ⊂ O.
Conversely, if g ·O ⊂ O, then there exists a neighborhood U of 1 in G such
that (Ug) · O ⊂ O. In particular, we find Ug ⊂ S, whence g ∈ So. 2

Proposition B.1.4 Let G be a Lie group. Set F(G)H := {F ∈ F(G) |
∀h ∈ H : Fh = F}. Then the mapping

π∗ : F(G/H)→ F(G)H , F 7→ π−1(F )

is a homeomorphism.
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Proof: That π∗ is a bijection follows from the fact that the quotient mapping
π : G → G/H is continuous. So it remains to show that π∗ is continuous.
Let Fn → F in F(G/H) and set En := π−1(Fn) and E := π−1(F ). We
may assume that En → E′. Then we have to show that E = E′.

Let e′ ∈ E′ and en ∈ En with en → e′. Then π(en)→ π(e′) ∈ limFn =
F . Hence e′ ∈ E and therefore E′ ⊂ E. If, conversely, e ∈ E, then π(e) ∈ F
and there exists a sequence fn ∈ Fn with fn → π(e). Using a local cross
section σ : U → G, where U is a neighborhood of π(e) and σ (π(e)) = e, we
find that σ(fn)→ e ∈ limEn = E′. 2

Lemma B.1.5 Let G be a Lie group acting on a locally compact space Y
and X ∈ g. For p ∈ Y let gp be the Lie algebra of the group Gp = {g ∈ G |
g · p = p}. If q = limt→∞ exp(tX) · p then

limsupt→∞e
ad tXgp ⊂ gq.

Proof: Suppose Z ∈ limsupn→∞e
ad nXgp. Then Z = limk→∞ eadnkXYk for

suitable sequences Yk ∈ gp and (nk)k∈N. But then

expZ · q = lim
k→∞

(exp(nkX) exp(Yk) exp(−nkX)) lim
k→∞

exp(nkX) · p
= lim

k→∞
exp(nkX) exp(Yk) exp(−nkX) exp(nkX) · p

= lim
k→∞

exp(nkX) exp(Yk) · p
= lim

k→∞
exp(nkX) · p = q

which proves the asertion. 2



Appendix C

The Vietoris Topology

In this appendix we describe some topological properties of the set of closed
subsets of a locally compact space. This material is needed to study com-
pactifications of homogeneous ordered spaces.

Let (K, d) be a compact metric space. We write C(K) for the set of
compact subsets of K and C0(K) for the set of nonempty compact subsets.
For A ∈ C0(K) and b ∈ K we set

d(A, b) = d(b, A) := min{d(a, b) | a ∈ A} (C.1)

and for A,B ∈ C0(K) we define the Hausdorff distance:

d(A,B) := max
{

max{d(a,B) | a ∈ A},max{d(b, A) | b ∈ B}
}

. (C.2)

This metric defines a compact topology, called Vietoris topology , on C0(K)
([11], Ch. II, §1, Ex. 15). We set

d(A, ∅) = d(∅, A) :=∞. (C.3)

For two open subsets U, V ⊂ K we set

K(U, V ) := {F ∈ C(K) | F ⊂ U,F ∩ V 6= ∅}. (C.4)

Then the sets K(U, V ) form a subbase for the Vietoris topology ([14], p.
162).

Let X be a locally compact space which is metrizable and σ-compact.
We write F(X) for the set of closed subsets of X and C(X) for the set
of compact subsets. To get a compact topology on F(X), we consider
the one-point compactification Xω := X ∪ {ω} and identify X with the
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corresponding subset of Xω. Note that our assumption on X implies that
Xω is metrizable. We define the mapping

β : F(X)→ C0(Xω), F 7→ F ∪ {ω}. (C.5)

Then β is one-to-one and we identify F(X), via β, with the closed subset
Imβ = {K ∈ C0(Xω) | ω ∈ K}. As a closed subspace of C0(Xω), the space
F(X) is a compact metrizable topological space. For a sequence (An)n∈N

in F(X), we define

lim inf An := {x ∈ X | ∀m ∈ N(∃nm), ∀n ≥ nm : d(x,An) < 1
m} (C.6)

and

lim supAn := {x ∈ X | ∀m ∈ N, ∀n0 ∈ N, ∃n ≥ n0 : d(x,An) < 1
m}.

(C.7)
We note that these sets are always closed.

Lemma C.0.6 The following assertions hold:

1) If U ⊂ X, then {F ∈ F(X) | F ∩ U 6= ∅} is open; and if A ⊂ X is
closed, then {F ∈ F(X) | F ⊂ A} is closed.

2) Let An be a sequence in F(X). Then An converges to A ∈ F(X) if
and only if

A = lim supAn = lim inf An.

In this case A consists of the set of limit points of sequences (an) with
an ∈ An.

3) If A ⊂ X is closed, then {F ∈ F(X) | A ⊂ F} is closed.

4) If An is a sequence of connected sets, An → A 6= ∅, and for every n ∈
N the set

⋃

m≥nAm is not relatively compact, then every connected
component of A is noncompact.

5) The relation ⊂ is a closed subset of F(X)×F(X).

Proof: 1) The first assertion follows from the observation that

{F ∈ F(X) | F ∩ U 6= ∅} = F(X) ∩ {F ∈ C(Xω) | F ∩ U 6= ∅}

because U is open in Xω. The second assertion follows by applying the
first one with U := X \A.

2) ⇒: Let x ∈ A. Then there exist numbers nm ∈ N such that An

intersects the 1
m -ball around a if n ≥ nm. W.l.o.g. we may assume that
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the sequence nm is increasing. For k = nm +1, ..., nm+1 we choose ak ∈ Ak

with distance less than 1
m from a. Then a = limk→∞ ak and therefore a ∈

lim inf An. If, conversely, a ∈ lim supAn, then there exists a subsequence
nm ∈ N with nm ≥ m and elements am ∈ Anm

with d(a, am) < 1
m . We

conclude that a = lim am ∈ limAnm
= A. This proves that

lim supAn ⊂ A ⊂ lim inf An.

(⇐): We use the compactness of F(X). Let Anm
be a convergent subse-

quence of An. Then the first part implies that limAnm
= lim inf Anm

.
Moreover, we have that

lim inf An ⊂ lim inf Anm

and

limsupAnm
⊂ lim supAn.

Hence

A = lim inf An ⊂ lim inf Anm
⊂ lim supAnm

⊂ lim supAn = A

implies that limAnm
= A. Finally, the arbitrariness of the subsequence of

An entails that An → A.
3) This is an immediate consequence of 2).
4) Let a ∈ A be arbitrary and C(a) the connected component of a in

A. We have to show that C(a) is noncompact. Suppose this is false. Then
C(a) is a compact subset of X and there exists a relatively compact open
neighborhood V of C(a) in X such that V ∩A is closed ([11], Ch. II, §4.4,
Cor.]) and therefore compact. Let δ := min{d(a′, b) | a′ ∈ V ∩ A, b ∈
X \ V } > 0 and ε := min{ δ

4 ,
1
3d(ω, V )}. Since a ∈ limAn, there exists

nV ∈ N such that d(An, a) < ε for all n ≥ nV . Moreover, we may assume
that d(An, A ∪ {ω}) < ε. Let an ∈ An with d(an, V ∩ A) < ε. Then
d(an, ω) > ε because d(ω, V ∩ A) > 3ε and therefore d(an, A) < ε. Let
b ∈ A such that d(an, b) < ε. Then d(b, V ∩A) < 3ε < δ. Hence b ∈ V ∩A
and this entails that d(an, V ∩A) < ε. Thus

{c ∈ An | d(c, A ∩ V ) ∈]ε, 2ε[} = ∅.

Since An is connected, this implies that An ⊆ V . This contradicts the
assumption that

⋃

m≥nAm is not relatively compact.
5) Let (An, Bn)→ (A,B) with An ⊂ Bn. Then 2) shows that A ⊂ B. 2

We recall that a Hausdorff space Y endowed with a closed partial order
≤ is called a pospace. Thus we see that (F(X),⊂) is a compact pospace.
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Proposition C.0.7 Let µ : G×X → X be a continuous action of a locally
compact group G on X. Then

F(µ) : G×F(X)→ F(X), (g, F ) 7→ g(F )

defines a continuous action of G on F(X).

Proof: Let (g, F ) = lim(gn, Fn) with gn ∈ G and Fn ∈ F(X). We have
to show that gn(Fn) → g(F ). To see this, we have to show that each
convergent subsequence converges to g(F ). So we may assume that gn(Fn)
is convergent. Let f ∈ F . Then there exists a sequence fn ∈ Fn with
fn → f . Hence gn · fn → g · f implies that g · f ∈ lim gn(Fn). This proves
that g(F ) ⊂ lim gn(Fn). If, conversely, f ′ = lim gn · f ′

n ∈ lim gn(Fn), then

f ′
n = g−1

n · (gn · f ′
n)→ g−1 · f ′

entails that f ′ = lim g · f ′
n ∈ lim g(Fn) = g(limFn) = g(F ). 2

Proposition C.0.8 Suppose that the locally compact group G acts contin-
uously on X. Further suppose that O ⊂ X is open.

1) The set S := S(O) = {g ∈ G | g · O ⊂ O} is a closed subsemigroup of
G.

2) If X is a homogeneous G-space, then the interior of S is given by

So = {g ∈ G | g · O ⊂ O},

where O is the closure of O in X.

Proof: 1) According to Lemma C.0.6 the set {F ∈ F(X) | X \ O ⊂ F} is
closed. Therefore Proposition C.0.7 implies that also

S = {g ∈ G | X \ O ⊂ g(X \ O)}
is closed. Since S obviously is a semigroup, this implies the claim.

2) Let g ∈ So and U be a neighborhood of 1 in G such that Ug ⊂ S.
Then

g · O = g · O ⊂ (Ug) · O ⊂ S · O ⊂ O.
Conversely, if g ·O ⊂ O, then there exists a neighborhood U of 1 in G such
that (Ug) · O ⊂ O. In particular, we find Ug ⊂ S, whence g ∈ So. 2

Proposition C.0.9 Let G be a Lie group. Set F(G)H := {F ∈ F(G) |
∀h ∈ H : Fh = F}. Then the mapping

π∗ : F(G/H)→ F(G)H , F 7→ π−1(F )

is a homeomorphism.
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Proof: That π∗ is a bijection follows from the fact that the quotient mapping
π : G → G/H is continuous. So it remains to show that π∗ is continuous.
Let Fn → F in F(G/H) and set En := π−1(Fn) and E := π−1(F ). We
may assume that En → E′. Then we have to show that E = E′.

Let e′ ∈ E′ and en ∈ En with en → e′. Then π(en)→ π(e′) ∈ limFn =
F . Hence e′ ∈ E and therefore E′ ⊂ E. If, conversely, e ∈ E, then π(e) ∈ F
and there exists a sequence fn ∈ Fn with fn → π(e). Using a local cross
section σ : U → G, where U is a neighborhood of π(e) and σ (π(e)) = e, we
find that σ(fn)→ e ∈ limEn = E′. 2

Lemma C.0.10 Let G be a Lie group acting on a locally compact space Y
and X ∈ g. For p ∈ Y let gp be the Lie algebra of the group Gp = {g ∈ G |
g · p = p}. If q = limt→∞ exp(tX) · p then

lim sup
t→∞

ead tXgp ⊂ gq.

Proof: Suppose Z ∈ lim supn→∞ ead nXgp. Then Z = limk→∞ ead nkXYk

for suitable sequences Yk ∈ gp and (nk)k∈N. But then

expZ · q = lim
k→∞

(exp(nkX) exp(Yk) exp(−nkX)) lim
k→∞

exp(nkX) · p
= lim

k→∞
exp(nkX) exp(Yk) exp(−nkX) exp(nkX) · p

= lim
k→∞

exp(nkX) exp(Yk) · p
= lim

k→∞
exp(nkX) · p = q.

2
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Chapter 1

H , stabilizer of a base point: 2
τ , a nontrivial involution on G and g: 1
Gτ = {a ∈ G | τ(a) = a}: 2
g(1, τ), the +1-eigenspace of τ : 2
h = gτ , the Lie algebra of H : 2
q, the (−1)-eigenspace of τ : 2
σ, the conjugation X + iY 7→ X − iY relative to g: 3
η = τ ◦ σ: 6
g(−1, τ), (−1)-eigenspace of τ : 2
adq(X) = ad(X)|q, restriction of adX , X ∈ h, to q: 2
`a, left translation by a: 4
M, the symmetric space G/H : 4
M̃, universal covering space ofM: 5
hk, hp, qk, qp: 7
Ǧ, the analytic subgroup for g in the simply connected complexification: 6
Ǧc, the same with g replaced by gc: 6
Ȟ , the τ -fixed group in Ǧ: 6
M̌ = Ǧ/Ȟ: 6
M̌c = Ǧ/Ȟ : 6
τX = Ad(expπX) = eπ ad X : 8
ϕX = Ad (exp([π/2]X)) = e[π/2] ad X : 8
gc = h⊕ iq, the c-dual Lie algebra: 6
kc, the maximal compactly embedded algebra hk ⊕ iqp in gc: 8
pc = hp ⊕ iqk ⊂ gc: 8
qc = iq, the −1 eigenspace of τ |gc : 8
τa = τ ◦ θ, the associated involution: 9
ha = g(+1, τa) = hk ⊕ qp: 9
qa = g(−1, τa) = qk ⊕ hp: 9
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Ma, a symmetric space locally isomorphic to G/Ha: 9
θr = τ |gr the Cartan involution on the Riemannian dual Lie algebra gr: 9
gr = hk ⊕ ihp ⊕ iqk ⊕ qp, the Riemannian dual Lie algebra: 9
Gr, a Lie group with Lie algebra gr: 9
kr = hk ⊕ ihp ⊂ gr: 9
Kr = exp kr, the maximal almost compact subgroup of Gr : 9
Mr, the Riemannian dual space Gr/Kr: 9
qH∩K = {X ∈ q | ∀k ∈ H ∩K : Ad(k)X = X}: 12
qHo∩K , the same as above with H replaced by Ho: 12
zl(a) = {Y ∈ l | ∀X ∈ a : [Y,X ] = 0}, the centralizer of a in l: 14
z(l) = zl(l), the center of l: 14
Y 0, a central element in hp such that ad(Y 0) has spectrum 0, 1 and −1 and

h = g(0, Y 0): 21
Qp,q, the bilinear form x1y1 + . . .+ xpyp − xp+1yp+1 − . . .− xnyn: 24
Q±r = {x ∈ Rn | Q±r(x, x) = ±r}: 24

Ip,q =

(

Ip 0
0 −Iq

)

, where Ik is the (k × k)-identity matrix: 25

M(l ×m,K), the K-vector space of (k ×m)-matrices: 25
Z(G), the center of G: 14
q+ = g(+1, Y 0), q− = q(−1, Y 0), the irreducible components of q for

Cayley type spaces: 13

Chapter 2

VC = C ∩−C, the largest vector space contained in the closed cone C: 29
< C >:= C − C, the vector space generated by the cone C: 29
C∗ = {u ∈ V | ∀v ∈ C, v 6= 0 : (u|v) > 0}, dual cone: 29
U⊥ = {v ∈ V | ∀u ∈ U : (v|u) = 0}: 30
Co = int(C), the interior of C: 30
algint(C), the interior of C in < C >, the algebraic interior of C: 30
cone(S), the cone generated by S: 30
Cone(V), the set of regular, closed convex cones in V: 30
Ω = cl(Ω), the closure of Ω: 30
Fa(C), the set of faces of the cone C: 31
op(F ) = F⊥ ∩ C, the face of C∗ opposite to the face F of C: 32
PW

V (C), the orthogonal projection of the cone C into V ⊂W: 32
IW
V (C) = C ∩V, the intersection of C with V: 32

Aut(C) = {a ∈ GL(V) | a(C) = C}, the automorphism group of C: 33
ConeG(V): G-invariant cones in Cone(V): 33,38

EW,L
V,N (C) = conv (L · C), the minimal L-invariant extension of C: 34

M(m,K) = M(m×m,K): 34



NOTATION 269

H(m,K) = {X ∈ M(m,K) | X∗ = X}, space of Hermitian matrices over
K: 34

H+(m,K), the cone of positive definite matrices in H(m,K): 34
conv(L), the convex hull of the set L: 36
uK =

∫

K
(k · u)dk ∈ conv(K · u), a K-invariant vector in C obtained as

the center of gravity of a K-orbit: 36
Cmin, a minimal invariant cone: 39
Cmax, a maximal invariant cone, Cmax = C∗

min: 39
o, the basepoint o = eH ifM = G/H : 40
�s, strict causality relation via connecting by causal curves: 41
�, the closure of the relation �s: 41
↑A = {y ∈ Y | ∃a ∈ A : a ≤ y}: 41
↓A = {y ∈ Y | ∃a ∈ A : y ≤ a}: 41
[m,n]≤ = {z ∈ M | m ≤ z ≤ n} = ↑m ∩ ↓n: 42
S≤ = {a ∈ G | o ≤ a · o}, the causal semigroup: 43
L(S�) = {X ∈ g | exp R+X ⊂ S�}, the tangent cone: 44, 44
≤S , g ≤S g

′ if g′ ∈ gS: 44
Mon(S), the set of monotone functions: 44
F(M), the set of closed subset ofM: 45
F↓(G) = {F ∈ F(G) | ↓F = F} ⊂ F(G)H : 45
F↓(G/H): 45
η : G/H → F↓(G), gH 7→ ↓(gH), the causal compactification map: 46
M+ = [o,∞) = S · o, the positive cone inM: 46
Mcpt = η(M) = η(G) ⊂ F(G), the order compactification ofM: 46
Mcpt

+ = η(M+) = η(S): 46
F∞

↓ (G/H), elements of F↓(G/H) with noncompact connected upper sets:
48

∂A, the boundary of A: 49
Ck = C+ − C− ⊂ q, a cone such that Co

k ∩ k 6= ∅: 53
Cp = C+ + C− ⊂ q, a cone with Co

p ∩ p 6= ∅: 53
X±, (K ∩H)-invariants in q±: 52
C, a Cayley transform commuting with τa: 56,255
p+(g), kC(g), p−(g), the projections of g ∈ P+KCP

− onto its components:
56

Ω+, the bounded realization of G/K: 56
j(g, Z), the KC projection of g expZ: 56
g · Z, the P+ component of g expZ: 56
S, the Shilov boundary of G/K: 56
ζ(p) = log(p) ∈ P+: 56
E = ζ(c), a base point in S: 56
S1 = S × S: 57
ρn, half the sum of positive noncompact roots: 58



270 NOTATION

πm, irreducible representation of GC with lowest weight −mρn: 59
Φm(Z) = (πm(c−2 expZ)u0 | u0): 59
Ψm(Z,W ) := Φm(Z −W ): 59

Chapter 3

X0, a cone-generating element in q: 77
ψk = ϕZ0 , an isomorphism (g, τ, θ) ' (g, τa, θ): 78
ψp = ϕiX0 , an isomorphism (g, τ, θ) ' (g, τa, θ)r: 78
ψc = ϕiY 0 , an isomorphism (g, τ, θ) ' (gc, τ, τa): 78
∆0 = {α ∈ ∆ | α(X0) = 0} = ∆(ha, a): 79
∆± = {α ∈ ∆ | α(X0) = ± 1}: 80
n± =

∑

α(X0)=±1 gα: 80

n0 =
∑

α∈∆+
0

gα ⊂ g0: 80

Chapter 4

Xλ = λ/|λ|2 ∈ a: 92
Yα ∈ gα, such that |Yα|2 = 2

|α|2 , Y−α = τ(Yα). Thus [Yα, Y−α] = Xα: 92

Y α = 1
2 (Yα + Y−α) ∈ hp: 93

Zα = 1
2 (Y−α − Yα) ∈ qk: 93

X±α = 1
2 (Xα ± Zα) ∈ q: 93

ϕα, a τ -equivariant homomorphism sl(2,C)→ gC: 93
sα = Imϕα: 94
∆̃ = ∆(gC, t

c
C): the roots of the Cartan subalgebra tC in gC: 95

∆̃± = ∆((pc)±, tcC), the set of noncompact roots: 95
∆̃0 := ∆(kc

C, t
c
C), the set of compact roots: 95

Γ̃ = {γ̃1, . . . , γ̃rc}, a maximal set of strongly orthogonal noncompact roots:
96

ac
h, maximal abelian subalgebra of hp: 96

Cmin(X
0) = Cmin = conv [Ad(Ho) (R+X0]), a minimal Ad(Ho)-invariant

cone containing the cone-generating element X0: 98
Cmax(X

0) = Cmax{X ∈ q | ∀Y ∈ Cmin : B(X,Y ) ≥ 0} = Cmin(X0)∗, the
maximal

cone containing X0: 98
cmin(X

0) = cmin =
∑

α∈∆+
R

+
0 X

α =
∑

α∈∆+
R

+
0 α, the minimal Weyl

group invariant regular cone in a: 98
cmax(X

0) = cmax = {X ∈ a | ∀α ∈ ∆+ : α(X) ≥ 0} = c∗min, the
corresponding maximal cone in a: 98

c̃min =
∑

α̃∈∆̃+
R+

0 α̃, the minimal W -invariant cone in a Cartan subalgebra
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containing a: 102
c̃max = {X ∈ itc | ∀α̃ ∈ ∆̃+ : α̃(X) ≥ 0} = {X ∈ itc | ∀α̃∈ ∆̃+ : α̃(X)≥ 0}

= c̃∗min: 102
C̃min, a minimal Gc-invariant cone in igc: 103
C̃max = C̃∗

min, a maximal Gc-invariant cone in igc: 103
W̃0 = W (∆̃0) = NKc(tc)/ZKc(tc): 115
C(∆+

0 ) = {X ∈ a | ∀α ∈ ∆+
0 : α(X) > 0}, open Weyl chamber: 116

W̃ 0(τ) = {w ∈ W̃ 0 | τ ◦ w = w ◦ τ}: 117

W̃
a

0 = {w ∈ W̃ 0 | w|a = id}: 117

Chapter 5

Pmax = HaN+, a maximal parabolic subgroup in G: 121
]:G→ G, g 7→ τ(g)−1: 121
Ac

h = exp ah, where ah ⊂ hp is maximal abelian: 121
O = (Gτ )o · oX ⊂ X = G/Pmax: 122
X = G/Pmax, the real flag manifold: 122
κ : n− → X , κ(X) = (expX) ·Pmax, real Harish-Chandra embedding: 123
Ω− = κ−1(O) ⊂ n−, real bounded domain, isomorphic to H/(H ∩K): 123
Ω+, the bounded realization of H/(H ∩K) inside n+: 124
XC = GC/(Pmax)C, the complex flag manifold: 125
(Ω±)C ' Gc/Kc, the complexification of H/(H ∩K): 125
S(C) = H expC, the closed semigroup in G with tangent cone h⊕ C: 129
S(O), the compression semigroup {g ∈ G |g ·O⊂O}:133
S(L,Q), the compression semigroup {g ∈ G | gLQ ⊂ LQ} = S(LQ/Q):

134
Θ(g) = d1λg(Cmax + h), ∀g ∈ N ]AH : 135
µ(t,h) : N ]AH → N ]AH, g 7→ tgh−1: 135
Ih, the inner automorphism g 7→ hgh−1: 135
aH , the causal Iwasawa projection, g ∈ H exp(aH(g))N : 136
W (a) = NK(a)/ZK(a), the Weyl group of a in G: 138
Wτ (a) = {s ∈ W (a) | s(a ∩ h) = a ∩ h}: 138
W0(a) = NK∩H(a)/ZK∩H(a), the Weyl group of a in Ha: 138
SA = S(Gτ , Pmax)

o ∩Aq: 141

∆̃ = ∆(gC, t
c
C), the set of roots of the Cartan subalgebra tcC: 143

ñ =
∑

α̃∈∆̃+(gC)α̃: 143
ã = itc: 143
Ã = exp(ã): 143
Ñ = exp ñ): 143
L×U V : 144
IB] :F↓(G)→ F↓ (B) , F 7→ F ∩B]: 153
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ηB] :F↓(G)→ F↓ (B) , F 7→ F ∩B]: 154
Aff(N−) = N− o End(N−) = N− o End(n−): 159
Affcom(N−) = {(n−, γ) ∈ Aff(N−) | n−γ(Ω−) ⊂ Ω−}: 159

B], the closure of B] in Aff(N−): 160

λeX
, ρeX

:B] → B], left and right multiplication with eX in B]: 165

Scpt
A = S ∩A = exp cmax ⊂ B], the closure of Scpt

A in B]: 160

eF : X 7→
{

0, if X ∈ gα, α 6∈ F ∩∆−

X, if X ∈ gα, α ∈ F ∩∆−
: 160

EX = (RX − cmax) ∩ cmax, the face of cmax generated by X : 162
FX = X⊥ ∩ −c∗max = E⊥

X ∩ −c∗max: 162
∆X = E⊥

X ∩∆: 162
WX , the subgroup of W0 generated by the reflections fixing X : 163
ΣX : 163
EX,0 = E⊥

X ∩ span{α1, ..., αk} = EX,0,eff ⊕ EX,0,fix: 163
EX,0,fix = {Y ∈ EX,0 | (∀w ∈ WX) w · Y = Y }: 163
EX,0,eff = span{w · Y − Y | w ∈WX , Y ∈ EX,0}: 163
U(T ), the group of units in a monoid T : 168

Chapter 6

Γ : F(X ) → F(G), F 7→ {g ∈ G | g−1 · F ⊂ O}, causal Galois
connection: 173

Γ̂ : 2G → F(X ), A 7→ ⋂

a∈A a · O, dual map of Γ: 173

MO = {g · O | g ∈ G} ⊂ F(X ), causal orbit: 176
ι:G→MO, g 7→ g · O, causal orbit map: 176
ΩF = eF · Ω−, projection of ΩF : 180
hX = limt→∞ ead tXh = zh(X) + g(∆+ \X⊥): 181
HF = {g ∈ G | g ·ΩF = ΩF }, stabilizer of a projection ΩF : 182
hF = hX +

[

hF ∩ (a + n])
]

, the Lie algebra of HF : 182
nX,− = g(∆X,−), image of the idempotent eX : 183
NX,− = exp(nX,−): 183
NY(L) = {g ∈ L | g · Y = Y}: 183
ZY(L) = {g ∈ L | ∀y ∈ Y : g · y = y}: 183
d(E) = dimker eF , the degree of E ∈ G · ΩF : 187
Υ:F → (Mcpt \ {∅})/G, F 7→ G ·ΩF , classifying map for the G-orbits of
Mcpt: 188
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Chapter 7

V∞, the space of smooth vectors: 199
C(π), the cone of negative elements: 200
A(C), the set of C-admissible representations: 200
C(V), the space of contractions of V: 200

Ŝ(C), holomorphic dual of S: 202
Θπ, the character of π: 202
VK , the K-finite elements in V: 204
Φπ(x) := π(kH(x−1)−1)vo: 211
ϕ(π, v)(x) = (v|Φπ(x̄)), the generating function for Eπ ⊂ L2(M): 211
Eπ, the holomorphic discrete series: 212
Ψπ(g, x) = π(kC(g))Φπ(g−1x), g ∈ G, x ∈ P+KCHC: 213
F , the classical Fourier transform: 215
eu, the function x 7→ e(x|u): 215
Ξ(C),Ξo(C), the o-orbits of the Ol’shanskii semigroups S(C) and S(Co):

217
H2(C), the Hardy space corresponding to the cone C: 215,217
β(f), the boundary value map: 217
K(z, w): The Cauchy-Szegö kernel: 219
P (z,m), the Poisson kernel: 220

Chapter 8

M≤ = {(x, y) ∈M | x ≤ y}, the graph of the order ≤: 222
V(M), the Volterra algebra: 222,232
V(M)#, the algebra of invariant Volterra kernels: 233, 233
F#G(x, y) =

∫

[x,y] F (x, z)G(z, y)dz, the product of two Volterra kernels:
222,232

D(M), the algebra of invariant differential operators onM: 224
C∞c (G//K), the algebra of K-bi-invariant functions on G with compact

support in K\G/K: 224
eK

λ (x) = e<λ−ρ,aK(x)>, eλ(x) = eH
λ = e,λ−ρ,aH(x)>: 225

ϕK
λ (x) =

∫

K eK
λ (kx) dk, the spherical function on G/K: 225

ρ = 1
2

∑

α∈∆+ (dim gα)α: 225
ϕλ(s) =

∫

H
eλ(sh) dh, the spherical function with parameter λ: 226

ρ0 = 1
2

∑

α∈∆+
0

dim gα α: 226

E = {λ ∈ aC | ∀α ∈ ∆+ : Re(λ + ρ|α) < 0}, domain of definition for
parameters for spherical functions: 226
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E ′ = {λ ∈ a∗C |
∫

K∩HAN e−Re λ(k) dk <∞}. Same as above: 227

ρ+ = 1
2

∑

α∈∆+
mαα: 227

D(M), the algebra of G-invariant differential operators onM: 227
A(C) := exp C ⊂ A: 227
cΩ(λ) =

∫

Ω e−λ(expX) dX , the causal c-function: 228

c0(λ) =
∫

N0
e−λ(n]) dn], classical c-function for Ha/(H ∩K): 228

c(λ) = cΩ(λ)c0(λ): 228

a
A(C)→ ∞, convergence to ∞ in a Weyl chamber: 228

cr(λ) =
∫

N] e−λ(n]) dn], the classical c-function: 230
∆Mr (D): the radial part of D ∈ D(Mr): 230
Γµ: 231
Φλ(a) = aλ−ρ

∑

µ∈Λ Γµ(λ)a−µ: 231
c+(λ): 232
LF (λ) =

∫

M
F (o,m)eλ(m) dm, the Laplace transform of a Volterra kernel:

233
C∞c (HA(C)H//H), the space of H-biinvariant functions on HA(C)H that
have compact support in H\HA(C)H/H : 234
D(f), domain of definition of the Laplace transform of f : 233
ϕ̃λ(x) = [1/c(λ)]ϕλ(x), the normalized spherical function: 234
L̃(f)(λ) = [1/c(λ)]L(f)(λ), the normalized Laplace transform: 234
fγ , the Kr-bi-invariant extension: 231
ϕ̃r

λ(x) = 1
c(λ)ϕ

r
λ(x): 235

Eλ(h1ah2) := ϕr
λ(a): 235

Ẽλ := 1
cr(λ)Eλ: 235

A(f)(a) = aρ
∫

N f(an)dn, the Abel transform: 236
A+f(g0) = aρ+

∫

N+
f(g0n+)dn+: 236

Chapter 9

W (f), classical Wiener-Hopf operator with symbol f : 239
WM+ , C∗-algebra generated by all Wiener-Hopf operators: 239
WM+(f): Wiener-Hopf operator with symbol f : 241
G, a groupoid: 242
G2, composable pairs in G: 242
d(x), domain map for G: 242
r(x), range map for G: 242
G0, unit space of G: 242
L1(G), closure of Cc(G): 243
C∗(G), C∗-algebra generated by L1(G) w.r.t. suitable norm: 243
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WM+ , Wiener-Hopf representation of C∗(G): 244

Appendixes

V(λ, T ) = {v ∈ V | Tv = λ v}, eigenspace of T for the eigenvalue λ: 246
V(λ,X) = V(λ, π(X)), for a representation π: 246
V(α, b) = Vα, simultaneous eigenspaces: 246
Vb = V(0, b): 246
∆(V, b), the set of weights: 246
V(Γ) =

⊕

α Vα, the sum of weight spaces: 247
θ, the Cartan involution: 247
k = gθ, the maximal compactly embedded subalgebra: 247
p = g(−1, θ): 247
a, a maximal abelian subalgebra in p: 248
m = ka: 248
∆ = ∆(g, a): 248
n = g(∆+), the sum of positive root spaces; Iwasawa n: 248
W (a) = W , the Weyl group of (g, a): 248
VL = {v ∈ V | ∀a ∈ L : a · v = v}, L-fixed vectors in V: 249
Z0, a central element in k defining a complex structure on p: 253
∆k, the set of compact roots: 253
∆n, the set of noncompact roots: 253
Eα, root vectors for α ∈ ∆n (suitably normalized): 254
Hα, co-roots for α: 254
Γ, maximal set of strongly orthogonal positive noncompact roots:

254
E±j , normalized root vectors for γj ∈ Γ: 254
Hj , corresponding co-roots: 254
Xj = −i(Ej − E−j): 254
Yj = Ej + E−j : 254
Xo = 1

2

∑

Xj: 254
Yo = 1

2

∑

Yj : 254
Eo: 254
Zo: 254
t−, the subspace of t generated by Hj : 254
Cj , partial Cayley transform: 255
C(K), the space of compact subsets of K: 262
C0(K), the space of nonempty compact subset of K: 262
d(A, b), the Hausdorf distance: 262
d(A,B): 262
K(U, V ), a subbasis for the Vietoris topology: 262
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F(X), the space of closed subsets of X : 262
Xω, the one-point compactification of X : 262
β, the one-point compactification map: 263
liminf, the limes inferior for sets: 263
limsup, the limes superior for sets: 263
F(G)H , the set of H-fixed points of F(G) under translation: 265
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[63] Hilgert, J., G. Ólafsson, B. Ørsted: Hardy spaces on affine symmetric
spaces. J. reine und angew. Math. 415 (1991), 189–218.
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