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Preface

In the late 1970s several mathematicians independently started to study
a possible interplay of order and continuous symmetry. The motivation
for doing so came from various sources. K.H. Hofmann and J.D. Lawson
[67] tried to incorporate ideas from geometric control theory into a sys-
tematic Lie theory for semigroups, S. Paneitz [147, 148] built on concepts
from cosmology as propagated by his teacher L.LE. Segal [157], E.B. Vin-
berg’s [166] starting point was automorphism groups of cones, and G.I.
Ol’shanskii [137, 138, 139] was lead to semigroups and orders by his stud-
ies of unitary representations of certain infinite-dimensional Lie groups. It
was Ol’shanskii who first considered the subject proper of the present book,
causal symmetric spaces, and showed how they could play an important role
in harmonic analysis. In particular, he exhibited the role of semigroups in
the Gelfand-Gindikin program [34], which is designed to realize families of
similar unitary representations simultaneously in a unified geometric way.
This line of research attracted other researchers such as R.J. Stanton [159],
B. Orsted, and the authors of the present book [159)].

This book grew out of the Habilitationschrift of G. Olafsson [129], in
which many of the results anounced by Ol’shanskii were proven and a clas-
sification of invariant causal structures on symmetric spaces was given.
The theory of causal symmetric spaces has seen a rapid development in
the last decade, with important contributions in particular by J. Faraut
[24, 25, 26, 28] and K.-H. Neeb [114, 115, 116, 117, 120]. Its role in the
study of unitarizable highest-weight representations is becoming increas-
ingly clear [16, 60, 61, 88] and harmonic analysis on these spaces turned
out to be very rich with interesting applications to the study of integral
equations [31, 53, 58] and groupoid C*-algebras [55]. Present research also
deals with the relation to Jordan algebras [59, 86] and convexity proper-
ties of gradient flows [49, 125]. Thus it is not possible to write a definitive
treatment of ordered symmetric spaces at this point. On the other hand,
even results considered “standard” by the specialists in the field so far have
either not appeared in print at all or else can be found only in the original
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literature.

This book is meant to introduce researchers and graduate students with
a solid background in Lie theory to the theory of causal symmetric spaces,
to make the basic results and their proofs available, and to describe some
important lines of research in the field. It has gone through various stages
and quite a few people helped us through their comments and corrections,
encouragement, and criticism. Many thanks to W. Bertram, F. Betten, J.
Faraut, S. Helgason, T. Kobayashi, J. Kockmann, Kh. Koufany, B. Krotz,
K.-H. Neeb, and B. Orsted. We would also like to thank the Mittag-Leffler
Institute in Djursholm, Sweden, for the hospitality during our stay there in
spring 1996.

Djursholm
Gestur Olafsson
Joachim Hilgert



Introduction

Symmetric spaces are manifolds with additional structure. In particular
they are homogeneous, i.e., they admit a transitive Lie group action. The
study of causality in general relativity naturally leads to “orderings” of
manifolds [149, 157]. The basic idea is to fix a convex cone (modeled after
the light cone in relativity) in each tangent space and to say that a point x in
the manifold precedes a point y if  can be connected to y by a curve whose
derivative lies in the respective cone wherever it exists (i.e., the derivative
is a timelike vector). Various technical problems arise from this concept.
First of all, the resulting “order” relation need not be antisymmetric. This
describes phenomena such as time traveling and leads to the concept of
causal orientation (or quasi-order), in which antisymmetry is not required.
Moreover, the relation may not be closed and may depend on the choice
of the class of curves admitted. Geometric control theory has developed
tools to deal with such questions, but things simplify considerably when
one assumes that the field of cones is invariant under the Lie group acting
transitively. Then a single cone will completely determine the whole field
and it is no longer necessary to consider questions such as continuity or
differentiablility of a field of cones. In addition, one now has an algebraic
object coming with the relation: If one fixes a base point o, the set of points
preceded by o may be viewed as a positive domain in the symmetric space
and the set of group elements mapping the positive domain into itself is
a semigroup, which is a very effective tool in studying causal orientations.
Since we consider only homogeneous manifolds, we restrict our attention to
this simplified approach to causality.

Not every cone in the tangent space at o of a symmetric space M leads to
a causal orientation. It has to be invariant under the action of the stabilizer
group H of o. At the moment one is nowhere near a complete classification
of the cones satisfying this condition, but in the case of irreducible semisim-
ple symmetric spaces it is possible to single out the ones which admit such
cones. These spaces are then simply called causal symmetric spaces, and it
turns out that the existence of a causal orientation puts severe restrictions
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on the structure of the space. More precisely, associated to each symmetric
space M = G/H there is an involution 7: G — G whose infinitesimal ver-
sion (also denoted by 7) yields an eigenspace decomposition g = b + q of
the Lie algebra g of G, where h, the Lie algebra of H, is the eigenspace for
the eigenvalue 1 and q is the eigenspace for the eigenvalue —1. Then the
tangent space of M at o can be identified with q and causal orientations
are in one-to-one correspondence with H-invariant cones in q.

A heavy use of the available structural information makes it possible to
classify all regular (i.e., containing no lines but interior points) H-invariant
cones in q. This classification is done in terms of the intersection with a
Cartan subspace a of q. The resulting cones in a can then be described
explicitly via the machinery of root systems and Weyl groups.

It turns out that causal symmetric spaces come in two families. If g = £+
p is a Cartan decomposition compatible with g = h+q, i.e., 7 and the Cartan
involution commute, then a regular H-invariant cone in q either has interior
points contained in £ or in p. Accordingly the resulting causal orientation
is called compactly causal or noncompactly causal. Compactly causal and
noncompactly causal symmetric spaces show a radically different behavior.
So, for instance, noncompactly causal orientations are partial orders with
compact order intervals, whereas compactly causal orientations need neither
be antisymmetric nor, if they are, have compact order intervals. On the
other hand, there is a duality between compactly causal and noncompactly
causal symmetric spaces which on the infinitesimal level can be described
by the correspondence b+ q «— h+4q. There are symmetric spaces which
admit compactly as well as noncompactly causal orientations. They are
called spaces of Cayley type and are in certain respects the spaces most
accessible to explicit analysis.

The geometry of causal symmetric spaces is closely related to the ge-
ometry of Hermitian symmetric domains. In fact, for compactly causal
symmetric spaces the associated Riemannian symmetric space G/ K, where
K is the analytic subgroup of G corresponding to ¢, is a Hermitian sym-
metric domain and the space H/(H N K) can be realized as a bounded real
domain by a real analog of the Harish—Chandra embedding theorem. This
indicates that concepts such as strongly orthogonal roots that can be ap-
plied successfully in the context of Hermitian symmetric domains are also
important for causal symmetric spaces. Similar things could be said about
Euclidian Jordan algebras.

Harmonic analysis on causal symmetric spaces differs from harmonic
analysis on Riemannian symmetric spaces in various respects. So, for in-
stance, the stabilizer group of the basepoint is noncompact, which accounts
for considerable difficulties in the definition and analysis of spherical func-
tions. Moreover, useful decompositions such as the Iwasawa decomposition
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do not have global analogs. On the other hand, the specific structural infor-
mation one has for causal symmetric space makes it possible to create tools
that are not available in the context of Riemannian or general semisimple
symmetric spaces. Examples of such tools are the order compactification
of noncompactly causal symmetric spaces and the various semigroups as-
sociated to a causal orientation.

The applications of causal symmetric spaces in analysis, most notably
spherical functions, highest-weight representations, and Wiener-Hopf oper-
ators, have not yet found a definitive form, so we decided to give a mere
outline of the analysis explaining in which way the geometry of causal ori-
entations enters. In addition we provide a guide to the original literature
as we know it.

We describe the contents of the book in a little more detail. In Chapter 1
we review some basic structure theory for symmetric spaces. In particular,
we introduce the duality constructions which will play an important role
in the theory of causal symmetric spaces. The core of the chapter consists
of a detailed study of the H- and h-module structures on q. The resulting
information plays a decisive role in determining symmetric spaces admitting
G-invariant causal structures. Two classes of examples are treated in some
detail to illustrate the theory: hyperboloids and symmetric spaces obtained
via duality from tube domains.

In Chapter 2 we review some basic facts about convex cones and give
precise definitions of the objects necessary to study causal orientations.
These definitions are illustrated by a series of examples that will be impor-
tant later on in the text. The central results are a series of theorems due
to Kostant, Paneitz, and Vinberg, giving conditions for finite-dimensional
representations to contain convex cones invariant under the group action.
We also introduce the causal compactification of an ordered homogeneous
space, a construction that plays a role in the analysis on such spaces.

Chapter 3 is devoted to the determination of all irreducible symmetric
spaces which admit causal structures. The strategy is to characterize the
existence of causal structures in terms of the module structure of g and
then use the results of Chapter 1 to narrow down the scope of the theory
to a point where a classification is possible. We give a list of symmetric
pairs (g, 7) which come from causal symmetric spaces and give necessary
and sufficient conditions for the various covering spaces to be causal.

In Chapter 4 we determine all the cones that lead to causal structures
on the symmetric spaces described in Chapter 3. Using duality it suffices
to do that for the noncompactly causal symmetric spaces. It turns out that
up to sign one always has a minimal and a maximal cone giving rise to
a causal structure. The cones are determined by their intersection with a
certain (small) abelian subspace a of q and it is possible to characterize
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the cones that occur as intersections with a. Since the cone in g can be
recovered from the cone in a, this gives an effective classification of causal
structures. A technical result, needed to carry out this program but of
independent interest, is the linear convexity theorem, which describes the
image of certain coadjoint orbits under the orthogonal proction from q to
a.

Chapter 5 is a collection of global geometric results on noncompactly
causal symmetric spaces which are frequently used in the harmonic analysis
of such spaces. In particular, it is shown that the order on such spaces has
compact intervals. Moreover, the causal semigroup associated naturally
to the maximal causal structure is characterized as the subsemigroup of
G which leaves a certain open domain in a flag manifold of G invariant.
The detailed information on the ordering obtained by this characterization
allows to prove a nonlinear analog of the convexity theorem which plays
an important role in the study of spherical functions. Moreover, one has
an Iwasawa-like decomposition for the causal semigroup which makes it
possible to describe the positive cone of the symmetric space purely in
terms of the “solvable part” of the semigroup, which can be embedded in
a semigroup of affine selfmaps. This point of view allows us to compactify
the solvable semigroup and in this way makes a better understanding of
the causal compactification possible.

In Chapter 6 we pursue the study of the order compactification of non-
compactly causal symmetric spaces. The results on the solvable part of
the causal semigroup together with realization of the causal semigroup as a
compression semigroup acting on a flag manifold yield a new description of
the compactification of the positive cone which then can be used to give a
very explicit picture of the G-orbit structure of the order compactification.

The last three chapters are devoted to applications of the theory in har-
monic analysis.

In Chapter 7 we sketch a few of the connections the theory of causal
symmetric spaces has with unitary representation theory. It turns out that
unitary highest-weight representations are characterized by the fact that
they admit analytic extensions to semigroups of the type considered here.
This opens the way to construct Hardy spaces and gives a conceptual inter-
pretation of the holomorphic discrete series for compactly causal symmetric
spaces along the lines of the Gelfand-Gindikin program.

Chapter 8 contains a brief description of the spherical Laplace transform
for noncompactly causal symmetric spaces. We introduce the correspond-
ing spherical functions, describe their asymptotic behavior, and give an
inversion formula.

In Chapter 9 we briefly explain how the causal compactification from
Chapter 2 is used in the study of Wiener-Hopf operators on noncompactly
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causal symmetric spaces. In particular, we show how the results of Chapter
6 yield structural information on the C*-algebra generated by the Wiener-
Hopf operators.

Appendix A consists of background material on reductive Lie groups and
their finite-dimensional representations. In particular, there is a collection
of our version of the standard semisimple notation in Section A.2. More-
over, in Section A.4 we assemble material on Hermitian Lie groups and
Hermitian symmetric spaces which is used throughout the text.

In Appendix C we describe some topological properties of the set of
closed subsets of a locally compact space. This material is needed to study
compactifications of homogeneous ordered spaces.



Chapter 1

Symmetric Spaces

In this chapter we present those parts of the theory of symmetric spaces
which are essential for the study of causal structures on these spaces. Since
in this book we are mainly interested in the group theoretical aspects, we
use here the definition in [81] which is given in group theoretical rather
than differential geometric terms.

Apart from various well known standard facts we describe several duality
constructions which will play an important role in our treatment of causal
structures. The central part of this chapter is a detailed discussion of
the module structure of the tangent spaces of semisimple non-Riemannian
symmetric spaces. The results of this discussion will play a crucial role in
our study of causal structures on symmetric spaces. Finally we review some
technical decomposition results due to Oshima and Matsuki which will be
needed in later chapters.

In order to illustrate the theory with examples that are relevant in the
context of causal symmetric spaces we treat the hyperboloids in some detail.

1.1 Basic Structure Theory
Definition 1.1.1 A symmetric space is a triple (G, H, T), where
1) G is a Lie group,

2) 7 is a nontrivial involution on G, i.e., 7: G — G is an automorphism
with 72 = Idg, and
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3) H is a closed subgroup of G such that G] C H C G".

Here the subscript , means the connected component containing the identity
and G7 denotes the group of 7-fixed points in G. By abuse of notation we
also say that (G, H) as well as G/H is a symmetric space. O

The infinitesimal version of Definition 1.1.1 is
Definition 1.1.2 A pair (g, 7) is called a symmetric pair if
1) g is a Lie algebra,

2) 7 is a nontrivial involution of g, i.e., 7:g — g is an automorphism
with 72 = Id,. O

Let (g,7) be a symmetric pair and let G be a connected Lie group with
Lie algebra g. If H is a closed subgroup of G, then (G, H) is called associated
to (g, 7) if T integrates to an involution on G, again denoted by 7, such that
(G, H, ) is a symmetric space. In this case the Lie algebra of H is denoted
by b and it is given by:

h=g(l,7):={Xeg|7(X)=X}. (1.1)
Note that g = bh @ q, where
g=g(-1,7)={Xeg|7(X)=-X}. (1.2)

We have the following relations:

h,h] Ch, [h,a]Cq, and  [q,9] Ch. (1.3)

From (1.3) it follows that ad, : h — End(q), X — ad(X)l,, is a represen-
tation of h. In particular, (g,b) is a reductive pair in the sense that there
exists an h-stable complement of f in g. On the other hand, if (g, ) is a
reductive pair and the commutator relations (1.3) hold, we can define an
involution 7 of g by 7|, = id and 7|, = —id. Then (g, 7) is a symmetric
pair.

Example 1.1.3 (The Group Case I) Let G be a connected Lie group.
Define 7 by 7(a,b) := (b,a). Then (G x G)™ = A(G) :={(a,a) | a € G} is
the diagonal in G x G and M = (G x G)/A(G) is a symmetric space. The
map
GxG>3(a,b)—ab™t €@

induces a diffeomorphism M ~ G intertwining the left action of G x G on
M and the operation (a,b) - ¢ = acb~! of G x G on G. The decomposition
of g X g into T-eigenspaces is given by

h={(X,X)[ X eg}~g
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and
g={(X,-X) | X €g}~g. O

Example 1.1.4 (The Group Case II) Let g be a real Lie algebra, gc
its complexification, and o: gc — gc the complex conjugation with respect
the real form g of gc, i.e.,

o(X+iY)=X—iy, X,Yeg.

Further, let G¢ be a connected complex Lie group with Lie algebra gc such
that o integrates to a real involution on G, again denoted by o. Then Gg,
the analytic subgroup of G¢ with Lie algebra g, is the connected component
of (G¢)?. In particular, it is closed in G¢ and G¢/Gr is a symmetric space.
The decomposition of g¢ into o-eigenspaces is given by gc = h+q = g+ig.

O

Example 1.1.5 (Bounded Symmetric Domains) Let g be a Hermi-
tian Lie algebra and let G be a connected Lie group with Lie algebra
g. Let K be a maximal compact subgroup of G. Then D = G/K is
a bounded symmetric domain. Let H(D) be the group of holomorphic
isometries f : D — D. Then H(D),, the connected component containing
the identy map, is localy isomorphic to G. Let us assume that G = H(D),.
Let op : D — D be a complex conjugation, i.e., op is an antiholomoprhic
involution. We assume that o(0) = o, where o = {K}. Define o : G — G
by
o(f)=opofoop.

Then o is a nontrivial involution on G In this case
G” ={f €G] f(Dr) = Dgr}
where Dp is the real form of D given by Dgr = {z € D | op(2) = z}. 0

Example 1.1.6 (Symmetric Pairs and Tube Domains) We have the
following construction in the case where G/K is a tube domain and G is
contained in the simply connected Lie group G¢. Consider the elements
7% = Z, € 3(8), X, € p and Y, € p, as well as the space a C p, from
p. 253 and p. 254. We have spec(ad Z°) = {0,i,—i} and spec(ad X,) =
spec(adY,) = {0,1,—1}. Let b :=g(0,Y,), g4 := g(1,Y,), q— := g(—1,Y,
and ¢ = qT @ q~. Then b is a f-stable subalgebra of g. As [qF,q7] C
9(2,Y,) = {0} and [q~,q7] C g(—2,Y,) = {0}, it follows that g™ and q~
are both abelian subalgebras of g.
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Define
7 = Ad(expTiY,) : gc — dc -

Then 7]p. = id and 7], = —id. Hence 7 is a complex linear involution
on gc. We notice that 7 = C? in the notation of Lemma A.4.2. As usual,
we denote the involution on G¢ determined via T(exp X) = exp(7(X)) for
X € gc by the same letter. We set H := G and M = G/H. Then
(G, H, ) is a symmetric space. As 7 = C?, we get from Lemma A.4.2 and
Theorem A.4.5 that 7(Z,) = —Z,. Hence the induced involution on the
tube domain G/K is antiholomorphic. O

Let (G, H,T) be a symmetric space. We set M := G/H and o :=1/H.
Then the map q 3 X — X, € To(M), given by

Xo(f) = S @p(tX) -)lco, [ECTM),  (14)

is a linear isomorphism of g onto the tangent space T,(M) of M at o.

Two symmetric pairs (g,7) and ([, ) are called isomorphic, (g,7) =~
(I, ), if there exists an isomorphism of Lie algebras A : g — [ such that
AoT = po A If A is only assumed to be injective, then we call (g,7) a
subsymmetric pair of (I, ). In the same way we can define isomorphisms
and homomorphisms for symmetric pairs (G, H) and also for symmetric
spaces M = G/H.

The symmetric pair (g,h) is said to be irreducible if the only 7-stable
ideals in g containing the Lie algebra gf*® := Nyec Ad(g)h are g/ and g.
Note that it plays no role here which group G with Lie algebra g we use in
the definition of g/,

Let M = G/H be a symmetric space. For a € G we denote the diffeo-
morphism m — a-m by £, : M — M .

Lemma 1.1.7 Consider the pointwise stabilizer
GM={acG|YmeM : Lym=m}=ker(a l,) C H
of M in G. Then the Lie algebra of GM is g/™*.
Proof: X € g is contained in the Lie algebra of GM if and only if
(exptX)gH C gH

for all g € G and all ¢ € R. But this is equivalent to Ad(g)X € § for all
g € G and hence to X € (.5 Ad(g)h = gfiz, O

Denote by M (H) the set of normal subgroups in G contained in H.
Then N(H) is ordered by inclusion.
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Proposition 1.1.8 1) The group G™ is a normal subgroup of G and
contained in H.

2) If N is a normal subgroup of G contained in H, then N C GM. This
means that GM is the unique mazimal element of N'(H).

3) Let Ad,: H — GL(q) be defined by Ad,(h) = Ad(h)|,. Then GM =
ker Ad,.

Proof. The first part is obvious. If N is a normal subgroup of G contained
in H, then for all a € G and n € N we have

n-(ao) =a(a"'na)-o=a-o
as a~'na € N. Hence N C G and 2) follows. In order to prove 3) we
first observe that G™ C ker Ad, since hexp(X)h 'H = exp(X)H for all
h € GM and X € q. To show the converse it suffices to prove that ker Ad,
is normal in G. But expq and H are clearly in the normalizer of ker Ad,
and these two sets generate G. O

Remark 1.1.9 Proposition 1.1.8 shows the assumption gf** = {0} means
that the pair (g,h) is effective, i.e., that the representation ad, of h, X —
ad X|,, is faithful. If (g,bh) is effective, we have [q,q] = b since [q,q] + q
clearly is an ideal in g. O

Remark 1.1.10 Let (g, 7) be an irreducible and effective symmetric pair.
If v is the radical of g, then v is 7-stable. Therefore g is either semisimple
or solvable. If g is solvable, then [g, g] is a 7-stable ideal of g. Hence g
is abelian. As every 7-stable subspace of an abelian algebra is an 7-stable
ideal, it follows that g is one dimensional. O

The following theorem is proved in [97], p.171.

Theorem 1.1.11 Let G be a connected simply connected Lie group and
7:G — G an involution. Then the group G7 of T-fized points in G is
connected and the quotient space G/GT is simply connected. O

Let G be a connected simply connected Lie group with Lie algebra g.
Then any involution 7 : g — g integrates to an involution on G which we
also denote by 7. Thus Theorem 1.1.11 yields a canonical way to construct
a simply connected symmetric space from a symmetric pair.

Definition 1.1.12 Let (g,7) be a symmetric pair and G the simply con-
nected Lie group with Lie algebra g. Then the symmetric space M := G / GT
described by Theorem 1.1.11 is called the universal symmetric space asso-
ciated to (g, 7). O
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Note that, given a symmetric space M = G/H, the canonical projection
G — @ induces a covering map M — M, so that M is indeed the universal
covering space of M.

Another canonical way to associate a symmetric space to a symmetric
pair is to complexify g and then use a simply connected complex Lie group.

Definition 1.1.13 Let g be a real Lie algebra and gc¢ the complexification
of g. Consider the following involutions of the real Lie algebra gc:

1) o = oy is the complex conjugation of gc with respect to g,

o(X +iY)=X—i¥, X, Yegq,

2) T:gc — gc, the complex linear extension of 7 to gc.
3) n:=7o0 = oo, the antilinear extension of 7 to c. O
The corresponding Lie algebras of fixed points are

g2 =9, 9L =bc, g¢=g°:=h+iq

Note that 77 depends on 7 as well as on the real form g. If necessary we
will therefore write n(7, g).

Given a symmetric pair (g,7), let G¢ be a simply connected complex
Lie group with Lie algebra gc. Then, according to Theorem 1.1.11, 7, o,
and n can be integrated to involutions on G¢ with connected fixed point
groups Gg,Gg, and G¢, respectively. We set G = GZ,G° = G{ and
H :=(GZNGE) = (GLNGE). Then

M:=GZ/(GZNGE) =G/H (1.5)
M= GL/(GENGE) =G /H (1.6)
are symmetric spaces associated to (g,7) and (g, 7), respectively.

Lemma 1.1.14 Let (g,7) be a symmetric pair with g semisimple and de-
note the Killing form of g by B. Then the following holds:

1) a={X eg|B(X,h) =0}.

2) The ideal g1 = [q,q] ® q T-stable ideal and | := {X € g | VY €
g1 : B(X,Y) = 0} is an ideal of g contained in h. In particular, if
g/ = {0}, then g1 = g.
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Proof: 1) As B is nondegenerate and
B(X,Y)=B(r(X),Y)=B(X,7(Y)) = -B(X,Y)

for all X € h and Y € q, the claim follows from g =§ & g.
3) Since B([X,Y],Z) = —B(Y,[X, Z]) for all X,Y,Z € g, this follows
from (1). O

Remark 1.1.15 Let (G, H, 7) be a symmetric space with G a noncompact
semisimple Lie group and 7 not a Cartan involution. In this case we call
M = G/H a nonRiemannian semisimple symmetric space. For such spaces
it is possible to find a Cartan involution § that commutes with 7 (cf. [99],
p. 337). Consequently we have

g=tOp=hOq=0rDar S hy S0y, (1.7)

where £ = g(+1,6), p = g(—1,0) and the subscripts , and ,, respectively
denote intersection with ¢ and p, respectively. The above decompositions
of g are orthogonal w.r.t. the inner product (- | -)p on g defined in (A.9).

Any subalgebra of g invariant under 6 is reductive (cf. [168]). In partic-
ular, the Lie algebra h is reductive. Moreover, the group H is f-invariant
and 0 induces a Cartan decomposition

H=(HNK)exph,. (1.8)

In fact, let © = kexpX € H with k € K and X € p. Then z = 7(x)
T(k)exp7(X). Thus k = 7(k), X = 7(X). In particular, exp(X) € H,
H whence k = zexp(—X) € H.

on

1.2 Dual Symmetric Spaces

In this section we fix a symmetric pair (g, 7) with semisimple g and a Car-
tan decomposition 6 of g commuting with 7. Denote the complex linear
extension of 8 to gc¢ also by 6 and recall the involutions o and 1 from Def-
inition 1.1.13. The decomposition (1.7) of g allows us to construct further
symmetric pairs.

1.2.1 The c-Dual Space Me

The fixed point algebra of 1 is g° = h + 7q. Then we have two natural
symmetric spaces associated to the symmetric pair (g¢ 7), the universal
symmetric space M€ (cf. Def. 1.1.12) and the space M® (cf. (1.6)). We
call M€ the ¢-dual of M.
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The equality
g = (hi ®iqp) @ (hy D iqr) (1.9)

yields a Cartan decomposition of g¢ corresponding to the Cartan involution
07. We will write £ := b, ®iq, and p° := b, B iqx . Analogously, we write
q¢ for iq . If we want to stress which involution we are using, we will write
(g,7)° or (g,7,0)°.

Comparing the decompositions (1.7) and (1.9), we see that the c-duality
“interchanges” the compact and the noncompact parts of the respective
(—1)-eigenspaces.

There are cases for which c-dual symmetric pairs are isomorphic. The
following lemma describes a way to obtain such isomorphisms.

Lemma 1.2.1 Let g be a semisimple Lie algebra with Cartan involution 0
and corresponding Cartan decomposition g =€+ p.

1) Let X € g¢ be such that gc = gc(0,X) ® gc (4, X) ® ge(—i, X). Fur-
ther, let
7x = Ad(exprX) = e™ 84X

Then Tx is an involution on gc such that
gc(+1,7x) = 9c(0,X) and ge(—1,7x) = gc(i, X) @ go(—1, X).
If X e €U ip, then g is Tx-stable and Tx|, commutes with 6.
2) If X € tUip, define
ox = Ad (exp(3X)) = e(m/2)ad X

and
(ga b) = (gvg(la TX))

Then ©% = 7x, px|y = id, ©x|g(xi,x) = *i id, and in the case that
X €ip, px defines an isomorphism (g,h) ~ (g%,b).

Proof. All statements except the last part of 1) follow from the fact that
exp (zad(X)) [go(x,x) = e id.

Let X € tUip. Then o(X) =X if X € tand 0(X) = - X if X € ip. As
Tx is an involution, we have 7x = 7_x. Hence

OO0TX =Tg(X)00 =Tx 00

and 7x commutes with ¢. Thus g is 7x-stable. That 7x commutes with 8
follows in the same way. O
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1.2.2 The Associated Dual Space M?*
The involution 7¢ := 76 is called the associated or a-dual involution of 7.
We have
=g =he®qp, " =g(-1.7) = aq. Db,
and call

(g,7,0)" = (g,7,0) (1.10)

the a-dual or associated triple. Since all ideals in |fg are f-invariant we
see that 7-invariant ideals are automatically 7%-invariant and conversely.
In particular, we see that (g,7) is irreducible and effective if and only if
(g, 7*) is irreducible and effective. To define a canonical symmetric space
associated to (g, 7), let

GT" C H* := (KN H)exp(qy,) € G7". (1.11)

o

H® is a group since K N H is a group normalizing q,. Thus (G*, H*, %),
where G* = G, is a symmetric space. We denote G/H® by M?.

1.2.3 The Riemannian Dual Space M”"

The dual (Riemannian) triple (g", 7", 0") is defined by
(g",7",0") := (g°, 0|g°, 0°)°. (1.12)
As olge =, it follows that

n(gé,0) =nobd =007 =n(g,0o071).

Thus
g" = (") = (g (1.13)
Furthermore,
g = (b ®ihy) ® (iqp D) = @ p" (1.14)

is a Cartan decomposition of g” corresponding to the Cartan involution
0" = 7|y~ . The symmetric pair (g",7") is Riemannian and it is called the
Riemannian dual of g or the Riemannian pair associated to (g,7,0).

Let G be a connected Lie group with Lie algebra g" and K" the analytic
subgroup of G" with Lie algebra £". Then M" = G" /K" is said to be the
(dual) Riemannian form of M. We note that M" is automatically simply
connected and does not depend on the choice of G”.
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Example 1.2.2 (The Group Case III) Let L be a connected semisim-
ple Lie group and M = (L x L)/A(L) as in Example 1.1.3. The associated
symmetric pair is (I x [, 7), where 7(X,Y) = (Y, X) for X, Y € [. We define
g:=I[x[,G:=LxLand H:=A(L). Then we have

g ={(X, X)+iY,-Y) | X, Y €1},
and the projection onto the first component
(X, X)+i(Y,-Y)=(X+V, X —iY) — X +4Y

is a linear isomorphism g¢ — [¢ which transforms 7 into the complex con-
jugation o:lc — g with respect to [. Thus the symmetric pair (g¢,7) is
isomorphic to (Ig, o) (cf. Example 1.1.4). If now L¢ is a simply connected
complex Lie group with Lie algebra I and Lg, is the analytic subgroup
of L¢ with Lie algebra [, then o integrates to an involution on L¢, again
denoted by o and Lg = L& (cf. Theorem 1.1.11). Thus L¢/Lg is simply
connected and hence isomorphic to M°€.

Let 01, be a Cartan involution on L. Let [ = [}, @ [, be the correspond-
ing Cartan decomposition. Define a Cartan involution on G by 6(a,b) =
(0L (a),0L(b)). Then

7(a,b) = (0(b), 0(a)) -

In particular,

H* = {(a,0(a))|a€e L} ~L,
h* = {(X,0(X)) | X e}~
¢ = {Y,-0(Y)) | Y e}~
and
M~ L

where the isomorphism is now given by (a,b)H® + af(b)~!. For the Rie-
mannian dual we notice that

by = {(X,X)]| X €} ~,
bp = {(X, X)[X e} =1,
qa. = {(X,-X)| X €} =1,
aBp = {(X,-X)[Xel}t~1.

The projection onto the first factor,
(X+iY +iS+T,X+iY —iS—-T)— X +iY +iS+T,

defines an isomorphism g” ~ [c mapping ¥ into the compact real form
u = [ ®il,. Hence M" =~ Lc /U, where U is the maximal compact subgroup
corresponding to u. O
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Example 1.2.3 Let M = G/H be as in Example 1.1.6. We want to
determine the dual symmetric spaces of M. To do this we have to invoke
Lemma 1.2.1. We recall that

T =Ty, -
Hence
iy, = Ad (exp %iY(,) cg—g°
is an isomorphism commuting with 7. Furthermore,
(piyoo6‘=6‘ocpi_ylo =(0oT)opy, .
Hence iy, : (g,7,0) — (g% 7, 07) is an isomorphism. We note that p;y, =

C}, in the notation in Lemma A.4.2, page 255.
An sly-reduction proves the following lemma.

Lemma 1.2.4 X, = Ad (exp—gZo) Y, = [~ Z,,Y,). 0

Let p =p_z,. AsO =77, weget por =T0op ! =71% ¢ and 7% = T;x, .

In particular, ¢ defines an isomorphism (g, h*) ~ (g, h). Finally, we have
wix, 00 =00p_;x, =Towx, .

As ix, s, @q, = id and @;x, is multiplication by i on b, © qx, we get that

vix, : (g,%) — (g",¥") is an isomorphism interchanging the role of 7 and 6.

We collect this in a lemma.

Lemma 1.2.5 Let 7 = 7y, and 0 = 71z, as above. Then the following
holds:

1) @iy, : (g,7,0) — (g°, 7,07) is an isomorphism.

2) Let X, = [-Z,,Y,]. Then 7* = 1;x, and v_z, : (g,7,0) — (g,7%,0)
is an isomorphism.

3) vix, :(g,7,0) — (g",7",0") is an isomorphism. O



12 CHAPTER 1. SYMMETRIC SPACES

1.3 The Module Structure of 7,(G/H)

Let M = G/H be anon-Riemannian semisimple symmetric space as defined
in Remark 1.1.15. Let 7 be the corresponding involution and € a Cartan
involution of G commuting with 7. Further assume that (g, ) is irreducible
and effective. We will use the notation introduced in Remark 1.1.15. In
this section we will study the H- and h-module structures of q under the
assumptions just spelled out.

The spaces
g’ = (X ecq|Vke HNK : Ad(k)X = X} (1.15)
and
Ho,NK _ : —
q ={Xeq|VkeH,NK : Ad(k)X = X} (1.16)

will play a crucial role in the study of causal structures on irreducible
non-Riemannian semisimple symmetric spaces. We will explore the special
properties of symmetric spaces for which q7™% or qf"X are nontrivial.

Lemma 1.3.1 Let [ be a 0-stable subalgebra of g. Let I+ := {X € g|VY €
[: B(Y,X) =0}. Then g = [ @[+ and the Lie algebra generated by [+,
g1 = [I1, 1] + [+, is a O-stable ideal in g.

Proof: That g = [ @ [+ follows from the fact that —B(-,0(:)) is positive
definite inner product on g. Let X,Y € [ and let Z € [*. Then

B(X,[Y, 2]) = -=B([Y, X], 2) = 0,

as [ is an algebra. By the Jacobi identity it follows now that g; is an ideal.
As [is f-stable, the same holds true for [ and hence for g;. O

Lemma 1.3.2 The algebra b is a maximal 0-stable subalgebra of g.

Proof: Let [ be a 6-stable subalgebra of g containing h and assume that
[ # g. Then [+ # {0}. Furthermore, [+ C h* = q. Now the above lemma
shows that [I[*, 1] @ [+ is an 7-stable ideal in g. As (g,b) is assumed to be
irreducible, we get [I*, [*] @ [+ = g. Thus [+ = q and the lemma follows. O

Remark 1.3.3 Lemma 1.3.2 becomes false if we replace 6-stable by 7-
stable as is shown by s((2,R) with the involution 7:

(e 2)=( ).
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In this case h =R <(1) _01 ) Furthermore,
a T
bCPmin—{(O —a) a,weR},
Pmin is T-stable and a proper subalgebra of s[(2,R). a

Lemma 1.3.4 Let (g,7) be an irreducible effective semisimple symmetric
pair. If q is not irreducible as an h-module, then the following holds.

1) q splits into two irreducible components,
q":=g(1,Y?) and q" :=g(-1,Y"), (1.17)
such that 0(qT) = q~ for any Cartan involution 0 commuting with 7.

2) The submodules q are isotropic for the Killing form and abelian
subalgebras of g.

3) The subalgebras b+ q* of g are mazimal parabolic.

4) The h-modules q* and q~ are not isomorphic. In particular, q* and
q~ are the only nontrivial n-submodules of q.

Proof: Let V C q be an h-submodule and V+ C q its orthogonal com-
plement w.r.t. the Killing form B, which is nondegenerate on q. But
b:=V + [V, V] and note that this is an h-invariant subalgebra of g. More-
over, we have

B([V+,V],h) = B(V*,[V.h]) € B(VH, V) = {0}.

Since the restriction of B to h is also nondegenerate, we conclude that
(V4 V] ={0}.

If V C q is a nontrivial irreducible h-submodule which is not isotropic,
then the restriction of B to V is nondegenerate and so q = V @ V*. Since
[b,V+] = {0} and [b, V] C V, we see that b is a 7-stable ideal of g, i.e., equal
to g. But this is impossible unless V' = q. Thus every proper submodule
of g must be isotropic. Moreover, if q7 is such a submodule, the subspace
qt + 6(q™) is also an h-submodule which is not isotropic, hence coincides
with g. To complete the proof of (1) and (2) we only have to note that
(qt)* = q7, since q* is isotropic and of half the dimension of q.

To show (3), note first that we now know

[@%,97]ch, [a",0]Cca®, [a7,q97] C{0}.
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Therefore g acts on g by nilpotent linear maps and the subalgebra h+q™ is
not reductive in g. On the other hand, it is maximal since any subalgebra of
g strictly containing h+q* contains an h-submodule of g strictly containing
q7, i.e., all of q. Now [10], Chap. 8, §10, Cor. 1 of Th. 2, shows that h+q™,
and hence also h + g~ is parabolic.

Part (3) shows that there is an 0 # X € hNp that is central in  and for
which ad(X)|,+ has only positive eigenvalues. Since §(X) = —X, it follows
that ad(X)|,~ has only negative eigenvalues. Thus g™ and g~ cannot be
isomorphic as h-modules. O

Let [ be a Lie algebra and a,b C [. Then we denote the centralizer of a
in b by
() ={Xe€b|VY ea : [X,Y]=0}. (1.18)

The center 3(I) of [ will simply be denoted by ().
Lemma 1.3.5 Let X € q. Then the following holds.

1) Assume X € qi. Then [X,bg] = 0 if and only if [X,qx] = 0, i.e.,
3ai (0k) = 30, (ak) = 5(€) N g

2) Assume X € q,. Then [X,hg] = 0 if and only if [ X,q,] = 0, i.e.,
3ap (0) = 3a, (4p) = 3(h") N a.

3) 0K and qH"E are 0-stable, i.e.,

HNK _ _HOK . HOK
ko Dy

q _ HoNK _ qHoNK g q! oNK

and q

4) a*™™ C 3(8) and qfl-"E C 3(h).

Proof: Tt is obvious that q"¥ is §-stable. Let B(:,-) be the Killing form
of g. Then B(-,-) is negative definite on ¢. Let X € g; be such that
[X,br] =0. If Y € qg, then [X,Y] € hi. Thus

Thus [X,Y] = 0. The other claims are proved similarly. O
From Lemma 1.3.5.4) we immediately obtain the following corollary.

Corollary 1.3.6 If g oMK £ 0, then 3(8) # 0. O

Lemma 1.3.7 Suppose that q#"& £ {0}. Then H # K and one of the
following cases occurs:

1) g is noncompact, simple with no complex structure, and T is not a
Cartan involution.
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2) g = g1Xg1, where g1 is noncompact, simple with no complex structure,
and T is the involution (X,Y) — (Y, X).

3) g is simple with a complex structure and § is a noncompact real form

of g.

Proof If H = K, then M = G/K is Riemannian. Then g is simple
since (g, b) is irreducible and effective. . Therefore 2% C p and q"E
commutes with €. But this is impossible, as € is a maximal subalgebra of g
(apply Lemma 1.3.2 to 0).

In order to prove the lemma, according to [33], p. 6, we have to exclude
two further possibilities:

a) Suppose that g is complex and 7 is complex linear. Then it follows
from Lemma 1.3.5 that q"°"¥ is a complex abelian algebra that commutes
with b since h = b @ ihi. But this contradicts Lemma 1.3.2.

b) Suppose that g = g1 X g1, where g; is noncompact, simple with
complex structure, and 7 is the involution (X,Y) — (Y, X). This case is
c-dual to Case a), as can be seen from Example 1.2.2 (we have to use the
complex structure on gc given by the identification with (g1 xg1)x (g1 x91)),
so it also cannot occur if gfe"L £ {0}. O

For information and notation concerning bounded symmetric domains,
refer to Appendix A.4. As 7 commutes with €, we can define an involution
on G/K, also denoted by 7, via 7(aK) = 7(a)K.

Theorem 1.3.8 Suppose that M = G/H is an irreducible effective non-
Riemannian semisimple symmetric space such that q; oNK o {0}. Then we
have:

1) G/K is a bounded symmetric domain, and the complex structure can
be chosen such that 7 : G/K — G/K is antiholomorphic.

2) g is either simple Hermitian or of the form g1 X g1 with g1 simple
Hermitian and 7(X,Y) = (Y, X), X,Y € g;.

3) ™ # {0}

Proof: Lemma 1.3.5 shows that {0} # g™ C 3(€). Therefore, according
to Lemma 1.3.7, g is either simple, of the form g = h¢ with b simple, or of
the form g = g1 X g1 with g; simple.

Suppose that Case 3) of Lemma 1.3.7 holds, i.e., 7 is the complex conju-
gation of g with respect to . Then iqz; = b, so that b, has a (H,NK)-fixed
point which contradicts the assumption that b is simple.

Suppose that Case 1) of Lemma 1.3.7 holds. Then qu"mK C 3(€) so that
g is Hermitian. In fact, we even see that qu"mK = 3(t) = RZY in the
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notation of Appendix A.4, and obviously Z° € gfI"%. Note that ad(Z°)
induces a complex structure on p and then, by K-invariance, also on G/K.
As 7(Z2°%) = —Z0, it follows that 7 : G/K — G/K is antiholomorphic w.r.t.
this complex structure.

Finally we suppose that Case 2) of Lemma 1.3.7 holds. Then, similarly
as for Case 1), we find

q ™ = (X, X)) | X € 5(00)}-

Thus 3(81) # {0} and g; is Hermitian. Let Z define a complex structure on
G1/Ki. Then Z° = (Z,—Z) € g™ defines a complex structure on G/K
anticommuting with 7. This implies the claim. O

Remark 1.3.9 There is a converse of Theorem 1.3.8, as Example 1.1.5
shows: Every antiholomorphic involution of a bounded symmetric domain
D = G/K fixing the origin o = {K} gives rise to an involution 7 with
qie" % £ {0}. This follows from the fact that an involution on D is an-
tiholomorphic if and only if it anticommutes with ad(Z°)|;.. But then
[7(Z°) + Z°,g] C ¢, which implies 7(Z%) = —Z°. Therefore 7 and 6 com-
mute.
Consider the special case G = G1 X (G1. Then we have

7(z,w) = (w, 2)

for z,w € G1/K7, where the complex structure on the second factor is the
opposite of the complex structure on the first factor. O

Lemma 1.3.10 Suppose that M = G/H is an irreducible non-Riemannian
semisimple symmetric space with q*7e"% £ {0}. Then we have:

1) Z(H)NK is discrete. In particular, the center of b is contained in p.
Furthermore, dim3(h) < 1.

2) H,N K is connected with Lie algebra by.

4) Let H. be the semisimple analytic subgroup of G with Lie algebra
[6,b]. Then HoNK = H.NK.

Proof: 1f 3(h) # {0}, then g is simple without complex structure (Lemma
1.3.7). Then [44], p. 443, implies that gc is simple. Thus g” is also simple.
Since 3(h) is f-invariant, we have

3(87) =3(h)ne+i(3(h) Np) # {0}
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Therefore g" is Hermitian and 3(£") is one-dimensional. Thus 3(h) C by or
3(h) C b,. Moreover, ad Z|, is nonsingular for every nonzero Z € 3(¢").

1) Let Z € 3(h) be nonzero. If Z € by, then ad(Z)|z,nx = 0, which
contradicts the regularity of ad(Z)|,~. Thus 3(h) C b,, and 1) follows.

2) Since H, is f-invariant, the Cartan involution of G restricts to a Cartan
involution on H, as was noted in (1.8). Therefore K N H,, being the group
of f-fixed points in the connected group H, is connected.

3) This follows from the f-invariance of [, h] and 3(h) C p.

4) In view of 1) and 2), this is an immediate consequence of 3). O

Theorem 1.3.11 Let M = G/H be an irreducible non-Riemannian semi-
simple symmetric space with "% #£ {0}. Then the following statements
are equivalent:

1) dimj(h) = 1.

2) q is reducible as an h-module.
3) dim gHo-NE > 1.

4) dimgfenK =2,

5) G/K is a tube domain and up to conjugation by an element of K, we
have b = g(0,Y,) (cf. Appendix A.4 for the notation).

If these conditions are satisfied, then in addition the following properties
hold:

a) There exists an, up to sign unique, element Y° € 3(h) Np such that
b=g(0,Y%, and q=g(+1,Y")®g(-1,Y°) (1.19)
is the decomposition of q into irreducible h-modules.
b) The spaces g(£1,Y?) are not equivalent as h-modules and

0(a(+1,Y7)) = g(-1,Y").
¢) a(+1,Y0)HenK £ {0} £ g(—1,Y°)*"K and
e = g(+1,YO) K @ g(—1,Y0) HoNK, (1.20)

d) dim g™ = dimq,"" =1

oNK _ HNK

e) q; A%
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Proof: (1)=(2): Suppose that 3(h) # {0}. Then up to sign there is a
unique Z? € 3(¢") such that ad(Z?) has the eigenvalues +i on pf. since
g" is Hermitian (cf. Lemma 1.3.10). Then Y° := —iZ? € 3(h) Np and
ad,. (YY) has eigenvalues 1 and —1. Let o : gc — gc be the conjugation
with respect to g. Then o(Y?) = Y% Hence the eigenspaces g(j, Y?),
—1,0, 1, are o-stable. It follows that gc(j,Y°) = g(j,Y%)c. Therefore

H(YO) —YO implies g(£1,Y?) # {0}, q = g(+1,Y") ® g(—1,Y?) and,
0(g(+1,Y%)) = g(—1,Y?). AsY?Y is central in b, we get that g(+1,Y?) and
g(—1,Y9) are h-invariant. This shows that q is reducible as h-module, i.e.,
2).

(2)=(1): Conversely, suppose that q is reducible. Then q is the direct
sum of two irreducible h-modules q* with 6(q*) = q~ (Lemma 1.3.4).

We get

A

{0} # g"oE = (qF)HE @ (g7) 0K

and both of the spaces on the right-hand side are nonzero. Let 0 # X €
(qH)HoNE and define

Z:=[X,0(X) €pnlg,q] C byp.

Then Z commutes with hi. Apply Lemma 1.3.5 to the involution 7 o 6 to
see that Z is central in h. Thus we have to show that Z is nonzero. To do
that define Y := X +0(X) € q°"E ne. Then Y € 3(¢) by Lemma 1.3.5
and Y # 0. From Lemma 1.3.7 we see that g is either simple Hermitian or
the direct sum of two copies of a simple Hermitian algebra. Calculating in
each simple factor separately, we obtain

04 [X +0(X), X — 0(X)] = —2Z.

(1),(2)= a),b),c): Assertion a) follows from Lemma 1.3.4 and the fact
that Y° has different eigenvalues on the two irreducible pieces. To prove b)
and c), consider 0 # X € qfe"K . Let X, and X_ be the projections of X
onto g(+1,Y?%) and g(—1,Y?), respectively. Then Xy € g(&1,YV)HoNE,
and either Xy or X_ is nonzero. Obviously,

0 (g(+1,Y0) N = g(—1,Y0) Nk

and 0 o Ad(k) = Ad(k) o 0 for all k € HN K. Thus (1.20) follows.

(3)=-(1): Suppose that dimgqf"% > 1. As the commutator algebra
[h, b] is semisimple, it follows from Lemma A.3.5 that q is reducible as an
[h, h]-module. If 3(h) were zero we would have (2) and a contradiction to
the equivalence of (1) and (2).

(1)=(4): In view of Theorem 1.3.11.4), we see that Lemma A.3.5, applied
to H!, proves dim(qfe"X) = 2, since q contains precisely two irreducible
[h, h]-submodules by a).
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(4)=(3): This is obvious.

(1)= d): Since the spaces g(4,Y?)#"E get interchanged by 6, we
see that qH"% contains nonzero elements in ¢ and in p. This proves
dim(q)#"E = dim(q~)H-"E = 1.

(1)= e): Apply Theorem 1.3.8 to obtain qI"% = qf*" +£ {0} from d).

(1)=(5): Since qi"*™® # {0}, we can apply Theorem 1.3.8, which shows
that g is Hermitian since h is not semisimple. Choose a maximal abelian
subspace a’ of p containing Y. Since h = g(0,Y?), we have a® C h. The
restricted roots vanishing on Y are precisely the restricted roots of the
pair (h,a®). In particular, there is at least one restricted root not vanishing
on Y. But the spectrum of ad(Y?) is {—1,0, 1} so that Moore’s Theorem
A.4.4 shows that G/K is of tube type (cf. also Theorem A.4.5).

There exists a k € K such that Ad(k)a’ = a is the maximal abelian
subspace of p described in Appendix A.4. Thus we may assume that Y € a.
Conjugating with a suitable Weyl group element, we may even assume that
Y0 in the closure of the positive Weyl chamber. But then all positive
restricted roots which do not belong to the pair (b, a) take the value 1 on
YO which proves that Y° =Y.

(5)=(1): Since b is the centralizer of an element in g it clearly has a
nontrivial center. O

In the following we will choose an element Y° € 3(h) Np in the way
Theorem 1.3.11 describes it, whenever it is possible.

Example 1.3.12 Consider the conjugation
a b 0 1 a b 0 1 d c
A a)-G o) DE -6 o

on G = SL(2,R). It commutes with the Cartan involution 6(g) = tg~! and

satisfies
_ [ cosht sinht
G _i{h(t) o (sinht cosht)‘tER}'

Moreover, we have

K:G":{k(s):: (C?SS _Sms)’seR}.
sins  coss

Note that G is contained in its simply connected complexification G¢ =
SL(2,C). The above formula defines an involution 7 on G¢ which on g¢ is
the complex linear extension of 7 on g. The involution 1 on G¢ is given by

(2 -3 %)
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which implies G¢ =8SU,(1,1) and H = SO(1,1). In particular, we see that
H is not connected. The corresponding space M = G/H can be realized

as the Ad(G)-orbit of the element ((1) _01> € g, and this orbit is

{(bﬁc b—+a0>'“2+b2_02:1}’

i.e., a one-sheeted hyperboloid.
On the Lie algebra level, 7 is given by the same conjugation and we find

h = R(? é)cp,
0 1
*(50)
1 0 .
IR(0 —1):h'

Moreover, we see that g° = su(1,1) and £ = iq,. Set

i

qp

1/0 1
0 — —
Y - 2(1 O Ebpv
1/1 0
0 — —
X - 2(0 _1>€qpv
1 /0 -1
0 — —
_ (0 1\ _yo_ 4o
e (4
0 0 0 0
Y. = 1 0 =YY"+ Z :_9(Y+):T(Y+)7
- 1 1 -1 o 0 0
X, = 5(1 _1>—X + Z°,
_ 1 1 1 _ vO0 0 _
X_ = 5(_1 _1>—X — 2% = —0(X).

Then we have
g(£1,Y%) =RX:, g(0,Y")=RY"=p.

The spaces g(£1,Y?) are the irreducible components of q as G7- and b-
modules. More precisely. we have

Adh(t)(rXy +sX_) =e*rX, + e 2sX_.
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Further, we have
quTﬂK _ RZO, quﬁK _ RXO,

spec(ad X°) = spec(ad YY) = {~1,0,1},

and
spec(ad Z°) = {—4,0,1}. O

Corollary 1.3.13 Let M be an irreducible non-Riemannian semisimple
symmetric space with q7°NX £ {0}, Then q is reducible as an b-module
if and only if (g%, h) is isomorphic to (g,h). In that case there exists an
Y? € 3(h) Np such that

7 = exp(imad Y?) (1.22)

and
H,=H' x expRY". (1.23)

Proof. Suppose that q is reducible as an h-module. Then Theorem 1.3.11
shows that we can find an element Y € 3(h) N p such that

q= g(—i—l,Yo) D g(—l,YO).

Now apply Lemma 1.2.1 to iY to see that 7 = 7;y0 and that ;o : (g,h) —
(g%, b) is an isomorphism.

Conversely, suppose that (g,h) and (g° h) are isomorphic. Choose an
isomorphism A:g¢ — g. We may assume that qu"mK # {0}. In fact,
otherwise we replace A by A™': g — g°. Asiqy = qp, we get (qc)f"ﬂK # {0}.
But g, N A (q5) = {0}, so dim g% = 2. Thus Theorem 1.3.11 shows that
q is reducible as an h module and b = [h, h] +RY. Considering the Cartan
decomposition of H,, we see that we also have the global version of this
fact, which is (1.23). O

Lemma 1.3.14 Let M be an irreducible non-Riemannian semisimple sym-
metric space. Suppose that q is reducible as an h-module but irreducible as
an H-module. Fiz Y° as in Theorem 1.3.11 and set

Hy={heH|Adh)(g(+1,Y") = g(+1,Y")}.

Then Hi is a 0-stable normal subgroup of H. Moreover, there exists an
element k € K N H such that

Ad(k)g(+1,Y%) = g(-1,Y")

and
H=H,UkH, .



22 CHAPTER 1. SYMMETRIC SPACES

Proof We write q* := g(£1,Y?) for the b-irreducible submodules of g.
Since q is irreducible as an H-module, and H = (H N K)exph, by (1.8),
we can find a k € K N H such that

Ad(k)a* #q.

As Ad(k)qt Nngt is H,-stable and q* is irreducible as an H,-module, we
get Ad(k)gT Ng™ = {0}. Thus

a=q" ®Ad(k)g" =gt ®q".

The H,-representations q* and q~ are inequivalent by Theorem 1.3.11.
Thus Ad(k)qt = q~. Fix an h € H \ H;. Then it follows as above that
Ad(h)qt = q~ = Ad(k)g". Hence Ad(k~'h)g™ = q* and H; is subgroup
of index 2 in H. Therefore H; is normal in H. To prove the #-stability let
h € H; and recall that expp C H, C Hy. Then (1.8) shows that there is a
ke HNK and an X € b, with h = kexp(X). Thus k = hexp(—X) € H,
and H; is -stable. O

The following example shows that the situation of Lemma 1.3.14 actu-
ally occurs.

Example 1.3.15 Let M = G/H be as in Example 1.1.6 and consider the
space Ad(G)/ Ad(G)", where Ad(G)™ = {¢ € Ad(G) | ¢7 = T¢}. Then
Ad(G)/ Ad(G)7 is a non-Riemannian semisimple symmetric space which is
locally isomorphic to M. Moreover, 8 € Ad(G)", so that q is irreducible as
an Ad(G)"-module. O

1.4 A-Subspaces

Let M = G/H be a symmetric space with G connected semisimple. In this
section we recall some results from [143] on the orbit decomposition of M
with respect to H. It can be skipped at first reading because there are no
proofs in this section and the results will be used only much later.

A maximal abelian subspace a4 of q is called an A-subspace if it consists
of semisimple elements of g. For X € g consider the polynomial

n

det (t —ad(X)) = Y d;(X)t.

j=1
Let k be the least integer such that dj does not vanish. Then the elements

9= {X € q[di(X) # 0}
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are called g-regular elements . The set of g-regular elements is open and
dense in q.
Let ¢ : G — G be the map defined by

Plg) =g7(g7").

This map factors to G/G™ and defines a homeomorphism between G/G7
and the closed submanifold ¢(G) of G ([143], p.402). We have the following
maps:

G — G/H

!
G/GT" — ¢(G).

For x € ¢(G) consider the polynomial

n

det (1 —t—Ad(z)) =Y D;(2)t.

j=1
Then the elements of

¢(G)' = {x € (G) | Di(z) # 0}

are called the ¢(G)-regular elements . The centralizer
Ay = Zy(a)(ag)
of an A-subspace a4 is called an A-subset. We set
A=A N o(G).
Oshima and Matsuki, in [143], prove the following results.
Theorem 1.4.1 Let the notation be as above. Then the following holds:
1) Each A-subspace is conjugate under (G7), to a O-invariant one.

2) The number of H-conjugacy classes of A-subspaces is finite. This
number can be described in terms of root systems.

3) The decomposition of an A-subset into connected components has the
form

Ay = U k;expaq,
JjeJ
where k; € ¢(K) and J is finite if the center of G is finite (which is
the case if G C Gg).
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4) If ag is an A-subspace, then
Zy(ce) ((ag)c) = exp(ag)c.
5) (G) is open dense in ¢(G). O

Theorem 1.4.2 Let (ag,1,...,a4,) be a set of O-invariant A-subspaces rep-
resenting the H-conjugacy classes. Then the set

UHe™ (4,)

Jj=1

is open dense in G. O

1.5 The Hyperboloids

Let p,q € ZT, n=p+q, and V = R". We write elements of V as v = (z)
with x € RP and y € RY. Note that for p = 1, = is a real number. We write
pry(v) := x and pry(v) = y. Define the bilinear form @, , on R™ by

Qpq(v,w) = (pry(v)|pry(w)) — (pra(v)| pro(w)) (1.24)
= Vw1 F ...+ VpWp — Vpp1Wps1 — ... — UnWy. (1.25)

Here (-|-) is the usual inner product on R™.
Forr e RT, p.g e N, n=p+q> 1 define

ng =Q_, = {’U e R*H! | Qp,qul(va 1)) = _T2} (1'26)
and
Pl =Qur ={zxc R™ | Qpi1.q4(z, ) = +r°}. (1.27)
Then @4, has dimension n and
Tn(Q1r) = {v e RZ—H | Qpt1,q(v,m) =0} ~ Ry
The linear isomorphism
L, :R">%2y,...,2,) = Y(zp,...,21) €R"

satisfies Qq,p © (Ln, Ln) = —Qp,q- Hence L1 maps QY

Q??. Furthermore,

ST x RP 3 (v,w) — F(v,w) :=" (w, V2 + Hw||2v) € Rt

bijectively onto
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satisfies
Qp.a+1(F(v,w), F(v,w)) = |lw]* = (* + [Jw]]*) = —
and induces a diffeomorphism
Q_r ~ 971 xRP, (1.28)

where the inverse is given by

(o) = (mr)

= —,v] .

w [lwll”

Using that on Q_,, we have ||w||?> = r? + ||v||?. In the same way, or by
using the map L, 41, it follows that SP x R*™P ~ Q.. In particular, Q_,,
respectively @Q., is connected except for p = n (respectively p = 0), where

it has two components.
Let O(p, q) be the group

O(p,q) :={a € GL(n,R) | Vo,w € R" : Qp q(av, aw) = Qp q(v, w)}.
I, 0

0 -1
With this notation we have

Consider I, 4 := ) , where I,,, is the identity matrix of size m xm.

O(p,q) = {a € GL(n, R) | taIp,qa =1Ipq}

In block form O(p,q) can thus be written as the group of block matrices
(é g) € GL(n, R) satisfying the following relations:

AeM(@p,R), BeM(ppxqR), DecM(qR), CecM(xpR),
and

PAA-TCC = I,
‘AB-'CD = 0, (1.29)
‘BB-'DD = -I,.
Here M (I xm,K) denotes the m x [ matrices with entries in K and M (m, K)
= M(m x m,K).
The group O(p, q), pg # 0 has four connected components, described in
the following way, writing (é g) € O(p, q).

1) det A > 1 and det D > 1 (the identity component), representative I,,,
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2) det A > 1 and det D < —1, representative I 0 ,
0 qul,l

3) det A < —1 and det D > 1, representative (IPOM IO ),
q

4) det A < —1 and det D < —1, representative 11 0 .
0 qul,l

Let SO(p, ¢) := O(p, ¢q) N SL(n,R). Then
O(p,9)o = SOo(p, q) := SO(p, q)o -
For the Lie algebras we have
o(p.q) = 50(p,q) = {X € gl(n,R) | Ip,o X + X1 4 = 0}

or, in block form,

wi)={ (& p)

It is clear that O(p+1,¢) acts on Q4. Let {eq,...,e,} be the standard
basis for R".

'A=—-A'D=-D,'B= O} . (1.30)

Lemma 1.5.1 For p,q > 0 the group SO,(p + 1,q) acts transitively on
Q+r. The isotropy subgroup at rey is isomorphic to SO, (p,q). Whence, as
a manifold,

Q+T = SOo(p +1, q)/ SOo(pv Q)'

Proof. We may and will assume that r = 1. Let v = (z) € (1. Then, using
Witt’s theorem, we can find A € SO,(p+ 1) and D € SO,(g) such that

Az = |[zllex  and Dy = [yllepto.

As (61 g) € SO,(p+1,q), we may assume = Ae; and y = prep4o With

A, >0 and A? — p? = 1. But then a(e;) = v with

A0 p O

o 1, 0 o0

=1, 0 A o € SO,(p+1,q),
0 0 0 I,

where the block structure of a is according to the partition (1,p,1,g—1) of
n + 1. The last statement is a direct calculation and is left to the reader.O
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Now Lp41(r,0,...,0) = (0,...,0,r), and on the group level the conju-
gation
Ad(Lp41) :a— Ln+1aL;}r1

sets up an isomorphism of groups O(q + 1,p) ~ O(p,q + 1) mapping the
stabilizer of (r,0,...,0) onto the stabilizer O(p, q) of (0,...,0,r). Thus

Q- ~0(p,q+1)/0(p,q) = SOs(p,q+ 1)/ SO, (p, q)-

Next we show that the hyperboloids @4, are symmetric spaces. We
will only treat the case O(p+1,q)/O(p,q), as the other case follows by
conjugation with L, 11. The involution 7 on O(p + 1, ¢) is conjugation by
Il,n- Then

O(p+1,9)] =S0,(p,q) CO(p+1,9)"* CO(p+1,q9)".

The involution 7 on the Lie algebra g = so(p + 1, q) is also conjugation by
I 5. Then h =so0(p,q) = g” and defining

g(v) = (2 ‘t(%fpv” > (1.31)

for v € R™ we find a linear isomorphism
R" 3 v— q(v) € q (1.32)
which satisfies
glav) = aq(v)a™', a€SO0,(p.q),
Qpalvw) = —5 Tra()gw)

The c-dual of a hyperboloid is again a hyperboloid or at least a covering
of a hyperboloid. More precisely,

(s0(2,n —1),s0(1,n —1))° = (so(1,n),s0(1,n — 1))

which, by abuse of notation, can be written Q4 ~ Q_1. In fact, let g and
¢1 denote the map from (1.32) for the case of (s0(2,n—1),s0(1,n—1)) and
(so(1,n),s0(1,n — 1)), respectively. For X € so(1,n —1) C s0(2,n — 1) we
define A(X) € so(1,n — 1) C s0(1,n) by

A((O X)) - (X 0>'

s0(2,n —1)°> X +iq(v) — MX) + ¢1(v) € s0(1,n)

Then
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is a Lie algebra isomorphism.

Notes for Chapter 1

The material of the first section in this chapter is mostly standard and can be
found in [81, 97]. The classification of semisimple symmetric spaces is due to M.
Berger [5]. The dual constructions presented here and the relations between them
can be found in [146]. The importance of the c-dual for causal spaces was pointed
out in [129, 130], where one can also find most of the material on the h-module
structure of ¢. The version of Lemma 1.3.4 presented here was communicated to
us by K.-H. Neeb.



Chapter 2

Causal Orientations

In this chapter we recall some basic facts about convex cones, their duality,
and linear automorphism groups which will be used throughout the book.
Then we define causal orientations for homogeneous manifolds and show
how they are determined by a single closed convex cone in the tangent
space of a base point invariant under the stabilizer group of this point.
Finally, we describe various causal orientations for the examples treated in
Chapter 1.

2.1 Convex Cones and Their Automorphisms

Let V be a finite-dimensional real Euclidean vector space with inner prod-
uct (-]-). Let R* ;= {A € R | A >0} and Rf =R+ N{0}. Asubset C CV
is a cone if RYC' C C and a convez cone if C in addition is a convex subset
of V,ie., u,v € C and X € [0,1] imply Mu+ (1 —Av € C. Thus C'is a
convex cone if and only if for all u,v € C' and A\, u € RT, Au+pv € C. The
cone C is called nontrivial if C # —C'. Note that C' # {0}, and C # V if
C is nontrivial. We set

1) V¢:=C0n-C,
2) <C>=C-C={u — v|u,veCl},
3) C*:={ueV|Vwel : (v|u) >0}

Then V¢ and < C > are vector spaces called the edge and the span of C.
The set C* is a closed convex cone called the dual cone of C. Note that

29
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this definition agrees with the usual one under the identification of the dual
space V* with V by use of the inner product (-]-). If C is a closed convex
cone we have C** = C and

(C*N—C*) =< C >7, (2.1)
where for a subset U in V weset Ut ={v eV |VueU : (u]|v)=0}.

Definition 2.1.1 Let C be a convex cone in V. Then C'is called generating
if < C >=V and pointed if there exists a v € V such that for all u € C\ {0}
we have (u | v) > 0. If C is closed, it is called proper if V€ = {0}, regular
if it is generating and proper, and and self-dual if C* = C.

The set of interior points of C' is denoted by C° or int(C'). The interior of
C in its linear span < C' > is called the algebraic interior of C' and denoted
algint(C).

Let S C V. Then the closed convex cone generated by S is denoted by
cone(S):

cone(S) = { Z TsS

finite

s€ S, rszo}. (2.2)

The set of closed regular convex cones in V is denoted by Cone(V). O

If C is a closed convex cone, then its interior C° is an open convex cone.
If Q is an open convex cone, then its closure Q := ¢l(Q) is a closed convex
cone. For an open convex cone we define the dual cone by

Q :={ueV|YweQ\{0}: (u]v)>0}=int(Q).

If Q is proper we have ** = Q. With this modified version of duality for
open convex cones it also makes sense to talk about open self-dual cones.

Example 2.1.2 (The Forward Light Cone) For n > 2, ¢ =n — 1 and
p = 1 we define the (semialgebraic) cone C' in R™ by

C:={veR"|Qiqv,v) >0, x>0}

and set
N:=C°={veR"|Q14(v,v) >0, x>0}

C is called the forward light cone in R™. We have v = (Zj) € C if and only
ifx>|yll. fveCnN—C, then 0 <z <0 and thus z = 0. We get ||y|| =0
and hence y = 0. Thus v = 0 and C is proper. For v,v’ € C we calculate

W' v)=2z+ @ |y) > ¥yl + @ [y) >0
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so that C' C C*. For the converse let v = (i) € C*. Then it follows by
testing against e; € Q that z > 0. We may assume, that y # 0. Define w
by pr;(w) = ||y|| and pry(w) = —y. Then w € C and

0 < (wlv) = 2llyll = llylI* = (= = lyID Iyl

If follows that = > ||y||. Therefore y € C so that C* C C and hence C' is
self-dual. In the same way one can show that also (2 is self-dual. O

Remark 2.1.3 Let C be a closed convex cone in V. Then the following
are equivalent:

1) C° is nonempty.
2) C contains a basis of V.
3) <C>=V. O

Proposition 2.1.4 Let C' be a nonempty closed convex cone in V. Then
the following properties are equivalent:

1) C is pointed,
2) C is proper.
3) int(C*) # 0.

Proof: The implications “(1)=-(2)” and “(3)=(1)” are immediate. Assume
now that C' is proper. Then by (2.1) we have

<C*>= (VoL =V,

so C* is generating. Now Remark 2.1.3 shows int(C*) # 0 and (3) follows.
O

Corollary 2.1.5 Let C be a closed convex cone. Then C is proper if and
only if C* is generating. O

Corollary 2.1.6 Let C be a convex cone in V. Then C € Cone(V) if and
only if C* € Cone(V). O

A face F of a closed convex cone C' C V is subset of C' such that v,v’' €
C\ F with v,v" € C implies v € C'\ F or v' € C'\ F. We denote the set
of faces of a cone C by Fa(C). Note that Fa(C) is a lattice with respect to
the inclusion order.

A cone C in a finite-dimensional vector space V is said to be polyhedral
if it is an intersection of finitely many half-spaces. For the following result
see [55).



32 CHAPTER 2. CAUSAL ORIENTATIONS

Remark 2.1.7 Let V be a finite-dimensional vector space and W C V.
Then 1)—3) are equivalent and imply 4), and 5).

1) There exists a finite subset £ C V such that W = cone(E) =
Y ver R0

2) W is a polyhedral cone.
3) The dual wedge W* C V* is polyhedral.
4) For every face F' € Fa(W) there exists a finite subset D C E such

that the following assertions hold:
a) F = cone(D).
b) W — F = cone(E U —D) is a cone.
c) VW=F = F — F = cone(DU —D).
d) <F>nW =F.

5) The mapping
op: Fa(W) — Fa(W*), F~— FtnWw* (2.3)

defines an antiisomorphism of finite lattices. Moreover,

<op(F)>=F+  VF cFa(W). m

We introduce some notation that will be used throughout the book. Let
W be a Euclidean vector space and let V be a subspace. Denote by pry,
or simply pr the orthogonal projection pry,: W — V. If C is a cone in W,
then we define Py, (C), I}, (C) C V by

PY(C)=pry(C) and I/(C)=CnNV. (2.4)

If the role of W and V is clear from the context, we simply write P(C)
and I(C) .

Lemma 2.1.8 Let W be Fuclidean vector space and let V be a subspace
of W. Denote by pr: W — V the orthogonal projection onto V. Given
C € Cone(W), we have I(C*) = P(C)*.

Proof: Let Z € C and let X = pr(Z) € P(C). If Y € I(C*), then (Y|X) =
(Y|Z) > 0. Thus Y € P(C)*. Conversely, assume that X € P(C)* and
Y €C. Then Y =prY + Y+ with Y+ L V. In particular, pr(Y) € P(C).
Therefore we have

Y1X) = (pr(Y)[X) = 0

and hence X € I(C*). O
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Lemma 2.1.9 Suppose that T: W — W is an involutive isometry with

fized point set V. Let C e Cone(W) with —7(C) = C. Then I}V (C) =
PY(C) and IV (C*) = IV (C)*.
Proof: Let X = X, +X_ € C, where the subscripts denote the projections
onto the (£1) eigenspaces of 7. As —7(C) = C, it follows that —7(X) =
—X,+X_€eC. Hence X_ = 3(X —7(X)) € C. Thus P(C) C I(C). But
we always have I(~C~’) c P(C). Hence P~(C~’) = I(C). Let Y=Y, +Y_ € C*.
Since —7(C) = C implies —7(C*) = C*, we find Y_ € C*. Lemma 2.1.8
shows that P(C*) = I(C)* and thus I(C*) = I(C)*. O
Next we turn to linear automorphism groups of convex cones. For a
convex cone C' we denote the automorphism group of C by

Aut(C) :={a € GL(V) | a(C) = C}. (2.5)

If C is open or closed, then Aut(C) is closed in GL(V). In particular,
Aut(C) is a linear Lie group. If we denote the transpose of a linear operator
a by ta, we obtain

Aut(C*) =" Aut(0O) (2.6)

whenever C is an open or closed convex cone.

Remark 2.1.10 Equation (2.6) shows that if C'is an open or closed self-
dual cone in V, then Aut(C) is a reductive subgroup of GL(V) invariant

under the involution a +— #(a) := ta~!. The restriction of # to the com-
mutator subgroup of the connected component Aut(C), of Aut(C), is a
Cartan involution. O

Definition 2.1.11 Let G be a group acting (linearly) on V. Then a cone
C C V is called G-invariant if G - C = C. We denote the set of invariant
regular cones in V by Coneg (V). A convex cone C' is called homogeneous
if Aut(C) acts transitively on C. O

For C € Cone(V) we have Aut(C) = Aut(C°) and C = 9C U C° =
(C'\ C°)U C° is a decomposition of C into Aut(C)-invariant subsets. In
particular, a nontrivial closed regular cone can never be homogeneous.

Remark 2.1.12 Let V C W be Euclidian vector spaces with orthogonal
projection pry,;: W — V. Suppose that L is a group acting on W and N
is a subgroup of L leaving V invariant. Let C C W be an L-invariant
convex cone. Then I(C) is N-stable. If furthermore !N = N, then P(C)
is N-invariant, too. In fact, the first claim is trivial. For the second, note
that ‘N = N implies that V1 is N-invariant. Hence pr(n - w) = n - pr(w)
for all w € W and P(C) is N-invariant.
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Now let ¢ be an N-invariant cone in V. We define the extension E“//V]z(c)
of ¢ to W by
Ey/y(C) = conv (L-C). (2.7)

If the roles of L, N, V, and W are clear, we will write E(C), E%(C) or
EY(C) instead of E‘I;VJ\? (C). If Ny is a subgroup of N acting trivially on
V, then the group N/N; acts on V. By abuse of notation we replace N by
N/Nj in that case. O

Theorem 2.1.13 Let G be a Lie group acting linearly on the Euclidean
vector space V and C' € Coneq (V). Then the stabilizer in G of a point in
C° is compact.

Proof: Let Q := C°. First we note that for every v € Q the set U = QN (v—
Q) is open, nonempty (3v € U), and bounded. Thus we can find closed balls
B, (3v) C U C Bgr(3v). Let a € Aut(Q)” = {b € Aut(Q) | b- v =v}. From
a-Q C Qand a-v =v we obtain a(U) C U. Therefore a(B,(3v)) C Br(3v)
and a(3v) = v implies |af| < R/r. Thus Aut(2)" is closed and bounded,
i.e., compact. O

Example 2.1.14 (H*(m,K)) For K =R or C we let V be the real vector
space H(m, K) of Hermitian matrices over K,

V = H(m,K) = {X € M(m,K) | X* = X},

where M (m,K) denotes the set of m x m matrices with entries in K and
X*:=!'X. Then n = dimg V is given by

1) n=m(m+1)/2for K=R
2) n=m? for K=C.
Define an inner product on V by
(X|Y)=ReTr XY*, X, YeV.
Then the set
Q=H"(m,K) :={X € Hm,K) | X > 0}, (2.8)

where > means positive definite, is an open convex cone in V. The closure
C of Q is the closed convex cone of all positive semidefinite matrices in
H(m,K). Let Y = I,,, denote the m x m identity matrix. Then for X € C,
X #£0, (X |Y) > 0 as all the eigenvalues of X are non-negative and X # 0.
Thus C' is proper.
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We claim that C and 2 are self-dual. To prove that, let eq, ..., e, denote
the standard basis for K™, e; = (81 ;,...,0p ;) and define E;; € M(m,K)
by

Eijek = 5j)k61'.
Then En1,..., Emm is a basis for M (m,K).

Now suppose that X,Y € Q. Then Y = aa* for some matrix a and hence
Tr(XY) = Tr(a*Xa) > 0 so that 2 C Q*. Conversely, let Y € Q*. As Y
is Hermitian, we may assume that Y is diagonal: Y = 2111 NiFEii. Let
X = Ejj S ﬁ\ {O} Then

0<(X|Y)=\.

Thus Y is positive definite and hence in 2. This proves that € is self-dual
and hence also the self-duality of C'. As a consequence, we see

{0}=Cn-C=C"Nn-C*=<C>*

and C € Cone(V).
The group G = GL(m,K) acts on M (m,K) by

a-X :=aXa", a € GL(m,K), X € M(m,K)

and 2 and C are GL(m, K)-invariant. As every positive definite matrix can
be written in the form aa* = a - I for some a € GL(m, K), it follows that
is homogeneous. The stabilizer of I in G is just K = U(m,K). We have

1) KNSL(m,K) =SO(m) for K =R, and
2) K NSL(m,K) = SU(m) for K =C.

We can see that Theorem 2.1.13 does not hold in general for an element in
the boundary of a convex cone. In fact, let X = (IO’“OO). Let g = (é g) €
GL(m,K)X. Here A € M (k,K), B € M(kx (m—k),K),C € M((m—k)x
k,K) and D € M(m — k,K), where M (r x s,K) denotes the r x s matrices

with entries in K. Then

. [AA* ACT
X =9Xg" = (CA* OC*)

QL (K)X = { <‘§ g) ‘ A€ U(k),D € GLyp_1(K), B e ka(mk)(K)}

and this group is noncompact. O
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Consider a subset L C V. The convex hull of L is the smallest convex
subset of V containing L. We denote this set by conv(L). Then

conv(L) = { Z Ajv;
7

Caratheodory’s theorem ([153], p. 73) says that one can always choose \;
and v; such that the cardinality of J is less than or equal to dim'V 4 1. If
L is a cone, then the convex hull of L can also be described as

conv(L) = { Z Ajvj

J

Jfinite, A; >0,) Xj =1,v; € L} :
J

J finite, A\; > 0,v; € L} .

Lemma 2.1.15 Let G be a Lie group acting linearly on 'V and let K C G
be a compact subgroup. If C C 'V is a nontrivial G-invariant proper cone in
V, then there exists a K-fized vector u € C'\ {0}. If C is also generating,
then u may be chosen in C°.

Proof: Choose v € C* such that (uJv) > 0 for all w € C, u # 0. Fix a
u € C'\ {0}. Then (k- wulv) >0 for all k € K. It follows that

UK :z/(k-u)dk € conv(K -u) Cc C
K

is K-fixed and
(uglv) = / (k- ulv)dk > 0.
K

Thus uxg # 0. As K is compact, it follows that K - u is also compact
and thus conv(K - u) = conv(K -u) is compact, too. If u € C°, then
ug € conv K -u = convK -u C C? since C is convex. O

Example 2.1.16 (The Forward Light Cone Continued) Recall the
notation from Example 2.1.2 and the groups SO, (p, ¢) described in Section
1.5.

Obviously, the forward light cone C'is invariant under the usual operation
of SO,(1,¢) and under all dilations I, A > 0. We claim that the group
SO,(1,q)RT 1,41 acts transitively on Q = C° if ¢ > 2. In particular, this
says that 2 is homogeneous.

To prove the claim, assume that ¢ > 2. We will show that

Q =S0,(1,¢)R* <(1))
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In fact, using

cosh(t) sinh(t) 0

a; := | sinh(¢) cosh(t) 0 € S0,(1,q)
0 0 Lo
we get
a - (g\) = A (cosh(t),sinh(t),0,...,0) € Q
for all t € R. As SO(q) acts transitively on S9~! and ((1) 81) € S0,(1,9)

for all A € SO(q), the claim now follows in view of the fact that coth(t)
runs through |1, co[ as t varies in ]0, col.

We remark that the homomorphism SO(q) — SO, (1, q) realizes SO(q) as
a maximal compact subgroup of SO, (1, ¢), leaving the nonzero vector e; €
Q) invariant, and a straightforward calculation shows that SO,(1,¢)® =
SO(q). According to Lemma 2.1.15, any SO, (1, ¢)-invariant regular cone
in R™ contains an SO(q)-fixed vector, i.e., a multiple of e;. Therefore
homogeneity of {2 implies that

Conegp, (1,9 (R™") = {C, -C}. (2.9)

for ¢ > 1. Note that for ¢ = 1 the equality (2.9) no longer holds. In fact,
the four connected components of |z| # |y| in R? are all SO, (1, 1)-invariant
cones. o

We now prove two fundamental theorems in the theory of invariant cones.
The first result is due to Kostant [157], whereas the second theorem is due
to Vinberg [166]. For the notation, refer to Appendix A.3.

Theorem 2.1.17 (Kostant) Suppose that V is a finite-dimensional real
vector space. Let L be a connected reductive subgroup of GL(V) acting
wrreducibly, and G = L' the commutator subgroup of L. Further, let K
be a mazimal compact subgroup of G. Then the following properties are
equivalent:

1) There ezists a regular L-invariant closed convexr cone in V.
2) The G-module V is spherical.

Proof. Note first that G is closed by Remark A.3.7, so K is a compact
subgroup of GL(V). We may assume that V is Euclidian and that K C
SO(V). Then the implication (1)=(2) follows from Lemma 2.1.15.
Lemma A.3.8 shows that the connected component of Z(L) acts on V
by positive real numbers. Thus it only remains to show the existence of
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a G-invariant proper cone. To do that we note that V¢ is irreducible by
Lemma A.3.5 and consider a highest-weight vector u of V. Let vg € WK
be a nonzero K-fixed vector. We can choose vk such that (u|vg) > 0. In
fact, if uw and vk were orthogonal, then G = K AN would imply that all of
V is orthogonal to vg. Now (G- ulvi) = (A-u|vg) = RT. This shows that
cone(G - u)) C (R*u)* is a nontrivial G-invariant convex cone in V. It has
to be regular by irreducibility. O

Remark 2.1.18 1) In the situation of Theorem 2.1.17 we see that K - u
is a compact subset of C' bounded away from zero. This shows that for
v € conv(G - u) \ {0} there exists a compact interval J C R* such that
v € conv m(K)Ju. In particular, (conv G - u) U {0} is closed.

2) The assumption in the next theorem that V is irreducible is not needed
for the implication (1) = (2). O

Theorem 2.1.19 (Vinberg) Let L be a connected reductive Lie group and
V a finite-dimensional irreducible real L-module. Then the following prop-
erties are equivalent:

1) Coner (V) # 0.

2) The G-module 'V is spherical, where G = L' is the commutator sub-
group of L.

3) There exists a ray in V through 0 which is invariant with respect to
some minimal parabolic subgroup P of G.

If these conditions hold, every invariant pointed cone in 'V is regqular.

Proof. Note first that any nontrivial L-invariant cone C' is automatically
generating, as < C' > is an L-invariant subspace of V and V is assumed
irreducible.

Denote the representation of L on V by w. Then 7(G) is closed in GL(V)
and 7(K) is compact, as linear semisimple groups always have compact
fixed groups for the Cartan involution. In fact, this shows that m(K) is
maximal compact in 7(G). Thus the equivalence of (1) and (2) follows
from Kostant’s Theorem 2.1.17 applied to «(L).

Now suppose that V is K-spherical. Then Lemma A.3.6 yields the de-
sired ray.

Finally, assume that the ray R™ - u is M AN-invariant. Since N is nilpo-
tent and w(M) compact, we see that n and m act trivially on u. Thus u is
a highest-weight vector and the corresponding highest weight satisfies the
conditions of Theorem A.3.2, i.e., V is K-spherical. O
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Remark 2.1.20 In the situation of Vinberg’s theorem with a spherical G-
module V, Theorem A.3.2 shows that for any highest-weight vector v € V¢
also U is a highest-weight vector. This implies that V contains a highest
weight vector u. In other words, V is a real highest-weight module. O

Another well-known fact about invariant cones that we will often use is
the following description of the minimal and maximal invariant cones due
to Vinberg and Paneitz.

Theorem 2.1.21 (Paneitz,Vinberg) Assume that L is a connected re-
ductive Lie group. Let V be a finite-dimensional real irreducible L-module
with Coner, (V) # 0. Equip V with an inner product as in Lemma A.3.3.
Then there exists a-unique up to multiplication by (—1)-minimal invariant
cone Chin € Coner, (V) given by

Chnin = conv(G - u) U{0} = conv G (Rt - vg), (2.10)

where u is a highest-weight vector, vk is a nonzero K -fized vector unique
up to scalar multiple, and (u|vi) > 0. The unique (up to multiplication by
—1) mazimal cone is then given by Cpax = Criy-
Proof. We know by now that there is a pointed invariant cone in V if and
only if dim V& = 1 and that every pointed invariant cone contains either vx
or —vg. Furthermore, we know that every pointed invariant cone is regular.
Thus Remark 2.1.18 implies that C' := conv(G - u) U {0} is a regular cone
and v € C°. In particular, we get that the closed G-invariant cone C}
generated by vk is contained in C. But Lemma A.3.6 shows that u € C
and thus Chin = C = (1 is in fact minimal. The equality Chax = Chin
follows from 7 (g) = 7 (6(g)) ~'. Now the claim follows from Lemma A.3.8.
O

Remark 2.1.22 We have seen in Remark 2.1.20 that in the situation of
Vinberg’s theorem 2.1.19 the G-module V is a real highest-weight module
with highest-weight vector v € V. It follows from Lemma I1.4.18 in [46]
that the stabilizer G* of u in G contains the group M N. This implies that
u € 9C. In fact, according to Lemma 2.1.10, the stabilizer group of a point
in the interior of an invariant cone acts as a compact group. O

2.2 Causal Orientations

Let M be a C>*°-manifold. For m € M we denote the tangent space of
M at m by T, (M) or T,, M and the tangent bundle of M by T(M).
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The derivative of a differentiable map f: M — A at m will be denoted by
A f: Trn(M) — Tf(m)(N)-

A smooth causal structure on M is a map which assigns to each point m
in M a nontrivial closed convex cone C'(m) in T,, M and which is smooth in
the following sense: One can find an open covering {U,}icsr of M, smooth
maps

i U x R = T (M)

with ¢;(m,v) € Tp,,(M), and a cone C in R™ such that
C(m) = pi(m, ©).

The causal structure is called generating (proper, regular) if C(m) is
generating (proper, regular) for all m. A map f: M — M is called causal
if dp f (C(m)) C C(f(m)) for all m € M. If a Lie group G acts smoothly
on M via (g,m) — ¢ - m, we denote the diffeomorphism m +— g-m by £,.

Definition 2.2.1 Let M be a manifold with a causal structure and G a
Lie group acting on M. Then the causal structure is called G-invariant if
all ¢4, g € G, are causal. O

If M = G/H is homogeneous, then a G-invariant causal structure is
determined completely by the cone C' := C(o) C To(M), where o :=
{H} € G/H. Furthermore, C is proper, generating, etc., if and only if
this holds for the causal structure. We also note that C' is invariant under
the action of H on T,(M) given by h +— dolp. On the other hand, if
C € Coney (To(M)), then we can define a field of cones by

M3 aH — C(aH) := doly(C) C Th.o(M),

and this cone field is clearly G-invariant, regular, and satisfies C(o) = C.
What is not so immediate is the fact that m — C(m) is smooth in the
sense described above. This can be seen using a smooth local section of the
quotient map M = G/H — G and then one obtains the following theorem,
which we can also use as a definition since we will exclusively deal with
G-homogeneous regular causal structures.

Theorem 2.2.2 Let M = G/H be homogeneous. Then
C+— (aH — dol,(C)) (2.11)

defines a bijection between Coner (To(M)) and the set of G-invariant, reg-
ular causal structures on M. O
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Let M = G/H and C € Coneg(ToM). An absolutely continuous curve
v: [a, b] — M is called C-causal (also called conal, cf. [52]) if v/ (t) € C (v(t))
whenever the derivative exists. Here a continuous mapping v: [a, b] — M is
called absolutely continuous if for any coordinate chart ¢: U — R™ the curve
n = ¢ovy:y~1(U) — R™ has absolutely continuous coordinate functions and
the derivatives of these functions are locally bounded.

We define a relation < (s for strict) on M by saying that m =<, n
if there exists a C-causal curve v connecting m with n. The relation =<,
clearly is reflexive and transitive. We call such relations causal orientations.
Elsewhere they are also called quastorders .

Example 2.2.3 (Vector Spaces) Let V be a finite-dimensional vector
space and C' C V a closed convex cone in V. Then we define a causal
Aut(C)-invariant orientation on V by

u=v<=v—uecC.

Then < is antisymmtric if and only if C' is proper. In particular, HT (n, K)
defines a GL(n, K)-invariant global ordering in H(n,K). Also, the light
cone C' C R™""! defines a SO,(1,n)-invariant ordering in R™*1. The space
R+ together with this global ordering is called the (n + 1)-dimensional
Minkowski space . O

In general, the graph M<, = {(m,n) e M x M | m =<sn} of <, will
not be closed in M x M. This makes <, difficult to work with and we will
mostly use its closure =<, defined via

m 3 n:i<= (m,n) € M<_,

instead. It turns out that < is again a causal orientation. The only point
that is not evident is transitivity. So suppose that m < n < p and let
My, Nk, N}, Pr be sequences with

my =g nkﬂn;{; jspku mkﬁmunk_)n7n;c_>n7pk_)p'
Then we can find a sequence g, in G converging to the identity such that
ny, = gk - ng. Thus ggmy — m and gmy < pr implies m < p.
Given any causal orientation < on M, we write for A C M

TA={yeY|JacA:a<y} (2.12)

and
lA={yeY|TaecA:y<a}. (2.13)
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We also write simply 12 := 1{z} and | 2 := |[{«}. Then the intervals with
respect to this causal orientation are

[m,n]j<:={zeM|m<z<n}=TmnN|n

and
[m,c0[<:=Tm, ]—o0,m]<:=|m.

The following proposition shows that replacing <5 by < does not change
intervals too much.

Proposition 2.2.4 Let M = G/H be a homogeneous space with a causal
structure determined by C' € Coneg(ToM) and =5, = the associated causal
orientations. Then [m, oo[x= [m, o0]<,

Proof: Let m < n. Then there exists a sequence (my,ng) € M<, con-
verging to (m,n). Let U be a neighborhood of m in M such that there
exists a continuous section o of the quotient map m:G — M = G/H.
Then o(my) — o(m) and hence g, = o(m)o(my)~! converges to 1 € G.
Therefore

m=o(m)-0= g -mi < gk - Nk

and g - ny — n so that n € [m,o00[<, proving the first claim. For the
second, suppose that m < n < [. Then, according to the first part we can
find sequences (ny) and (I;) converging to n and [, respectively, such that
m =g ng and n <; lp. As above, we find g € G converging to 1 such that
gk - i = n. Thus g, - m <5 g - np = n < I, implies (g - m, lx) € M<,
and hence (m,l) € M<. O

For easy reference we introduce some more definitions.
Definition 2.2.5 Let M be manifold.

1) A causal orientation < on M is called topological if its graph M< in
M x M is closed.

2) A space (M, <) with a topological causal orientation is called a causal
space. If < is in addition antisymmetric, i.e., a partial order, then
(M, <) is called globally ordered or simply ordered.

3) Let (M, <) and (N, <) be two causal spaces and let f : M — A be

continuous. Then f is called order preserving or monotone if

mi < mo — f(ml) < f(mg)
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4) Let G be a group acting on M. Then a causal orientation < is called
G-invariant if

m<n=—=VYa€eG:a-m<a-n.

5) A triple (M, <,G) is called a causal G-manifold or simply causal if
< is a topological G-invariant causal orientation. O

2.3 Semigroups

Invariant causal orientations on homogeneous spaces are closely related to
semigroups. We assume that M = G/H carries a causal orientation < such
that (M, <, G) is causal. Then we define the semigroup S< by

S<:={aeGlo<a-o},

called the causal semigroup of (M, <,G). If m is another point in M, then
we can find an @ € G such that m = a - o. Thus for the corresponding
semigroup SL := {a € G | m < a-m} we have §' = aSa™".

Lemma 2.3.1 1) For all m,n € M the intervals [m,n] and [m, o[ are
closed.

2) The semigroup S< is closed.
3) Gs. = S<N S;l is the closed subgroup of G given by
Gs. ={a€G|o<a-o<o}
Gs. contains the stabilizer H of o and normalizes S<.
4) Gs. = H if and only if < is a partial order.

Proof: Let {z;} be a sequence in [m,n] converging to z € M. Then M< >
(m,z;) — (m,z). As Mc is closed, it follows that (m,z) € Mc, ie.,
m < z so that [m, o0] is closed. Similarly, we find z < n whence [m,n[ is
also closed.

Let {a;} be a sequence in S, lima; = a € G. Then again M< >
(0,a;-0) = (0,a-0) € M< as Mc is closed. It follows that S< is closed
and so is Gs.. Now Gé—‘i = (s, and the G-invariance of < and the

transitivity of < imply (3). Using (3) and the G-invariance of <, we see
that < is a partial order if and only if o < g-0 < o is equivalent to g-o0 = o,
ie, if and only if Gs. = H. O



44 CHAPTER 2. CAUSAL ORIENTATIONS

Remark 2.3.2 If (M = G/H,<,G) is causal and H = Gg_, then < can
be recovered from S< via a-0 <b-0 <= a 'b € S<. Conversely, given a
closed subsemigroup S of GG, one obtains a causal G-manifold (G/H, <g,G)
vieH=SNStanda-0<gb-o:<=a'bes. O

Let M = G/H be a homogeneous space with a causal structure deter-
mined by a cone C' € Coneg(ToM) and = the associated topological causal
orientation. Then S<x = {g € G | 0 < ¢ - o} is a closed subsemigroup of
G. But there is another semigroup canonically associated to C: Let W
be the preimage of C' under T:G = g — ToM = g/b and Sy the closed
subsemigroup of G generated by exp W. For the following theorems, refer
to [52], Proposition 4.16, and Theorem 4.21.

Theorem 2.3.3 S< = SwH. O
Theorem 2.3.4 The following statements are equivalent:

1) = is a partial order.
2) 5<nN S;l =H.
3) L(S<)={X €g|expRTX C S<} =W. O

Theorem 2.3.4 shows in particular that one can recover the causal struc-
ture from =< provided = is a partial order. To do that one has to calculate
the tangent cone L(S<) of the semigroup S<.

We can also build causal orientations starting with a closed subsemigroup
S of G. Write H := SNS~! for the group of units of S. If M = G/H is the
associated homogeneous space, let 7 : G — M, g — gH be the canonical
projection, and o := 7(1) the base point. We define a left invariant causal
orientation on G by the prescription

g<sg if g €gS (2.14)
Then g <g ¢’ <g g is equivalent to gH = ¢’ H and the prescription
m(g) <m(g) i g<s¢d (2.15)

defines a partial order on M such that 7 : (G, <g) — (M, <) is monotone.
We say that a function f: G — R is S-monotone if

f : (G7§S) - (R,S)

is a monotone mapping. We write Mon(S) for the set of all S-monotone
continuous functions on G.

The construction of a causal orientation from a semigroup is of particular
interest if the semigroup S can be recovered from its tangent cone L(S) =
{X eg|exp(RTX) C S}.
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Definition 2.3.5 1) S is called a Lie semigroup if (expL(S)) = S, i.e.,
if the subsemigroup of G' generated by exp L(S) is dense in S.

2) S is called an extended Lie semigroup if Gg(expL(S)) = S.

3) S is called generating if g is the smallest subalgebra of g containing
L(S). O

Remark 2.3.6 For every generating extended Lie semigroup S C G we
know that S° is a dense semigroup ideal in S and S° C {(exp L(S))H (cf.[52],
Lemma 3.7). Moreover, we have g = gS and | g = gS~! for g € G and
these sets have dense interior. Similarly, T2 = 7(gS) and |z = 7(gS™1)
for v = gH € G/H and these sets also have dense interior. O

2.4 The Order Compactification
of an Ordered Homogeneous Space

Compactifications are an indispensible tool whenever one wants to describe
the behavior of mathematical objects at infinity in a quantitative manner.
Which type of compactification is suitable depends very much on the spe-
cific situation given. For an ordered homogeneous space M = G/H one
can define a compactification that takes the order into account and there-
fore turns out to be particularly useful. The basic idea is to identify an
element gH € M with the set of elements ¢’H smaller than gH. One has
the Vietoris topology (cf. Appendix C) on the set F(M) of closed subsets
of M which makes F(M) a compact space. Then one can close up M to
obtain a compactification.

In this section we assume that G is a connected Lie group and S C G
an extended Lie semigroup with unit group H; cf. page 45. We describe
a compactification of M := G/H which is particularly suited for analytic
questions taking into account the order structure < on M induced from
<gs. Recall the notation from Appendix C and note that both G and G/H
are metrizable and o-compact. Therefore the results of Appendix C apply
in particular to F(G) and F(G/H).

Lemma 2.4.1 1) The set F|(G) :={F € F(G) | | F = F} ¢ F(G)H
1s closed.

2) The set F|(G/H) :={F € F(G/H) | | F = F} is closed.

Proof: 1) The condition | F = F is equivalent to F's C F for all s € S~1.
For every s € S™! the set

Fs={FeF(G): FsC F}
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is closed in view of Lemma C.0.7 because F(G) is a pospace. Therefore

FiG) =) Fs
seS
is closed.
2) This follows from Proposition C.0.9 and 1). O

Lemma 2.4.2 The mapping n: G — F|(G), g — | g factors to a continu-
ous order-preserving injective mapping

n:G/H — F|(G), gHw~ |(gH)
of locally compact G-spaces.

Proof. The continuity of the mapping 7 follows from Lemma C.0.7 and the
fact that
n(g)=g-n(1) Vged.

This mapping is constant on the cosets gH of H in GG. Therefore it factors
to a continuous mapping 1. To see that 7 is injective, let a,b € G with
n(a) = n(b). Then | a = | b and therefore a <g b <g a. Hence aH = bH.
This proves the injectivity of 7. Finally, suppose g <g ¢’. Then ¢’ € ¢S
and therefore | g = gS=! C ¢’S™! = | ¢’. This shows that 7 preserves the
order. O

We write My = [0,00) = S - o for the positive cone in M = G/H and
set

MP=[(M) =n(G) € F(G) and  MP":=7(M;) =n(S). (2.16)

Then M°Pt is called the order compactification of the ordered space (M, <).
We refer to 77 as to the causal compactification map .

Lemma 2.4.3 Let F € M. Then the following assertions hold:
1) Fe ./\/lfft is equivalent to 1 € F.
2) F={geG|g'FeM?"}.

3) If F # 0, then there exists g € G with gF € ./\/lfft, i.e., Mt C
G- M U {0}

Proof: 1) For s € S we clearly have that 1 € n(s) = | s. Therefore 1 € F
for all F' € M(jrpt. If, conversely, 1 € F, and F = limn(gn), gn € S, then
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there exists a sequence a,, € 17(gyn) = | g» such that a,, — 1 (Lemma C.0.6).
We conclude with Lemma C.0.7 that

1 €lim|(a,'g,) = lima,* | g, = F.

2) In view of 1), this follows from the equivalence of 1 € g1 F and g € F.

3) If F # (), then there exists g € F, and therefore g~ F € J\/lfft. O

Note that Lemma 2.4.3 implies that either Mt = G - J\/lfft or Mt =
G- MP U0}
Proposition 2.4.4 1) M?" = {A € M |1 € A}.

2) (MPH°e ={Ae MP |1 A%},

3) S={geG|g- (MT) C (MP)}.

4) S°={geG|g-MP" C(MT)}.

Proof: 1) This was proved in Lemma 2.4.3.
2) Let A € (M?")°. Then 1 € A. Moreover, there exists a symmetric

neighborhood U of 1 in G such that U - A C J\/lipt. Hence U C A, which
proves that 1 € A°. Conversely, if 1 € A, then there exists an s € A°N S°
and therefore also a neighborhood V' of s contained in AN .S. Then

V={FeF(G)|FNnV #0}
is a neighborhood of A in F(G). Since each element A € M°P! satisfies
A=|A={geG|gSNA+0},

FeVNM® entails 1 € | F = F, hence F € M?".
3) Let s € S and A € (MS")°. According to 2), we have

1<gse(sA)°,

whence 1 € (sA)° and therefore s-A € (MP)°. If g € G with g-(MP")° C
(M), then g- MP* € MP and gS~! € MP' because MP" = (MP')e.
This implies that g € (S71)~1 =8

4)If s € S°and A € MP" then 1 € A and we find a neighborhood U of 1
in G such that Us- A C J\/lipt. Hence 1 € gs- A for every g € U. This leads
toU™! Cs-Aandhencetole (s-A4)° ie, s A€ (Mft)", according to
1). To show the converse, we assume that g € G and g - ./\/lfft - (Mft)o.
Then, as in 2), we obtain that gS~' € (M$")° and therefore 1 € (| g)° or
g € S° again by 1). O
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Lemma 2.4.5 1) Let F°(G/H) denote the set of all closed subsets F' C
G/H with | F = F such that for every a € F the connected component
of a in TaNF is noncompact. Then F°(G/H) is closed in F|(G/H).

2) Let F e i(G/H)\T(G/H) and a € F. Then the connected component
of a in TaNF is noncompact.

Proof: 1) Let F = lim,,_,o0 Fpn, F, € ffo(G/H), and a € F. Let U,, denote
the % ball around a. Then there exists n,, € N such that F,,NU,, # ( for all
n > n.,. We clearly may assume that the sequence (n,)men is increasing
and that n,, > m. Let a,, € Uy, N F,,,,. Then our assumption implies that
the connected component Cy, of a,, in Tan N F,,, is noncompact. Passing
to a subsequence, we even may assume that C,, — C in F(G/H). Then
Cin C Tay, and the closedness of < show that

C =limC,, C (lima,,) =Ta.
In addition, we know that

C=lmC,, C mlimOo F, =F.
Hence C' C TaN F. Next, Lemma C.0.6 entails that the connected compo-
nent of a in C' is noncompact. Therefore A € F°(G/H).

2) Let ap, € (la)° C F with a, — a and F,,, = |z, — F with o, €
G/H. For n € N there exists m,, > n such that F,, N (T ay,)® # 0 for all
m > m,,. This clearly implies that a, € Fy,, i.e., an < ,,. Then we find
monotone curves v, : Rt — G/H and T,, € R such that v,(0) = a,, and
Y (Tn) = T, ([114], 1.19, 1.31). Passing to a subsequence, we may assume
that the sequence C,, := 7,([0,7,]) converges to C in F(MP'). Then
a = lima, € limC, = C, the sets C,, are connected chains, i.e., totally
ordered subsets, in the partially ordered set (G/H, =), and Uy, >p,C}, is not
relatively compact for any ng € N because z,,, € C, and z,,, — w since

im7(zm,) € n(G/H).

Now, Lemma C.0.6 entails that the connected component of a in C is
noncompact. Moreover,

C=1lmC, C lima, =Ta and C=1lmC, ClimF,, =F.

Finally, this proves that the connected component of @ in Ta N F' is non-
compact. t

Theorem 2.4.6 The image TH(M) of M in F|(G) is open in its closure.
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Proof: Let F € 7i(G/H). We note first that the following two conditions
are equivalent:

1) For every a € F, the connected component of T a N F is noncompact.

2) Fén(G/H).

In fact, 2) implies 1) by Lemma 2.4.5. If F = 7(z) = |z with z € G/H,
then z € F and T2 N |z = {x} is compact. Therefore 1) implies 2). Now
the theorem is a consequence of Lemma 2.4.5. O

Proposition 2.4.7 Let A C G be a closed subset with | A = A. Then
w(@A) =0 and A= A°.

Proof: Suppose that this is false. Then we can find x € 0A , the boundary
of A, and a compact neighborhood V' of « with (AN V) > 0. Choose a
sequence s, € S° with s,11 € (| 5,)° and lim,, .o, s, = 1. Then As; ! C
A° and therefore A = A°. Let fi denote a right Haar measure on G. It
suffices to prove that g(0ANV) = 0. If not, we have i ((0ANV)s,) =
A(OANV) > 0 for every n € N and

(OANV)s, N(OANV)s, =0 for m<n
because (0A)s,, C A°S,,. This shows that

Yo BOANV) =370 i ((0ANTV)sp)
= ﬂ (UnEN(aA N V)S") < '[L (UnEN VS") < o0.

Whence g(0ANV) =0. O

We will see later on that for specific M the order compactification can be
described in much more concrete terms than has been done in this section.
In particular, it will turn out that the space M®? is in some sense the
smallest compact G-space X such that there exists an open subset O C X
with the property that

S={geG|g-OcO} and S°={geG|g-OcCO}. (2.17)

This will be used to get information about the structure of ./\/lfft and the
G-space MPt because in special cases there are very natural compact G-
spaces with the above property.
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2.5 Examples
2.5.1 The Group Case

Recall the way of viewing a group G as a symmetric space from Example
1.1.3. A cone D C q belongs to Conegx(q) if and only if it is of the form

D={(X,~X)| X € C},

where C € Coneg(g). There is extensive literature on the classification of
C € Coneg(g) for arbitrary connected Lie groups G (cf. [50, 52, 118]).
Here we only recall some basic facts for the case of simple Lie groups. It
turns out that only Hermitian simple Lie algebras (cf. Appendix A.4) admit
regular invariant cones.

Lemma 2.5.1 Let G be a simple real Lie group with Lie algebra g. Then
Coneg(g) is nonempty if and only if g is Hermitian.

Proof. Note first that any nontrivial G-invariant cone in g is automatically
regular since it spans an ideal. Suppose that G = K exp(p) is a Cartan
decomposition and ¢ C g is the Lie algebra of K. The group Ad(K) is
compact, so Kostant’s Theorem 2.1.17 shows that there is a nontrivial G-
invariant cone in g if and only if there exists Z € g, Z # 0, such that
Ad(k)Z = Z for all k € K. As g is irreducible as a G-module, it follows
from Lemma A.3.5 that dim g® = 1 and gc is simple. Let 8 be the Cartan
involution on g corresponding to the Cartan decomposition g = ¢®p. Then
the K-invariance of 6(Z) shows that 0(Z) = +Z. If (Z) = —Z, then RZ
is a t-submodule of p, which is impossible by Lemma 1.3.4 since the Killing
form is positive definite on p. O

Now suppose that g is Hermitian and Z € 3(¢), Z # 0. Then the
minimal cone (cf. Theorem 2.1.21) is given by

Cmin =convG -RTZ
and the corresponding maximal cone is
Chax = {X cg | VY € Cuin : (X|Y)9 > 0}

Later on we will describe these cones in more detail.

Lemma 2.5.1 shows that each Hermitian Lie group is a causal mani-
fold with causal structures in bijective correspondence with the G-invariant
cones in g. Moreover, the lemma shows that every nontrivial G-invariant
cone contains a nonzero element Z € 3(¢). Therefore the causal structure
cannot be antisymmetric if K is compact. This follows from the fact that
the curve t — exptZ is periodic and causal.



2.5. EXAMPLES 51

Multiplication by ¢ maps Conep(q) into Coneg (iq). In this way causal
structures of c-dual spaces are in a canonical bijective correspondence. We
make this explicit in the group case: Assume that G is contained in a
complex group G¢ with Lie algebra gc. Let M := G¢/G. Then the tangent
space at the origin o = 1G is ig. If C is a G-invariant cone in g, then iC C ig
is also G-invariant. Therefore Lemma 2.5.1 shows that M carries a causal
structure if and only if G is Hermitian. We will show later that M is
ordered for each of the topological orientations associated to elements of
Coneg(ig) and that the intervals [m,n] are compact. Furthermore, it will
turn out that the semigroup S< is given by GexpiC and L(S) = g @ iC,
where C' € Coneg(ig) is the cone inducing <.

2.5.2 The Hyperboloids
Recall the hyperboloid @, = Q1" C R"*! and the map ¢:R"*! — g C

(2,n), defined b
* ' L 0 —t(’UIl)n)
q(v) := (v 0 ) : (2.18)

from Section 1.5. Let C; C R™*! be the forward light cone and
C:={qv)eq|velC}.

Then C is a regular cone in q invariant under the group SO,(1,n) and
Conego, (1,n)(q) = {C,—C} according to Example 2.1.16. In particular,
Qr ~ S0,(2,n)/SO,(1,n) carries a causal structure. Let

a(t) := exp(tg(e1)) - 0 = costey + sintes .

Then
&(t) = dayla (@(0)) = doo)law (a(er)) € Claft)).

Thus « is a closed causal curve. Therefore the causal orientation is not a
partial order.
The case Q_1 can now be treated in the same way by using the map

0 w

c.mon+1
q“:R Bw’_)<t(w11,n) 0

> eqcCso(l,n+1) (2.19)

and the SO, (1, n)-invariant form

(4°(v), @1 (w)) = Tr (¢°(v)q*(w)) - (2.20)

Let
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Then the cone C' is SO, (1, n)-invariant and regular. Furthermore,

ConeSOo(l,n) (q) = {Ov _O}

(cf. Example 2.1.16 again). In particular, Q_, ~ SO,(1,n+ 1)/SO,(1,n)
is causal.

The causal curve a(t) = exptq(e1) - en41 is given by a(t) = sinh(t)e; +
cosh(t)en11, and this curve is an embedding of R. We will show later
that this space is actually globally hyperbolic, i.e., the causal orientation is
antisymmetric and all the order intervals [m,n] are compact.

If n is odd, we consider a = I1 p+1 € SOo(1,n + 1). Then 7(a) = a, a
commutes with SO,(1,¢) but a € SO,(1,n). On the other hand, a? = 1
so that Hy := SO,(1,n) UaSO,(1,n) is a group and the group {1,a}
normalizes SO, (1,n) so it acts on @Q_,.. Then @_, is a double covering of
the quotient space Q_,/{1,a} = SO,(1,n + 1)/H;. In particular, locally
Q-_,/{1,a} admits a causal structure. But ag(e;)a™! = —q(e;). Thus the
light cone is not Hi-invariant and does not define a causal structure on
Q_,/{1,a} globally. Thus the existence of a causal structure may depend
on the fundamental group of the space in question.

2.6 Symmetric Spaces Related
to Tube Domains

Let (g, h) be a symmetric pair associated to a tube domain. In the notation
of Example 1.1.6 this means in particular that we have an element Z° €
3(8) N g and elements X,,Y, € p such that h = g(0,Y,), g = g7 + q~ with
gt = g(£1,Y,) and X, = [Y,, Z°] € q,. For the last relation see Lemma
A.4.2. The same lemma shows that the involution 7: g — g coincides with
C?. So Z° € q is a K-fixed point, whereas Y, € b is an H,-fixed point.
Therefore X, € q7°"X and we are in the situation of Theorem 1.3.11. Since
conjugation by an element of K does not move Z°, we may assume that
Y, = Y in the notation of that theorem. Decompose X, = %(X+ +X)
with X4 € (¢F)H"X and 0(Xy) = —X_. As Z° € q; and adY, : q — q
is a linear involution, we obtain Z° = ad(Y%)X, = § (X4 — X_). Let
{71, ..., } be a maximal system of strongly orthogonal roots with suitable
root vectors E; = E,, and co-roots H; = H,, as in Appendix A.4. Then

1 T
X=X, +2°= 3 > (X; +iH;), (2.21)
j=1
where X; = —i(E; — E_;). By Theorem 2.1.21 there are minimal H,-
invariant cones C+ C qF such that X+ € Cx and C_ = —0(C).
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Lemma 2.6.1 The cone Cy is H-invariant if X, € g K.

Proof: Let X = Ad(h)X, for some h € H, and fix some k € HN K. Then

Ad(k)X = Ad(kh) X, = Ad(khk™ ') Ad(k) X, = Ad(khk™ ") X, € Oy

because of khk~! € H, and the lemma follows by Cy = conv Ad(H,)R+X
and H = (HNK)H, (cf. (1.8)). 0

Remark 2.6.2 Consider H,-stable cones
Cr ={X+0Y)| X, YeC }=Cy —C_ (2.22)

and
Co,={X-60Y)| X, YeCy}=Cr+C_. (2.23)

They are pointed and generating in q.
The (H, N K)-fixed points in the H,-invariant cones Cj and Cp, guaran-
teed by Lemma 2.1.15, can be determined explicitly:

X 0(X
70 _ ++2( +) c qu"ﬂKﬂC;’;
Xy —0(Xy) WK ~ (0
XO = f S q;D N Cp'
Moreover, we have
Cp,Np={0}, C,Nnt=/{0}. O

Proposition 2.6.3 Suppose X, € q1"K. Then the space M = G/H has
a reqular invariant causal structure.

Proof: In view of Lemma 2.6.1, the assumption on X, ensures that C} and
Cp are even H-invariant. O

Example 2.6.4 (cf. Example 1.3.15) Suppose that X, € q"%. Then
the cone C}, defines an invariant causal structure on G/H but not on the
symmetric space Ad(G)/ Ad(G)7, where Ad(G)” = {¢ € Ad(G) | p7 =
7¢}. In fact, note that by definition CY N'¢ # @ and C7 Np # 0. Then
6 € Ad(G)7, which implies the claim since C} is not #-invariant. O

We will now show that Conep, (q) = {£Cl, £Cp}.

Lemma 2.6.5 X; +iH; € C forj=1,... 7.
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Proof: Recall from (2.21) Xy = %Z;Zl(Xj +iH;). For s1,...,s, € R, let
h=exps1Y1---exps,Y, € H. Then

2Ad(R)X, = e (Xy +iHy) + -+ e (X, +iH,).

Let s; = 0 and let the other s, tend to —oo. Then, as C is closed, it
follows that X; +iH; € Cy. |

Lemma 2.6.6 Let C € Coney, (q") such that X4 € C°. Then C is self
dual, C = C4, and C° = Ad(H,) X +.

Proof. By assumption, we have Cy C ¢' C C}. Fix an X € C. Then
X —0(X) € qnp. Applying C, it follows from Lemma A.4.2 and Proposition
A.4.3 that E;Zl RX; is a maximal abelian subspace of pNq. Since H, N K
is the group of 6-fixed points in the analytic subgroup of G with Lie algebra
h* =hNEt+ qNp, there exists a k € K N H, such that

Ad(k)(X — 0(X)) = itjxj €a,.

2

(X, +iH;) + L(X; —iH;) and X; +iH; € gq*, it follows that
321 tj(X; +iH;). Now C C C7, and by Lemma 2.6.5,

1
0<(X;+iH; | Ad(k)X)y = Qtj|Xj +iH;|? .
Hence t; > 0. Again by Lemma 2.6.5 it follows that C C C4. Hence
C = Cy. If we take C' = C7, this implies that C7 = C; and C} is self

dual.
Now assume that X € C°. Then t; > 0 for j =1,...,r. Define

L 1
h = Jl;[l exp (— (5 1ogtj> YJ> cH,.

Then Ad(hk)X = X. Hence C¢ = Ad(H,)X . O
Corollary 2.6.7 Coney, (q7) = {Cy,—C4}. If, in addition, X, € qINE,
then Coney (q*) = {C4,—C4}. 0

Theorem 2.6.8 Let G/K be a tube domain, G C G¢ with G¢ simply
connected, and T the involution of G which on gc is given by T = e2d7™Yo,
Further, let H = G™ and Cy the closed convex H,-invariant cones in q+
generated by X+ = X, + Z°. Then

Coney, (q) ={£(CL —C_),£(C+ + C_)}.
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If, in addition, X, € q"K | then
Conerr(a) = {+(Cy — C_), £(C4 +C)}.

Proof: We prove this in four steps. Fix C' € Coneg, (q).

Step 1: Let pry : q — q+ be the H-equivariant projection acording to
the decomposition g = q* @ q~. Fix an X = pr (X)+pr_(X) € C and
consider h(t) = exptY,. Then

Ad(R(t)X =e'pr (X)+e Tpr_(X).

Hence
tlim e "Ad(h(t))X =pr (X) e C.

Similarly, we get pr_(X) € C.
Step 2: By the first step it follows that

C(x):=pr . CCC.

Then C C C(+) + C(—). We claim that C(4) and C(—) are H,-invariant
proper cones in g7 and g, respectively. As C is generating, it follows that
C(+) # {0}. If X € C(+) N —C(+), Step 1 implies that X € C' N —C.
Hence X = 0 and C(+) is pointed. Let X € q™. Then, as C is generating,
there are V. W € C such that X =V — W. But then

X=pr,(V)—pr,(W)eC+)-C(+).

This shows that C'(+) is generating. As C(+) C C and C, as well as q*,
are H,-invariant, it follows that Ad(H,)C(+) Cc CNgqt C pr (C) = C(+).
Thus C(+) is an H,-invariant regular cone in q%.

Step 3: By Corollary 2.6.7 we get C(+) = +C4. Similarly, we find
C(-) = +0(C(+)).

Step 4: As C(+) C C, we have C(+) + C(—) C C. The other inclusion
is obvious, so we have

C=C(+)+C(-).

Step 3 now implies that either C = £Cy = C4—C_ or C = £C), = C+C_.
The last claim is an immediate consequence of Lemma 2.6.1. O

Remark 2.6.9 The cone Cy C q7 also has a geometric meaning, as G/K
is biholomorphically equivalent to the tube domain gt + i), where Q =
C$. The idea of the proof is as follows. Let QE = exp(qh)c, Q¢ =
exp(q~)c. Similarily, we let K¢ C G¢ be the complexification of K. Let ¢ =
exp ((im/2) X,). Then ¢ 'Kce = He and G C QfcHcQg. Furthermore,
GNcHeQg . Thus G/K is diffeomorphic to the G-orbit through cHe Q¢ in
Gc/HcQg - This defines a complex structure on G/K. Now if Z € g7 +i4,
then exp Z € GeHe (G- )¢ and this defines a biholomorphic map onto G/ K.
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2.6.1 Boundary Orbits

We keep the asumptions from the last section. In particular, we assume
that G is contained in the simply connected complex Lie group G¢ with
Lie algebra gc. By Theorem 1.1.11, K¢ = G% and Hc = GT. Recall the
Cayley transform C = Ad(c) with ¢ = exp ((wi/2) X,), cf. p.255. Then
C = g;x, (cf. Lemma 1.2.1). By Lemma 1.2.5 we have 7 = 7;x,. Now
Lemma 1.2.5 and Remark 2.6.9 yield

1) Cl'=C¥=700C=Corb.
2) 70C=Col.
3) ¢ 'Hce = Ke.
Lemma 2.6.10 g~ = C(p")Ng and gt =C(p~) Ng.

Proof: We will only prove the first statement, as the second follows in ex-
actly the same way. By Lemma A.4.2, C(H,) = X;. Therefore —iC(Z°) =
-Y,. It follows that for Z € p*:

[Yo, C(Z)] = C([CT'(Y,), 2]) = iC([2°, Z)) = ~C(Z).
Thus Z € q¢. The same calculation shows that if X € g, then C™!(X) €

pT. From this the lemma follows. O

We recall that the realization of G/K as a bounded symmetric domain
inpT, cf. (A.23), p. 253; see also Lemma 5.1.4, Remark 5.1.9 and Example
5.1.10. The map

Pt x Kec x P~ 3 (p,k,q) — pkq € G¢

is a diffeomorphism onto an open dense submanifold of G¢ and G C
PTKcP~. If g € G, then g = p*(g)kc(9)p~ (g) uniquely with p*(g) € P,
kc(g) € Kc, and p~(g9) € P~. Let log := (exp|,+)~' : Pt — pT. The
bounded realization of G/K is given by

Q4 = {log(p(g)) | g € G}.

For g € Gc and Z € p* such that gexpZ € PTKcP ™, define g- Z € p*
and j(g,Z) € Kc by

gexpZ € exp(g- 2)j(g, Z)P~ . (2.24)

Thus exp(g- Z) = pt(gexp Z) and j(g,Z) = kc(gexp Z). We denote the
map PTKcP~/KcP~ — p*, pKcP~ + logp by p+— ((p). Define E € p*
by E = ((c). The Shilov boundary of Q4 is S =G - E.
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Lemma 2.6.11 The stabilizer of E in G is HQ™. In particular, S =
G/HQ' = K/K N H is compact.

Proof: The stabilizer of cKcP~ € G¢/KcP™ in Geis cKcP~ ¢! = HeQf.
But by construction exp(E)KcP~ = cKc¢P~. O.

View G and G¢ as subgroups of Gy := G x G, respectively (G1)c :=
Gc¢ X Gg, by the diagonal embedding g — (g,¢g). This induces a G-action
on 81 := S8 xS and a Ge-action on Ge/Kc P~ x Ge/Kc P~ as well as other
homogeneous spaces of Grand (G1)c, respectively.

Lemma 2.6.12 Suppose that gexp(—Z) € PTKcP~, g € G¢, and Z €
pT. Then 6(g)exp(Z) € PTKcP~ and

0(9) - 2 = ~lg-(=2)].
Proof : Let gexp(—Z) = exp(g - (—Z))kp, with k € K¢ and p € P~. Then

0(g)expZ = O(gexp—2)
exp(0(g - (—2)))kp~!
exp(—[g- (=2)]) kp~!

which proves the claim. O

Corollary 2.6.13 g € PTKcP~. Then —((g9) = ¢(0(g)). In particular,
we have ((¢c7!) = —E.

Proof: Take Z = 0 in Lemma 2.6.12 and note that 6(c) = ¢~ 1. O
Lemma 2.6.14 Let the notation be as above. Then the following hold:

1) The stabilizer of —E is HQ™.

2) 81 =8xS8S~G/HQ™ xG/HQ™.

3) Let & = (E,—E) € Si. Then M ~ G -&.

Proof : Statement 1) follows from Lemma 2.6.12 and Corollary 2.6.13. The
second claim is a consequence of 1) and Lemma 2.6.11, whereas the last
claim follows immediately from 1) and 2). O

We list here the symmetric spaces, the corresponding Shilov boundary
together with the real rank r, and the common dimension d of the restricted
root spaces for short roots as provided by Moore’s Theorem A.4.4. Here
k > 3, T is the one-dimensional torus, @, is the real quadric in the real
projective space RP™ defined by the quadratic form of signature (1,n), and
the subscript + means positive determinant.
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Symmetric Spaces Related to tube domains

M =G/H S=K/KNH r d
Sp(n,R)/ GL(n, R) 4 U(n)/O(n) noo1
SU(n n)/ G ( ,C)t U(n) n 2

O*(4n)/SU*(2n)R* U(2n)/Sp(2n) 2n 4
SO(2 k)/SO(1,k — 1)RT @, 2 k-2
Er(_25)/Eg(—26)RT E¢T/F, 3 8

2.6.2 The Functions V,,

Our aim now is to construct an analytic function ¥ on S; such that G/H =
{£ € 81| ¥(€) # 0}. This implies in particular that G/H is open and dense
in &;1. For this we need a few facts from representation theory. Let p, be
the half-sum of positive noncompact roots. Then

1 dr —1
pn—g{H (r2 )](m+"'+%>- (2.25)
Hence
. — 2 n 1 1 )
2onl5g) _y A=) g 2o 500 o gy (2.6)
71 2 l3(vi + )l

From the table we see that

2(pn | v4
% €Zt < g#sp(2n,R) or g#s0(2,2k—1).
J
Theorem 2.6.15 Fiz the positive system A} (pc, tc)U—AT (bc, tc) on A =
A(ge, tc). Then the following hold:

1) There exists an irreducible finite-dimensional representation of G¢
with lowest weight —2p, .

2) Assume that g # sp(2n,R), s0(2,2k+1), n,k > 1. Then there exists a
finite-dimensional irreducible representation of G¢ with lowest weight

—Pn-

Proof: We have to check the integrality of p,, and 2p,,. Let {y1, a9, ..., ax}
be the set of simple roots for the positive system Al (pc, tc) U—AT(tc, tc).
Then ay = 7 is the only simple noncompact root. Furthermore, (p,|a) =0



2.6. SYMMETRIC SPACES RELATED TO TUBE DOMAINS 59

for a € A(fc,tc). If v is an arbitrary noncompact positive root, then
Y= + Zj>1 na]. O[j. By (225),

2(kpn 2(kpn 2
(kpnly) _ 2(kpn|m) In] :k[1+

W i P

d(r — 1)} 7 ]?
2 v1?

From [46], p. 537, it follows that v; is always a long noncompact root. Thus

[7112/|7]? € Z*. We have (1 + [d(r — 1)]/2) € Z if and only if d is even or

r is odd. But in all cases 2 (1 + [d(r — 1)]/2) € Z. The claim now follows
from the table. O

Let m € Z1 be such that there exists a finite-dimensional irreducible
representation (7,,, V) of G¢ with lowest weight —mp,,. Choose an inner
product on V,, as in Lemma A.3.3, e.g.,

T (9)" = T (060(9) ")

where o is the conjugation with respect to G. Let ug be a lowest-weight
vector of norm 1. Define ®,, : p™ — C by

®,(2) = (mm(c™ exp Z)uo | uo)

and set
U (Z, W) :=®,(Z -W).

Example 2.6.16 (The case SU(1,1)) Let us work out the special case
G = SU(1,1) before we describe the general case. Now Gc¢ = SL(2,C).
As an involution on SU(1,1) take 7(X) = X. Then 7 is conjugation by

Int (O 1) and the holomorphic extension of 7 is given by

A 2)=(re)

Thus
cosht sinht
H_i{h(t) T (cosht sinht) tER}'
(1 0
LetZO_§<O 1 . Then

zE(C} and p——{(g 8)‘11)6@}.
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The Cartan involution on SU(1, 1) is given by conjugating by Z°, and the
holomorphic extension of 6 to SL(2,C) is given by

(e 0-(2 )

Thus 70(X) = 'X. Identify p* with C by 2z — =z (8 (1)) Similarily,

ac=tc=¢tc=C (1) _01) ~ C and K¢ ~ C*. A simple calculation now
shows that

<a b>:<1 b/d) (1/d 0)( 1 0>

c d 0 1 0 d e/d 1
if d # 0. Thus

(2 Dess) e 1((z )2

Thus Qy = {z € C||z] <1} and § = {z € C | |2| = 1}. Furthermore,

ke ( CCL Z = 1/d. Thus we recover the following well-known facts:
a b P +b
c d Ccz+d
and
. a b o —1
j<(c d),z)-(cz—i—d) .
We have

o

—

Il
SN NS N N
o~~~ — " 2o oo
oo O
N~

el
+
Il
— N
~.
VR
=03
|
<3
N———

O~ = O = O
O =
"
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and
_ o r
q _{Z<—r _T) T‘ER}.
bt
Thus exp itX, = ( €08 2, Sm% ) Hence
—SIHE COS§

c—i 11 and %= 0 1
_\/Q -1 1 “\-1 0/"

0

We find that ¢ 2 exp Z = (1

_Zl) € PYKcP™ if and only if z # 0. Fur-
thermore, we have
Ce)=1, ¢(cH)=-1 and j(c22)=1/z

The functions ®,, and ¥, are given by ®,,(Z) = 2™ and ¥,,(z,w) =
(z —w)™. O

Define the homomorphisms ¢; : s[(2,C) — gc by F11 — Ei; as in
Appendix A.4 and denote the corresponding homomorphisms SL(2,C) —
G by the same letters. Then ¢;(SU(1,1)) C G and since 70(gc,;) = ¢, »
we can choose the root vectors E; in the construction such that o(E;) =
7(E;) = E_j. Thus p; 0 X =70 p;(X).

Let & be a character of K¢ and assume it is unitary on K. Let ¢ = R Z°.
Then d¢ € ic*. We write k% := £(k), k € Kc.

Lemma 2.6.17 Let w be a finite-dimensional irreduciblerepresentation of
G with lowest weight . Let u, be a nonzero vector of weight . Then the
Kc-module generated by u, is irreducible. If p € ic*, then K¢ acts on Cu,
by the character k — k*.

Proof: Let V be the representation space of m and W be the K¢-submodule
generated by u,. Then, as K¢ normalizes p~, we find W C V* | where
V¥ is the space annihilated by p~. For

(nk)c = @ (kc)a

a€A*(te i)

we obtain

Wke — yne)e®r™
But V(")e®r™ — Cy,. Thus W+)c is one-dimensional, which shows that
W is irreducible. Now the last claim is a consequence of the lowest-weight

description of the irreducible holomorphic representations of K¢. The claim
follows. O
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Lemma 2.6.18 Let 0 : Gc — Gg¢ be the conjugation with respect to G.
Let x : K¢ — C* be a character. If x|k is unitary, then x(o71(k)) = x(k).

Proof : Both sides are holomorphic in k and agree on K as 7|, = —1. The
lemma now follows as K is a real form of Kc. O

Lemma 2.6.19 Let Z € p*. Then the following hold:
1) IfexpZ € c2PYKc P~ then

@, (2) = (Wm(j(c_2= Z))uo | uo) = j(c_2, zZ)men.

2) @, (k-2)=k*""nd,,(Z) for every k € Kc.
3) Let z1,...,2, € C. Then

n

©,(Ad(K) D 2 Ey) = K2men [ 2401072
j=1

Jj=1

Proof : 1) Write ¢c=2exp Z = pkq with p € P* k= j(c™2,Z) and q € P~.
As o(pt) = p~, we get 7 (p)*uo = Tm (00(p) ~1)up = ug. Thus

0—2

2n(Z2) = (mm(
= (Tm(k)mm(q)uo | Tm (p) uo)
(7 (K)o uo)
kmmen

T exp Z)uo | uo)

where the last equality follows from Lemma 2.6.17 .
2) We have k- Z = Ad(k)Z. By Lemma 2.6.17,

Op(k-2) = (mm(c 2kexp Zk " ug | ug)
= (mn(7(k)) T (7% exp Z)mm (k™ uo | uo)
= k™ (T (c 2 exp Z)ug | T (o7 (k) " )ug)
T, (2)
= k", (2)
3) This follows from 2) and sly-reduction via ;. 0

Theorem 2.6.20 Let k € K¢, g € Ge and Z,W € p* be such that g - Z
and g - W are defined. Then the following hold:

1) Vo lg-Z,g-W) = jlg, Z)"Pj(g, W)U (Z,W).
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2) Let zj,w; € C, j=1,...,7. Then

T T

U, (k- Z 2 Ej k- ijEj) — J:2mpn H(zﬂ' — qy)ymtd(r=1)/2)
j=1

j=1 j=1

Proof: 1) We have, by definition,
expg-Z=gexpZj(9,Z)"'q, q€P,
and similarily for W. Thus

exp(g-Z—g-W) exp(—g - W)exp(g- Z)

(gexp(W)j(g. W)~ 'p)""gexp(Z);(g, Z)"'q
= p (g, W)exp(=W)exp(Z)j(g, Z) "

for some p € P~. Now Ad(c™2) = C? = 0r. Thus C?*(P~) = PT. As
above, we get

V(g Z,g- W) = (mm(c*p "j(g, W) exp(—=W)exp(Z)j(g, Z) " uo | uo)
= j(gvz)mpnj(ng)mpn\pm(zvW)'

2) We have k-3, 2B — k-3 wiEj =k (Zj(zj — wj)Ej), as K¢ acts

by linear transformations. The claim now follows from Lemma 2.6.19. O

2.6.3 The Causal Compactification of M

A causal compactification of a causal manifold is an open dense embedding
into a compact causal manifold preserving all structures. More precisely,
we set the following definition.

Definition 2.6.21 Let M be a causal G-manifold. A causal compactifica-
tion of M is a pair (N, ®) such that

1) N is a compact causal G-manifold.
2) The map ® : M — N is causal.

3) @ is G-equivariant, i.e., ®(g-m) = g-®(m), for every g € G and every
m e M.

4) ®(M) is open and dense in N. O
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In this section we will show that the map M 5 gH — g-(E,—F) € §x S
is a causal compactification of M and that the image of this map is given
by

{€€S1[Un(E) #0}.

Identify the tangent space of Sy at & with (gxg)/((h+q7)x (h+q™)) ~
gt xq~. Let D be the image of C; x —C_ in T¢,S; under this identification.
Then D is an (H x H)-invariant regular cone in Tg,(S1).

Lemma 2.6.22 D is an (HQ™ x HQ™m)-invariant cone in Te,(S1).
Proof: Let g=expX € QT, p=expY € Q—, and (R,T) € q* x q~. Then
Ad(p,q)(R,T) = (e*VR,e™XT)
= (B+[Y, R +[V,[Y,R||, T+ [X,T] + [X,[X, T])).

But [Y,R] € hand [Y, [Y, R]] € q—. Thus R+[Y, R]+[Y,[Y, R]] = R mod(h+
q7). Similarily, 7 + [X,T] + [X, [X,T]] = T mod(h + q*). It follows that
Ad(p, q)|T50(31) = id. This implies the claim. O

It follows that D defines an invariant causal structure on S;. Recall the
maximal abelian subalgebra Z;Zl RX; of p from Proposition A.4.3. Write

X; =X} +X; with X;- € q*%.
Proposition 2.6.23 1) - = Ad(HNK)Y ' RX;.
2) Q- E— AK N H){S_ 2B €S| 5] =1, 2 # -1},
5) 8= (KnH){S)_y 25 € 8|15 =1},
Proof 1) Let X € q—, then X — 0(X) € qNp. Therefore we can find
k€ KNH and z; € R such that

Ad(R)(X —0(X) =Y 2, X; =Y 0;X; + > 2;X} €a,.
j=1 j=1 j=1

As 0(X), X;r € qt it follows that Ad(k)X = Z;Zl ;X5
2) Assume first that G = SU(1,1). Then X; =i (

o 14dt at ) 1+2it

(exptXy)- 1= < —it 1—it> T 12t

z—1
z+1

So if [2| = 1, z # —1, we choose r =
from 1) and sly-reduction.

. The general case now follows



2.6. SYMMETRIC SPACES RELATED TO TUBE DOMAINS 65

3) QT - Eis dense in S as QT HQ™ is dense in G. The claim follows from
that, as (K N H){3_7_, z;E; € S | |2;] = 1} is closed and contained in S.
O

Theorem 2.6.24 Define & : M — & by ®(gH) :=g-&. Then (S1,9) is
a causal compactification of M with ®(M) ={£ € & | ¥,,,(€) # 0}.

Proof : The G-equivariance of the function @ is clear. Let us show that & is
causal. As both the causal structures on M and that on S; are G-invariant,
and because ® is G-equivariant, we only have to show that (d®)o(C') C Dg,.
But this is obvious from the definition of D.

To show that the image of ® is dense, it suffices to show that it is given as
stated. It follows from Theorem 2.6.20 that the left-hand side is contained
in the right-hand side. Assume now that ¥,,,(Z, W) #0, £ = (Z,W) € ;.
Let g € G be such that g - W = —FE and then choose k € K N H such that
k-(g-Z)=>2%E;. Then

(kg)-&=(>_%E;—E).
j=1

By Theorem 2.6.20 we have U, ((kg) - £) # 0. By the second part of that
theorem we have z; # —1 for j = 1,...,r. By using Proposition 2.6.23 we
now find ¢ € Q7 such that ¢ - (kg - &) = &. Hence & = (qgkg)~! - &. O

Remark 2.6.25 The compactification in Theorem 2.6.24 is also causal
with respect to the causal structure on G/H coming from the cone field
Ci+C_.

2.6.4 SU(n,n)
Let n =p+q. Then

SU(p,q) = {a€SL(n,C)|a"l,qa=1,,}

AA—CrC=1,
_ <g g) D'D-B*B=1I,
B*A—D*'C=0

The conjugation in SL(n, C) with respect to SU(p, q) is given by
o(a) = Ipq0(a)lp,q,

where 6 is the Cartan involution a — (a*)~!. If a € SU(p, q), then a=! =

1, 4a* I, 4. Hence
A B\ ' A*
<C D) _(_B* D*). (2.27)
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The Lie algebra of SU(p, q) is given by

moa={(3 7)| ZE st b e

The maximal compact subgroup K is given by S(U(p) x U(p)). Further-
more,

and

p:{(ﬁ* g)‘YEM(pxq,(C)}.

2 0
h Z0=( n'? -
We choose ( 0 —%Iq

ad(2") (;1 g) = (_Z.OY* Zg)

which implies that

) € ¢. Then

Pé—{(g g)‘YGM(qu,C)}ﬁM(qu,C)-

A B

Suppose that ( C D

) € SU(p,q). Then D is invertible and we have a

decomposition

A B\ (I, BD'\[(A-BD'C 0 I, 0
c p)=\o 1, 0 p)\bp'c 1I,)

Thus the Harish-Chandra embedding G/K — pt ~ M(p x ¢,C) is given

A B "\ _[0 BD! o
z((c D)ch)_(o 0 )»—>BD ,

inducing a biholomorphic isomorphism

SU(p,q)/S(U(p) x U(q)) =~ Dyq,

where D, , := {Z € M(p x ¢,C) | I, — Z*Z > 0}. Here the action of
SU(p, q) on D, , is given by

(é g) -Z=(AZ+B)(CZ+D)™*.
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G/K is of tube type if and only if p = ¢. In that case we have

1(0 I,
Y"_§<I 0>’

(0 -1,
Xo = §<In 0 )
1 (I, I,
= (G n)
0o I,
< (4 0)
E I,
S U(n)

The involution 7 = 7y, is conjugation by 2Y,. Thus

(8- 9

Therefore
B (A B A, B € M,(C)
i = {h(A’B)'— (B A> A*A—B*B_IH,B*A_A*B}’
h = {h(X,Y)esunn)|X =X, Y =Y, TrX =0},
and

. X Y
q—l{q(X,Y) = (_y _X>
Define ¢y : HUh — M(n,C) by

tX:X,tY:Y}.

+(h(A,—B))=A+B.
We leave the simple proof of the following assertions to the reader:
1) ¢4 : H — GL(n,C), is an isomorphism of groups.
2) ¢4 :h — sl(n,C) + R, is an isomorphism of Lie algebras.
Note that the Cartan involution on GL(n,C) is 6(a) = (a*)~!. By (2.27),

_=0op,. V\/'echoose%(O In

I o) Y,. Then the h-module structure

of q is described by

=i{q(X,-X)|'X = X} 3 iq(X, X)m X € H(n,C)
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and
L
0~ =i{q(X,X) | 'X = X} 3ig(X,X) " X € H(n,C).
Obviously, both ¢, and ¢_, are isomorphisms. By (2.27) we get for X € q*

and a € H, .
(A0 X) = 2(0) |50 (X) | (e

In this case Cy = %wil(HJr(n,(C)), cf. Example 2.1.14.
In the bounded realization we have G/K = D, ,,. The space ) ;_, CE;

corresponds to the diagonal matrices and E = I,,. In particular, S = U(n).
By Lemma 2.6.19 and the table on p. 58, ®,,,(Z) = det(Z)™". Thus

SU(n,n)/ GL(n,C)y+ ~ {(Z,W) € U(n) x U(n) | det(Z — W) # 0}.

2.6.5 Sp(n,R)
We realize G = Sp(n, R) inside SU(n,n) as

Sp(n,R) = { <% %) ‘ A*A-'BB =1,, "(B*A) = B*A} . (2.29)
Its Lie algebra is given by

sp(n,R) = { (é %)'X,Y € M(n,C), X* = —X, 'Y — Y} . (2.30)

The involution 7 leaves G and g stable and is also given by complex conju-
gation. Therefore H, h) are just the real points of the corresponding object
for SU(n,n). We also note that the above X, and Y, are in sp(n,R). Thus

H = {h(A,B)€Sp(n,R)|ABeM(n,R)}
~ GL(’I’L,R)+,
h = {h(X,Y)Esp(n,R)|X,Y€M(n,R),tX:—X, tY:Y}
~ gl(n,R),
g = {h(X.Y)X.Y e M(n,R), ‘X=X Y=Y},
gt = i{q(X,—X) | X € M,(R), tX:X}

L
> iq(X,—X) *5" X € H(n,R),
e = {¢X,X)| X eMnR), X =X}

@

Lo
5ig(X,X) % X e H(n,R).
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The Cartan involution on GL(n,R) is 6(a) = ‘a~!. From (2.27) we obtain
w_=0oy, and, with X € q* and a € H,

1

P (A(@)X) = p1() | (0| o).

In this case Cy = 2ipy ' (H*(n,R)), cf. Example 2.1.14.
The bounded realization of G/K is

(Z € M,(C)|I,-—2"Z>0,'Z=2}.

The space 22:1 C E; corresponds to the diagonal matrices and £ = I,,. In
particular,

S=Un)/0O(n)~{AecUn)|'Z=2}.
Lemma 2.6.19 and the table on p. 58 imply

m(n+1)
2

®,,(Z) = det(Z)

Thus

Notes for Chapter 2

Cones have been used in different parts of mathematics for a long time and
are related to concepts such as the Laplace transform [24, 28], Hardy spaces
over tube domains, and Hermitian symmetric spaces [83, 84]. The concept of
causal orderings associated to cone fields has also been used for a long time
implicitly in the context of Lorentzian geometry and relativity (e.g., in [4, 37, 42]).
Group invariant cone fields appear in Segal’s book [157]. Vinberg, Paneitz, and
Ol’shanskii considered the special case of bi-invariant cone fields on Lie groups in
[166, 147, 148]. The first article on invariant cone fields on semisimple symmetric
spaces was [138]. A systematic study of invariant cone fields on homogeneous
spaces was started in [47] and [50]. Later it was taken up in the work of Lawson
[93], Olafsson [129, 130], and Neeb [112]-[115], [52].

The algebraic side of the theory, i.e., a closer inspection of the cones that
appear in the study of causal orderings, was also initiated by Vinberg in [166]
and then taken up by many authors [48, 50, 129, 137, 148].

The order compactification was introduced in [55], motivated by the study of
Wiener-Hopf operators on ordered homogeneous spaces.

The results in the last section are taken partly from [136], where further infor-
mation about this class of spaces can be found. This causal compactification has
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also been considered in [86, 87]. The compactly causal hyperboloids were studied
in [107]. In [7] and [6], causal compactifications for a more general class of causal
symmetric spaces are given. Compactifications without the causal structure have
also been obtained in [98] and [76].



Chapter 3

Irreducible Causal
Symmetric Spaces

In this chapter we determine the irreducible semisimple causal symmetric
spaces. The crucial observation is that the existence of causal structures on
M = G/H is closely connected to the existence of (H N K)-fixed vectors in
the tangent spaces of M. With that tie established, one can use the results
of Chapter 1 to single out which irreducible non-Riemannian semisimple
symmetric spaces admit causal structures.

As we have seen already in Chapters 1 and 2, the existence of causal struc-
tures may depend on the fundamental group of the space. So we include
a discussion on how causal structures behave with respect to coverings. In
Section 3.2 we give a list of all the irreducible semisimple symmetric pairs
(g, 7) for which the universal symmetric space admits a causal structure.

3.1 Existence of Causal Structures

In this section we assume that M = G/H is a non-Riemannian semisimple
symmetric space such that the corresponding symmetric pair (g, 7) is irre-
ducible and effective. We fix a Cartan involution § commuting with 7 and
use the notation introduced in Remark 1.1.15.

Lemma 3.1.1 Let 0 # X € q""K and C the smallest H,-invariant convex
closed cone in q containing X. Then C is H-invariant.

Proof: We mimick the proof of Lemma 2.6.1: If h € H, then h is of the
form h = hok with k € HN K and h, € H, (cf. (1.8)). Further, let

71
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Y =Y A Ad(h;)X € C, \; > 0,h; € H,. Thus
Ad(R)Y = ) A Ad(hhj)X
= > X Ad(hh;h~') Ad(h,) Ad(k) X
= > X Ad(hhh™ ') Ad(ho)X € C

since hhjh™' € H,. As C is closed and the set of elements of the form
> Aj Ad(h;)X is dense, it follows that C' is H-invariant. O

Lemma 3.1.2 If M admits a G-invariant causal structure, then we have:
1) There exists an H-invariant proper closed convex cone in (.

2) qis a completely reducible H-module with either one or two irreducible
components.

3) dim(qH#"K) is equal to the number of irreducible H-submodules of q.

4) If dim(qf"5) < dim(qH"K), then there exists an element h € HNK
such that Ad(h)Y = =Y for allY € 3(h).

Proof: 1) Let C be an H-invariant nontrivial closed convex cone in q. Then
space ¢ = C N (=C) is H-invariant and not equal to q. According to
Lemma 1.3.4, q© is either trivial or otherwise equal to g7 or q—, where
q =q" + q~ is the decompostion of q into irreducible h-modules. In each
case we find a proper H,-invariant cone in C.

2) Since H, is normal in H, the action of H on g maps H,-submodules
to H,-submodules. Thus q is a reducible H-module if and only if it is a
reducible H,-module and q* are both H-invariant. In this case g* are both
irreducible H-modules, which implies the claim.

3) If q is a reducible H-module, then we consider the projection pr: q —
q*, which is H-equivariant. Therefore pr(C) C g% and 6 o pr(C) C
q~ are H-invariant proper cones. Thus Theorem 1.3.11.4) implies that
dim(q"E) = dim(gqf-"K) = 2.

If q is irreducible as an H-module, then q¢ = {0}, i.e., C is proper.
Then Lemma 2.1.15 shows that q"& = {0}. It remains to be shown that
dim(qf7%) = 1. We have two cases to consider.

Case 1: dim(q"°"%) = 1. In this case, obviously, dim
well.

Case 2: dim(qH°"¥) = 2. Then we are in the situation of Theorem
1.3.11 and, as far as the symmetric pair (g,7) is concerned, Section 2.6.
Recall the f-stable subgroup H; of index 2 in H, from Lemma 1.3.14.
According to this lemma, we can find an h € H N K, not contained in

(qHNEY =1 as
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Hy, such that Ad(h)qt = ¢~. Since 3(h) is one-dimensional, we have
Ad(h)Y, = rY, with r € R. Moreover, h? € H;, whence r? = 1. If
r = 1, then X,,Z% € qf"K which shows that the H,-invariant cones
generated by X4 = X,+ Z° € gF are H-invariant (Lemma 3.1.1). But this
contradicts the H-irreducibility of q. Thus we have r = —1. This means
that Ad(h)X, = —X, which, together with h Ad(h)Z° = Z°, shows that
the only H-invariant vectors in q7°"% = R X, + R Z° are the multiples of
Z°. This implies dim(q#"%) = 1. Finally, we note that Ad(h)Y, = —Y, by
the above, so that assertion 4) follows, too. O

Theorem 3.1.3 Let M = G/H be a non-Riemannian semisimple symmet-
ric space. If M is irreducible, then the following statements are equivalent:

1) M admits a G-invariant causal structure.
2) dim(q1"E) > 0.

If these conditions hold, then Coneg(q) # 0, i.e., M even admits a regular
G-invariant causal structure.

Proof. Lemma 3.1.2 shows that the existence of G-invariant causal structure
on M implies that g7 2 {0}. Assume conversely that g7 £ {0}. We
have to consider two cases.

Case 1: Suppose that g is irreducible as an h-module. Then by Theorem
1.3.11, H, is semisimple, and by Lemma A.3.5, dimqf"% = 1. Thus
gHNE = qHoNE | Tet 0 # X € q™% and Cpn be the H,-invariant cone
generated by X (cf. Theorem 2.1.21). Then Lemma 3.1.1 shows that Ciyin
is H-invariant.

Case 2: Suppose that g is not irreducible as an h-module. Then we are in
the situation of Theorem 1.3.11 and Section 2.6. Let C be the H,-invariant
cone in q generated by Z°. Then the group case described in Section 2.5.1
shows that C is proper. It is also H-invariant by Lemma 3.1.1.

It remains to show that the existence of proper H-invariant cones imply
the existence of regular H-invariant cones. If q is H-irreducible this is
obvious, since the span of an H-invariant cone is H-invariant. If q is not
H-irreducible, then the cones C4 constructed in Section 2.6 are H-invariant,
proper, and generating in q*. Thus C, +C_ is an H-invariant regular cone.

O

Lemma 3.1.4 Let M = G/H be an irreducible non-Riemannian semisim-
ple symmetric space and C an H-invariant cone in q. If either

C°Net#£0 and CnNp#{0}
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or

C°Np#0 and CNE£{0},

then C contains a line.

Proof. We will only show that the first assumption implies that C' contains
a line. The second part then follows from c-duality.

Assume that C is proper and C°NE # () and CNp # {0}. Let Z; € C°N¢E
and Xy € CNyp, Z1, X1 #0. Define

Z::/ k-Zidk and X := k- X dk.
Adg(KNH) Adg(KNH)

Then (cf. Lemma 2.1.15) Z, X are nonzero and (K NH)-fixed. Furthermore,
as 6 commutes with Ad(K NH), Z € C°Ngqy and X € CNqjp. Thus we are
in the situation of Theorem 1.3.11 and Section 2.6. In particular, Remark
2.6.2 shows that Z € RZ° and X € RX,. Normalize Z and X such that
ad Z has the eigenvalues +¢ and 0 and ad X has the eigenvalues +1 and 0.
In particular,

ad(2)?, =—id  and  ad(X)*. =id.
Let Y = [Z,X] € RY, C 3(h) Np. Then

and similarly, [V, X] = Z. Thus we have reduced the problem to one on
5[(2,R). A short direct argument goes as follows:

MYz 4 X) = e(Z+X),
Y (Z X)) = e (Z-X).
In particular, we get
e'*Y 7 — cosht[Z + (tanht)X],
et*dYX = cosht[(tanht)Z + X].

Dividing by cosht and letting ¢ — oo shows that +(Z+ X) € C. Thus
C contains a line. a

Theorem 3.1.5 Let M = G/H be a non-Riemannian semisimple symmet-
ric space. Suppose that M is irreducible and admits a G-invariant causal
structure. Then the following cases may occur:

1) dim(qH#"K) = dim(qH"E) = 1. In this case q is irreducible as H-
and h-module. There are two possibilities which are c-dual to each
other:
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1.k) qfI"K C qy. In this case, for every cone C € Coneg(q) we have
Congi™ 49, Cnyp={0}.

1.p) q"K C q,. In this case, for every cone C € Coneg(q) we have
ConglF£0, Cne={0}.

2) dim(q”"K) = dim(qH"K) = 2. In this case q is neither H- nor
h-irreducible and we have

ConeH(q) = {iOk, j:Cp}
(c¢f. Remark 2.6.2 ).

3) dim(qH"E) = 1,dim(qH"E) = 2. In this case, q is H-irreducible but
not h-irreducible and we have

Coneg (q) = {+Cy}.

Proof. Note first that Theorem 1.3.11 and Theorem 3.1.3 show that no
more than these three cases are possible. Moreover, Lemma 3.1.2 shows
the claims about H- and h-irreducibility.

1) Recall that ™K is @-invariant. This proves the dichotomy of (1.k)
and (1.p). Now the claim follows from Lemma 3.1.4 in view of Lemma
2.1.15.

2) In view of Theorem 1.3.11, this is a consequence of Theorem 2.6.8.

3) Theorems 1.3.11 and 2.6.8 show that Coneg, (q) = {£C%, £Cp}. This
proves that Cj is the H,-invariant cone generated by Z°. Since Z° is an
(H N K)-fixed point, Lemma 3.1.1 implies that Cj is H-invariant. On the
other hand, Lemma 3.1.2 shows that we can find an h € H N K with
Ad(h)Y, = —Y, so that also Ad(h)X, = —X, and hence does not leave C,
invariant. O

The following corollary is an immediate consequence of Theorem 3.1.5
and Remark 2.6.2.

Corollary 3.1.6 If M is an irreducible non-Riemannian semisimple sym-
metric space and C' € Coney(q), then we have either

congl™ #0, Cnp={0}
or

congl™£0, Cnet={0}. O
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Remark 3.1.7 1) Theorem 1.3.8 shows that in Case (1.k) of Theorem
3.1.5 the Riemannian symmetric space G/K is a bounded Hermitian
domain and 7 induces an antiholomorphic involution on G/ K. More-
over, Theorem 1.3.11 implies that G/K is not of tube type in this
case.

2) Under c-duality € corresponds to h* and Hermitian to para-Hermitian
structures. Therefore in Case (1.p) of Theorem 3.1.5 the space G/H®
carries a para-Hermitian structure.

3) Theorem 1.3.11 shows that in the cases 2) and 3) of Theorem 3.1.5 the
Riemannian symmetric space G/K is a bounded Hermitian domain
of tube type.

4) Theorem 2.6.8 implies that Case 3) in Theorem 3.1.5 cannot occur if
H is connected. O

Definition 3.1.8 Let M be an irreducible non-Riemannian semisimple
symmetric space. Then we call M

CC) a compactly causal symmetric space if there exists a C' € Coneg(q)
such that C° Nt #(,

NCC) a noncompactly causal symmetric space if there is a C' € Coneg(q)
such that C°Np # (), and

CT) a symmetric space of Cayley type if both (CC) and (NCC) hold.
CAU) a causal symmetric space if either (CC) or (NCC) holds.

The pair (g, 7) is called compactly causal (noncompactly causal, of Cayley
type) if the corresponding universal symmetric space M has that property.
Finally, (g,7) is called causal if it is either noncompactly causal or com-
pactly causal. O

Remark 3.1.9 1) It follows directly from the definitions that (g, 7) is
noncompactly causal if and only if (g° 7) is compactly causal.

2) In view of (1), Lemma 1.2.1 implies that a noncompactly causal sym-
metric pair (g, 7) is of Cayley type if (g,7) = (g°, 7).

3) If (g, 7) is compactly causal, then Theorem 1.3.8 shows that either g
is simple Hermitian or of the form g; x g; with g; simple Hermitian
and 7(X,Y) = (Y, X).
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4) Example 1.2.2 now shows that if (g, 7) is noncompactly causal, then
either g¢ is simple Hermitian or of the form hc with 7 = 0. Note that
in both cases g is a simple Lie algebra.

5) If (g,7) is of Cayley type, then 3) and 4) imply that g is simple
Hermitian.

6) Let g be a simple noncompact Lie algebra. Then (g,id) is an irre-
ducible symmetric pair. It is not causal since it does not belong to a
non-Riemannian semisimple symmetric space (cf. Remark 1.1.15). O

Definition 3.1.10 Let (g,7) be noncompactly causal symmetric pair. An
element X° € q,, is called cone-generating if spec(ad X°) = {—1,0,1} and
the centralizer of XV in g is h2. O

Proposition 3.1.11 Suppose that (g, 7) is a noncompactly causal symmet-
riC Pasr.

1) Cone-generating elements exist and are unique up to sign.

2) Let b be an abelian subspace of p containing a cone-generating element
XO. Then b C q,.

3) Let a be a mazimal abelian subspace of q,. Then a is mazimal abelian
in p and mazimal abelian in q. Moreover, a contains X°.

4) Let a be mazimal abelian in q and assume that X° € a. Then a C qp.

5) Let X° € q, be a cone-generating element. Then RX? = 3(h*).

Proof. 1) According to Theorem 3.1.5, the centralizer 34,(h) of by in q is
nontrivial. Then, in view of Theorem 1.3.11, it is one-dimensional, say of
the form RX. Lemma 1.3.5 says that 3,,(h) = 3(h*) Ng. But then 3,(X) is
f-invariant and contains h*, so Lemma 1.3.2 implies that h* = 3,(X). Note
that the spectrum of ad(X) is real and pick the largest eigenvalue r of X.
Then —r is also an eigenvalue and g(—r, X) + h* + g(r, X) is a f-invariant
subalgebra strictly containing h®, hence equal to g, again by Lemma 1.3.2.
Thus there are no more eigenvalues of ad(X) than —r, 0, r and this implies
the claim.

2) If b is abelian and contains X°, then b C 3,(X%) = h*. Thus b C q,.

3) If a is maximal abelian in gy, then X° € a is abelian since X° € 3(h*).
Let b be maximal abelian in p containing a. Then 2) implies b C gy, so
b = a. That a is maximal abelian in q follows from 3,(X°) = q,.

4) This again follows from 3,(X%) = q,.
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5) We have seen already that h¢ is the centralizer of X°. Therefore it
only remains to show that dim(3(h*)) < 1. But that follows from Lemma
1.3.10 applied to (g, h*). O

The analog of Proposition 3.1.11 for a compactly causal symmetric pair
follows via c-duality. We only record the first part, which will be used later.

Proposition 3.1.12 Suppose that (g,7) is compactly causal. Then there
exists an, up to sign unique, element Z° € qi such that spec(ad Z°) =
{—4,0,i} and the centralizer of Z° in g is . O

Example 3.1.13 Recall the SL(2,R) Example 1.3.12 for which one has
G™ N GY = {£1} so that q¢"N¢" = g is two-dimensional. This shows that

the one-sheeted hyperboloid is of Cayley type. Note that a := g, is abelian
itself. The corresponding cone C, is RT (X% + Z0) + RT (X0 — Z9). O

The following proposition gives some useful isomorphisms between dual
spaces of causal symmetric pairs.

Proposition 3.1.14 1) Let(g,7) be a compactly causal symmetric pair.
Fiz Z° € 3(), such that ad, Z° is a complex structure on p. Let
Y = pgo (¢f. Lemma 1.2.1). Then the following hold:

a) Y3 =19.

b) Yt = kol =00y

¢) ToYr =1RoT.

d) Yy : (g,7,0) — (g,7%,60) is an isomorphism.

2) Let (g,7) be a noncompactly causal symmetric pair. Fiz X° € 3, (bx)
such that g = g(0,X°) @ g(+1, X% @ g(—1,X°). Let v, = p;xo.
Then the following hold:

a) 2 =71
b) To, =1p00.
¢) ¥p defines an isomorphism ¢y : (g,0,7) — (g, 7,60)".

3) Let (g,7) be a symmetric pair of Cayley type. Fiz an element Y° €
3(h) suchthat g = g(0,Y?)@g(+1,Y")®g(—1,Y?). Defineth. = @;yo.
Then the following hold:

a) P2 =r.
b) heoT =T oY,
C) chGZTaoi/Jo
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d) 1. defines an isomorphism . : (g,7,0) — (g%, 7,7%).

Proof: 1.a) follows from Lemma 1.2.1.

1.b) and 1.c): By l.a), we have ¢* = id. Thus ¢p_zo = ! = ¢ =
ol =~0o1. As 7Z° = —Z0, it follows that 7 09 = 1~ o 7. This implies
1.b) and 1.c).

1.d): This is an immediate consequence of 1.c).

Parts 2) and 3) can be proved in the same way as Part 1). O

Given a causal symmetric pair, it is not clear which, if any, symmetric
space M associated to (g, 7) is causal (cf. Section 2.5). With the structure
theory just established, we are in a position to clarify the situation. The
following proposition shows that compactly causal symmetric pairs do not
pose any problems in this respect.

Proposition 3.1.15 If (g,7) is compactly causal, then every symmetric
space associated to (g,T) is causal.

Proof: Let M = G/H be a symmetric space associated to (g, 7). Choose
79 € 3(8)Nq (cf. Proposition 3.1.12). Then Ad(k)Z° = ZY for every k € K.
In particular, Z° = q”"% which proves the claim in view of Theorem 3.1.3.

O

Note here that Proposition 3.1.15 does not say that any H,-invariant
cone in q is H-invariant, i.e., gives a causal structure on M.

As we have seen before (cf. e.g. Theorem 3.1.5), in the noncompactly
causal case the existence of causal structures is related to the nature of the
component group H/H, of H. The right concept to study in our context
is that of essential connectedness.

Definition 3.1.16 Let M = G/H be a non-Riemannian semisimple sym-
metric space and (g, 7) corresponding symmetric pair. Further, let a be a

maximal abelian subalgebra in q,. Then H is called essentially connected
in G if

H:ZKQH(C[)HO. O

We note that this definition is independent of the choice of a, since the
maximal abelian subspaces in q, are conjugate under H, N K.

Remark 3.1.17 Let (g,7) be a noncompactly causal symmetric pair. We
fix a cone generating element X° € g, and a maximal abelian subspace a
of q, containing X°. Then a is a maximal abelian subspace of p and we
denote the set A(g,a) of restricted roots of g w.r.t. a by A. Further, we
set

Ag={aeA|a(X") =0} (3.1)
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Since h? is the centralizer of X0, we get
Ay = A(h%, a). (3.2)
Let
A ={acA|aX?) =1} and A_:={acA|a(X? =-1}. (3.3)

Choose a positive system A in Ag. Then a positive system A+ for A can
be defined via

AT = AL UAT. (3.4)
Set
ne= Y G M= Y Ga-
a(X0)=%1 acad
Then n =ny +ng, [ny,ny] = {0},[n_,n_| = {0} and[h*,n4] C ny. O

Theorem 3.1.18 Let M = G/H be a symmetric space such that the cor-
responding symmetric pair (g,7) is noncompactly causal. Then M is non-
compactly causal if and only if H is essentially connected in G.

Proof. Choose a cone-generating element X° € g,. Then X° centralizes
hr and hence is contained in qfoﬂK . Next we choose a maximal abelian
subspace a of p containing X°. If H is essentially connected in G, then
obviously X° € g™ and G/H is noncompactly causal by Theorem 3.1.3.

Assume conversely that G/H is noncompactly causal. Then, in view of
Theorem 1.3.11, Theorem 3.1.5 implies that q/"% = ¢/7-N% = R X°. Let
a, A, and AT be as in Remark 3.1.17 and fix some k € KNH. Then Ad(k)a
is a maximal abelian subalgebra in q,. Since all such algebras are H, N K-
conjugate, we can find an h € H, N K such that Ad(hk) normalizes a. But
k and hk are contained in the same connected component of H, so we may
as well assume that Ad(k) normalizes a. Since H N K fixes X0, it leaves
Ay invariant. Therefore k- AJ is again a positive system in Ag and we can
find a k, € H, N K such that k,(kAJ) = AJ. But then A" is invariant
under k,k, so that k,k € M N H = Zynk(a). Thus k € Zynk(a)H, and
H is essentially connected. O

We use Theorem 3.1.18 to show that the symmetric space M = G/H
is noncompactly causal if the corresponding symmetric pair (g, 7) is non-
compactly causal. To do this we need one more lemma.

Lemma 3.1.19 Let (g,7) be a noncompactly causal symmetric pair and
Gc be a simply connected complex Lie group with Lie algebra gc. Choose a
cone-generating element X° € q,. Then
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1) Zg.(X°) is connected and equal to GFP.
2) Zg(X%) =G™".
3) Zrg(X%) = K™, where K = GY.

Proof: 1) Let ¢ = 7;x0 (cf. Lemma 1.2.1). Then ¢ defines an involution
on G¢ as Gg is simply connected. Obviously Zg.(X°) € GE and both
groups have the same Lie algebra ¢ = (bi)c @ (qp)c. This shows that
¢ = 7 = 7. By Theorem 1.1.11, G¢ is connected. Hence we have
Zg. (XY = GE = GPY.

2) Zg(X°) = G NG = G™ because of 1).

3) Zr(X°) = G™ N K = K7 because of 2) and 0|x = id. O

Theorem 3.1.20 Let (g,7) be a noncompactly causal symmetric pair and
Gc be a simply connected complex Lie group with Lie algebra gc. Further,
let G be the analytic subgroup of Gc with Lie algebra g and H a subgroup
of G™ containing G7. Then H is essentially connected and M = G/H
is a noncompactly causal symmetric space. In particular M = G/G" is
noncompactly causal.

Proof. Fix a cone-generating element X° € g,. Then Lemma 3.1.19 shows
that X € q¢"". Now Theorem 3.1.3 and Theorem 3.1.5 imply that M =
G/GT™ is noncompactly causal. Therefore Theorem 3.1.18 shows that G
is essentially connected. But then all open subgroups of G™ are essentially
connected as well, so that the converse direction of Theorem 3.1.18 proves
the claim. O

Remark 3.1.21 Theorem 3.1.20 shows that in the situation of Section 2.6,
i.e., for spaces related to tube domains, the assumptions made to ensure the
H-invariance of the various H,-invariant cones are automatically satisfied.

In fact, one can choose X° = X, in that context, so one sees that X, €

HNK
q . O

The results of Lemma 3.1.19 can be substantially extended.

Lemma 3.1.22 Let (g,7) be a noncompactly causal symmetric pair and
Gc be a simply connected complex Lie group with Lie algebra gc. Further,
let G be the analytic subgroup of Gc with Lie algebra g and K = G?. If
a C qp, 45 a mazimal abelian subspace, then

1) G™" = M(G™),, where M = Zx(a).

2) M = Zg-(a) = Zg-(a).
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3) Let F = K Nexpia. Then F = {g € expia | ¢g> =1} C M, K™ =
F(K7),, and GT = F(G"),.

4) H* = F(H"), = F(G™"), = G™", where H* = (H N K)expdy (cf.
(1.11))

Proof: 1) Let XY € a C q,, be as in Proposition 3.1.11. Then Lemma 3.1.19
implies M C G™", since X° € a. Conversely, recall from Theorem 3.1.20
that G7 is essentially connected, so that

G NK=G"NG"C [Zkna-(a)(GT)o] NG? € M[G™"]..
2) According to Lemma 3.1.19, we have
Zo-(0) C Zg- (X)) cG"NGE cG"NGY Cc K

which implies Zg-(a) € M. Conversely, M ¢ G NG? = G" N K by 1),
so M C Zg-(a).

3) We recall that the involutions 7,0, 70, and 6, on gc with fixed point
algebras hc, g, g and € + ip, respectively, all integrate to involutions on
Gc and have connected sets of fixed points He, G,G¢ and U in G¢ (cf.
Theorem 1.1.11). The involution 6, induces Cartan involutions on G, G¢,
and G¢. Let K€ be the corresponding maximal compact subgroup of G°.
Then

(K‘C)T — (UUT)T — UG' m UT — KT'

Now assume that k € K Nexpia. Then k = o(k) = k=1, so that k? = 1.
Conversely, if k € expia and k? = 1, we have o(k) = k=! =k, i.e., k € G.
But we also have 6, (k) = k, whence k e GNU = K.

Note that 7(k) = k! = k implies that F C K7. It is clear that F C
Zk (a), so it only remains to show that G™ C F(G7)o. To this end we fix
h € G™ and write it as

h=kexpX € Kexpp.

Now the 7-invariance of the Cartan decomposition shows that k € K7 =
(K°)T and X € b,,. Note that (¢, 7) is a compact Riemannian symmetric Lie
algebra and 7a is a maximal abelian subspace in € Nqc = i(q,). According
to [44], Chapter 7, Theorem 8.6, we have K¢ = (K7),(expia)(KT),, so we
can write k = lal’ with a € expia and [,I’ € (K7),. Applying 7, this yields
lal’ = la= '’ and thus a = a~! € F. Now the claim follows from

ke (KT)oF(KT)o(K™)o C F(KT),.

4) Lemma 3.1.19 implies H* = K" Zg(X"),, so 3) proves the first two
equalities. For the last equality, note that 3) implies M = FM, and hence
M C He. O
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3.2 The Classification of Causal
Symmetric Pairs

In this section we give a classification of the causal symmetric pairs (g, 7).
Remark 3.1.9 shows that in order to do that it suffices to classify the non-
compactly causal symmetric pairs and then apply c-duality to find the
compactly causal symmetric pairs. The same remark also shows that we
may assume g to be a simple Lie algebra.

Let g be a noncompact simple Lie algebra with Cartan involution 6 and
corresponding Cartan decomposition g = € 4+ p. As was noted in Remark
1.1.15, to each involution 7 on g there exists a Cartan involution 6; on g
commuting with 7. Let g = € +p; be the Cartan decomposition belonging
to 61. According to [44], p. 183, there exists a ¢ € Aut(g), such that
o(t) =t and ¢(p) = p1. But then

0=9¢ tob o,

and ¢! o7 o ¢ commutes with §. Thus, in order to classify the causal
symmetric pairs (g, 7) up to isomorphism, it suffices to classify those causal

involutions on g that commute with the fixed Cartan involution 6.

Proposition 3.2.1 Let g be a simple Lie algebra with Cartan involution
0 and T:g — g be an involution commuting with 0. If (g,7) is irreducible,
then the following statements are equivalent:

1) (g,7) is noncompactly causal.

2) There exists an X € qp such that
and T = 01;x (cf. Lemma 1.2.1).

Proof: 1) = 2) is an immediate consequence of Proposition 3.1.11 and
Theorem 3.1.14. For the converse, note that comparing the eigenspaces of
ad X and 7;x, condition (2) implies that X € 3,, (hx) and hence X € g/f-"K
for any symmetric M = G/H associated to (g, 7). But then Theorem 3.1.3
and Theorem 3.1.5 imply that M is noncompactly causal, and this proves
the claim. O

Proposition 3.2.2 Let (g,7) be a noncompactly causal symmetric pair
with 7 = 07;x, where X € q, such that

g=9(0,X)g(+1,X) e g(-1,X).
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Further, let a be a mazximal abelian subspace of p containing X and A =
A(g,a) the corresponding set of restricted roots. Pick a system AT of pos-
itive roots in A such that a(X) > 0 for all « € AT and denote the corre-
sponding set of simple roots by ¥. Then there exists a unique ax € ¥ with
ax(X) = 1. In particular, ax determines X completely.

Proof: Let Ag = {a € A | a(X) =0} and AJ := Ag N AT. Then we have
Ag = A(Q(O, X)v Cl) = A(hav Cl) and

AT ={aeA|a(X)=1}UA].
Consider the set 3o C Ag of simple roots for A(J)r . We claim that
oCY and #(X\X)=1. (3.5)

In fact, let o € Aar. Assume that o = 3 + v with 8,7 € AT. Then
a(X) = (X)) +v(X) = 0. As B(X) > 0 and y(X) > 0, this implies
B(X) =~(X) = 0and hence 3,y € A. Thus we have ¥y C 3. Proposition
3.1.11 shows that R X = 3(h*) and

dim(a N [h%, §%]) = dim(a) — 1.

But h* = g(0, X), so dim(a) = #(X) and dim(a N [h*, §%]) = #(Zp). This
proves (3.5) and the claim follows if we let ax be the only root in ¥ which
is not contained in . O

Remark 3.2.3 Let g be a noncompact simple Lie algebra with Cartan
involution 6. Consider a maximal abelian subspace a of p and A = A(g, a),
the corresponding set of restricted roots. Pick a system A™ of positive roots
in A and denote the corresponding set of simple roots by X. Let § be the
highest root of A* (cf. [44], p. 475) and denote by d(«) the multiplicity
of « € AT in §. This means that § = > _d(a)a. Given a € X with
d(a) =1, define X () € a via

ﬁ(X(a)):{l for 8 =a

0 otherwise.

aEX

Suppose that a € ¥ and d(a) = 1. We claim that
g =00, X(a)) ®g(-1,X(a)) ® g(+1, X (a)).

In fact, if v € A, then v = 355y mg(7)3 with mg(v) € Z, and 7 (X (@) =
ma (7). But d(a) = mqa(d) = 1 and |mq(v)| < d(a), since 0 is the highest
root. There we have m,(v) = 0,1, or —1, and this implies the claim. Now
we can apply Proposition 3.2.2 to X («) and obtain

o = Oéx(a).
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We denote the involution on g obtained from X («) via Proposition 3.2.1
by 7(«) and its algebra of fixed points by h(«). O

Theorem 3.2.4 Let g be a noncompact simple Lie algebra with Cartan
involution 0. Let a be a mazimal abelian subspace of p and A = A(g, a) the
corresponding set of restricted roots. Pick a system AT of positive roots in
A and denote the corresponding set of simple roots by ¥.. Then the following
statements are equivalent:

1) There exists an involution T: g — g commuting with 0 such that (g, T)
is noncompactly causal.

2) There exists an element X € p, X # 0 such that

g=9g(-1,X)®g(0,X) P g(+1, X).

3) A is a reduced root system and there exists an o € X such that the
multiplicity d(c) of « in the highest root 6 € A is 1.

Proof: 1) = 2): This follows from Proposition 3.1.11.

2) = 1): Given X € p as in 2), we apply Lemma 1.2.1 to iX € ip and
find that 7;x is an involution on g commuting with 6. Then 7 := 67;x also
commutes with § and 7(X) = —X. Moreover, (g,7) is irreducible since g
is simple. Thus we can apply Proposition 3.2.1 and conclude that (g, 7) is
non-compactly causal.

2) = 3): Conjugating by an element of K, we may assume that X € a.
If A is nonreduced, then [44], Theorem 3.25, p. 475, says that A is of type
(b¢),,, i.e., of the form

A(g,a) = H{3a;, a5, 5(ai £ ax) | 1 < i,k <ryi <k}
(cf. also Moore’s Theorem A.4.4). But this contradicts the fact that
spec(ad X) = {-1,0,1}.

Hence A is reduced.

Now let ax € ¥ be the element determined by Proposition 3.2.2. Then
ax(X) =1 and 6(X) = d(ax). As 6(X) € {-1,0,1}, it follows that
d(ax) = 1. Thus 3) follows.

3) = 2): This follows from Remark 3.2.3. O

Remark 3.2.5 The maximal abelian subspaces of p are conjugate under K
and the positive systems for A = A(g, a) are conjugate under the normalizer
Ng(a) of a in K. Therefore Theorem 3.2.4, Propositions 3.2.1 and 3.2.2,
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and Remark 3.2.3 show that the following procedure gives a complete list
of representatives (g, 7) for the isomorphy classes of noncompactly causal
symmetric spaces. Some of the symmetric pairs obtained will be isomorphic
due to outer automorphisms of the relevant diagrams.

Step 1: List the simple noncompact real Lie algebras g together with
the Dynkin diagrams of the restricted root systems and the multiplicies of
the highest root .

Step 2: Given a simple root a whose multiplicity in ¢ is 1, construct
the symmetric pair (g, 7(a)).

Note that after removing « from the set ¥ of simple roots one obtains
the Dynkin diagram for the restricted roots of the commutator algebra of
h(a)® and the corresponding set of simple roots is g = X\ {a}. If one
wants to read of h(a)” and h(«) from diagrams directly, one has to use the
full Satake diagram instead of the Dynkin diagram of the restricted root
system. t

Example 3.2.6 We show how the procedure of Remark 3.2.5 works in the
case that g has a complex structure.

The type A,: (sl(n+1,C))

1
°
(8

Qe —

1 n

Here d(ay) = 1 for all k =1,...,n. Thus k can be any number between 1
and n. Furthermore, ¥¢ = X(ag_1) X 2(a,—k—1). In particular,

gc(0, Xx) sl(k,C) @ sl(n — k,C) & C X,

su(k)c @ su(n —k)c ® C Xy

1R

Hence h = su(k,n — k).

The type B,: (so(2n+1,C))

2 2 2
1 gkg_' c _(.Jén71:>g¥n

In this case k = 1. Then ¥y = ¥(b,,—1) and

oo —

9(0,X1) = so(2n—-1,C)pCX;
~ s50(2n—1)c®CX;.

Thus h = s0(2,2n — 1).
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The type C,: (sp(n,C))

Hence k =n, ¥y = X(a,-1) and
9(0,X,) = sin,C)oRX,

2
<o

2
=
(@]

&
=
e

Thus h = sp(n, R).

The type D,;: (s0(2n,C))

1
°
aq
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Here we can take k = 1,n—1,n. But k =n —1 and k = n give isomorphic
h’s. Thus we only have to look at k =1 and k =n . For k = 1 we get X

of type 0,1 and
9(0,X1) = s0(2n—-2,C)pCX,4
~ 50(2n—2)c ®CX;.

Thus § = s0(2,2n — 2).
For k = n we get 3¢ = 3(a,—_1) and

9(0,X,) = sin,C)eCX,

>~ Uc.
Thus h = s50*(2n).
The type Eg:
“ 2 2. ay 2 1
[ ] (] . (] (]
(a7 5 * 3 a1
37 Q4

Here kK = 1,6. As both give isomorphic b, we may assume that £ = 1. Then

20 = 2(05). Thus

9(0,X1) = 50(10,C)d CX,4
50(10)@ ©® (CXl .

1R
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Hence h = eg(_14)-

The type E7:

oo
SN

re.
Q
S

Thus k = 1, Xg is of type e and g(0, X7) = ¢ © C X7. Hence b = e7(_25).
O

Example 3.2.7 To conclude this chapter we work out the real groups of
type AI, AII, and AIII, i.e., SL(n,R), SU*(2n), and SU(p,q). We fix a
maximal abelian subalgebra a of p and denote a set of positive roots in
A = A(g,a) by AT. Let ¥ = {aq,...,a,} be the set of simple restricted
roots.

SL(n,R):. In this case X is of type A,_1, so we can take out any a;. It
follows that h* is of type A,—1 x Ag—1, with p + ¢ = n. In particular,

9(0, X)) = sl(p,R) x sl(q, R) x RX},.

Thus b, = so(p) x so(g). There are thus two possibilities for h. Either
h = g(0,Xy) or h = so(p,q). We can exclude the first case, as h ~ h? is
possible only for n = 2, in which case both a and a® are one-dimensional
and abelian.

SU*(2n): In this case ¥ = X(a,—1) and my = dimgy = 4 for every A €
Y. Once again we can take out any one of the simple roots. It follows
that 3, = X(ap—1) X X(a,-1) and multiplicities equal 4. It follows that
9(0, X)) = su*(2p) x su*(2q) X RXy. Thus & = sp(p) X sp(q). We can
exclude that h ~ h*, therefore h = sp(p, q).

SU(p, q): The root system A is nonreduced if p # ¢. So the only possibility
is p = ¢. In that case ¥ = ¥(c,) and the multiplicities are my; =2, j <n
and my, = 1. The only possibility is to take out v,, and we are left with
Y(a,—1) and all multipicities equal 2. But then g(0, X,,) = sl(n,C) x RX,,.
This leaves us with h = sl(n,C) x R except in the case n = 8. In that case
h = e7(7) would be another possibility. But ad X}, is an isomorphism b, —
gz, which shows that dim H/(HNK) = dim K/(K N H). The dimension of
e7(7)/ 5u(8) is 70, which is bigger than dimu, = s(u, X u,)/sn. 0
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The procedure described in Remark 3.2.5 yields the following theorem.

Theorem 3.2.8 (The Causal Symmetric Pairs) The irreducible semi-
simple causal symmetric spaces are given up to covering by the following
symmetric pairs.

g with Complex Structure
g=bc g°=bxb b

noncompactly causal compactly causal

sl(p +¢,C) (p,q) x su(p,q)  su(p,q)
s0(2n,C) §0%(2n) x s0*(2n)  s0*(2n)
5o(n +2,0) s0(2,n) x s0(2,n)  so(2,n)
sp(n, C) sp(n,R) x sp(n,R)  sp(n, R)
€6 €6(—14) X €6(—14) €6(—14)
e7 €7(—25) X €7(—25) €7(—25)

g without Complex Structure
g g° b

noncompactly causal compactly causal

sl(p +q,R) su(p, q) s0(p, q)
su(n,n) su(n,n) sl(n,C) x R
su*(2(p+q)) Su(2p, 2q) sp(p. q)
so(n,n) 0*(2n) so(n,C)
50™(4n) 50*(4n) su*(2n) x R
so(p+1,q+1) s50(2,p+q) so0(p,1) x s0(1,q)
sp(n,R) sp(n,R) sl(n,R) x R
sp(n,n) sp(2n, R) sp(n,C)
€6(6) €6(—14) sp(2,2)
€6(—26) €6(—14) fa(—20)
e7(—25) e7(—25) eg(—26) X R
e7(7) €7(~25) su”(8)

Notes for Chapter 3

Most of the material in Section 3.1 appeared for the first time in [129, 130].
Definition 3.1.16 is due to E. van den Ban [1]. Theorem 3.1.18 can be found in
[131, 136]. The idea of using a simple root with d(«) = 1 for classifying the causal
symmetric spaces was pointed out to us by S. Sahi, cf. [85]. There are other ways
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of classification. In [129] this was done by reducing it, as in Theorem 3.2.4, to
the classification of para-Hermitian symmetric pairs. The para-Hermitian and
para-Kéhler spaces were introduced by Libermann in 1951-1952 [95], [96]. The
para-Hermitian symmetric spaces were classified by S. Kaneyuki [75] by reducing
it to the classification of graded Lie algebra of the first kind by S. Kobayashi and
T. Nagano in [80] (see [77] for the general classification). A list may be found
in [78], [111], and also [138]. Another method is to use Lemma 1.3.8 to reduce
it to the classification of real forms of bounded symmetric domains. This was
done by H. Jaffee using homological methods in the years 1975 [69] and 1978
[70]. Compactly causal symmetric spaces were also introduced by Matsumoto
[103] via the root structure. These spaces were classified the same year by Doi in
[21]. Later, B. @rsted and one of the authors introduced the symmetric spaces of
Hermitian type in [133] with applications to representation theory in mind. The
connection with causal spaces was pointed out in [129, 130].



Chapter 4

Classification of
Invariant Cones

Let M = G/H be causal symmetric space with H essentially connected. In
this chapter we classify the H-invariant regular cones in ¢, i.e., all possible
causal structures on M. Because of c-duality, we can restrict ourselves to
noncompactly causal symmetric spaces.

The crucial observation is that regular H-invariant cones in q are com-
pletely determined by their intersections with a suitable Cartan subspace
a. We give a complete description of the cones in a which occur in this
way. Further, we show how H-invariant cones can be reconstructed from
the intersection with an a. An important fact in this context is that the in-
tersection of a cone with a is the same as the orthogonal projection onto a.
In order to prove this, one needs a convexity theorem saying that for X in
an appropriate maximal cone ¢pax in a, pr(Ad(h)X) € conv(Wy-X) 4+ ¢ -

We also prove an extension theorem for H-invariant cones saying that
these cones are all traces of G°-invariant cones in ig°.

An important basic tool in this chapter is s[(2,R) reduction, which is
compatible with the involution 7.

4.1 Symmetric SL(2,R) Reduction

Let M = G/H be a noncompactly causal symmetric space with involution
7. In this section we describe a version of the usual SL(2,R) reduction that
commutes with the involutions on G and SL(2,R).

Recall the decomposition A = A_ U Ay U A associated to the choice
of a cone-generating element X° € g, and the corresponding nilpotent

91
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subalgebras ny from Remark 3.1.17.

Lemma 4.1.1 Let (g,7) be a noncompactly causal symmetric pair. Then
we have T = —60 onng G n_.

Proof: From g(0, X°) = by, @& q, and ad(X?) (qx © hp) C qx © b, we obtain
n+EBn_=quBbp, (41)

and this implies the claim. O

Recall that a C g, is maximal abelian in p. Therefore the Killing form
and the inner product (- | -) := (- | -)g agree on a. We use this inner product
to identify a and a*. This means that

B(X,\) = (XA =XX)

for all X € a and A\ € a*. For A # 0 we set

A
XN= " eq, 4.2
where | - | denotes the norm corresponding to (- | -). We obviously have

A(XN) =1.
Lemma 4.1.2 Let o € A and X € go. Then [X,0(X)] = —|X|*a.

Proof. Note first that (X) € g_o. Hence [X,0(X)] € 3,(a) Np = a. Let
Y € a. Then

B(Y,[X,0(X)]) = B([Y,X],0(X))
= a(Y)B(X,0(X))
= —|XPa(Y)
— B(Y,—|X[a),
and the claim follows. O

Let @ € Ay and choose Y, € g, such that

A (4.3)

o

We set Y_,, := 7(Y,). By Lemma 4.1.1 we have Y_, = 7(Y,) = —0(Y,).
Thus Lemma 4.1.2 implies

[Ya, Voo] = 2X°. (4.4)
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Finally, we introduce

1
Y= §(Ya +Y_,) €by, (4.5)
1
Z% = i(Y_a -Y,) € ai, (4.6)
and
Xig:=X"tZ%€q. (4.7)

Example 4.1.3 Let M = SL(2,R)/SO,(1,1). We use the notation from
Example 1.3.12. Then a := q, = R X" is abelian and the corresponding
roots are A = {a, —a}, where a(X") = 1. We choose « to be the positive
root. As root spaces we obtain

go = 0(+L,X") =RY, and g,=g9(-1,X°)=RY_.

The Killing form on s[(2,R) is given by B(X,Y) = 4tr(XY). In particular,
we find
le X0 + 22%?2 = 2(2* + 2°)

and
YilP =4, |X°P=2

This shows that o = X% and |a|> = . Now we obtain
Yia =Y:, Xia=Xy,
and

Xe=X" vye=vY°% zv=2° O

Remark 4.1.4 Note that we can rescale the inner product without chang-
ing X“. Also, the norm condition on Y, is invariant under rescaling. On
the other hand, the construction of Y, Z% and Xy, depends on the choice
of Y, (recall that in general dim(g,) > 1). O

Define a linear map ¢, : s[(2,R) — g by

1
§<(1) _01>»—>X°‘, (8 (1))»—>Ya and ((1) 8)»—>Y_a. (4.8)

Then ¢, is a Lie algebra monomorphism such that 6 induces the usual Car-
tan involution X — —'X on s[(2,R), whereas 7 induces the involution on
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5[(2,R) described in Example 1.3.12 (denoted also by 7 there). In particu-
lar, 5, := Im ¢, is 7 and f-stable. As a consequence, we have @, (Y?) = Y
and ¢, (Z°) = Z*.

Of course, p, exponentiates to a homomorphism of SL(2, R), the univer-
sal covering group of SL(2,R), into G. Similarly, ¢, defines a homomor-
phism ¢, : SL(2,C) — G, since SL(2, C) is simply connected.

The notation in Example 1.3.12 was set up in such a way that X0 ¢
s[(2,R) plays the role in the noncompactly causal space (s[(2,R),7) that
it should play in Proposition 3.1.11. Unfortunately, this property is not
carried over by the maps ¢, just constructed. In other words, X is in
general not a cone-generating element. All we have is the following remark:

Remark 4.1.5 Let X° € 3(h*) with o(X°) = 1. Then
X - X%cat ={Xecal|a(X)=0}. O

Theorem 4.1.6 Let M = G/H be a noncompactly causal symmetric space
and C € Coneg(q) the cone defining the causal structure.

1) There exists a unique cone-generating element X° € C N quK C

3(h%).

2) Let a be a mazimal abelian subspace of q, and A = A(g,a) the cor-
responding set of restricted roots. Then for all « € Ay = {8 € A |
B(X°) = 1} and for any choice of Yo € ga satisfying (4.3), we have
X4 Xo, X qeC.

Proof: 1) According to Corollary 3.1.6, we can find an element of X € qng
in the interior C° of C. But then Proposition 3.1.11 shows that a multiple of
X satisfies the conditions of 1), since qf MK is one-dimensional and contains
3(h%).

2) Note first that [X°— X% Y] =0foralla € A since Y* € g +g—a-

Hence by s((2,R)-reduction we have

Ad(exptY*) X" = Ad(exptY®) [%(Xa + X o)+ (X0 =X

1
5 (" Xa+e "X o)+ (X" = X%). (4.9)
Thus

2 lim e " Ad(exptY*) X’ = X, € C

t—oo

and

2t lim e! Ad(exptY )X’ =X_,€C.



4.1. SYMMETRIC SL(2,R) REDUCTION 95

As 2X* =X, + X_,, the lemma follows. O

Let (g, 7) be a noncompactly causal symmetric pair. We choose a cone
generating element X° € a C q,. According to Remark 3.1.9, (g¢,7) is
compactly causal and either simple Hermitian or the product of a simple
Hermitian algebra with itself. In either case we can choose a Cartan sub-
algebra t° of g° containing ia and contained in € = b + ¢q,. Note that
Z¢ = iX" € 3(¢°) and the centralizer of Z¢ in gc is €& (cf. Proposition
3.1.12). Let (p°)* be the +i-eigenspaces of ad Z¢ in p¢& = (h, +iqi)c. Then

(P)F Ng=n. (4.10)

In addition to the notation from Remark 3.1.17, we use the following
abbreviations

A= Age, t8), Ax=A((p)*F, 1), and Ag:=A(E,t). (4.11)

Then we obtain ~
A={al,|aeAal, #0},

Ai = {d|a | a € Ai},

and R
Ag = {d|a | S Ao,d|u 75 0}

Moreover, we can choose a positive system At for A such that A;{ =
A1t N Ag is a positive system in Ag and

Af ={ala|aeAf,al. #0} and AY ={a|,|ae A" al, #0}.
(4.12)

Lemma 4.1.7 Let & € A, be such that —7& # &. Then & and —1& are
strongly orthogonal.

Proof Let & € A, be such that —7d& # & Then —7& € A, and & — 7@
is not a root. Assume that v := & + 7a is a root. Since 7|, = 0, we have
(9¢)~ C 3gc(a) C ac & (hg)c. It follows that (gc)y C €c N he because (gc)y
is 7-invariant. Let X € (gc)a, X # 0 . As g is a Cartan subalgebra of
gc, it follows that dime(ge)a = 1 and 0 # [X,7(X)] € (gc)y. But then
[X,7(X)] € qc gives a contradiction. O

Remark 4.1.8 The 7-invariance of t¢ shows that also A is invariant. Let
0¢ = 00 be the complex conjugation of gc w.r.t. g°. Then t¢ is o¢ invariant.
Since the elements of A take real values on t¢, it follows that o¢& = —@ for
all @ € A. Therefore we can choose Ej € (gc)a such that

E_d = Egcd = UcEd and ET& = TLg
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for all & € A. Moreover, the normalization can be chosen such that the
element

H& = [E&,E,&] = [Ede;ET&] = Hf‘r&
satisfies &(Hgz) = 2 (cf. Appendix A.4).
Fix a maximal set ~ R
D= {,..., 5} C A, (4.13)
of strongly orthogonal roots (cf. Appendix A.4). In fact, Lemma 4.1.7 shows
that we may assume I' to be invariant by —7 simply by adding —7 () after

each inductive step.
Recall from (A.27) and Lemma A.4.3 that the space

o = p°n Y RY;,
Fel
where Y5 = —i(E5 — E_5), is maximal abelian in p°. Note that Ay is
invariant under —7 and renormalize Y3:
Y i=1sY5 € g, (4.14)

where v = 4|,. Here we choose r5 in such a way that Y5 satisfies the
condition (4.3), i.e.,
2
"y = TS
71252

Now we see that

1
Y7 = g(Y:Y +7’Y:Y) €bhpNag
and
ap :=a°Ng=>» RY7. m
Fel
Lemma 4.1.9 The space aj, is mazimal abelian in b,.

Proof. Let G¢ be a simply connected Lie group with Lie algebra gc and
G,G° H,K, K¢ A, A, etc., the analytic subgroups of G¢ corresponding
to g,9%b, €, €, a% a7, etc. Recall the Cartan decomposition

KCACKC — GC

from [44], p. 402. The A°-component is unique up to a conjugation by a
Weyl group element. Let o:Gc — G be the complex conjugation with
fixed point set G. Then G¢, K¢ and A€ are o-invariant. Thus we have

(GNEK)(GNA)GNK®) =GNG.
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The Lie algebras of G NG, GN K¢, and G N A° are b, b, and af. Since
aj, is an abelian subspace of b, and b, is maximal compact in b, this shows
that

(KNH)Aj;(KNH)=H (4.15)
is a Cartan decomposition and hence af, is maximal abelian in b,. O
Remark 4.1.10 We set

T:={3l.]7€T}CA,. (4.16)

View 4 as an element of (it®)* and write ¥ = v ++/ with v = 4|, and
v = Hl(iteyny- Then, under the identification of dual spaces via (- | -), the
restriction means orthogonal projection to the respective space. Note that
—74 =~ —~' €T, so the orthogonality of the elements of I implies also
that their restrictions to a are orthogonal.

I" actually consists of strongly orthogonal roots. To see this, suppose that
vi = Jile and ; = 44|« with v; —~y; € A. Since v; and +y; are orthogonal we
have s+, (vi—;) = 7i+7;, where s, is the reflection in a* at the hyperplane
orthogonal to v;. But s,, is an element of the Weyl group of A and hence
leaves A invariant. Therefore we have v; +v; € A, a contradiction.

Suppose that v, € A, is strongly orthogonal to all v € I'. Then there
exists a 7y, € A+ such that v, = ol and 0 # v, — v, € A whenever
Yi — Yo € A. Therefore Yo is strongly orthogonal to all 45, in contradiction
to the maximality of I. Thus I' is a maximal set of strongly orthogonal
roots in Aj.

Note that the orthogonality of the elements of r together with ~ =
(7—7%) shows that the only elements of [ restricting to a giveny = 7|, € T
on a are ¥ and —77.

The definition of aj shows that each element Y € aj can be written in
the form

Y= rY" (4.17)

yell
constructed via (4.5) from pairwise commuting elements Y, € g, satisfying
the normalization condition (4.3). Moreover, the images of the correspond-
ing sl(2, R)-embeddings ¢, commute, since the images of the s[(2,C) em-
beddings corresponding to the different elements of G (cf. Appendix A.4)
commute. U

Lemma 4.1.11 1) L:= X" — > yer X7 € yer ker.
2) IfY = ZWEF t Y7 € af is chosen as in Remark 4.1.10, then we have

Y X0 = 4 Z cosh(ty) X7 + Z sinh(t)Z7.
yel yel
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Proof: 1) Fix v € I and note that v(X° — X7) = 0 because of the normal-
ization of X7. On the other hand, 7(X#) = 0 for all v # 3 € I' by Remark
4.1.10. This proves 1).

2) Using sl(2,R) reduction we calculate

eadYXO _ eadY(L_i_ZXv)
yel’

L+ Z eadtWY’YX’y
~el’

L+ [e"(X"+27) +e (X7 = 27)]
~el’

as X4, = X7 £ Z7. From this the claim now follows. O

4.2 The Minimal and Maximal Cones

In this section we study certain convex cones which will turn out to be min-
imal and maximal H-invariant cones in ¢, respectively their intersections
with a.

Definition 4.2.1 Let M = G/H be a noncompactly causal symmetric
space and (g,7) the corresponding symmetric pair. Further, let X" € q,,
be a cone-generating element. Then the closed convex cones

Cnin(XY) := Cin := conv [Ad(H,) (RTX0)]. (4.18)
and
Cmax(XO) = Crax = {X €q | VY € Cin : B(X, Y) 2 0} (419)

in q are called the minimal and the maximal cone in q determined by the
choice of X°. A reference to the space M = G/H is not necessary, since
the definitions depend only on the group generated by ¢*1% in GL(q). O

Definition 4.2.2 Let (g, 7) be a noncompactly causal symmetric pair and
a C g, a maximal abelian subspace. Choose a cone-generating element
XY € a and recall the set A of restricted roots taking the value 1 on X0°.
Then the closed convex cones

Cmin(XO) ‘= Cmin ‘= Z R(J)r X = Z R(J)FO& (420)

aEA L aEA 4



4.2. THE MINIMAL AND MAXIMAL CONES 99

and

Cmax(X?) i= Cmax = {X €a|Vac AL : a(X)>0}=c,,  (4.21)
in a are called the minimal and the mazimal cone in a determined by the
choice of X°. a

It follows from Proposition 3.1.11 that there are only two minimal and
maximal cones.

Remark 4.2.3 It follows from the definition of Ciyin that 8(Cpin) = —Chin-
This shows that we can replace the definition of Ciax by

Crpax ={X €q|VY € Cpin : (X |Y) >0} O

Lemma 4.2.4 Let M = G/H is a noncompactly causal symmetric space.
Then Cpin s minimal in Coneg (q) and Cpax is maximal in Coneg (q).

Proof: Note first that, by duality via the Killing form, we only have to show
the assertion concerning Chyip.

Theorem 4.1.6 implies that X is (HNK)-invariant, so that Cy,iy is indeed
H-invariant by Lemma 3.1.1. Since any element of Coney (q) contains either
X% or —X9, again by Theorem 4.1.6, it only remains to show that Cp;y, is
regular. If q is h-irreducible this follows from Theorem 2.1.21. If q is not §
irreducible, then the only elements in Coneg (q) intersecting p nontrivially
are £C), (cf. Section 2.6). But the contruction of Cp, shows that it contains
XPO. This implies Cp = Cpin and hence the claim. O

The following proposition is an immediate consequence of Theorem
4.1.6.

Proposition 4.2.5 Let M = G/H be a noncompactly causal symmetric
space and (g,T) the corresponding symmetric pair. Suppose that the causal
structure is given by C € Coney(q) and let X° be the unique cone generat-
ing in C. Then

cmin(X°) C C. O
Lemma 4.2.6 Assume that M is a noncompactly causal symmetric space.
Let a be mazimal abelian in q,. Let Ag = A(h*,a) and Wy be the Weyl
group of the root system Ag. Then

Wo = Nunk(0)/Zank (a) .
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Proof: Recall from [44], p. 289, that Wy = Ng,nk(a)/Zu,nkx(a). But
Theorem 3.1.18 implies that H N K = Zgnk(a)(H, N K) and that proves
the lemma. O

Proposition 4.2.7 cpin and cmax are reqular Wy-invariant cones in a.
Furthermore, ¢nin C Cmax and

Chax ={X €a|Vae Ay : ofX) >0}.
Proof. As the Weyl group W, fixes X0, it follows that Wy permutes A .
We have w(X%) = X“* and hence ¢pin is Wy-invariant. By duality also
Chax 18 Wo-invariant.

If a,3 € Ay, then a(X?) = (a | B)/(B | B) > 0 for otherwise o + 3
would be a root. Hence cpin C ¢fj,-

The equality ¢, = {X € a|Va € A} : «(X) > 0} is an immediate
consequence of the definitions. It shows that cpax is generating and hence
that cpin is proper (cf. Lemma 2.1.3 and Lemma 2.1.4). Tt only remains
to show that ¢y is generating. If < c¢pin >7# a, then we can find a non-
zero element X € a with «(X) = 0 for all @« € Ay. Thus iX € ia C g¢°

centralizes (ny ® n_)c = (qr @ bp)c = P&, which is absurd. O
Lemma 4.2.8 X° € cpin(X°)°.

Proof: Let X € cpuin(X°)° and define X := [1/#W)] > wew, W X. Then

X # 0 is Wo-invariant and contained in cpin(X°)°. Let a € A¢ and
Sa € Wy the reflection at the hyperplane orthogonal to . Then

a(X) = a(sa (X)) =< sa(a), X >= —a(X),

ie., a(X) = 0foralla € Ag. Therefore X € 3(h*) and hence X is a multiple
of X% On the other hand, X° € cpax(X?)° 50 that cmin(X%)° C cmax(X°)°
implies the claim. O

For later use we record an application a convexity theorem due to Kostant
(cf. [45], p. 473) to the Lie algebra h°.

Proposition 4.2.9 Let M = G/H be a noncompactly causal symmetric
space and pr:q, — a the orthogonal projection. Then for X € a we have

pr(Ad(K N H,)X) = conv(Wp - X).

Proposition 4.2.10 Let M = G/H be a noncompactly causal symmetric
space. Choose a mazimal abelian subspace a of q, and a cone-generating
element X° € a. Denote the orthogonal projection q — a by pr. Then
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1) pr(Cmin) C Cmin-
2) pr(cmax) C Cmax-

Proof: 1) Let X = Ad(h)X?" for some h € H,. The Cartan decomposition
(4.15)
H, = (H, N K)AS(H, N K)

shows that we can write h = k(expY )k, with k,ky € KN H, and Y € af.
We can write Y =5 _t,Y" as in Remark 4.1.10 and then Lemma 4.1.11
shows that

yel’

pr(Ad(h)X%) = pr(Ad(k)eadYXO)

pr [ Ad(k) L+ > cosh(t,) X"
yel’

pr [ Ad(k)X° + Ad(k) ) _[cosh(t,) — 1] X7
yel’

= X°+pr | Ad(k) > [cosh(t,) — 1]X”
~el’

It follows that pr(Ad(h)X?) € c9;, as pr(Ad(k)X7™) € conv Wy - X7 C Cmin

by Proposition 4.2.9. Since Chyin is the closed convex cone generated by
Ad(H,), the claim follows.

2) Let Y € ¢min- By Lemma 4.2.5 we have Y € Cpip. Thus (Y] pr(X)) =
(Y|X) > 0, which implies that pr(X) € ¢}, = cmax- O

Recall the intersection and projection operations from Section 2.1. We
set I :=1I} and P := PJ.

Proposition 4.2.11 Let M = G/H be a noncompactly causal symmetric
space with cone-generating element X9 € quK. Then

1) ¢min = I(Cmin) = P(Ciin)-
2) cmax = I(Cmax) = P(Cinax)-
Proof: 1) According to Proposition 4.2.5 we have
¢min C I(Cmin) C P(Cin)-

Proposition 4.2.10 now shows that P(Ciin) = Cmin-
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2) Lemma 2.1.8 and part 1) show
I(Ciax) = P(Chax)” = P(Crmin)" = Cyin = Cmax

and hence the claim again follows from Proposition 4.2.10. O

Recall that for any noncompactly causal symmetric pair (g, 7), the sym-
metric pair (gc,o¢), where 0% gc — gc is the complex conjugation w.r.t.
g¢, is either noncompactly causal (if g carries no complex structure) or the
direct sum of two isomorphic noncompactly causal pairs. In particular, any
symmetric space G¢/G€ associated to (gc,0¢) admits a causal structure.
We assume for the moment that g carries no complex structure. Then
any cone-generating element for (g,7) is automatically a cone-generating
element for (gc,0¢). Fix a Cartan subalgebra t¢ of € containing a, which
then is also a Cartan subalgebra of g¢. Further, we choose a cone-generating
element X € g, C ihy + g, and a positive system AT for A = A(gc, t°) as
in (4.12). The corresponding minimal and maximal cones in the maximal
abelian subspace it° of i + g, are then given by

tmin= »_ Rfa (4.22)
&€A+
and ~
Cmax = {X €it° |Va € Ay 1 a(X) >0} =&y (4.23)

Proposition 4.2.12 The cones cmin(A+) and cmax(A4) are —T-invariant.
Moreover,

1) Igtc (6min) - Pjtc (6min) = Cmin;
2) I;-tC (5max) = P:-tc (5max) = Cmax-

Proof- The —7-invariance follows from the —7-invariance of A, . In view of
duality and Lemma 2.1.9, it only remains to show that P (Gmin) = Cmin.
But that is clear, since P**" (&) = d/,. O

Lemma 4.2.13 Let X € ¢{,,. Then
1) 35(X) C ap-
2) Let h € H be such that Ad(h)X € a. Then he KN H.

Proof: 1) Let Y = 3 e, [La — 7(La)] With Lo € ga. As X € ¢f, we
have

(X, V] = Y a(X)(La+7(La)) #0

aEA L
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which implies the claim.
2) Let Y € a. Then

[Ad(h"HY, X] = Ad(h Y[V, Ad(h)X] = 0.

Thus Ad(h™1)Y € hNq = q,. In particular, Ad(h~!)a is a maximal abelian
subalgebra of q,. Thus there is a k € K N H such that Ad(kh™1)a = a.
This implies that

kh™' € Ny(a) C KNH.

Thus h € K N H as claimed. O

Let G¢/G€ be any symmetric space with corresponding symmetric pair
(gc, 0¢). Then the maximal and the minimal cones in ig® are given by

Crnin(X°) = Chin = conv [Ad(GS) (RTX0)] (4.24)

and
Crnax (X?) = Crnax = {X € q | VY € Chin : B(X,Y) > 0}. (4.25)

Remark 4.2.14 In order to be able to treat the cases of complex and non-
complex g simultaneously, we make the following definitions. Suppose that
g = Ic and 7 the corresponding complex conjugation, so that g¢ = [ x [ and
7¢ is the switch of factors. More precisely, gc = I¢ X [c with the opposite
complex structure on the second factor and the embedding

g=Ic3>X— (X,7(X)) € lc x Ic = gc.
The involution o¢: gc — gc is given by
o (X, Y) = (7(X), 7(Y)).

The algebra [ is Hermitian and we can choose the maximal abelian sub-
space of q, to be a = it, where t is a Cartan subalgebra of [N £ Then
t¢:=t x t is a Cartan subalgebra of g¢. Choose a cone-generating element
X022 (X% 7(X%) = (X% -X°) € a. Weset A:=A(lc x ¢, tc x tc) and

Ay ={(a,f) et x & | (X)) =1=6(-X")D=A, xA_,

where A = A(Ig,it) and A; = {a € A | a(X?) = 1}. Now the formulas
(4.22) and (4.23) make sense and yield

Emin(X?, =X = cnin(X9) X cmin(—X°) C it¢

and
Cmax (X% —X?) = crnax(X?) X cmax(—X°) C itC.
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Note that both cones are —7-invariant. It follows directly from these defi-
nitions and the embedding of q = il — ¢l x il = ig° that

Ii‘c (émin) = Cmina I§£C (émax) = Ciax-

In particular, we see that the conclusions of Proposition 4.2.12 stay valid.
Let L¢ be a simply connected complex Lie group with Lie algebra [¢ and
L the analytic subgroup of L¢ with Lie algebra [. Then the involution o°¢
integrates to an involution of G¢ = L¢ X L¢, again denoted by o€, whose
group of fixed points is G° := L x L. Now also the equations (4.24) and
(4.25) for the minimal and maximal cones in ig° make sense and yield

C~Vmim(*Xroa _XO) = Cmin(XO) X Cmin(_XO)

and ~
Cmax(X07 _XO) = Cmax(XO) X Omax(_XO)-

Note that both cones are invariant under —7 and

I;gc (émin) = Cmi]]7 I;gc (émax) = Cmax' o
Lemma 4.2.15 Let M = G//H be a noncompactly causal symmetric space
and X € C2 ..

1) X is semisimple and ad X has real eigenvalues.

2) If G /G* is any symmetric space corresponding to (gc, o), then there
exists a g € GS such that Ad(g)X € &2

3) If X € q, then there exists an h € H, such that Ad(h)X € ¢max.

Proof. By Theorem 2.1.13 the centralizer of X in G¢ is compact. Since
every compact subgroup in G¢ is conjugate to one contained in K, we
may assume that Zg:(X) C K§. But then 3,.(iX) C €. As iX € 3,¢(1X),
it follows that ¢.X is semisimple with purely imaginary eigenvalues. Hence
X is semisimple with purely real eigenvalues. Note that a; @ ia is a Cartan
subalgebra of £, so there is a k € K¢ such that Ad(k)(iX) € ap @ ia. This
proves 1) and 2).
Now assume that X € q. According to Theorem 1.4.1, we can find an
h € H, and a f-stable A-subspace b = by & b, in q such that Ad(h)X € b
and b, C a. Proposition 4.2.11 implies that
pr(Ad(R)X) € &

max*

Then Proposition 4.2.12 shows that pr,(Ad(h)X) € ¢, and hence Lemma

4.2.13 implies that by = {0}. Thus Ad(h)X is actually contained in ¢, ..
O
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Theorem 4.2.16 (Extension of Cpi, and Cuax) Let M = G/H be a
noncompactly causal symmetric space. Then Cyin and Cpax are —T-stable
and satisfy

I:g (Omin) - Cmin7 I;g (Omax) = Cmax-

Proof: We may assume that g carries no complex structure, since the case
of complex g was already treated in Remark 4.2.14.

Let G¢/G¢ be any symmetric space corresponding to (gc,o¢). Then
Gc/G€ is noncompactly causal. Let H¢ be the analytic subgroup of G¢
with Lie algebra h and X the cone-generating element in cpi,. Then
H¢ ¢ G° and Cpin C C'min, since they are the H‘-invariant, respectively
GC-invariant, cones generated by X°. But then

Cmin C I;g ( min) C qug (Cmin) .

Let now X € I;gc(églin). By Lemma 4.2.15 we can find an h € H® such

that Ad(h)X € a. But then, by Proposition 4.2.11, and Proposition 4.2.12:
Ad(h)X can émin Can (itc n émin) = aN ¢min = Cmin -

Consequently, the H¢invariance of Cp, proves I;gc(é'min) = Chin- By
duality we get P;gc(é’max) = Chax- Now Lemma 2.1.9 implies the claim. O

4.3 The Linear Convexity Theorem

This section is devoted to the proof of the following convexity theorem,
which generalizes the convexity theorem of Paneitz [147] and which is an
important technical tool in the study of H-invariant cones in q.

Theorem 4.3.1 (The Linear Convexity Theorem) Let M = G/H be
a noncompactly causal symmetric space and a a mazimal abelian subspace
of qp. Further, let pr:q — a be the orthogonal projection, X € cmax and
he€ H,. Then

pr (Ad(h)X) € conv(Wy - X) + cmin-
Lemma 4.3.2 Let (g,7) be a noncompactly causal symmetric pair. Then
1) by = Im(id +7)|n, and qx = Im(id —7)|., .

2) dimb, = dimn; = dim q.
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Proof: 1) Recall from Lemma 4.1.1 that 7 = —6 on ny. Thus X+7(X) € b,
for X € ny. Conversely, let X € h,. Then we can find L, € go, € AT
such that X = 3 [Lo + 7(La)]. In order to show that L, € ny for all
a € AT, we only have to show that L, & h* = g(0, X°), where X" is a cone
generating element in q,. But for L, € h® we have L, + 7(Ly) € hNE, so
X € p implies Ly 4+ 7(Ly) = 0. Therefore these L, can be omitted in the
representation of X.

The second statement is proved in the same way.

2) ker(id+7) = q and g Nny = {0}, since no element in q can be an
eigenvector of ad(X?) € q. Similarly, ker(id —7) = b and h Nny = {0}.
Now the claim follows from 1). O

Lemma 4.3.3 Let L € C%,,, and X € Ad(H,)L. If X & q,, then there is
a Z € Ad(H,)L such that

1) |pry, Z| < |pry, X,
2) pr(X) € conv(Wy - pr(Z)) + cmin-
Proof: Assume that X = Ad(h)L and let
Y i= pr(X) = pr(Ad()L) € pr(Cl) = chrns

Assume for the moment that Y = pry, (X), i.e., X € Y + qi. Proposition
4.2.7 shows that a(Y) > 0 for all @« € A;. By Lemma 4.3.2 we may write
X as a linear combination,

X=Y+ Z [Ya_T(Ya>]v

aEA
with Y, € go. As X #Y, there is a § € A such that Y3 # 0. Define

1

and
W1 = Z (Ya — T(YQ)) € qk-
a#p3

Now a simple calculation gives

1
WY] = %) ([Ys, Y]+ [7(Ys), Y])

= YB—T(Yﬁ) € qk-
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From Lemma 4.1.1 and Lemma 4.1.2 we derive

W,Y5 —7(Ys)] = —ﬁ (Y5 + 7(Ys), Y5 — (V)

= AXP,

where A = |Y5|?|82/6(Y) > 0. Furthermore, Wy := [W, W] € q, Na™.
Let Z, = Ad(exptW)X € Ad(H,)L. It follows from the above calculations
that

Zy = X —t[W,X]+0(t?
= (Y —t\Hp) + (1 — t)(Y3 — 7Y3) + Wy — tWo + O(?).

Thus

[prg, (Zo)]? < (1= )Y — 7Y¥p[* + [Wa[? + pt?

= |pr,, XPP—t((2—1) Vs — 7Y5]> — put)
< |pr,, X|?

for ¢ > 0 sufficiently small.
We claim that for ¢ > 0 small enough,

Y —prZ; = tAHg 4+ O(t?) € Cmin = € -

To see this, let V' € ¢pax. Then V = vHg + L, with S(L) = 0 and v > 0.
Thus

(Y = pr(Z,)|V) = thy|Hp|” + O(t?),

and this is positive for small ¢. This proves the lemma if pr,, X €a.
Assume now that X, := pr, (X) # Y. There exists a k € H, N K
such that Ad(k)X, € a, since a is maximal abelian in q,. On the other
hand, Ad(K N H,) is a group of isometries commuting with pr,, and pry, .
Therefore we get
pr, (Ad(k)X) = Ad(k)X,

and
| pr,, (Ad(k)X)| = | Ad(k) pr,, (X)| = |pr,, (X)|.

In particular, Ad(k)X & q,. By the first part of the proof we may find a
Z € Ad(H,) Ad(k)X = Ad(H,)X such that

| pr, (Z)] < [pry, (Ad(R)X)| = | pr,, (X)]-
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Now Proposition 4.2.9 shows that

Y = pr(Ad(k™1) Ad(k)X,)
€ conv[Wy - Ad(k) X))
C  conv [Wy - (pr(Z) + cmin)]
= conv[pr(Z)] + ¢min,

and this implies the claim. O

Recall that adjoint orbits of semisimple elements in semisimple Lie al-
gebras are closed according to a well-known theorem of Borel and Harish-
Chandra (cf. [168], p. 106). The following lemma, taken from [20], p. 58,
is a generalization of this fact.

Lemma 4.3.4 Let G/H be a symmetric space with G semisimple. If X € q
is semisimple, then the orbit Ad(H)X is closed in q. O

Define a relation < on q via

| pr, (Y)] < [pry, (X)]

XY =
- {pr(X) € conv[Wp - pr(Y)] + ¢min

Lemma 4.3.5 Let X € q. Then the set {Y € q | X <Y} is (H, N K)-
invariant and closed in .

Proof. The (H, N K)-invariance follows from Proposition 4.2.9 and the
(H, N K)-equivariance of pr,,. Now assume that Y; € {Y € q | X =
Y}, j € Nyand that Y; — Yo € q. As |pr,, (Yj)| < |pr,, (X)], it follows that
| pr,, (Yo)| < |pr,, (X)|. Furthermore, there are Z; € conv[W; - pr(Y;)] and
L; € ¢pin such that pr X = Z; + L;. But the union of conv [Wy - pr(Y;)],
j > 0 is bounded, so {Z;} has a convergent subsequence and one easily
sees that the limit point is in conv(Wp -Y). Thus we can assume that {Z;}
converges to Zy € conv(WpY'). Therefore L; = pr(X)—Z; — pr(X)—2° €
Cmin, Since cpiy 18 closed. O
Lemma 4.3.6 Let X € c;

max

and let L € Ad(H,)X. Then the set
Mx(L):={Y € Ad(H,)X | L <Y}
is compact.

Proof. By Lemma 4.3.4 and Lemma 4.3.5 it follows that M (L) = Mx (L)
is closed. Thus we only have to show that M (L) is also bounded. Let
Ad(h)X € M(L). Write h = kexpZ with k € KN H, and Z € h,.
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As Ad(k) is an isometry, |Ad(h)X| = | Ad(exp Z)X|. Thus we may as
well assume that h = exp Z. Since ad,(Z) is symmetric, we may write
X =3 ser X, with Xy € q(A, Z). Thus

Ad(h)X =) e*X,.
A

Now 0(q(\, Z)) = q(—X, Z) as Z € h,. From 6(X) = —X we get

X =Xo+ > [Xa+X_3]=Xo+ Y [Xn—0(Xa)] (4.26)
A>0 A>0

with Xg € q,. Thus

Ad(WX = Xo+ > [*Xy—e0(X))]
A>0
= Xo+ Y _sinh(A) [Xx +0(X3)]+ Y cosh(A) [Xx — 0(X,)].
A>0 A>0

In particular,

pr,, (Ad(h)X) = " sinh(}) (Xx + (X))
A>0
and
pr, (Ad(h)X) = Xo+ Y _ cosh(}) (Xx — 0(X2)).
A>0

The eigenspaces are orthogonal to each other and Ad(h)X € M (L), so we
find

D sinh(A)?| Xy +0(X\)P = |pr,, (Ad(h)X)?
A>0

< [prg, (D))

< L2

Furthermore, | Xy 4 0(X))|? = | X2 + [0(X))]?. Hence | X, — 0(X))|* =
| X + 6(X2)|?. From cosh(t)? = 1 + sinh(¢)? we now obtain

|prg, (AdR)X)[* = [Xof* + > cosh(A)?[ X + 0(Xx)[*
A>0

Xol? 4D 1Xa = 0(X2)P + D sinh(A)[Xx + 0(Xx)|*
A>0 A>0
X1 + [ pry, (Ad(h) X)|?

X+ LI

IN
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Thus | Ad(h)X|? < 2|L|? + | X|?, which proves the claim. O
Now we are ready to prove Theorem 4.3.1: Let X € ¢ipax. As conv(W -
X) + Cmin 18 closed, we may assume that X € ¢ Let L = Ad(h)X €

Ad(H)X. Since H is essentially connected, we have Ad(H)X = Ad(H,)X,
so we may assume that h € H,. Since Mx (L) is compact, the map
Mx(L)3Y —|pr, (Y)? €R

attains its minimum at a point Y = Ad(a)L, a € H. By Lemma 4.3.3 we
must have Y € q,. Moreover,

pr(L) € conv(Wy - pr(Y)) + ¢min -

Because of Y € q,, we can find a k € K N H, such that Ad(k)Y =
Ad(kah)X € a. By Lemma 4.2.13, part 2), it follows that kah € K N H,.
But then ah € K N H. Hence Proposition 4.2.9 shows that

pr(Y) € conv(Wy - X)),

which in turn yields

pr(Ad(R)X) =pr(L) € conv[Wy - pr(Y)] + cmin
= conv[Wy - (conv Wy - X)] + ¢min
= conv(Wy - X) 4 Cmin
and therefore proves the theorem. O

4.4 The Classification

Let M = G/ H be a noncompactly causal symmetric space and a a maximal
abelian subspace of q,. Recall the orthogonal projection pr:q — a and the
corresponding intersection and projection operations for cones. Theorem
4.1.6 implies that any C' € Coneg(q) contains one of the two minimal cones
and consequently is contained in the corresponding maximal cone. Then
Proposition 4.2.11 implies that

¢min C I(C) C P(C) C ¢max-

Clearly I(C) is Wy-invariant, but Theorem 4.3.1 shows that P(C) is also
Wo-invariant. The goal of this section is to show that any Wpy-invariant
cone between c¢pin and cmax arises as I(C) for some C' € Coneg(q) and
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that C' is uniquely determined by I(C'). We start with a closer examination
of the projection pr.

Let t° be a Cartan subalgebra of £¢ containing ¢a. Then t° is a Cartan
subalgebra of g¢ since the simple factors of g¢ are Hermitian and the analytic
subgroup T¢ of €24(5¢) with Lie algebra ad(t) is compact. Consider the
closed subgroup {p € T¢ | 7¢oT = =1} of T Its connected component
T, := €0 then is a compact connected subgroup of T¢ with Lie algebra
ad(ia). We normalize the Haar measure on 7T, in such a way that it has
total mass of 1.

Lemma 4.4.1 Let X € q. Then pr(X) = [ »(X)dp.

Proof: Write X = pr(X) + > ca+ [La — 7(La)], with Ly € go. Then

e(X)=pr(X)+ > [¢*(La) — ¢ *7(La)]

aEAT

where (e24Y)® = e2(Y) for Y € ac. As T, 3 ¢ + @ € C* is a unitary
character, it follows that fT p®dp = 0. Hence

/ p(X)dp = pr(X)+ > K/ wadw) Lo — </ w“dw) T(La)]
T aea+ N Ta T

= pr(X).
This implies the claim. O

For g € G define the linear map ®, : gc — gc by

B, (%)= [ padlo)e (X)de (4.27)
and set H := {®}, € End(a) | h € H,}. Then Lemma 4.4.1 implies that
H={®e€End(a)|Ihe H, : ®=proAd(h)}. (4.28)
Lemma 4.4.2 1) LetY €a and g € G. Then ®,0adY =adY o @,.

2) To®y =d o7 forall g€ G. In particular, 7o ®y = &y o7 for all
heH.

3) ®p(34(a)) C34(a). If h € H and X € a, then ®(X) = pr(Ad(h)X).

4) Letk € Ngnp(a) and h € H. Then Ad(k)®p,(X) = ®pp(X).
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Proof: 1) Let Y € a. Then e Y ¢ T, for all t € R. Hence ®,et?2dY =
e!’2dY @ . Differentiating at t = 0 yields ®,0adY = adY o @,,.
2) Since 7T = ! for all ¢ € T, and T, is unimodular, it follows that

T®,7(X) = /T@Ad(g)go_lT(X)dgo

- / o1 Ad(r(g))p(X) dg
() (X).

3) From part 1) we get ®y(34(a)) C 34(a). If X € a, then p(X) = X for
all ¢ € T,. Hence

B1(X) = /T o (Ad(h)X) dy.

and this equals pr(Ad(h)X) by Lemma 4.4.1.
4) Note first that pr is Ngng(a)-equivariant by Lemma 4.2.6. Now the
claim follows from part 3). O

Lemma 4.4.3 Let h € H. Then ®; = @gy,-1y. In particular, H* = H.

Proof: Note that Ad(g)* = Ad(6(g)~') with the usual inner product on g.
Thus for X, Y € a:

(@n(X)Y) = (pr(Ad(h)X)[Y)
= (Ad(h)X]Y)
= (X|Ad(O(h7))Y)
= (X|prAd(9(h~h)Y)
(X[@gn-1)(Y)).
From this the lemma follows. O

Remark 4.4.4 Theorem 4.3.1 shows that a convex cone ¢ with ¢y, C ¢ C
Cmax 18 Wo-invariant if and only if it is H-invariant. |

Lemma 4.4.5 Let ¢ be an H-invariant cone in a. Then
1) ¢* is H-invariant.

2) If ¢ is closed and regular, then we can choose a cone-generating ele-
ment X° € ¢ so that

Cmin(XO) CcC CmaX(XO).
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Proof: Let X € ¢\ {0}. Let X := [1/#W,) > wew, W X. By Remark 4.4.4,

X € ¢. Since ¢ is proper, we see that X # 0. The Wpy-invariance of X
shows that all @ € Ay vanish on X and hence X € 3(h*). Thus we may
choose a cone-generating element X% € c. Set cpin := cmin(X°) etc. Then
the H-invariance of ¢ shows that

Cmin = PI(Cmin) = pPr (conv [Ad(H,) (R+X0)]) CH-c=c

The regularity of ¢ is equivalent to the regularity of ¢*. But ¢* is H-invariant
by Lemma 4.4.3. Applying what we have already proved to ¢* implies that
Cmin C ¢ hence by duality ¢ C cpax- O

We now turn to the question of which cones in a occur as intersections
I(C) with C € Coneg(q). Recall the extension operators for cones from
Remark 2.1.12. We set E := E%*. Then we have

Ciin(X°) = E(RT X?)

and
P(E(U)) = cone{H(U)}. (4.29)

Theorem 4.4.6 (Extension, Intersection and Projection) Let M =
G/H be a noncompactly causal symmetric space and a a mazimal abelian
subspace of qp. Then for any ¢ € Conew, (a) we have E(c) € Coner(q) and

¢ = P(E(¢) = I(E(c)).

Proof. Tt follows from Lemma 4.4.5 that there exists a cone-generating
element X° € c¢. As Cpin 1= Ciin(X?) is generated by the H-orbit of X° €
Cmin := Cmin(X?) (cf. Lemma 4.2.8), it follows that Crnin C E(Cmin). On the
other hand, ¢pin C Ciin 80 that E(cmin) C Cmin and hence E(¢min) = Chin-
Now Cmax C Cmax (cf. Proposition 4.2.11) implies, F(¢max) C Cmax-

So far we know Ciyin C E(¢) C Cax. But E(c) is generated by Ad(H)c =
Ad(H,)c (cf. Theorem 3.1.18), so E(c) € Coneg(q).

Now let X € cand h € H. Then Lemma 4.4.2, part 3, implies

pr(Ad(h)X)=®p(X)eH- X Cec.

Moreover, P(E(c)) C ¢, since E(c) is generated by Ad(H)c = Ad(H,)c

and ¢ is H-invariant by Remark 4.4.4. But clearly ¢ C E(c), which implies
¢ C P(E(c)). Thus P(E(c)) = c. Finally, ¢ C I(E(c)) C P(E(c)) = ¢
proves I(E(c)) = c. O

Theorem 4.4.7 Let M = G/H be a noncompactly causal symmetric space
and a a mazimal abelian subspace of q,. Then for a closed cone c in a the
following conditions are equivalent:
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1) ¢ is Wy-invariant and cmin C ¢ C Cmax for a suitable chosen minimal
cone.

2) c¢ is regular and H-invariant.
3) There exists a cone C € Coneg(q) such that P(C) = c.

4) There exists a cone C € Coneg(q) such that I(C) = c.

Proof: If 1) holds, then by the convexity theorem 4.3.1, ®,(X) € ¢ for all
h € H, and X € ¢. Thus 2) follows. 3) and 4) follow from 2) by Theorem
4.4.6. If 3) holds, then cyin C I(C) C ¢ C ¢max, which implies 2) and 1).
Similarly, 4) implies 2) and 1). O

The last step in our classification program is to show that H-invariant
regular cones in q are indeed completely determined by their intersections
with any maximal abelian subspace of q,. In order to do this we again
have to use the structure theory provided by the fact that g¢ has Hermitian
simple factors.

Definition 4.4.8 Let M = G/H be a noncompactly causal symmetric
space and Gic/G* be any symmetric space corresponding to (gc,o¢). A cone

C € Conep(q) is called G¢-extendable if there exists a cone C' € Conege (ig®)
such that C' = I!7°(C). O

If C' € Coney(q) is G-extendable, we can find C' € Conege(ig®) such

that C' = Ijgc(C) and —7(C) = C. In fact, if C; € Coneg-(ig®) satisfies
C= I;gc (C1), we simply set C := C1 N (- T(C’l))

We have seen in Theorem 4.2.16 that the minimal and the maximal cones
in q are G°-extendable for any symmetric space G¢/G¢ corresponding to
(gc, 0°). We will see in the next section that this is indeed true for all cones
in Coneg(q). What we need now is a much weaker statement.

Lemma 4.4.9 Let C € Coneg(q). Then E&*%(C) € Coneg: (ig®).

Proof. As Ciin C C for a suitable cone-generating element, it follows that
A gt GO ig®,G°

Cuin = E;* % (Crain) C EF 7 (C).

But Chax is GC-invariant, so C' C Chpax C Crnax implies

ig®,G°¢
EF % (C) C Cuax-

Therefore Eégc’cc (C) is regular. O
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Theorem 4.4.10 Let M = G/H be a noncompactly causal symmetric
space and C € Coney(q). If X € C°, then X is semisimple and ad X has
real eigenvalues and there exists an element h € H, such that Ad(h)X €
1(C°).

Proof. According to Lemma 4.4.9, we know that C C Cimax for a suitable
choice of a cone-generating element X 0, Since X 0 is contained in the in-
teriors of C' and Ciax, we see that C° C Cg .. But then Lemma 4.2.15
shows that there exists an h € H, such that Ad(h)X € anC° = I(C°). O

From Theorem 4.4.10 we immediately obtain the following theorem,

which completes our classification program:

Theorem 4.4.11 (Reconstruction of Cones) Let M = G/H be a non-
compactly causal symmetric space and C € Coneg(q). Then

C° = Ad(H)I(C®)
and
C = B, (13(C°) = Ad(H)I(C?). O

Corollary 4.4.12 Let M = G/H be a noncompactly causal symmetric
space and C' € Coney,(q). Then C € Coney(q).

Proof. According to Theorem 3.1.18, we have
H=H,ZynKk(a)

and Zpnk(a) acts trivially on I(C?). Therefore the claim follows from
Theorem 4.4.11. O

4.5 Extension of Cones

Assume that M is a noncompactly causal symmetric space and G¢ /G any
symmetric space corresponding to (g¢,0¢). The goal of this section is to
show that any C' € Coneg(q) is G°-extendable. We note first that Remark
4.2.14 shows that this is the case if g carries a complex structure, since then
g¢ is Hermitian. So we may assume that G¢/G° is noncompactly causal and
by Corollary 4.4.12 we only have to show G¢-extendability. In particular,
we may assume that G¢ is simply connected and that G° and G are the
analytic subgroups of G¢ with Lie algebras g¢ and g.
Fix a Cartan subalgebra t¢ of £¢ as before and consider

Wo = N (t9) )/ Zxce (),
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where K€ is the analytic subgroup of G¢ corresponding to the Lie algebra
£¢. Then K¢ is compact and W is the Weyl group for the pair (£, t¢). We
choose a cone-generating element X € q, C by, +q, and a positive system
AT for A = A(ge, t°) as in (4.12). Let

CAf):={X €a|Vae A :a(X) >0}

be the corresponding open Weyl chamber in a. Similarly, let C(AJ) be the
chamber in it°. We define C := C(AJ) and C := C(A{).

Remark 4.5.1 Let C’' be the closure of the Weyl chamber in a’ := an
(5%, §%] corresponding to Af. Then C =C ®RX? and C* = (C')* C o,
where (C')* is the dual of ¢’ in o’. If X = X; + X5 € C with X; € ¢’/ and
X, € RX?, then

s(X) =s(X1) + Xo

for all s € Wp. Similar things hold for € and Wo. o

Lemma 4.5.2 1) Let o € Ag be such that al, # 0. Then « is positive
if and only if —7(«) is positive.

2) C= CNa= pr(é), where pr: it — a is the orthogonal projection.
8) C* = pr(C*).

Proof: 1) This follows from (4.12).
2) Obviously ¢ € Cna C pr(C). Thus we only have to show that
pr(C) C C. Let X € C. Then

Let o € Af and choose 3 € Af such that 3|, = a. Then

1

0425(5—7'5)-

Then 1) shows —73 € Af. Thus

a(pr(X))

Il
)
P
N =
>
|
A
>
N

Thus pr(X) € C as claimed.
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3) This follows from 2) and Lemma 2.1.8. O
Consider the following groups (cf. Theorem 4.2.6):

Wo(r) == {weWy|row=wor} (4.30)

Wy = {weWy|wl,=id}. (4.31)

Lemma 4.5.3 The restriction to a induces an exact sequence
{1} — Wo(r) N V~V8 — Wo(r) — Wy — {1}.

Proof: We only have to show that the restriction to a induces a surjec-
tive map WO(T) — Wy. Solet w € Wy and k € Ngnpg(a) be such that
Ad(k)|, = w. Note that Ad(k)(it® N k) is a maximal abelian subspace of
im = 43¢(a). Therefore there exists an h € M, := Zg(a), = Zxnu(a),
such that Ad(h) [Ad(k)(it° Nim)] = t° Nim. But then hk € Ngng(a) N
Ngnp(it° Nim) C Nxnp(it®) and therefore hk corresponds to an element

w of Wo. As w leaves a and a Mim invariant, it commutes with 7. Thus
W € Wo(7). Finally, we note that

w- X =Ad(hk)(X) = Ad(h) Ad(k)(X) = Ad(h)(w- X) =w - X
for X € a, which implies the claim. O

Remark 4.5.4 Let @ € Wo(r) and w = 1@|,. Then we have w o pr, =
pr, ow. O

In view of Remark 4.5.1, the following lemma is a consequence of Lemma
8.3 in [45], p. 459:

Lemma 4.5.5 1) Let X € C. Then

conv(Wo-X) = U w[éﬂ(X—é*)}: ﬂ w(X—C*).

weWy weWo

2) Let X € C. Then

conv(Wo - X) = | J wlcn(X-C)]= () w(X-C). ©
weWy weW

Theorem 4.5.6 Let (g,7) be a noncompactly causal pair, a a mazimal
abelian subspace of qp,, and t° a Cartan subalgebra of € containing ia. Fur-
ther, let Wy and W be the Weyl groups of (g,a) and (£, 1), respectively.
Then pr(conv W -X) = conv(Wy - X) for all X € a, where pr:it® — a is
the orthogonal projection.
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Proof: Set L = conv(Wq-) C it®, L = conv(Wy - X) C a and F = pr(L).
Fix w € Wp. According to Lemma 4.5.3 we can choose a @ € Wq(7) such
that w|, = w. Then Remark 4.5.4 and the Wy-invariance of L imply that

w(F) =w- [pr(L)] = pr(wLl) = F.

Therefore F' is convex and Wy-invariant. As X € F', it follows that L C F'.
To show the converse, we choose w € Wy such that

w(X)eccC.

Choose W € W with W], = w. Using Lemma 4.5.5 and Lemma 4.5.2, part
3), we find }
FcCpr(w(X)—-C")=w(X)-C"

This together with Lemma 4.5.5, part 2), shows
FNCCwX)—-CINC C conv[Wy - w(X)] = conv(Wp - X)
and hence the claim. O

Corollary 4.5.7 Let ¢ be a Wy-invariant cone contained in a. Then ¢ :=
conv{Wy(c)} is a Wo-invariant cone in a with pr(¢) = ¢ = ¢Na.

Proof: We obviously have ¢ C é¢Na C pr(¢). Let X € ¢. Then
pr(conv Wo(X)) = conv Wy - X C ¢
and hence also pr(¢) C c. O

Theorem 4.5.8 (Extension of Cones)  Suppose that M = G/H is a
non-compactly causal symmetric space. Let Gc/G® be any noncompactly
causal symmetric space corresponding to (gc,c¢). If C € Coneg(q), then

1) Eis“CG°(C) € convge(ig®),
2) —7(Es"¢(C)) = E&"¢(C), and
3) B (C) N q = pry (B () = C.
In particular, every cone in Conep(q) is G°-extendable.

Proof: We may assume that g carries no complex structure and all groups
are contained in the simply connected group Gc.

2) is obvious, as —7(C) = C. We prove 1) and 3) together. Fix a
Cartan subalgebra t of £° containing a maximal abelian subspace a of qj.
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Let C € Coneg(q). We may assume that ¢pmin C CNa C ¢pax. Now
we apply Corollary 4.5.7 to find a W-invariant cone & in it® such that
pr(é) = CNa = ¢Na, where pr:it® — a is the orthogonal projection.
Replacing ¢ by ¢ + Cpin if necessary we may assume that ¢pin C ¢ C Cax-
By Theorem 4.4.7 applied to G¢/G€ there is a cone C € convge (ig®) such
that C Nit® = P*°(C) = & In particular, we have C Na = C' Na. Thus
C N g and C are both cones in Coneg, (q), and their intersections with a
agree. Thus Theorem 4.4.11 proves that CNgq = C. Since C is G°-invariant
and contains C, it also contains E%"%*(C). Therefore C' = EI#"%"(C) N q
and then Theorem 4.4.11 implies the claim, since E;E‘C’GC(C) is regular by
Lemma 4.4.9. O

Notes for Chapter 4

The material in this chapter is taken mainly from Chapter 5 in [129]. The relation
between the strongly orthogonal roots in Section 4.1 is from [130]. A more alge-
braic proof of Lemma 4.1.9 can be found in [133]. The convexity theorem in the
group case was proved by Paneitz in [147]. The linear convexity theorem, which
was proved in [129], can also be viewed as an infinitesimal version of the convex-
ity theorem of Neeb [116]. It can be derived from general symplectic convexity
theorems applied to suitable coadjoint orbits (cf. [62]). The proof presented here
is based on the proof of the convexity theorem of Paneitz by Spindler [158]. The
classification for simple groups is due to Ol'shanskii [139], Paneitz [147, 148], and
Vinberg [165]. Their results were generalized to arbitrary Lie groups by Hilgert,
Hofmann, and Lawson in [50]. The extension theorem for invariant cones was
proved in [48] for the classical spaces and in [129] for the general case using the
classification. The idea of the proof given here is due to Neeb [116]. The invariant
cones in the group case have been described quite explicitly by Paneitz in [147]
for the classical groups. Thus Theorem 4.5.8 can also be used to obtain explicit
descriptions in the general case.



Chapter 5

The (Geometry of
Noncompactly Causal
Symmetric Spaces

If M = G¢/G is a causal symmetric space, then G/K is a bounded symmet-
ric domain. It is well known that in this case G/K can be realized via the
Harish-Chandra embedding as a complex symmetric domain in p~, which
in our notation for noncompactly causal symmetric spaces corresponds to
n_. We generalize this embedding to the general case in the first section.
More precisely, we show that if G/H is a noncompactly causal symmetric
space, then H/H N K is a real symmetric domain Q_ in n_ which can
also be realized as an open subset O in a certain minimal flag manifold
X = G/ Ppuax of G. The importance of this observation lies in the fact that
the semigroup S(C) associated to the causal orientation of M = G/H is
essentially equal to the semigroup S(G", Ppax) of compressions of O. This
semigroup consists of all elements in G mapping O C X into itself. We
show that S(C) = (exp C')H is homeomorphic to C' x H. With this infor-
mation at hand, one easily sees that noncompactly causal symmetric spaces
are always ordered and have good control over the geometric structure of
the positive domain M of M which consists of the elements greater than
the base point with respect to the causal ordering. In particular, we prove
that intervals in this order are compact. Finally, we give a proof of Neeb’s
non-linear analog of Theorem 4.3.1 which turns out to be extremely useful
in the harmonic analysis of noncompactly causal symmetric spaces.

120
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5.1 The Bounded Realization of H/H N K

In this section we fix a noncompactly causal symmetric space M = G/H
and assume that G is contained in a simply connected complex group G¢
with Lie algebra gc. Recall the abelian subalgebras ny C g which form
the irreducible pieces of the h*-module ¢ = n_ + ny (cf. Remark 3.1.17
and Lemma 1.3.4) and let Ny = expny be the corresponding analytic
subgroups of G which are automatically closed. Similarly, we have a closed
nilpotent subgroup Ny = expng in G. Since H® centralizes X° € g,, it also
normalizes n+ and Ni. Therefore

Paax = H*N, = H*N (5.1)

defines a maximal parabolic subgroup of G (cf. Appendix A.2 and Lemma
1.3.4).

Consider the involutive anti-automorphism
G -G, gT(g)! (5.2)

and denote its derivative at 1 also by *. From 7%|, = id we obtain the
following.

Lemma 5.1.1 Both Pyin and Pyax are 7%-stable. Furthermore,
0(Prin) = 7(Pmin) = MAN?
and

G(Pmax):T(Pmax):HaNi:HaNf:HaNu. O

Recall the maximal set I" of strongly orthogonal roots in Ay = A(ny, a)
from Remark 4.1.10 and the corresponding maximal abelian subspace aj, =
> er RY7 of hy,. We set

Aj, = expay,. (5.3)

Lemma 5.1.2 Let the notation be as above. Then HP.;, = HPp.x =
G™ Phax = (GT)oPmax and H N Pyax = H N K. Furthermore, H Ppax is
open in G.

Proof. Lemma 3.1.22 implies that
H*=(HNK)MAN,

so H = (exph,)(H N K) (cf. (1.8)) proves the first part.
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Let h € H N Ppax. Write h = kjaks with k; € KN H and a € Af.
From K N H C Pyax it follows that a € H N Pyax. But then 7(a) =a™! €
Prax N Phax = MA. But Af N MA = {1}, which implies that a = 1.

A simple calculation shows that the differential of

G" xAx N> (h,a,n) — han € G

is bijective everywhere. Thus G" AN = G7 Ppax = H Pnax is open in G, cf.
[99]. O

The generalized Bruhat decomposition (cf. [168], p.76) shows that both
N_Poax and NP, i, are open and dense in G and the maps

N_xH*xNy>(n_,g,ny)—n_gny € N_Ppax

and
Nix Mx AxN > (0n1,m,a,ng) — Onimans € G

are diffeomorphisms onto their images.

Example 5.1.3 Recall the situation of the Examples 1.3.12 and 3.1.13,
ie,, G=SL(2,R). Then M = {£1} and

-5 7)
e ={( s

Pmin:Pmax:{<g ail)TER,GER\{O}},

N_Pmaxz{(z Z)’a;«éO}. (5.4)

a b 10 e 0 1 =z
If<c d>_(y 1) (O l/e) (0 1>€Npmax,then

e=a y=c/e and z=b/e. O

Moreover, we have

and

Lemma 5.1.2 implies that the set O = (G7),-0x in the real flag manifold
X = G/ Pmax, where oy := 1Pyax/Pnax, is open. Moreover, we have

H/HﬂK = HPmaX/PmaX:GTPmax/Pmax:
(GT)oPmax/Pmax - (GT)O-OX - O (55)

We will now describe O in more detail using the symmetric SL(2,R)-
reduction from Section 4.1.
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Lemma 5.1.4 H C N_Py.x. Furthermore,

exp Z t, Y7

yel’

= exp Z tanht,Y_, || exp Z logcosht; X7 | [ exp Z tanht,Y,
yer ~yer yer

Proof: The polar decomposition for H gives H = (H N K)A§(H N K).
As HNK C G™ and H N K normalizes N_, we only have to show that
A$ ¢ N_G™. But Example 5.1.3 implies that

exp Z Y7 = exp Z tanht,Y_, exp Z log cosh ¢, X
vel ~er ~v€ET
exp Z tanht,Y,
yel’
This shows that A C N_Pyax and the lemma follows. o

Define a map x : n_ — X by
K(X) = (expX) - Prax - (5.6)

Using H/H N K = HPpax/Pmax C N— Puax/Pmax ~ N_ ~ n_ we see that
Kk is injective and find for h € H:

hPpax = exp(k~ (h(H N K))Prax) Praz-

Let
Q_ =r10O)Cn_. (5.7)
By Lemma 5.1.4 we have the following.

Lemma 5.1.5 Leta=exp). .t Y7 € Af. Then

yel’

K H(aPax) = Z tanht¢,Y_,. O
yel’

Lemma 5.1.6 Let h€ H and X € Q_. Then h- X = Ad(h)X.

Proof : Let X € Q_ and h € H. Then hexp X = [exp Ad(h)X]h and the
claim follows from Ad(h)X € n_. O
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Lemma 5.1.7 Let Y € n_. Then there exists a k € K N H, such that
Ad(k)Y € 25:1 RY_,

Proof: 7= —0 onn_ (cf. Lemma 4.1.1) implies that Y 4+ 7(Y) € b,,. Hence
there exists a k € K N H, such that

Ad(R)Y +7(V)] = (Y +Y,) € ap.
~el’
But then Ad(k)Y =3 pt,Y_, and the claim follows. O

Theorem 5.1.8 Let the notation be as above. Then
Q- =AdKNH){Y yVoy|—1<y,<1,7€T
~el’

Proof: Let h = kiaks € H with kj € KN H and a =exp)_ pt,Y7 € Aj.
Then

“YHNK)) = Ad(k)s epotY o)

d(ky) Ztanhth_W €.
yel

On the other hand let X = Ad(k) > cpy,Y—y be in Q_ and t, =
arctanh(y,). Then

K(X) = kepot Y7 | Prax -
~el’

This proves the theorem. O

Remark 5.1.9 As 7 interchanges N_ and N in such a way that 7(Y_,) =
Y, and Y7 € b, we see that for Q. := 7(Q) C ny we have

H7(Praz)/T(Pmaz) ~ AdK VH) Y "y, V| = 1<y, <1, y€l p =0,

yel’
O

Example 5.1.10 Let G be a Hermitian Lie group, i.e., G is semisimple
and G/K is a bounded symmetric domain. Then G¢/G is a noncompactly
causal symmetric space. In this case a = it, where t C £ is a Cartan
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subalgebra of £ and of g. Furthermore, A} = A,, is the set of noncompact
roots, Ag = Ay the set of compact roots, and ny = p* in the notation of
Appendix A.4. Hence the above result states that G € P~ K¢ Pt and G/K
can be realized as an bounded symmetric domain in p~. In other words,
Theorem 5.1.8 is a generalization of the Borel-Harish-Chandra realization
of Hermitian symmetric spaces as bounded domains in p~. O

Let o and n be the involutions on G¢ with fixed point groups G and G°
(cf. Section 1.1). Then G°/K°€ is a bounded symmetric domain. We want
to relate Q_ and O to the Borel-Harish-Chandra realization of G¢/K*°.

Recall that g¢ = h + iq is a Hermitian Lie algebra. Moreover, let t¢ =
t,, +ia be a compactly embedded Cartan algebra in g¢ and £ = b + iq,
the uniquely determined maximal compactly embedded subalgebra of g¢
containing t¢ (cf. [50], Theorem A.2.40, and Section 4.1). As before, we
write A = A(gc, t¢) for the corresponding set of roots. Then Ay denotes
the roots of €& which we call compact and Ay the corresponding set of
noncompact roots. The Cartan decomposition of g¢ with respect to 6o is

g¢ = £°+p°© with p¢ = h,+iqx. Note that (¢)c = (h*)c and (p°)c = Z 9g.
aEAp
For
()= > gt
aeﬁpi
we have

(pmaX)C = (EC)C + (pc)(—ci_ .

The theory of Hermitian symmetric spaces (cf. Appendix A.4) says that
G°/K¢ embeds as an open G¢orbit O¢ into the complex flag manifold
Xc = G¢/(Pmax)c and then as a bounded symmetric domain (2_)¢ in
(b (and (24 )c in (5)°).

The complex parabolic (Ppax)c is stable under the conjugation o. Hence
o yields a complex conjugation on G¢/(Pmax)c which we still denote by o.
We write (Gc/(Pmax)C)a for the set of o-fixed points.

Lemma 5.1.11 X7 = X

Proof: (N_)c.ox is open dense in X¢ and invariant under o. If z € &g,
then there exists a sequence of n; € (N_)c such that nj.ox converges
to z. But then o(n;).0x converges to z as well, whence njo(n;) '.ox
converges to ox. Thus n;o(n;)~! converges to 1 in (N_)c. Now, the fact
that (IV_)c is a vector group shows that the imaginary part of n; converges
to zero (identifying (n_)c and (N_)c) and we can replace n; by its real

part without changing the limit. This proves x € X and hence the claim.O
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Lemma 5.1.12 1) OcnNX = 0.
2) (Q_)(c Nn_=0_.

Proof: 1) Let g € G° with o(g.0) = g.0. Since K¢ C (Ppax)c, we may
w.l.o.g. assume that ¢ = exp X with X € p°. Then the hypothesis implies
that exp (0(X)) € exp(X)K®, so that the Cartan decomposition of G¢
yields that o(X) = X. Therefore X € b, and consequently g € G".

2) follows immediately from 1). O

Example 5.1.13 We continue the SL(2, R)-Example 5.1.3. In that context
we have Xz = CP! and X = RP!. Under the Harish-Chandra embedding

we find
oczm_)c:{(g 8)

o {(11)
The action of G¢ on () is given by

(¢ a) (2 0)- (s o) :
5.2 The Semigroup S(C)

If G is an arbitrary Lie group, then the differential of the exponential map
at the point X € g is given by

|z| < 1,z€(C}

|r|<1,z€R}.

1—e~ ad X
dX exp = (dlgcpr) W = (dlécpr) f(ad X)
where f(t) = Y07 ,(=1)"t"/(n + 1)! and £4: G — G denotes left multi-

plication by g. We derive similar formulas for arbitary symmetric spaces
G/H. Define

_ h X 12n-—1

fult) = 2 t=—2t(2n)! (5.8)
sinht = t2"

fo®) = — :;7(271”)!. (5.9)

Lemma 5.2.1 1) The functions f, and f, are analytic in the complex
plane.
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2) f 1(0) = 2miZ\ {0}.
3) f;1(0) = miZ\ {0}.
4) f=TIn+fq O
Lemma 5.2.2 Let the notation be as above and X,Y € q. Then
f(ad X)Y = fr(ad X)Y + f,(ad X)Y
and fr(ad X)Y € b, f,(ad X)Y € q.

Proof. This follows immediately from Lemma 5.2.1 and ad(X)*q C b if k
is odd and ad(X)*q C q if k is even. O

Lemma 5.2.3 Define ¢ : qx H — G by o(X,h) = (exp X )h. Then for all
X, Yeq, Zebh, and h € H the following holds:

dix mye(Y. Z) = [Z + Ad(h™")(fa(ad X)Y)] + Ad(h™") [fo(ad X)Y] .
Here we identify Tp, H with b and T,G with g via the left multiplication.

Proof: Tt is clear that d(x ,)¢(0,Z) = Z. Let F € C*(G). Let a(h,X) :=
exp Xh[exp(— Ad(h~1)X]. Then

%F(exp(X +tY)h)i=o = %F(exp Xh[h™" exp(—X) exp(X + tY)h])i=o
= %F(a(m X)exp(Ad(h™ )X +t Ad(h™")Y))i=o
from which the lemma follows. O

If we identify T, (M) with g, then the exponential map Exp : ¢ — G/H
is given by Exp X = (exp X)H = n(p(X,1)), where 7 : G — M is the
canonical projection. Identify T'x(q) with the vector space q in the usual
way. Then, using that d1¢, : T'G — T,G is an isomorphism, we have

dx Exp = dilexp x 0 fy(ad X), X €q. (5.10)

Hence Exp is a local diffeomorphism for all X such that spec(ad X)N(miZ\
{0}) = 0. We will actually need more than this. Define for A > 0

UN) = {Xeq] #esgﬁié{dx) [Im p| < A} (5.11)
V(A) = Exp(U)) (5.12)
W) = {exp(X)h|X €U\, he H} =7 YV(\) (5.13)

Let H act on V(A) x H by h- (X, k) = (Ad(h)X, hkh™1).
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Lemma 5.2.4 Let the notation be as above. Then the following hold:
1) U(N) is an open H -invariant 0-neighborhood in q.

2) If X < %, then W(X) is an open H-invariant 1-neighborhood in G and
©: V(A) x H— W(X) is an H-equivariant diffeomorphism, where H
acts on G by conjugation.

8) If X < %, then V() is an open H-invariant o-neighborhood in M
and Exp : U(A\) = V() is an H-equivariant diffeomorphism.

Proof: The first part is obvious. To prove 2) assume that A < 5. We first
show that ¢ is a local diffeomorphism. This will imply that W () is open.
By Lemma 5.2.3 we have

dix (Y, Z) = [Z + Ad(h ) (fn(ad X)Y)] + Ad(h™")[fy(ad X)Y] .
If d(X,h)‘P(K Z) = 0, then
Z+Adh ) (fr(ad X)Y)) =0 and Ad(h™")(f,(ad X)Y) =0

according to Lemma 5.2.2. But then ¥ = 0 as g4(ad X) : ¢ — q is an
isomorphism for X € U(A). Therefore Z = 0, too and it follows that
d(x,nyp is an isomorphism. Thus — by the implicit function theorem — ¢
is a local diffeomorphism. Now we only have to show that ¢ is injective.
Assume that

g=exp(X)h=exp(Y)k, X, Y eU(\), h ke H.

Then g7(g9) ! = exp2X = exp2Y. By [163], p. 193, it follows that X =Y.
But then also h = k. The H-equivariance follows from

©(Ad(k)X, khk ™) = exp(Ad(k) X)khk ™" = ko(X, h)k~".

3) As dx Exp is a local diffeomorphism for X € U()), we only have to
show that Exp is bijective. Assume that Exp(X) = Exp(Y) for X,Y €
U(M). Then exp X = (expY)h for some h € H. By (2) this shows that
X=Y. O

Theorem V.4.57 in [50] says

Theorem 5.2.5 Let G/H be a symmetric space. Let C C q be a reqular
H -invariant cone in q such that specad(X) C R for all X € C. If (expC)H
is closed in G, then S(C) := (exp C)H is a semigroup in G with L(S(C)) =
C+0h. 0
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From now on we will always assume that M is a noncompactly causal
irreducible semisimple symmetric space.

Theorem 5.2.6 Let M = G/H be a noncompactly causal semisimple sym-
metric space. Let C € Coneg(q). Define

S=85(C)=(expC)H = p(C, H) . (5.14)
Then S is a closed semigroup in G. Furthermore, the following hold:
1) SnS~t=H.
2) Cx H> (X,h) = exp(X)h €S is a homeomorphism.

3) S° = exp(C°)H and C° x H > (X,h) — exp(X)h € 5° is a diffeo-
morphism.

4) S=H(SNAH.

Proof As C C U(A) for all A > 0, 2) and 3) follow from Lemma 5.2.4.
Assume that s = exp(X)h € SN S™L. Then s7! = (expY)k for some
Y € C and k € H. Hence

(expY)k = h™texp(—X) = exp(— Ad(h" ) X)h™?

As — Ad(h™1)X € U(N), it follows that Y = — Ad(h™1)X € Cn—C = {0}.
Hence Y =0 and s € H. This implies 1).
As C x H is closed in U(A), it follows that (expC)S is closed. Now
Theorem 5.2.5 shows that S(C) is a semigroup.
The last assertion now follows from the reconstruction theorem 4.4.11.
a

The cone C' defines a G-invariant topological causal orientation < on
M. From Theorem 2.3.3 we obtain

Theorem 5.2.7 Let M be a noncompactly causal symmetric space, C' €
Coneg(q) and < the corresponding causal orientation on M. Then < is
antisymmetric and

S(C)={seG|o=<s-o0},
i.e., S(C) is the causal semigroup of M. O
In particular, Theorem 5.2.7 shows that = and the order <g () defined
in Section 2.3 agree (cf. Remark 2.3.2), so that the positive cone is simply

the S(C)-orbit of o:
My =5(C)-o. (5.15)

We conclude this section with the observation that one can view the
noncompactly causal space M as a subspace of G¢/G (cf. Section 1.1).
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Proposition 5.2.8 A/ := GC/G'c is a causal symmetric space and the
canonical map

T M—N, g(GENGE)— gG°

is a G-equivariant homeomorphism onto its (closed) image and preserves
the causal orientation.

Proof: Tt follows directly from the definitions that the map is well defined,
G-equivariant, and injective. Let C' € Coneg(q) and C be the minimal
G°-invariant extension to ig®, cf. Section 4.5. As C' is H-stable, it follows
that C is in Conege (ig°). In particular, N is causal and 7 is a causal map.
Theorem 5.2.6 implies that M and NV, is homeomorphic to C, respectively
C. But then homogeneity and G-equivariance show that 7 is a proper map.
In particular, it is closed, which implies the claim. O

5.3 The Causal Intervals

In this section we will show that the causal intervals [z,y], ,y € M are
compact. Fix = and choose g € G such that g-z = o. Since ¢, : M — M
is an order-preserving diffeomorphism, it follows that

ly([2,y]) = 0,9yl

and [z, y] is compact if and only if [0, g-y] is compact. Thus we may assume
that £ = o and y € [0,00) = S(C) - 0.

Let A < Z; then Exp : U(X\) — V() is a diffeomorphism. In particular,
we may define Log : V(X) — U(A) to be the inverse of Exp.

Theorem 5.3.1 Log : [0,00) — C' is order-preserving.

We prove this theorem in several steps. Consider the function

xT

plz) = sinhz

Then ¢ = 1/ f,, with f, as in (5.9).

Lemma 5.3.2 Let ¢ be as above. Then

T [ 1
)= — et —nos
#(z) 4 /_oo cosh? (my/2) Y

In particular, ¢ is positive definite.



5.3. THE CAUSAL INTERVALS 131

Proof. Tt is well known that

> sinyzx
tanh 7y = ———dx.
ARty /0 sinh(z/2) *

As sinh is an odd function, the integral on the right-hand side equals
1 [ . 1
— Y dz.
2i /_Ooe sinh(z/2) "

Differentiating with respect to y gives

77T2 = 1/OO e”yix dx
cosh®(my) 2 sinh(z/2)

— 00

Taking the inverse Fourier transforms now yields:

L w/oo e_”yil d
sinh(x/2) oo COShQ(Fy) v

Finally, we replace x by 2x to obtain

s /OO 67”971 d O
sinhx 4 J_o cosh? (my/2) v
Lemma 5.3.3 Let C € Coneg(q). Then

ad X
sinh X

ccc

for every X € C.

Proof: Let X and C be as in the lemma. We may assume that X € C°
as ¢ is continuous. Then ad X has only real eigenvalues. Let G¢ be the
complex Lie group generated by exp(ad X), X € gc¢. Further, let G¢ be the
closed subgroup of G¢ generated by exp(ad X), X € g¢ = h @ iq. Consider
the minimal extension D of C to a G-invariant cone in ig¢ = ih @ q (cf.
Section 4.5). Then DNq=pr, D =C. AsiX € g°, it follows that

X0 c p

for all y € R. But 1/ cosh?((7y)/2) > 0 for all y € R, so

. 1
iy ad X C D
N cosh(my/2) <
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for all y € R and Lemma 5.3.2 shows that p(ad X)C' C D. But obviously
p(ad X)C C g. Hence

pladX)CcDng=Dnqg=C,

which proves the lemma. O

Proof of Theorem 5.8.1 : We have to show that dgxp x Log(Crxp x) C C
for all X € C. Using (5.10) we calculate

(dx Exp) ™!
(dlécpr o fq(adX))il
= <P(adX) o (dlécpr)71 .

dExp X LOg

The claim now follows from Lemma 5.3.3, since Crxp x = dilexp x(C). O

Definition 5.3.4 Let G/H be an ordered symmetric space. Then G/H is
called globally hyperbolic if all the intervals [m, n], m,n € G/H are compact.
a

Theorem 5.3.5 Let M be a noncompactly causal symmetric space. Then
M is globally hyperbolic.

Proof: Let v : [0,a] — M be a causal curve with v(0) = o. By Theorem
5.3.1, Logo~y is a causal curve in q with Logovy(0) = 0. In particular,
Log(y(t)) € CN[C — Log(y(a))] for all t € [0,a]. It follows that

Log([o,Exp X]) c C N (C — X),

As C'N (C — X) is compact and Log is a homeomorphism, it follows that
[0, Exp X] is compact. O

5.4 Compression Semigroups

In this section we show how closely related the semigroups of type S(C)
are to the semigroup of self-maps of the open domain O in X. Recall that
we assumed G to be contained in a simply connected complexification G¢.

Lemma 5.4.1 Let I, C FF C M be a set of representatives for (HOﬂF)\F.
Then the group multiplication gives a diffeomorphism

H,x Fr x AXx N — H,Ppax
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Proof. Lemma 3.1.22 implies that multiplication gives a diffeomorphism
H,xF, — G7, since F is a finite subgroup of G™ normalizing H,. According
to Lemma 5.1.2 we have

G"NAN C KN AN = {1},

This shows that the map is injective. The surjectivity is also a consequence
of Lemma 5.1.2. Finally, we recall that the bijectivity of the differential has
already been observed in the proof of Lemma 5.1.2. O

Recall the cones ¢max, émax, and Cumax from (4.21), (4.23), and (4.25).
We know that 3 ‘
Cmax = Ad(Gc)émax = Eég{i? (Emax)
is a closed convex GC-invariant cone in ig® whose intersection with and
projection to @ is émax (cf. Theorem 4.4.6). One associates the Ol’shanskii
semigroup 5 5

S(Omax) = GC exp(cmax) (516)

with Chax and observes that it is closed and maximal in Gc (cf. [52],
Corollaries 7.36 and 8.53).

Definition 5.4.2 Let X be a locally compact space on which a locally
compact group G acts continuously. Further, let O be a nonempty subset
of X. Then S(O) is defined by

S(0):={geGlg-OcCO}. O

From this definition and Proposition C.0.8 we immediately obtain the
following.

Lemma 5.4.3 S(O) is a subsemigroup of G. If G acts transitively on X,
then the interior S(O)° of S(O) is given by

S(0)° ={geG|g-OcCO}. O

Recall the special situation from Section 5.1. If g € S(O) and X € Q_,
then we define g - X by

g-X =k (gr(X)). (5.17)

This turns & into a S(O)-equivariant map. We note that H C S(O).
For any group G and any pair of closed subgroups L, Q of G we write

S(L,Q) :={g€G:gL C LQ} ={g € G:gLQ C LQ} = S(LQ/Q)
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and called it the compression semigroup in G of the L-orbit in G/Q. Then

it follows from [52], Proposition 8.45, that S(Cpax) coincides with the sub-
semigroup S(G¢, B), where B is the Borel subgroup belonging to hc and
A*. Tt is important for the cases we are interested in to observe that [52],
Lemma 8.41, implies S(G¢,B) = S(G°, (Pmax)c) (this also follows from
Lemma 5.1.2 applied to G¢/G€). Thus we have S’(C’max) = S’(Gc, (Pmax)(C)-

Lemma 5.4.4 Fiz any parabolic subgroup Q between P, and Ppax. Then
S(GTu Q) = S(Hm Q) = S(Hou Pmin) = S(GT7 Pmin)'

Proof: This follows from Lemma 3.1.22, Lemma 5.1.2, and the observation
that
S(G", Pmin) C S(G",Q) C S(G™, Pmax)
as well as the corresponding relation for H,. O
Consider Ciax = Crax N q and S(Crax) = H exp(Crnax)-

Remark 5.4.5 The cone Ci.y is G™-invariant because
G"=GENGE=GENGE =GE NG = (G’

and C'max is G¢-invariant. Note also that

G n S(émax) = G% N S(Cmax)
(G°)7 exp(Cmax)
= G exp(Chax) = FS(Crmax)-

This is sometimes helpful to reduce questions concerning the semigroups

H exp(Ciax) to similar problems for S(Ciyax). O
The closed subsemigroup S(Ciax) is called the real mazimal Ol’shanskii

semigroup.

Lemma 5.4.6 S(Chpax) C S(G", Prax)-

Proof: Let g € S(Ciax) and x € O =G -0y C X C Xc. Then

S(Cmax) C S( ~m&x) = S(Gca (Pmax)(C)
implies

gox €EG-oxNAE =0=G" -ox
(Lemma 5.1.11 and Lemma 5.1.12). This shows that

S(Cinax) = G N S(Crnax) € S(G7, Paay) - O
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Theorem 5.4.7 1) S(C) C HAN N N¥AH.
2) S(C) = H(S(C)NAN) = (S(C) N N*A).
3) GTexp(C)N AN = S(C)N AN = S(C), N AN s connected.

Proof: 1) Lemma 5.4.6 shows that S(C) C H Pyax. In particular, we have
S(C)o C (HPumax)o, which is equal to (G™),AN = H,AN by Lemma 5.4.1.
But then S(C) = HS(C), C HAN. Since S(C) = 7(S(C)~1) we also have
S(C) c 7(N)AH.

2) This follows from 1) in view of H C S(C).

3) Since H, C S(C),, Lemma 5.4.1 shows that S(C), NAN is connected.
Now the claim follows from G7 exp(C) = G"S(C),, S(C) = HS(C),, and
GTN AN = {1}. O

Theorem 5.4.8 1) S(Cmax) N B* is a generating Lie semigroup in B*
with the pointed generating tangent cone

L(S(Cmax) N Bﬁ) = (Cmax + h) N (nﬁ + Cl) D) Cmax-

2) S(Cmax) N B C N*exp(cmax)-

Proof 1) Let Gy := N*A x H act on G by (t,h) - g = tgh~'. Then the
orbit of 1 is the open subset N*AH of G. Moreover, the stabilizer of 1 is
trivial. We define the field © of cones on NYAH by

@(g) = dl)\g(omax + b) Vg S NﬁAH,

where )\, : G — G, x — gx denotes left multiplication by g.
We claim that © is invariant under the action of Gy, i.e., that

dipie,ny©(1) = O(th™1),
where fu p) : NY*AH — N*AH, g — tgh~'. To see this, we first note that
[(t,n) = At © pp—1 = Agp-1 0 I,
where Ij, : g — hgh™!. Therefore
e, (1)O(1) = dAip-1 (1) Ad(7) (Cinax +b) = O(th ™)

is a consequence of Ad(H)(Cpax +H) = Cmax + b.

The semigroup S(Chax)o is the set of all points in N*AH, for which
there exists a ©(1)-causal curve. Since this set is closed, the inverse image
of S(Ciax)o under the orbit mapping

®:Gy — G, (t,h)—th™?
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is a Lie semigroup whose tangent wedge agrees with
d®~" (1) (O(1)) = d®~(1)(Cimax + b) = b + (Cimax + b) N (a + n¥)

([114], p. 471).
We know that S(Ciax)o = (S(Cmax) N B*)H, and therefore

®71(S(Omax)o) = (S(Omax)o N Bﬁ) X Ho

is a Lie semigroup. We conclude with Theorem 5.4.7 that S(Cpax N B*) =
S(Crmax)o N BY is a Lie semigroup with L(S(Ciax N B*)) = L(S(Ciax)) N
(a+n) = (Cmax + h) N (a+ n).

2) The mapping p: B* — A, nfa ~ a is a group homomorphism because
N* is a normal subgroup of Bf. Therefore p(S(Ciax) N BY) is a subsemi-
group of A which is contained in the Lie semigroup generated by

V= dp(1)L(S(Cmax) N BY) = [(Cmax + ) N (a+0f) + 0] Na
= (Cumax +bh+n¥)Na.

This cone is the projection of Ciax along b+ n? onto a. Let w € Crax C q.
Then there exists X € a and Y € nf such that w = X +Y — 7(Y). Hence

weX+2Y —[r(Y)+Y] € X +nf +h.

Therefore V' is the orthogonal projection of Cpax in a. Thus V = an
Cimax = Cmax and hence p(S(Ciax) N B*) = exp(cmax). Consequently, we
find S(Crmax) N B C N exp(cmax)- O

Lemma 5.4.9 S(G", Ppax) NexXpa = exp Cmax-

Proof: The inclusion exp ¢max C S(GT, Pmax) is clear. To show the converse
direction, we let X € a\ ¢max- Then there exists an @ € Ay such that
a(X) < 0. Consider the subalgebra s, = pq(sl(2,R)) described in (4.8).
Then exp(RY®) C (G7),, and it suffices to show that exp(X) exp(RY ) - o
cannot be contained in O.

Lemma 5.4.1 shows that the map

ag:GTAN = G7 Pypax — a, han — log(a) (5.18)

is well defined and analytic. We call it the causal Iwasawa projection.
When we restrict this map to the group generated by exp(s,), a simple
SL(2,R)-calculation shows that

1
ar (exp(tX*) exp(sY®) = |t + S log(L+ (1 —e_2t)sinh2(§)) X,
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Now choose X' := X — t,X®, where t, = a(X). Then X’ commutes with
5. and hence we calculate
ap (exp(X)exp(sY?)) = anm (exp(toXa) exp(sYa) exp(X'))
= an (exp(toX*)exp(sY®)) + X’

2to _ 1) sinh?(2
— X’+{to+%log(1+(e ) sin (2))])(0‘.

e2to

But this function in the parameter s is not extendable to all of R so that
exp(X) exp(sY®) - o cannot be contained in O for all s € R. O

So far we know that the semigroup S(G7, Ppax) contains the Ol’shanskii
semigroup S(Chax) and that the intersection of A with S(G7, Ppax) is not
bigger than the intersection with the Ol’shanskii semigroup. The remainder
of this section will be devoted to the proof of the equality S(G7, Pnax) =
S(Crn)-

We start with a description of the open H-orbits in the flag manifolds
G/Pmin'

Lemma 5.4.10 Let o/,a” C p be T-invariant mazimal abelian subspaces
such that a’ N qp and a” N q, are mazimal abelian in q,. Then there exists

ke (K7), such that Ad(k)a’ = a”.

Proof: (cf. also Lemma 7 in [99], p. 341.) Since the maximal abelian sub-
spaces of q, are conjugate under K ([44], p.247), we even may assume that
a' Ngp=a’"Ngp.

Set g° := 3,(a”). We consider the symmetric Lie algebra (g%, 7) which is
invariant under 6 and therefore reductive ([168], Corollary 1.1.5.4). Then
g°N g, =a” is central in g° and o’ = (a” Nq,) ® (' Nh,). Hence a’ N, C
g% N b, is maximal abelian in h, N g°. The same holds for a’ Nh C h, N g°.
The pair (hNg°, 6) is Riemannian symmetric, hence a” Nk, and a’ Nk, are
conjugate under exp(hrNg®) ([44], p.247). We conclude that a’ is conjugate
to a” under (K7),. O

Note that H-orbits in G/Pyn correspond to H-conjugacy classes of
minimal parabolic subalgebras of g. According to [99], p. 331, each minimal
parabolic subalgebra of g is (G7),-conjugate to one of the form m 4+ a+n
for some 7-invariant maximal abelian subspace a of p and some positive
system in A(g,a). Let aj,as,...,as be a set of representatives of the K™
conjugacy classes of maximal abelian T-invariant subspaces of p. [99], §3,
Proposition 1 (cf. also [156], Proposition 7.1.8), among other things, says:

Lemma 5.4.11 Let A;L be a positive system for A; = A(g,a;). Denote
the corresponding minimal parabolic subalgebra by p(a;, A;‘) Then the H -
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conjugacy class of p(aj, Aj) corresponds to an open H-orbit in G/Puin if
and only if the following conditions are satisfied:

1) a; Nq is mazimal abelian in q,.
2) A;f 1s q-compatible, i.e., the set A;’ \ (a; N q)* is —T-invariant. O

We call a 7-invariant maximal abelian subspace @’ of p a g-mazimal
subspace if a’ N q is maximal abelian in q, (cf. [156], p. 118). Note that
according to Lemma 5.4.10, g-maximal maximal abelian subspaces of p
are conjugate under (K7),. This shows that only one of the a; can be
g-maximal; i.e., condition 1) can be satisfied only by one of the a;.

The part of [99], §3, Proposition 1 we have not yet stated here concerns
the number of open H-orbits. For a fixed 7-invariant maximal abelian
subspace a of p we consider the Weyl groups

W(a) = Nk(a)/Zk(a),
Wr(a) = {seW(a)[s(anh)=anh},
W()(CL) = NKQH(a)/ZKﬂH(a).

Then
Wo(a) C Wo(a) C W(a),

and [99], §3, Proposition 1 says that the number of open H-orbits in G/ Ppin
is the number of cosets in W (a)/Wy(a).

Remark 5.4.12 Let a be a 7-invariant g-maximal abelian subspace of p
and AT a positive system for A(g, a). Then A7 is g-compatible if and only
tlang # 0 implies —7(u) € AT for all p € AT (cf. [156], p. 120, and [99],
p. 355). O

Lemma 5.4.13 1) Let a be a T-invariant q-mazimal abelian subspace of
p and AT, AT two q-compatible positive systems for A(g, a). Then the
corresponding minimal parabolic subalgebras belong to the same open
H-orbit if and only if there exists a s € Wy(a) such that s- AT = AF.

2) Let a be a T-invariant q-mazximal abelian subspace of p. Assume that
AT(g,a) is q-compatible. Then the open H-orbits in G/P are pre-
cisely the H$Puyin/Pmin with s € W.(a). The orbits Hs1Puin/Pmin
and H$9Pyin/Pmin agree if and only if there exists an s € Wy(a)
with ss1 = so. In particular, HgPuin/Pmin i open if and only if
g € HW.(a)Pnin. The union of open H-orbits is dense in G/Ppin.
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Proof: 1) The Weyl group W, (a) acts simply transitively on the set of
g-compatible positive systems (cf. [156], Proposition 7.1.7]). Clearly, two
g-compatible positive systems belong to the same H-orbit if they are conju-
gate under Wy(a). Now the formula for the number of open orbits implies
the claim.

2) Only the last claim remains to be shown. But that follows from the
fact that there are only finitely many H-orbits (cf. [99], Theorem 3, and
[52], Proposition 8.10(ii)), since each orbit is an immersed manifold. O

Lemma 5.4.14 If P, C Py are parabolic subgroups of G, F; = G/P; the
corresponding flag manifolds, x; € F;, and m: F1 — Fo the natural projec-
tion, then the following assertions hold:

1) If H - x1 is open in F1, then n(H - x1) = H - w(x1) is open in Fo.

2) If H - x5 is open in Fa, then 7= (H - x3) contains an open H-orbit in
Fi.

Proof: 1) follows from the fact that 7 is open and G-equivariant.

2) 7~ 1(H - z3) is open by continuity. Suppose for a moment that P is
a minimal parabolic. Then Lemma 5.4.13.2) says that the union of open
H-orbits is dense in F; and therefore 71 (H -z) intersects, hence contains,
an open H-orbit. If we now apply 1), this argument shows that for any flag
manifold the union of the open H-orbits is dense, and we can prove our
claim for arbitrary P;. O

Lemma 5.4.15 Let P’ be an arbitrary parabolic, x € G/P’, and P, the
stabilizer of x in G. Then the following statements are equivalent:

1) H -z is open in G/P’.

2) There exist a q-mazimal mazimal abelian subspace ay of p and a q-
compatible positive system AEL of A(g, ay) such that P, is H-conjugate

to a standard parabolic associated to AEL.

Proof: In the case where P’ is a minimal parabolic, our claim is just Propo-
sition 5.4.11.

“1) = 2)”: For the general case recall that G/P’ can be identified with
the set of parabolic subgroups of G conjugate to P’ and the natural pro-
jection m: G/ Ppin — G/P’ maps a conjugate gPming ' of Puin to gP'g~ 1.
Identifying = and P!, one has that 7~!(z) consists of all minimal parabol-
ics contained in P,. Lemma 5.4.14 says that there is one such minimal
parabolic P; that lies in an open H-orbit. But then Proposition 5.4.11
shows that py is of the form p(ay, A;r) for suitable a; and AEL, and thus P,
must have the right form since it contains P;.
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“2) = 1)”: For the converse we invoke Lemma 5.4.14.1) to see that the
H-orbits of the parabolic group associated to a g-compatible system A;
are always open. O

Lemma 5.4.16 Recall the flag manifold X := G/ Ppax with base point ox.
Then the following assertions hold:

1) The open orbit H - ox is contained in the open Bruhat cell N_ - oyx.
2) Every other open H-orbit is not entirely contained in N_ - oyx.
3) H-oy is the largest open subset of the open cell which is H-invariant.

Proof: 1) This is a consequence of Lemma 5.1.12.

2) Let y € X and suppose that the H-orbit of y is open and different
from the H-orbit of the base point. Then it follows from Proposition 5.4.15
that there exists a point in this H-orbit which is fixed by the subgroup A.
Since the base point is the only A-fixed point in the open Bruhat—cell, we
conclude that H -y cannot be contained in the open cell.

3) Since the set of all elements in X whose H-orbit is open is dense ([52],
Proposition 8.10(ii)), this follows from the fact that H - oy is the interior
of its closure. a

Lemma 5.4.17 The following assertions hold:

1) HPpax = exp(Q_)H N, is the largest open H-left-invariant subset
of N_.HN, = N_ P

2) There exists an open bounded subset Q0 C ny such that P, H =
N_H%exp(€y). This set is the largest open H -right-invariant subset
of N_H*Ny,.

3) Every H-biinvariant open subset of N_ H* N is contained in the open
set exp(Q_)H® exp(Q4).

Proof: 1) Lemma 5.1.12 shows H Pax = exp(Q_)H*N; and H°N; = Ppax
follows from Lemma 3.1.22. Now the claim follows from Lemma 5.4.16.3).
2) This follows from 1) by applying the automorphism 7.
3) This is a consequence of 1) and 2). O

Lemma 5.4.18 S(G", Pyax)® is the largest open H-biinvariant subset of
N_H"N,.

Proof: Tt follows from Lemma 5.4.16.1) that S(G7, Pnax) C HPpax C
N_H®N,. Moreover, for every s € S(G", Ppax) the double coset HsH
is contained in S(GT7, Ppax) and therefore in N_H*Ny. This shows that
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S(GT, Pnax)? is an open H-biinvariant subset of N_H*N,. Now suppose
that E C N_H®N, is an open H-biinvariant set. Then we first use Lemma
5.4.17 to see that

EH C E C exp(Q_)H®exp(Q24) C exp(Q-)Pmax = H Pnax-

It follows in particular that E C S(G7, Ppax). Thus S(G7, Ppax) is the
unique maximal open H-biinvariant subset of N_ H* N, . O

Corollary 5.4.19 S(G7, Puax) is invariant under the involution s — st.

Proof: This is a consequence of Lemma 5.4.18 because the set N_H*N
is invariant under this involution and therefore the same is true for the
maximal H-biinvariant subset of this set. O

Theorem 5.4.20 Let M = G/H be a noncompactly causal symmetric
space and T the corresponding involution on G. Assume that G embeds
imto a simply connected complex group Gc and let QQ be a parabolic sub-
group between Py, and Ppax = H*N,. Then

S(Hv Q) =G" eXp(Cmax) = S(GT; Pmax)-

Proof. 1t follows from Lemmas 5.1.2 and 5.4.4 that we may w.l.o.g. assume
that Q = Pnax and that H = G7. First we apply Theorem 1.4.2 to obtain
further information on the semigroup S(G7, Pmax). Recall the notation
from Section 1.4 and let a, C q be a §-invariant A-subspace. Suppose that
7 AL N S(GT, Puax)® # 0. In view of Corollary 5.4.19, the semigroup
S(GT, Pyax) is invariant under the mapping 7 and therefore we find s €
S9N Aj. Next we recall that A, = (A4, N K)AP, where AL := exp(a, N dp).
We consider the semigroup Sa := S(G", Puax)? N A4. Then the semigroup
SaAD /AP is an open subsemigroup of a compact group, so that it must
contain the identity element (cf. [52], Corollary 1.21). We conclude that
Sa intersects the subgroup AP. This subgroup is conjugate to a subgroup
of A (Lemma 5.4.10). Suppose that A; N K is nontrivial. Then a, Np
is not maximal abelian in q, and the description of the Wy(a)-conjugacy
classes of A-subspaces given in [143], p. 413 shows that the conjugate of
AP in A lies in the exponential image of the set (J,. N ker . It follows
that this set contains interior points of S(G7, Ppnax). On the other hand,
we know already that S(G7, Ppax) N A = exp(¢max) (Lemma 5.4.9). This
is a contradiction because every element in cpyax which is in the kernel of a
noncompact root lies on the boundary. Thus we have shown that the only
A-subspace A, for which the open subset Ho~1(4,) intersects S(G™, Pmax)°
is A= Zy)(a). Let s € S(G™, Pax) N Hp~ ' (A). Then

m(s) = ss* € A.
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We have to get a better picture of the set A. So we first remark that A =
Zy(c)(A) = (MNg(K))A (Theorem 1.4.2). Let k € ¢(K)NM. Then k* = k
and on the other hand 7(k) = k by Lemma 3.1.22. Therefore k = k~1,
i.e., k2 = 1. Moreover, the surjectivity of the exponential function of the
Riemannian symmetric space K/K™ 2 ¢(K) yields that 7(K) = exp(qg)-

We write ssf = kexp(Z) with k € ¢(K) N M and Z € a. Then we
we find Y € qi with k£ = exp(2Y). We set k' := expY. We claim that
Ad(K')a C q,. To see this, pick X € a. Then

7 (AA(E)X) = Ad(K)"'7(X) = —Ad(K) "' X = — Ad(K) X
and similarly
H(Ad(k’)X) = Ad(K)0(X) = — Ad(K') X.

This proves our claim. Now we find that

#
1, 1, .
{k’ exp(ieddYZ)} [k' exp(ieddYZ)] = Kexp(e®Y2)K

kexp(Z)

ss .
We conclude that
kexp(%Z)(k/f1 = k'exp <%eadYZ) € o t(s)
= sH C S(G", Pnax)-

We have already seen that Ad(k’)a C q,. Hence there exists k¥’ € (K7)g
such that Ad(k”) Ad(k¥)a = a (Lemma 5.4.10). This means that k"k’ €
Ng(a). Multiplying with £” on the left, we find that

k"K' exp(Z) - w0 € Nk (a).zo,

so that this point is an A-fixed point in G/Ppax. On the other hand, the
semigroup S(G7, Ppax) is contained in the set N_ Ppax, 80 xq is the only
A-fixed point in the set S(G", Ppax) - 0. Thus

k"K' € Ppax N Ng(a) C H*NK = Zg(c) C HC G".

It follows that k”k’ € H and therefore that k¥ € H. Thus exp(Z) €
ANS(G™, Pnax) C G™ exp Cinax and hence s € G7 exp Cinax, which finally
shows that S(G™, Ppax) is contained in the semigroup G7 exp Cpax. O
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Corollary 5.4.21 Recall the open domain O = GI -ox in X = G/Pyax.
Then

S(Crmax) ={s€G|s-0C O} and S(Cpax)° ={s€G|s-0OCO}. O

Remark 5.4.22 One can show that G” exp(Chax) is actually a maximal
subsemigroup of G (cf. [58], Theorem V.4). O

Example 5.4.23 In the situation of SL(2, R)-Example 5.1.13 we have

<1,

An elementary argument shows that the condition on ¢ and a can be refor-
mulated as

S(Cinax) N BY = {(Z aol)

5.5 The Nonlinear Convexity Theorem

g a 0 . L
S(Cmax)mB —{(C al)‘\V’|T|<1.‘G2+

C
a

|c|<a—a_1;0<a}. O

In this section we again consider a noncompactly causal symmetric space
M = G/H such that G is contained in a simply connected complexification
Gc. We will prove Neeb’s nonlinear convexity theorem, which says that

ag(aH) = conv(Wy - loga) + ¢min

for all @ € exp(cmax)- This will be done first for the special case N' = GC/G'C
(cf. Section 1.1). Then the general result can be obtained via the suitable
intersections with smaller spaces. Note that in our situation G = G. We
write G¢ for G°.

Recall the situation described in Section 4.5. In particular, let t¢ be a
Cartan subalgebra of £ containing ia and A = A(gc, t&). We set

fim 3 (s0)a (5.19)
acA+

where A™ is chosen as on p. 95. Further we set @ := it®, A := exp a and
N :=expn. Then (5.18) yields a causal Iwasawa projection age: GCAN —
a. The derivative diage: gc — a is simply the projection along g¢ + n.

Lemma 5.5.1 Let p: gc — t& denote the projection along the sum of the
root spaces. Then plige = drageiqe.
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Proof: Let X € ig®. Then we can write X =Y + Z — Z, where Y € a and
Z € . Therefore p(X) =p(Y + Z — 0¢(Z)) =Y and

dlaGc(X) = dlaGc (Y—I—Z—O’C(Z))
= Y—dlagc (O'C(Z))
= Y —diag:(Z+0°(2)) =Y.

From this the lemma follows. O

We note that for g € G¢, a € A and n € N we have
age 0 A\g = age and  age © pan = age + loga,

where as usual A\;(z) = gz and py(x) = zg denote left and right multipli-
cation.

We briefly recall the basic definitions concerning homogeneous vector
bundles. Let L/U be a homogeneous space of L and V a vector space on
which U acts by the representation 7:U — GL(V'). Then we obtain an
action of U on L x V via u.(l,v) := (lu™",7(u).v) and the space of U-orbits
is denoted L xyy V and called a homogeneous vector bundle. We write [I, v]
for the element of L X V' which corresponds to the orbit of (I,v) in L x V
and note that L acts from the left on L xy V by L[I',v] := [Il',v]. If L
is a complex group, U is a complex subgroup, and the representation 7 is
holomorphic, the corresponding vector bundle is holomorphic.

Fix a linear functional w € iCmax = i¢5;, (cf. (4.22)) such that iw
integrates to a character x of T = exp(t°) and w(i[c“(X), X]) > 0 for X €
(gc)a with @ € Af. Weput ¥ :={a € A | (VX € (gc)a) w(io¢(X), X]) >
0}. Then the subalgebra

bi=te® ) (ac)a

aex

is a (complex) parabolic subalgebra of gc. Let B be the corresponding
parabolic subgroup of G¢ and G¢, the stabilizer of w in G° w.r.t. the
coadjoint action. Then BNG® = G¢, by Theorem 1.3 in [56], and we obtain
a complex structure on the coadjoint orbit G¢ - w = G¢/G¢, by embedding
G - w as the open orbit G¢- oz of the base point oz in the complex
homogeneous space G/ B.

We find a holomorphic character x : B — C with x(exp X) = e
for X € b, where we set w(X) = 0 if X belongs to the sum of root spaces.
Thus we obtain two homogeneous holomorphic line bundles: the line bundle
E = G°%x¢g: C, and the line bundle E’ := Gcx 5Cy. The bundle E embeds
as the open subset E'|ge.o, of E'.

X)
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Let ¢ : G¢° x C — FE denote the quotient mapping which identifies the
elements (g, z) and (gh™', x(h)z) for h € G¢,. We define a function h on E
by h(lg, 2]) := |2|? for g € G¢, z € C.

We have already seen that the bundle E inherits a complex structure by
its embedding in the complex bundle E’. We write I for the tensor field
denoting multiplication by 4 in each tangent space. For a 1-form « on a
complex manifold ) we define a 1-form T by (I, v) := {a, —Iv) on each
tangent space Tp,(Y).

Let Gf := G¢ x C* and G(ﬁC := G¢ x C*. Then G* acts transitively on
the complement Ejy of the zero section in F and similarly ng acts transi-
tively on E{ by (g,¢) - [¢',v] = [9¢’, V).

Lemma 5.5.2 The 1-form o = I(dlog h) = +1dh on Ey is invariant under
the action of Gt.

Proof: Since the action of G%* on Ej is holomorphic and G preserves the
function h, the G°invariance is clear. On the other hand, we have for
z € C* and p,([g,7]) = [g, 2] that ho u, = |z|?h. Hence log(h o p,) =
log h + log |2|?. Thus

wi(dlogh) = dlog(h o p.) = d(log h + log|z|?) = dlog h.

This proves the assertion. O

To calculate the 1-form «, we have to calculate its pull-back ¢*« to
the group G¢ x C* which is a left-invariant 1-form on this group. Its
value in the unit element (1,1) is given by (¢*)(1,1) = a([1,1])dn,1)q =
—d(log h)Id 1yq. To calculate this expression, we have to pass from g to the
mapping ¢’ : G¢ x C — E’, which restricts to ¢ on G¢ x C. The calculation
of ¢ on G¢ x C* in the unit element is easier since ¢’ is a holomorphic
mapping:

(q/*a>(1a 1) = —d(log h)Id(l,l)q/ = —d(log h)d(l,l)q/j = —d(l,l) log(h o q/)I-
The function h o ¢’ is given on the subset GCAN x C* of G¢ by
hodq'(gan,z) = h([gan,z]) = h([an,z]) = h([1, x(an)z])
h([L, x(a)z]) = [x(a)|?|2[*

and therefore _

hoq (s, z) = eXiwace(s))|42 (5.20)
for s € G°AN. This entails that log(h o ¢')(s, z) = 2(iw, age(s)) + log|z|?
and permits us to compute the differential of log(h o ¢') in (1,1):

da,1ylog(ho¢')(Y,¢) = 2iw o diage(Y) + 2 Re(().
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Finally, we use Lemma 5.5.1 to calculate the form ¢*a in (1,1):
(¢a)(1,1)(X,¢) = —2iwodiag:(iX)—2Re(i()
= —2iwop(iX)+2Im¢
= —2w(X)+2Im(¢
= 2w(X)+42Im(.

This proves the assertion. O

Lemma 5.5.3 For X € g¢, ( € C, and z € C* we have

(9. 2)d(g.0a(d1py(X), 2) = 2Ad" (g) w, X) +2Tm .

Proof: We write [g, 2] = (g, 2) - [1,1] = p(g,2)([1,1]). Therefore Lemma 5.5.2
yields that

a([Q?Z])d(g,Z)Q(dlpg(X)vzc) = )(dlpg X)sz)
(dirg(Ad(g™1)X), 2C)
(

(X, ¢)

°
N

\:—‘
—_
~—
>
=

Now the Lemma follows. O
Corollary 5.5.4 For X €ig®, g € G¢, ( € C, and z € C* we have

Proposition 5.5.5 For X € ig® let mx := sup(G° - w,iX) and define the
vector field 6(iX) on E by

6(iX)(p) := d/dt exp(—tiX) - ple=o
forpe E. Then (dy,logh,Ic(iX)(p)) < 2mx for all p € Ep.
Proof: Let p = [g, 2] € Eg. Then

6(iX)([lg,2]) = d/dtexp(=tiX)-[g,2][t=0
= d/dtlexp(—tiX)g, z]|t=0

= d(g,z)Q( - dlpg(ZX)aO)

and therefore

(dy(logh), I6(iX)(p)) = (dplogh,Id(y.yq( — dipy(iX),0)
= 2(Ad*(g9) - w,iX) < 2mx.
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From this the proposition follows. O

Consider the compression semigroup S := S(G¢, B) in G¢. Then S acts
holomorphically on the bundle E’ and since S leaves G¢ - op invariant, the
action on E' leaves the subbundle E invariant. Note that S ¢ G°B =
G¢AN since i@ C g¢. Therefore we can write each s € S as s = gan with
g€ G ac A and n € N and we find with (5.20) that

log h([s,1]) = 2(iw, age(s)).

It follows in particular that logh([a,1]) = 2(iw,loga) for a € AN S =
exp(€max) (cf. Lemma 5.4.9).

Fix g € G¢ and X € épmax = (AL)*. We set F(t) := log h(exp(tX)-[g,1]).
Then expRT™ X C S and therefore exptX - [g,1] = [exptXg, 1] € Ey for all
t > 0. Hence we can use Proposition 5.5.5 to see that

F'(t) = (d(log h), I6(iX))([expt X g, 1]) < 2mx.
Therefore
2(iw, age(exp Xg)) =logh(exp X -[g,1]) = F(1) < 2mx-1 =2mx. (5.21)

We want to use the linear convexity theorem (Theorem 4.3.1) to calculate
mx for X € ¢pax. To this end we recall that our assumptions on w, say
in particular that w € i€}, = iCmax, cf. (4.23). Let pr:ig® — a be the

orthogonal projection. Then Theorem 4.3.1 implies that
pr(G® - [—iw]) C conv[Wp - (—iw)] 4 Emin,

where Wy is the Weyl group for (£¢,°) (cf. Section 4.5). Since X € Gpax =
it follows that

mx = sup(iX, G- w) = sup(iX, conv(Wp - w)). (5.22)

Crnin’
Now we obtain with (5.21) and (5.22)

(lw, age(exp X g)) < sup(X, Wy - (iw)) (5.23)

for X € énax. ~ 5
Recall the cone (Af)* = C from Section 4.5 and consider the set

- = 2
R:{wéa”VaGAS‘WGZ}
of integral weights in a*. Then
- < 2(z
R+:={w6a*|VdeAf{:%eN§

is the set of dominant integral weights.
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Lemma 5.5.6 The cone icmaxﬂ(—ié) is generated by its dominant integral
elements which integrate to a character of T°.

Proof Let T := {ag,d1,...,d;} be a basis for AT such that Ty :=
{@1,...,da} is a basis for AJ. Recall that there is an element X € i3(°)
such that @1 (X°) = 1. Let Ao € (t&)* be determined by A\o(X°) = 1 and
Ao(X) =0 for all X € t°N [t €°]. According to [79], p. 85, each dominant
integral element of the lattice

k
R =RNi(ZX+ Y Zé;)

Jj=1

integrates to a character of T°. Let d be the maximal distance between
elements of R'. Then, given ¢ > 0 and an element w in the interior of
iCmax N (—iC), we can find an n € N and a v € R’ such that |nw — v| < d
and % < €. Thus

1
lw——=v| <e
n

and v € iCmax N (—ZC') for € small enough. Therefore it suffices to show
that v is dominant. But that is clear since v € —i(AJ)*. O

Proposition 5.5.7 Let X € (AT)*. Then age-(exp(X)G®) C X + émin —
Cc*.

Proof: Let w € icpax N (—ZC') be dominant integral and such that it inte-
grates to a character of T¢. Then W - (iw) € iw — C* by Lemma 4.5.5, so
that

sup(X, W - (iw)) = iw(X). (5.24)
Combining this with (5.23) yields (iw, X — age(exp XG¢)) C RT. Now
Lemma 5.5.6 proves that

X — age(exp(X)G°) C [i& N (=iC)]" = —Gmin + C*,

ie., age(exp XG) C X + émin — C*. O

Proposition 5.5.8 Let X € cpax and a = exp(X). Then the set age(aG*)
is invariant under the Weyl group Wy. Moreover, if Y € age(aG®), then

conv(Wy - Y) C age(aG®).

Proof- Set F := ag-(aG®). The Weyl group Wy is generated by the reflec-
tions sg, where & is a root contained in the set T simple roots in Aar. ‘We
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claim that the line segment {Y, s5(Y)} between Y and s5(Y) is contained
in F whenever Y € F (cf. [45], p. 477). Let & € T and denote the
complex image of the homomorphism ¢g:5l(2,C) — gc by s&. Note that

52 C £, We set
o= Y (sc)s
peAT\{a}
Note that & € Yo implies s5(A* \ {a}) € A* since A is Wo-invariant.
Therefore i
n=1n"+(gc)a and [s3,0]Cq. (5.25)

According to [45], pp. 440, 477, we have the semidirect decomposition N =
N’ x N where N’ = exp i’ and N® = exp(gc)a-

Let Y € F and b = exp(Y). Then there exist g,v € G° and n € N
such that av = gbn. We decompose Y = Y; + Ydl, where Y € RX4 and
Vi € ker@. Then

sa(Y)=5a(Ya) +Yi = Y5+ Y5

and {Y,s4(Y)} = [ 1,1]Y5 4+ Yg-. We put bs := exp(Ya), by := expYy-
and write n = ngn’ in accordance with N = N®N’. Then

g tav = bn = bgbinan’ = banabain’. (5.26)

Let ¢z € exp([—1,1]Yz) and let S& be the group generated by exps®.
Then S& C K&. Using Lemma 10.7 in [45], p. 476, we find elements
ka,vaeSCﬁKc andn € N such that

kdbdndva = cdng. (527)
Now [V Na,(gc)a) = {0} and (5.26) imply that

1

1 toEn/vs = cabznuztn'vs.

kag “avvg = can vy
We use (5.25) to see that nQvz'n'vs € nS N’ € N. Thus
age(kag tavvs) = age(avvg) = log(cabs) = logcs + Yi .
Since c¢5 was arbitrary in exp([—1, 1]Ys), we conclude that
{Y,sa(Y)} C age(aG").

This proves the Wp-invariance of age(aG¢) because Wy is generated by the
reflections s5 for & simple. Let 6 € Ay. Then there exists w € Wy such
that w- g € T and we have for each Y € F that

w{w™'Y, SBw_l Y} ={Y, wséw_l Yi={V,s,5 Y}CFL
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Now Lemma 10.4 in [Hel84, p. 474] implies that conv(Wy-Y) C F for every
element YV € F. O

Proposition 5.5.9 Let a € exp(cmax). Then
age(aG°) C conv(WO -loga) 4 Cmin-

Proof: Applying a suitable element of Wy, we may assume that X := loga €
(A*)* because the sets on the right- and left-hand sides do not change if
we replace X by w - X for w € W, (Proposition 5.5.8).

Now Proposition 5.5.7 entails that

age(aG®) C X 4 Cmin — C*

and since the set on the left-hand side is invariant under Wy, again by
Proposition 5.5.8, we conclude with Lemma 4.5.5 that

age(aG®) C ﬂ w - (X + Crmin — C'*) = conv(WO - X)) + Cmin
wEWo

since ¢min is Wy-invariant. O

Recall that GT € G¢, A € A and N C N are the o°fixed points
of the respective groups. Therefore age commutes with ¢¢ and the map
ag-:GTAN — a is simply the restriction of age to GTAN. In view of
Theorem 4.5.6, this implies that

ag-(aG™) C an [conv(Wy - log a) + Emin| = conv(Wy -loga) 4 cmin (5.28)

for a € exp(cmax)-
In order to prove the converse inclusion we need some additional infor-
mation. Note first that Proposition 3.2.2 yields the following lemma.

Lemma 5.5.10 Let Y be a basis of the system At . Then Yo :=TNAS
is a basis of Aar and Y contains exactly one root not contained in Ag. O

Lemma 5.5.11 Let C = (AJ)*. Then the highest root v in A" satisfies
Cmin C RTy — C*.

Proof. We note first that the considerations in Section 4.1 show that A is
an irreducible root system. Further, we note that the highest root automat-
ically is contained in A;. Let T = {ao, a1,...,a;} be the simple system
for At such that Yo = {a1, ..., ax} is the simple system for Al. Now sup-
pose that § = Z?:o mja; € Ay and v = Z;C:O njag. Then ng =mp =1
and v — 8 = Z?:l(”j —mj)a; € A C C*. Therefore 8 € v — C* for all
B € AL which implies the claim since ¢y, = cone(A). O
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Lemma 5.5.12 Letloga = X € cpax and a € Ay be such that a(X) > 0.
Then
X +RTX C ag-(aG7).

Proof: sl(2,R)-reduction yields
ag-(exp(X)expRY*) = X + RT X
and this implies the claim (cf. Lemma 5.4.9 and its proof). O

Theorem 5.5.13 (The Nonlinear Convexity Theorem) Let M be a
noncompactly causal symmetric space, a C q, a mazimal abelian subspace,
and ag: HAN — a the corresponding projection. Then

ag(aH) = conv(Wy - loga) + ¢min

for 1 # a € exp(Cmax)-

Proof. Note first that Lemma 3.1.22 implies that we may assume H = G”.
In view of (5.28), we only have to show the inclusion D. Replacing X = loga
by a suitable Wy-conjugate, we may also assume that X € C = (Af)*.
Since X # 0, there exists a & € Ay such that a(X) > 0. Let v € Ay be
the highest root of A*. Then v(X) > a(X) > 0 and hence Lemma 5.5.12
implies that X + RT X" C ay(aH). Now Proposition 5.5.8 implies that it
suffices to show

conv [Wo - (X +RTX7)] = conv(Wp - X) + Cmin- (5.29)

To do this, note first that RT X" = Rty C ¢, and that both sides of
(5.29) are closed, convex, and Wy-invariant. Thus it remains to verify

[conv(Wp - X) + cmin] N C C conv (W - (X +RTX7)) N C. (5.30)
According to Lemma 5.5.11 and Lemma 4.5.5 we have
conv(Wy - X) 4 cmin C (X —C*) + (RTy = C*) = (X + Rty) — C*.

Note that (Y —C*)NC C conv(Wy-Y) for all Y € C by Lemma 4.5.5. But
[8], §1.8, Proposition 25 implies that v € C. Thus for any r > 0 we have

[(x+7my) —C*|NC Cconv [Wy- (X +ry)| NC.
This implies (5.30) and hence the claim. O

Corollary 5.5.14 1) Let a € exp(cmax) and n* € N* N HAN. Then
anfa™' C HAN and

aH(anﬁcfl) — aH(nﬁ) € Cmin-
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2) aH(Nu N HAN) C 4Crmin-
Proof: 1) Let pyr : HAN — P be the projection onto the H-factor. Then

ag(zy) = ag (zpu(y)) + an(y).
Therefore
ag(anfa™) = ay (apH(nﬁ)) + ag(n®) —loga.
Now Theorem 5.5.13 shows that

afg (GPH (nﬁ)) € aH ((LH) C loga + Cmin

and this implies the claim.
2) Let X € (cmax NC)° and n¥ € N¥ N HAN. Then

tlim exp(tX)nf exp(—tX) =1
and therefore
—ag(n®) = tli)rgo ay (exp(tX)nf exp(—tX)) — ap(n*) € Comin. O

Example 5.5.15 For G = SL(2,R) the nonlinear convexity theorem can
made very explicit. In the situation of Example 5.1.3 we have W, = {1}
and Cmax = Cmin = RTX?. The causal Iwasawa projection is given by

am (CCL Z)z a? — c?

whenever it is defined. O

5.6 The B!-Order

Let M = G/H still be a noncompactly causal symmetric space such G is
contained in a simply connected complexification G¢. We write S for the
maximal real Ol'shanskii semigroup S(Ciyax). Then Theorem 5.2.7 implies
that M, = S-0 = (SNB*)-0. This shows that many questions concerning
the positive cone of M can be treated via B, which has a fairly simple
structure.

Remark 5.6.1 Theorem 5.2.7 implies that SN B* = {b* € B* | 0 < b¥-0}.
Therefore the restriction of <g, cf. (2.14), to B* defines an order. On the
other hand, S N B* defines an order <gp: on B* via

b<gnp: b = b €b(SnBY).
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We claim that the two orders agree. This follows from

LY N B = b N B = bf (571N BY) = bt (SN BY) .

This means that in particular we can use the notation | bf without any
ambiguity. O

Proposition 5.6.2 The map
Ig:: F|(G) — F (B), Fw— FNB*

is BY-equivariant, continuous, and surjective. It is injective on the closed

set {F € F|(G) | F° C N*AH}.

Proof: The equivariance is obvious. Let F € F|(G) C F(G)H (cf. Lemma
2.4.1). Then Ig¢(F) = F N B* is closed and for s € SN B* we have that

(FNBY) s ' c F(SNB*Y) 'nB*=FnNB,

whence

FNB'erF (BY).

Let F, — F in F|(G) and assume that F,, N B¥ — E. To see that E =
Ig:(F), let e € E and f, € F, N B* with f, — e (cf. Lemma C.0.6).
Then ¢ = lim f, € limF, = F. On the other hand, for f € F N Bf
there exists a sequence f, € F, with f, — f. Since F,,H = F,,, we have
that F,, = (Fn ﬂBﬁ) H, so we find that b, € F, N B* and h,, € H with
fn = buhy,. According to Lemma 5.4.1 we get that b, — f and h, — 1.
Thus
f=1limb, €lima(F,) =E.

It follows that E = Igs (F). L
For E € F| (B*) we set 3(E) := EH. Let s = gh € S, where g € BN S
and h € H. Moreover,

Hg'cS'=(S"'nB)H

by Theorem 5.4.7. Thus

B(E)s ' =FEHh g1 =FEHg 1 CE(S'NB)H = (lgnz: E)H = FH
shows | B(E) = B(E). The inclusion

EClIg: (B(E)) =EHNB*
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is clear. Let bf E_ﬁﬂ B! and e, € E, h,, € H with e,h,, — bf. Then
en — band b € E = E. Tt follows that 3(E) N B* = E, and hence Ip: is
surjective.

If F e F|(G) with F° C N*AH, then

F = Fo=[F°nBiH
(FnBY)°)H
= (FNBY)H=1Ig(F)H.

Here we used that FNB* € I (Bﬁ), so FNB* has dense interior by Lemma
2.4.7.

Now we see that Ip:(F') = Ig:(F) and (F')° C N*AH imply F' = F.
It remains to show that the set {F € F|(G) | F° C N*AH} is closed. We
let F, € F|(G) with F,, — F and F? C B*H. We have to show that
F° C B*H. For f € F° there exist an f' € (T f)° N F° and ng € N with

E.0(1f)°PNFC#£D Vn > ng.
Pick f, in this set. Then
fe(lf)° CcFcB'H
which proves that F° C B'H. O
Lemma 5.6.3 Consider the order compactification map
nps: BE — F(B), g g(SNBH)™!
(¢f. Lemma 2.4.2).
1) If X € (L(S N B*%)°, then lim;_.o ngs (exp(—tX)) = 0.
2) ng:(B%) = {0} U B* - 1: (S N BF)
Proof: 1) We consider the projection
pBP 2N xA— A (5.31)
and set X’ := di1q(X). Note that ng: (exp(—tX)) is decreasing in ¢, so

it has a limit by Lemma C.0.6. Suppose that g € limngs (exp(—tX)),
t — oo. Then there exist ¢, € R and s, € SN B with ¢, — oo and
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g = lim,, . exp(—t,X)s;!. Thus
plg) = lim exp(—tnX')p(sn) !

= lim exp(—t,X’) exp(—cmax)

n—oo

= exp (_ hm[tnXl + Cmax]) = @

because of Theorem 5.4.8.3) and the fact that ¢, X’ + cpnax — 0 whenever
X' € Gay = dip (L(S N B*)°) and t,, — .
2) In view of 1), this is just a special case of Lemma 2.4.3.3). O

Lemma 5.6.4 The restriction of Igs to n(B%) C F|(G) yields a homeo-
morphism

1 (BF) — ngs (BY)  F|(BF).

Proof Remark 5.6.1 implies that I: (n(g)) = ng:(g) for all g € B¥. Using
the continuity of Ig: we find that

Ip:(n(B*)) C Ig: (n(B*)) = np: (B*).

Since Ip: is Bf-equivariant and 7 is even G-equivariant we have

Ip: (n(B%) = B* - np: (1)

and hence Iy (n(B?)), which is closed because of compactness, contains the

closure of the Bf-orbit of ng:(1), i.e., all of ng: (B?).
Recall that for F' € n (Bu) we have

F=|g=g9S'cBYB'H)=DB'H

and therefore also F° C BPH since B*H is open in G. Now again by
the continuity of I: we get F° C B*H for all F € n(B*H), and then
Proposition 5.6.2 shows that Iy restricted to n (B?) is injective. Finally,

compactness yields the claim. O

Lemma 5.6.5 We have
77(14) =0UA- n (exp(cmax))'

If n(an) — F # 0, then the sequence a, € A is bounded from below with
respect to the restriction of the ordering <g to A.
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Proof. Using Lemma 5.6.4 and Lemma 5.6.3, we see that

0 = nggonm (exp(—tX))H}

= tlim npt (exp(—tX)) H

= tlim 7 (exp(—tX))

for all X € L(S N B¥)°. Suppose that 7(a,) — F # (. Then Lemma 5.6.3
and Lemma 5.6.4 yield

npi(an) — Fn B! # 0.

Let f € Intgs F and a := p(f) € A. Then there exists ng € N with f <g a,
for all n > ng. Hence a = p(f) <g a, for all n > ny. Pick ¢y with
exp(—toY?) < a. Then

exp(t)Y)a, € SN A = exp(cmax)
(cf. Lemma 5.4.9) and
n(an) — exp(—toY®) lim 1 (exp(toY*)an) € A1 (exp(cmax))-
This proves the claim. O
Theorem 5.6.6 1) M =G - MP" U {0}.
2) MCPt has only finitely many G-orbits.

Proof: 1) follows from Lemma 5.6.5 and Lemma 2.4.3.
2) is a consequence of 1) and (6.8). O

The point of Lemma 5.6.5 and Theorem 5.6.6 is that they will enable us
to derive the G-orbit structure of M from the structure of n(S N A) C
MEP!,
We conclude this section with the useful observation that the projection
p:Bf = N% xx A — A defined in (5.31) is proper. This is an immediate
consequence of the following more general lemma.

Lemma 5.6.7 Let B be a connected Lie group and N a closed normal
subgroup such that A := B/N is a wvector group. Suppose that C C b
is a pointed closed convex cone such that C Nn = {0} and S the closed
subsemigroup of B generated by C. Then the homomorphism ¢: B — A, b —
bN induces a proper semigroup homomorphism m: S — ¢(S).
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Proof: Let D := d1¢(C). Then the condition C N'n = {0} shows that D is
a pointed cone in the abelian Lie algebra a. Since A is a vector group, we
can identify o with A.

Let w € Int{r € a* | VX € D : w(X) > 0}. Then w can be viewed as
a function on A and then the function f := w o ¢ satisfies the hypothesis
of Theorem 1.32 in [Ne91] because it is a group homomorphism, hence has
biinvariant differential. So we find that the order intervals sS~' NS in B
are compact. Let K C ¢(S) be compact and L the maximal value of w on
K. Then 7= 1(K) c f~1([0,L]) N'S. Now Theorem 1.32 in [114] implies
also that there exists a left invariant Riemannian metric d on B such that
the length L(7) of v is not bigger than L for all curves ~ [0,T] — B with
7(0) = 1 and f(y(T)) < L, which are monotone w.r.t. <g. Therefore
d(x,1) < L holds for all z € 7~ 1(K). Finally, the theorem of Hopf-Rinow
shows that these sets are compact. O

5.7 The Affine Closure of B!

Retain the hypotheses and notation from Section 5.6. In this section we
realize SNB! as a semigroup of affine selfmaps and in this way find a suitable
compactification which helps us to make the abstract order compactification
much more concrete.

Lemma 5.7.1 1) B* is a twofold semidirect product B¥ = N_ x (N(')i X
A).

ﬁvga-i-nﬁ] # {O}

2) Let « € Ay, B € AJ, and X3 € gg. Then [X
| B) # 0, we find that

whenever a+ (n+1)8 € A. In particular, if («
[Xﬁa ZnEZ gOthﬁ] # {O}

3) The mapping

B = N_ x Aut(N_), (n,,ng,a) — (n_,I

n,

o)

#
0

where Inga denotes the automorphism n_ — (nga)n,(nga)_l, is an

injective homomorphism.

Proof: 1) The first assertion follows immediately from the fact that n =
n_ x n, which is a consequence of n, = 3,:(Y).
2) Recall the algebra sg = s[(2,R) from Section 4.1. The space

Va,p = @ atnp
neL
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is an sg-module. The above decomposition of V,, 5 is precisely the Hg-
weight decomposition. Suppose that « + (n 4+ 1) € A. Then there exists
a simple sg-submodule V' of V, g with

VN Gat(nt1)s 7# 10}

But now the classification of s[(2, R) modules says that

my
@ Vaerﬁ’

m=m_—

where Vetmf =g, 3NV is one-dimensional. If gons C kerad X, then
n=m_ —1, since gotming NV # {0}, and [Xg, Votmd] = yotmt)s
form=m_,m_+1,...,my. Thus

(a +nP)(Hg) < (a+m_B)(Hg) < 0.

Now [10], Chapter VIII, §7, no. 2, Proposition 3(iii), yields a contradiction
t0 gatng C kerad Xg.

3) It follows from the fact that cpax is pointed and generating that the
kernel intersects A trivially. Now 2) shows that the kernel also intersects
Ng trivially and the assertion follows as Ing 0= Ing 1, is the Jordan decom-

position when we identify n_ with N_. O

Recall the flag manifold Xt = G¢/(Pmax)c and its base point oy =
1(Pmax)c from Section 5.1.

Lemma 5.7.2 The mapping ( :n_ — (N_)-ox,X +— exp(X) -ox is an
equivariant mapping of Bf-spaces. Here the action of B on n_ is given by

(NZ)N§A xn_ —n_, (exp(X)exp(Y)exp(Z), E) — X + ™Y e 7B,
For E =73 cn Eao with Ey € go we have that

e Zp — Z ea(Z)Ea, VZ €a
aEA_

Proof Let X, F en_, Y € ng, and Z € a. Using that n_ is abelian, we
have
exp(X) = exp(Y)exp(Z) exp(E)(Pnax)c
= exp(X)exp(Y)exp(Z)exp(E)exp(—Z2) -
-exp(—Y) exp(Y) exp(Z)(Pmax)c
(X + Y22 B exp(Y) exp(Z) (Puax)c
(X + eadyedd ZE)(Pmax)(C

exp

= exp
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because exp(Y) exp(Z) € H* C (Pax)c- 0
Recall the domain Q_ C n_ from (5.7) on p. 123. We set
AFF(N_) := N_ x End(N_) = N_ x End(n_) (5.32)
and
Affeon(N_) 1= {(n_,7) € AB(N_) [n 7@ ) c 0} (5.33)

Here we identify N_ and n_ via the exponential function of N_. We refer to
these semigroups as the affine semigroup of N_ and the affine compression
semigroup of Q_.

Proposition 5.7.3 Aff.,,,,(IN-) NB* = SN B, where BY is identified with
a subgroup of Aff(N_) via Lemma 5.7.1.

Proof: In view of Lemma 5.7.2, the claim follows from SN B* = {b* € B* |
b O C O} and O = exp(Q_) - ox. 0

Proposition 5.7.4 Aff.,,,(N_) is compact.

Proof: Note first that Affo,, (N_) is closed in Aff(N_). Now let (n_,v) €
Aff .o (N-). Then

n_=(n_,y)-1€Q_CN_

so that
(@) cnZ'Qo c Q) HQL).

Since Q_ is a compact neighborhood of 0 in n_, we can find a norm on n_
and a constant ¢ > o such that ||y|| < ¢ for all (n_,v) € Affcom(N-). In
other words,

Affeom(N-) C {(n—,7) € AE(N-) | neQ-, [7]] < c}
is relatively compact, hence compact. O

Lemma 5.7.5 The action of Affeom(N_) on Q_ extends to a continuous

action of Affcom(N_) on F(2_).

Proof: This follows from the more general fact that End(/N_) acts con-
tinuously on C(N_), the set of compact subsets of N_ equipped with the
Vietoris topology for the one-point compactification of N_. To see this,
let K,, - K in C(N_) and s, — s in End(N_). Let U be a symmetric
neighborhood of 1 in 6(/N) and V another symmetric 1-neighborhood with
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V c U and s,(V) C U for all n € N. Take ng € N such that K,, C KV and
sn(K) C s(K)U for n > ng. (Note that s, converges uniformly on compact
sets). Then (cf. C.0.7)

$n(Kp) C 80(KV) = 8,(K)s, (V) C s(K)U?.
Since U? is symmetric, we also conclude that s(K) C s,(K,)U?. Hence
Let BF denote the closure of B in Aff(N_) and S the closure SN A =
€XP Cmax C Bt of SN A in Bf. Then B!, SN B! and Szpt are compact

semigroups.
We describe the structure of S%° ¢

Theorem 5.7.6 (The structure of S¢') Let the notation be as above.
Then the following assertions are true:

1) SP' = exp(R*X1) - ... - exp(RT X,,), where cmax = Y1 RTX;.

2) For F € Fa(—c},.) = Fa(cone(A_)) we define ep € End(n_) by

)= 0 UXEguagFNA,
FA)TVUX, fX €ga,a € FNA_ .

Then the mapping F +— ep defines an isomorphism of Fa(—c ,.) and
the lattice of idempotents E(Szpt) of the compact abelian semigroup
S

)

3) For X € ¢max we have that

tlim exp(tX) =ep, where F= XN (=c), (5.34)

and conversely,

ep = tlggo exp(tX)  for every X € Intpi (Cmax N F7L).

4) 5P = (SN A)- B(ST).

Proof: 1) is obvious.

2), 3) Let F € Fa(—c} ). Then there exists an element X € cpax
with F' = X+ N (—cf,,). The functions ¢ — e*(*X) are decreasing for all
€ —Cax- More precisely,

=0, faeF
O‘(X){<o, ifadF.
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This shows that
lim exp(tX) = ep.

t—o0

It is clear that €2 = er and therefore er € E(ST"). Let e € E(ST"). Then
there exists an element X € cpax such that e = lim;_, o, exp(tX) because
Cmax 18 polyhedral ([154], pp. 11, 26). Thus e = ep for F = X+ Ncone(A_)
and with

Intps (Cmax NF) ={Y € emax | YN = = F} (5.35)
we find that
Int g1 (Cmax N FT) = {X € cmax | tlim exp(tX) =er}.

This proves that F' +— er is a bijection. Since it is clearly order-preserving,
the claim follows.

4) Let s = 51 - ... - 8, € ST with s; € exp(RtX;). Then either s; €
exp(RTX;) C exp(cmax) OF 8; = lim;_ o exp(tX;) € B(ST"). Thus s €
exp(cmax)E(Sipt). O

Example 5.7.7 In the situation of the SL(2, R) Example 5.4.23,we identify
Aff(N_) with R x R, where the multiplication is

(n,)(n,7) = (n+yn',vy")
and the action on R = n_ is given by
(n,7)-n' =n+yn'.
Then Aff.,,(N_) corresponds to the set

{(n,7y) eRxR|V|r| <1: |n+~yr| <1}
= {(n,7) eRxR[|y| <L n|<1—[v]}.

The embedding of B into Aff(N_) is

a 0 c 1
(c a—1>H(5,;)

so the image of B¥ is simply

{(n,v)|~v>0,veR}.

Thus we obtain

SNB*={(n,7) eERxR|0<y<1,|n|<1—7}
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and
SNA={0,7y) eRxR|0<vy<1}.

The faces of —c’ . = —Cmax = R™XY = —RTa are F; = {0} and

max

Fy = —Rta. Therefore we have ep, = (0,0) and er, = (0,1). Thus

ST = {(0,7)eRxRI0<y<1}
= {(0,0)}U(SNA)
= (SNA)er U(SNAer,

by direct calculation. O

Let at :={X € a|Va e At : a(X) > 0} C cmax be the closure of the
positive Weyl chamber. Our next goal is to find the idempotents in S N B!
which occur as limits of elements in exp a®. The results will be useful when
we determine the isotropy group of a point in Mft under the action of G.

Suppose that X € a™. We write Ex := (RX — ¢pax) N cmax for the face

of cmax generated by X and
Fx =Xtn—c . =ExN—c. (5.36)

for the (up to a minus sign) opposite face. For any subset ¥ of A we
consider cone(X) = 3 o5 R (cf. Remark 2.1.7). In particular, we have
cone(A_) = ¢l Weset Ax == ExNA, Ax i = Ex N AL, and

Ax,o = E)Jg N Ag. Then Remark 2.1.7 shows that Fx = cone(Ax _)
because

Axi={aeAy|aeFx}={aecA;:aX)=0}

An element X’ € Ex Na™ is said to be relatively regular in Ex if all roots
in A¢ which do not vanish on Fy, are nonzero on X’. We note that if
X is relatively regular in Ey, then A% = Ax N A+ = X1 N AT because
Ax .y =XtNA4, and A},o = AJ N X+ follows from relative regularity
(recall that X € a™).

Lemma 5.7.8 Let X € at and Ex € Fa(cmax) the face generated by X.
Then the following assertions hold.

1) [AT 4+ (AT\E$)| nAY C AT\ Ex = AT\ A% and

cone(A%) = Ex Ncone(A™) € Fa(cone(A™)).

2) There exists a relatively regular element X' € a™ N algint(Ex) with
Ex =FEx.
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Proof: 1) In view of Remark 2.1.7.5), we have that
Ey = Fx — Fx = cone(Ax,_) — cone(Ax,_). (5.37)

Ifye A;FLO’ then the reflection s., at ker y leaves A_ invariant and s.,(X) =
X. Therefore s,(Ax,_) = Ax,_ and consequently Ex is invariant under
the subgroup Wx of the Weyl group Wy = W(Aq), which is generated by
the reflections leaving X fixed. If X € 2., then Ex = cmax, Ex = {0},
and A;r( = (. So we may assume that X € Ocpax. Let X = {ag, a1, ..., }
be a basis of AT with ag € A} (cf. Lemma 5.5.10). Since X € Ocpmax,
there exists a root v € Ay with v(X) = 0. Therefore X € at and v =

g + 22:1 n;o; entail that
0=7(X)>ayX) >0,

consequently aqg € E)l( Note that the coefficient of cg must be 1 because
v(Y?) = 1. Hence we may assume that

Sx =X1NY = {ao, a1, ..., a}. (5.38)

So a = ap + Zézl nia; € Ax 1 is equivalent to n; = 0 for ¢ > k. Conse-
quently, ap € Ex and (5.37) imply that

E)JZ = Rag @ EX,O
with
Exo:= Ex Nspan{ai, ...,ax} = Ex Nspan{ai, ...,a;}. (5.39)

Next we claim the existence of a set of simple roots which span Ex .
To see this, we first note that Ex o is invariant under the finite group W
because Wx also fixes span{ayq,...,a;} = spanfy. We recall that Wx is
generated by the reflections sq,, ..., S, at the hyperplanes ker a; (cf. [168],
1.1.2.8). Therefore

Exo0 = Ex.et © Ex,0,fix
where
EX)O_’ﬁX = {Y S EX.,O | (Vw S Wx) w-Y = Y}
and
Exoer =span{w Y —Y |w e Wx,Y € Ex}.

For Y € Ex o.ux the relations sq,(Y) =Y imply that o; LY fori =1, ..., k.
Hence
Y € span{ay,...,ax}t N ExoC E)J;)O N Ex,o = {0}.
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In addition, the fact that Wx is generated by the reflections s,,, i =1, ..., k
implies that

EX70 = EX70)eff = span{sai(Y) -Y | 1= 1, ...Ji‘,Y S Ex)o}

= span{o; | a; & Ex}.

This proves our claim, and from now on we may assume that Exo =
span{ay, ...,a;} with j < k. Now Ex = span{ap, ..., a;} and therefore

l
A+ \E)JZ = {Zniai
i=1

This implies the first assertion of the lemma. The second assertion is trivial.
2) From Ey = span{aj, ..., a;} it follows that

di > ni>0}.

{Blex | B€ AT} ={Blex | BER 11 + ... + Ry}
lies in a pointed cone. Whence
c:={Y e spanEy | VB € AT : 3(Y) >0} = (spanEx) Na™

has nonempty interior in spanEx. But X € at Nalgint(Fx). Hence there
exists

X' € algintEx N algint(c).

It follows that Ex = Ex+, X’ € a™, and that X' is relatively regular. O
Lemma 5.7.9 Let X € a™ and
ex = tli}rgoexp(tX) =(1,7) € SN B!,
Then the following assertions hold:
1) g(AT\ AL)F ds an ideal in n* = g(AT)* and
b 2 g(AT\ AL x g(A )
2) Ad(NgA) kery C kery C n_.

Proof: 1) is immediate from Lemma 5.7.8.
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2) Note that (5.36) implies that

kery = {YV en_| tlim Xy = 0}

= Y. ta
a€A_,a(X)#0

= g(A+ \ (AN XH))F

= 9(A+\ (A4 NEx))

= n_ng(AT\AL)"

Thus ker~ is an ideal in n® by 1) and therefore invariant under Ng. Since
it is a sum of root spaces, ker v is also invariant under Ad(A). O

Lemma 5.7.10 Let X € a* and ex = lim;— exp(tX) = (1,7) € SN BL.
If Ay, pex: Bt — BY are the left and right multiplications with ex in BY,
then we have:

1) A7} ex) N B* = kery x exp (g(AF \ A}))%xp(Aﬁng, where Ax _
is identified with the corresponding subset of a.

9) Let ©(X) := [ (XN AF) \ Ak o| U [(AF N A% L]\ XY). Then

pex(ex) N B = exp (g (2(X))) exp(Ax ;)
where Af NAx , ={a € Ay [VBe Axy : (o] f) =0}
Proof: 1) The formula
ex(9,6) = (1,7)(g,9) = (v(9),79)

shows that A, (g,0) = ex is equivalent to g € kery and 76 = 7, i.e.,
d(kervy) C kery and §(x) € zkery for z € Im~. According to Lemma
5.7.9.2), the first condition on ¢ is satisfied if § € Ad(B*). For § = eV
with Y € ng + a the second condition is satisfied by all elements of e2d®Y
if and only if [Y;Im~] C kery. The set {g € Aut(N_) : vg = 7} is a
pseudo-algebraic semigroup. Whence ve®dY = ~ implies that

et Y — vt e R

whenever Spec(adY) C R ([94], Lemma 5.1). This implies in particular
that )\;3 (ex)N NgA is a connected normal subgroup and therefore

A l(ex)n NEA = exp{Y € ng+a|[V,Imy] C kerv}.
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For Y € a this condition means that ¥ € Ag-(_f since

Imy = g(Ax,4)* = y(Ax ). (5.40)

If Y € go with a € Af \ A%, then clearly [Y,Im~] C kery (Lemma
5.7.9.1)). This shows the inclusion D. Conversely, suppose that a € A},o C
Ex%. By Remark 2.1.7 and (5.37) we have that

Ax . =Ax_=Fx=Ex—Ex.

Now (Ex — Ex) N Ex = {0} implies the existence of 3 € Ay _ with
(a | B) # 0. Hence Lemma 5.7.1.2) shows that [Y,Im~] # {0} for ¥ € g,
because P,y 95+na C Im~y. But then

(Axy +A%)NAC Ay,

shows that [Y,Im~] ¢ ker~y.

2) First we note that gex = g’'ex = ex implies that (g¢’)ex = ex and
g gex) = g7lex = ex for g,g' € B*. So p_l(ex) N B* is a subgroup.
Moreover, for (n_,§) € B* the condition

(n,,é)(l,”y) = (n*aaf}/) = (L’Y)

is equivalent to n_ = 1 and éy = «y. Thus
pexl(ex) N B ={(1,6) : 8|im~ = idim~}- (5.41)

This is a pseudo-algebraic subgroup of the group Ad(B*) which consists
of real upper triangular matrices. So it is connected by [94], Lemma 5.1,
because the exponential function of B is surjective. Therefore it only
remains to compute the Lie algebra of this analytic subgroup. First we
note that e2d®Y |, = idpy  is equivalent to [Y,Im~] = {0}.

For Y € a this means that ¥ € A§(7+. Let Y € g, with a € AJ. We
have to consider several cases:

a) a(X)=0and a ¢ Ex. Let 8 € Ax 1 C Ex. Then a+ 3 ¢ A since
otherwise (5.36) implies that

ﬁ+0¢€A+le:AX7+ CE%
This shows that [Y, Im~] = {0}.

b) a € Ex. Then we have already seen in the proof of 1) that [V, Im 4] #

{0}.
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¢) o(X)>0and a ¢ Ax . Let B € Axy with (a | 8) # 0. Then
B(X) = 0 and therefore (6 — )(X) < 0. So § — « is no root because
X € Cmax. Hence (o | f) <0 and f+ o € Ay. Now Lemma 5.7.1.2)
implies that [Y, gg] # {0}.

d) a(X) > 0 and a € Ax . As in ¢) we see that § —a & A for all
8 € Ax . The reflection s, interchanges the two ends of the a-
string through § and it fixes 8 because (a | 3) = 0. So 0 agrees also
with the upper end of this root string and o+ ¢ A. But this clearly
implies that [Y;Im~] = {0}. 0

Remark 5.7.11 The formula for pe_; (ex) is relatively complicated. This
comes from the fact that in general X is not relatively regular in the face
Ex. Since every face of c¢pax contains relatively regular elements (they
form an open dense subset), every idempotent may be reached by such
an element. An example for an element which is not relatively regular in
general is Y. The face it generates iS Cmax, all compact roots vanish on
Y9 but no compact root vanishes on cpmax.
Now suppose that X is relatively regular and in a*. Then

XtnAT=AL =ExnAT.
Therefore
(X NAD\AL =0 and (AgNnAx )NX" =0

because AgN X+ C Ex = spanAx ;. So the formula for p_!(ex) becomes
easier: i
prl(ex) N B = exp (a(AF N A% ) exp(Ak ). (5.42)

d

Lemma 5.7.12 Let L be a connected Lie group and v an idempotent en-
domorphism of L. Then

L = kervy x Im~.
In particular, ker~y is connected.

Proof: Tt is clear that Imy = {g € L | v(g) = g} and ker~ are closed sub-
groups. Obviously, ker v is normal in L, so kerv-Im ~ is a subgroup and the
intersection of Im~ and ker~ is trivial. If g € L, then g = v(g) [v(9) 9]

and

v [v(9) " g] =7 (9) " v(g) =v(9) Tv(g) = 1.

Hence L = ker~ - Im~ is a semidirect product decomposition. O
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Lemma 5.7.13 Let L be a connected Lie group and e = (1,7) be an idem-
potent in L x End(L). Further, let s = (a,0). Then L1)-L4) and R1)-R4)

are equivalent:
L1) ese = es.

L2) e(es) = (es)e.

L3) es € eAff(L)e.

L4) o(kery) C kern.

R1) ese = se.

R2) e(se) = (se)e.

R3) se € eAff(L)e.

R/) a € Im~y and §(Im~) C Im~.

Proof: The equivalence of L1)-L3) and R1)-R3) is trivial. To see that L1)
is equivalent to L4), we compute

es = (1,7)(a,0) = (v(a),y 0 d)

and
ese = (7(0’)77 © 5) (177) = (V(G),’Y 0d O’y).

So es = ese is equivalent to v6 = vdv. On the image of v this relation is
trivial. According to Lemma 5.7.12, it holds if and only if it holds on the
kernel of v, i.e., if and only if §(kery) C ker .

For the equivalence of R1) and R4), we compute se = (a, §y). So se = ese
is equivalent to y(a) = a and §y = vd. The first condition means that
a € Im~. On the kernel of ~, the second relation is trivial. In view of
Lemma 5.7.12, it holds if and only if it holds on the image of ~, i.e., if and
only if §(Im~) C Im~. O

A face F of a topological monoid (i.e., semigroup with identity) 7" is a
closed subsemigroup whose complement 7'\ F is a semigroup ideal. The
lattice of faces of T' is denoted Fa(T'). The group of units in 7" will be
denoted U(T'). In particular, if e € T is idempotent, then eT'e is a monoid
with unit e and U(eTe) is the unit group of this monoid.

Lemma 5.7.14 Let T be a topological semigroup. For e € E(T) we set

T.:={teT:etecele}
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and
Fo:={teT:etcU(eTe)}.

Suppose that U(eTe) is closed in eT'e. Then T, is a closed subsemigroup of
T with identity e, the mapping

Ae:Te —eTe, tr—et
is a semigroup homomorphism, and F, is a face of Te.
Proof: Let t,t' € T.. Then
e(tt e = (et)(t'e) = (ete)(t'e) = (et)(et'e) = (et)(et’) = ett’.

Hence T, is a closed subsemigroup of 1" and the mapping A, is a homomor-
phism. Now it is clear that F, := A\J! (U(eTe)), as the inverse image of a
face, is a face of Tp. O

Lemma 5.7.15 Let X € at and ex = limy_o exp(tX) = (1,7) € Bf.
Then the following assertions hold:

1) Bf., :={s€ Bf:exs=exsex} = BF.

2) ex is an identity element in the semigroup exBE.
3) v(Q) =QNIm~.

4) exSNBf = {exs € exBt | exs(v(Q_)) cv(Q)}.

5) B = (ker \.,, N B*) x ng, where
#
Bg( :=TIm~y % exp (g(A}M) exp(Ex).

6) exﬁ:exg.
7) UlexBf) = exB* and U(exS N Bf) = {ex}.

Proof: 1) In view of Lemma 5.7.13, we only have to recall from Lemma
5.7.9 that
d(kery) C kervy Vs € Ad(BY).

2) Lemma 5.7.14 shows that e xBfisa semigroup. The other assertion
is a consequence of 1).
3) Since ex € SN Bf, we have that

ex Q- =v(Q_)cQ_NIm~.
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But 7|im~ = idim~. Hence
Q_NImy C~(Q).
4) Let s € SN Bt Then
exs - v(Q.) =exsex-Q_COQ_

because exsex € SN Bf. Thus C holds. If, conversely, s is contained in
the right-hand side, then, in view of 2),

s(Q-) =sex(Q_)=s-v(Q_) Cy(Q_) cQ_.

5) It follows from (5.40) that Bg( is a subgroup of B*. Since B§( N
A-l(ex) = {1} by Lemma 5.7.10, we conclude that

€x

B! = (ker A, N B) x B%.

6) The relation eX@ C exﬂ is trivial. But eX@ is closed. Therefore
5) implies that
exg = eng( = m D) exﬁﬁ.
7) First we prove that U(exg) = eXng. The inclusion eXB§( C
Ule X@) is trivial. For the converse, we consider the homomorphism ¢ :
exg — Aff(Im ) defined by ¢(s) := $|im . Since s(kerv) = sex(kery) =

s(1) ={1} for all s € eXBg(, it follows that ¢ is a homeomorphism onto a
closed subsemigroup of Aff(Im~) which satisfies ¢(ex) = id. Therefore

UlexBy) =~ (H (¢lexBY)))

On the other hand, qS(eXBg() = Im~vy x @, where @ is a subgroup of
Aut(Im ) consisting of upper triangular matrices with respect to the root
decomposition of the Lie algebra of Im~. Hence @ is closed in Aut(Im~)
and it suffices to show that U(Q) = Q, where @Q is the closure of Q in
End(Im~y). But if

limu, = u € U (End(Im~)) = Aut(Im ),
then u € ). This proves that U(exg) = eXBgf. Therefore

U((ex(m)) cU (exg) C eXBgf.
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The semigroup ex (S N BY) is compact since S N B is. Thus 4) shows that
6 (U ((ex(50B9)))

is a compact subgroup of the simply connected solvable group Im v x @ and
therefore trivial. a

Notes for Chapter 5

The material in Section 5.1 was first proved in [129]. Part of it can also be
found in the work of Ol'shanskii, e.g., [138]. There is extensive literature on
the exponential map for symmetric spaces, e.g., in [29, 44, 104]. The semigroup
H expC was first introduced by Ol’shanskii [137, 138] for the group case. In
recent years they have become increasingly important in geometry and analysis,
as we will see in the next chapters. References to applications will be given in
the notes to those chapters. Further sources are [50, 52, 64, 63, 93, 129, 130] and
the work of Ol’'shanskii and Paneitz. That M is globally hyperbolic was first
proved by J. Faraut in [25] for the case G¢/G. This was generalized in [129]
to arbitrary noncompactly causal symmetric spaces using the causal embedding
from Lemma 5.2.8. The proof presented here is an adaptation of that in [25]. A
different approach can be found in [114]. The characterization of G” exp(Cmax)
as a compression semigroup was noted first by Ol’shanskii. The proof presented
here appeared in [58]. The nonlinear convexity theorem was proven by Neeb in
[116]. The proof given is taken from [124]. The results on B* have been proved
in [55].



Chapter 6

The Order
Compactification of
Noncompactly Causal
Symmetric Spaces

The order compactification of ordered homogeneous spaces defined in Sec-
tion 2.4 is a fairly abstract construction. In this chapter we show that for
the special case of noncompactly causal symmetric spaces, many features
of the order compactification can be made quite explicit. In particular, the
orbit structure can be determined completely and described in terms of the
restricted root system. The basic idea is to identify gH € M with the
compact set g- O C X, where O is the open domain in the flag manifold
X defined in Section 5.1. Similarly as for the order compactification, this
yields a compactification of M via the suitable Vietoris topology. The point
is that this compactification is essentially the same as the order compact-
ification but easier to treat, since it deals with bounded convex sets in a
finite-dimensional linear space rather than translates of a “nonlinear cone.”

6.1 Causal Galois Connections

In this section we suppose that G is a connected Lie group and S an ex-
tended Lie subsemigroup of G with unit group H. Let M = G/H and
consider the order < on M induced by <g (cf. Section 2.4). In the follow-
ing, X denotes a metrizable compact G-space and @ C X an open subset

172
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with the property
S={g€G|g-O} and S°={gcG|g-OcCO} (6.1)

(cf. Corollary 5.4.21 for an example of this situation.)

We endow the set F(X) of closed (hence compact) subsets of X with the
Vietoris topology (cf. Appendix C). We write 2¢ for the set of all subsets
of GG, and define the mappings

I':F(X)— F(@G), F—{geG|gt - FcO} (6.2)
and
[:2¢- FX), A— (a0 (6.3)
acA

We call T a causal Galois connection. That this is no misnomer is a conse-
quence of the following lemma.

Lemma 6.1.1 The mappings

I': (F(G),C) = (F(X),C) and T:(F(X),C)— (F(G),Q)

are antitone and define a Galois connection between the above partially
ordered sets. Moreover, the following assertions hold:

1) |[T(F) =T(F) for every F € F(X).
2) T(F)°={geG|g*t FcO}

3) For every subset A C G we have that [(A) = I'(A) and T'(] A) =
I'(4).

4) TUier A) = Nier (4.
) PUier Fi) = NMies T(F).

6) T( ﬂ F,) = U n) for every decreasing sequence F, in F(X).
neN neN

7) T(g-A)=g-T(A) and T(g-F) = g-T(F) for allge G,Ae 26, F ¢
F(X).

8) T(g-0O) =g forall g €qG.
9)T(lg)=g-O forallgeG.
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Proof. The fact that I' and I' define a Galois connection follows from the
fact that

ACT(F) ©AcCc{geG|Fcg- -0}
@FcﬂgeAg-gzl"(A).

1) Let g € I'(F) and s € S. Then g~ - F € O and therefore
(gs)y P F=sg' FCcs-0cCO,

hence | g = ¢S~ C T'(F).
2) Let g € T'(F')°. Then, since S has dense interior, there exists an s € S°
with gs € I'(F'). Therefore

gl F=s(gs) ™' -Fcs-OcCO.

Conversely, suppose that g~! - ' C O. Then we find a neighborhood U of
g in G such that U~! - F C O because F is compact and O is open. Thus
geUcCT(F).

3) It is clear that I'(4) c T'(4) = I'(] A) because

ast-O=a-(s1-0)Da-O foreveryacG,s€S.

Let =z € f‘(A) and a € A with @ = lim, o an and a, € A. For every
n € N we find an element f, € O with z = an - fn- We may assume that
f:=1lim,,_ o f, exists in the compact set O. Then
r=lima, -fa=a-f€a-O.
4), 5) These assertions are trivial.
6) Set F' := ),y Fn. First we note that I'(F,) C I'(F) and therefore

that the right-hand side of 6) is contained in the left. Let g € T'(F)) and
sp € S° be a sequence with lim,_, s, = 1. For every n € N we have that

$ng P F Csy-0CO,

ie., F Cgs,'-O. Note that F,, — F in the Vietoris topology. Hence we
find ng € N such that F,, C gs,' - O, which implies that gs;! € T'(F,,).
This shows that gs;* € |J, ey T'(Fi) for every n € N. Now

g= lim gs,* € U T#).
keN
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7) This is immediate from
Ig-F)={reG|lz g FCOy={zxecG|(gtz) - FCO}=g-T(F)

and from

I(g-A) = ﬂ a-O= ﬂga-@:g-f(A).
a€g-A a€A

8) We deduce from 7) that T'(¢gO) = g - T'(O), and therefore it remains
to show that S™' = {g € G | g7! - O C O}. First, according to our
assumptions about O and X, we have that S~ C I'(O) because g~*-O C O
implies that g~' - O C O. We claim that g € S~! for every g € I'(O). Let
sn € S° be a sequence with lim, . s, = 1. Then

sng_l-ﬁzsn-(g_l-@)Csn-6C(9

and therefore s,,g~' € S°. Thus g ! = lim, o0 sn_g_l €So=8.
9) In view of 3), we have I'(| g) =T ({g}) =g - O. O

Corollary 6.1.2 For two elements g,g' € G we have
9<sg <=y¢-0Cg-0

and -
ge(lgd) =4 -O0cCyg-0.

Proof. These are direct consequences of the fact that

S°={geG|g-OcO} and S '=T(0). O

Lemma 6.1.3 The mapping I': F(X) — F(G) is continuous with respect
to the Vietoris topologies on F(X) and F(G).

Proof: Suppose that F,, — F in F(X). We split up the proof into two
steps.

1) I(F)° C liminf,, T'(F,): Let g € T'(F)°. According to Lemma
6.1.1.2), we have g=1 - FF C O, hence F C g - O. Consequently, we find
no € N such that F,, C g- O forn > ng. Thus ¢g7'- F, C O ¢ O and
g € I'(F,) for n > ng.

2) limsup,, . I'(F,) C I'(F): Let g € limsup,_,,I'(F,) and choose a
subsequence F,, and g € I'(F,,) with g, — ¢g. Then F = limg_,oc F), .
Pick f € F. If f, € F,, with fr — f, then fi € gx - O 50 f € limg_o0 gi -
O =g 0. Thus g € I'(F), since f was arbitrary. As liminf, o EF(f,) is
closed, we now have

I'(F)° C liminfT'(F,) C limsupI'(F,) C T'(F).

But I'(F') is closed and satisfies I'(F') = | T'(F'), so Lemma 2.4.7 implies
I'(F) =T (F)° and hence Lemma C.0.6 shows that T'(F,,) — I'(F). 0
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Definition 6.1.4 We set M := m C F(X). The map
G- MC gg-0
is called a causal orbit map. O
Note that Lemma 6.1.1.8) implies that
Fov=7om, (6.4)

where m: G — G/H is the quotient map and 7 the order compactification
from Lemma 2.4.2.

Lemma 6.1.5 (Fixed Points of the Galois Connection) The follow-
ing assertions hold:

1) Tol'(A) = A for every A € T(MO©).

2) I'o [(F) = F for every F' C X for which there exists a decreasing
sequence F,, = gy, - O with

F= lim F, = () on-O.

neN

Proof: 1) There exists a compact subset F € M with A = I'(F). The
fact that I" and I" define a Galois connection (Lemma 6.1.1) implies that

I'T(A) =I'TD(F) =[(F) = A.

2) We use Lemma 6.1.1.6) to see that I'(F') = |J,cnT'(F). According
to Lemma 6.1.1.3), this leads to

fr) = (Y ) ) =6 oo = (b = o0 0= ¢

neN neN neN neN

Proposition 6.1.6 The mapping I' : M© — M®Pt is a quotient morphism
of compact G-spaces, where G acts on M© by (g, F) — g - F. Moreover,
the action of G on M© is continuous.

Proof: We show first that T'(M®) = M°Pt. In fact, consider g- O € MO.
Then, according to Lemma 6.1.1.8),

I'(g-0)=lg=gS"' =7n(gH).
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This proves the claim, since I': M© — &(G) and 7j: M — ®(G) are contin-
uous and {g- O | g € G} is dense in M© just as M is dense in MP*,

It follows from Lemma 6.1.1.7) that I" is equivariant. Lemma 6.1.3 to-
gether with the above implies that I' is a quotient mapping of compact
spaces. The action of G on ®(X) is continuous by Lemma C.0.7. Thus
MO is G-invariant and the restriction is obviously a continuous action on

MO, O
Theorem 6.1.7 Let
MO = (o) (M), (65)
Then the following holds:
1) u(S) = MT.
2) S={geG|g- (M) c (M)}
3) 8°={geG|g- M Cc (M)}

Proof: 1) This follows from T (¢(S)) = (M ).

2) and 3): First we note that T(MS) = MP* by Proposition 6.1.6. We
claim that [MP]° = T(IMF]°) and [MP]° = T~H([MP']°). In fact, we
have

FeEM?eT(F)e MP & 1eT(F)eFcO
because of Lemma 2.4.4, and, using Lemma C.0.7, we see that F' € [M?]O
implies that there exists a neighborhood U of 1 in G such that U - F C O.
On the other hand, T'(F) € [M$]° holds if and only if there exists a
neighborhood U of 1 in G such that U - F C O because of Proposition
2.4.4. This shows that

D(ME)°) € M.
The reverse inclusion follows from the continuity of I'. Now we have
L(M9]°) = [./\/lfft]o, which upon taking the preimage under I' also shows
that [M9P]° = I~ ([M?']°). Now we see that g € S is equivalent to
g- MTP CMPT = g-T(ME]°) CT(IMT°)
= T(g- M) cT(MT]")
= g MTJ]°c M.

-
C

Similarly, g - M?" € [MP']° <= g- M C [MP]°. An application of
Proposition 2.4.4 completes the proof of the last two claims. O
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6.2 An Alternative Realization of M%'

From now on we assume that M = G/H is a noncompactly causal symmet-
ric space such that G is contained in a simply connected complexification
Gc. Moreover, the semigroup S = S(Chax), the flag manifolds XG/ Pyax
and X¢ = G¢/(Pmax)c, and the open domain O C X, are the ones from
Section 6.1.

Recall the causal orbit map ¢: G — M@ from Definition 6.1.4.

Theorem 6.2.1 +(S) = [KA (SN A)} NF(0).

Proof: C: Let E = lim, .00 5, - O € 1(S) € F(O). From [115], 2.9, we
know that G = KAH. Therefore we find elements k, € K,a, € A, and
h,, € H such that s,, = knanhyn. Then s, -O = kypa, - O because H-O = O.
According to [66], p. 198, the group K is compact since €+ ip is a compact
real form of the complex semisimple Lie algebra gc and G C G¢. Therefore
we may assume that kg = lim,, .. ky exists in K and we find that

FE = lim ky,a,-O =ky- lim a, -O

n—oo n—oo
because ko ' - E = limy,— o0 kg ' knan - O = limy,—,c0 ay, - O. Thus

0 #T(k;'FE)=k,'T(E) = lim I'(a, - 0) = lim |a, = lim n(an)

n—oo n—oo

since I'(E) € n(S) contains S~1. Now we use Lemma 5.6.5 to find an a € A
such that a,a™! € SN A for all n > ng. Then

E =koa lim (a™ta,)- 0 € KA- (SN A)NF(O).

O: Let E =ka - limy—o0 ay - O C O. Taking s € S°, we find that

lim skaa, - O Cs-OcCO.
Therefore we find an ng € N such that skaa, - O C O for n > ng. Thus
skaa, € S and consequently

s+ E = lim skaa,-O € 1(S).

n—oo

The fact that 1 € S° now implies that E € ¢(S). O
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Remark 6.2.2 Consider the commutative diagram

O — N_-oy — X

T T
Q. — n_ ~ N_

The vertical maps are G-equivariant homeomorphisms and O, respectively
Q_, is relatively compact in the open set N_-oy, respectively n_. Therefore
F(Q_) can be identified with the compact set

FO)={FeF(X)|FcO}

(cf. Lemma C.0.6). In particular, we have an action of Aff.om(N-) on
F(O) and can consider M© as a subset of F(2_). O

Next we consider the set +(S N A) C F(O).

Lemma 6.2.3 Recall the closure B of B in Aff(N_) and the closure ST
of SN A in BE. Then the following assertions hold:

1) SNBi={yeBi|y-0c O} is a compact semigroup.
2) M9 =(S)=SnB:-0.
3) MY =c KA-(S¥"-0).

Proof: 1) In view of Theorem 5.4.8 and Remark 5.7.4, we only have to show
that SN B! D {y € Bt | v- O c O}, because the other inclusion is clear.
Let vy € {a € Bt | a- O C O} and 7, € B! with v, — ~. We choose
X € ¢8,, and set a(t) = exp(tX). Then X (Q_) C Q_ for every t > 0.
Therefore Q_ C [e~ 24X (ﬁ_)]o entails the existence of ng € N such that
Y (Q2) C e 24X (Q_) for all n > ng. Then a(t)y, € SN B*. We conclude
that

v = lim a(t) [a(t)y,] € a(t)~1S N B

n—oo

Letting t — 0, we find that v € S N B! because S N B! is compact.
2) Note that compactness shows

(SNBYH)-Q_CcSNBL-Q_=SNBLH-Q_C(SNBY)-Q_

so that L
1(S) = (SN BY) Q_=SnBt-O_.

The first equality follows from Theorem 6.1.7.
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3) Since S is a compact subsemigroup of S N Bf which contains SN A,
Theorem 6.2.1 and Proposition 5.7.5 entail that

(SYCKA-((SNA)=KA- (ST -0). O

Lemma 6.2.3 shows that information on the orbit structure of ¢(S) =

M may be obtained from S¢* - O, which is an orbit of a compact abelian

semigroup. The topological structure of ¢(S) is encoded in the compact
semigroup S N BE.
For a face F € Fa(cone(A_)), we set

QF =eFr 'ﬁ_ (66)
and note that we may view Qf as a subset,
OF C X C X¢. (6.7)

Theorem 6.2.4 The causal Galois connection I': F(X) — F(G) defined
in (6.2) induces a homeomorphism MS — Mft.

Proof: We note first that

((S) C KA-{Qp | F € Fa(cone(A_))} (6.8)
which is a consequence of Lemma 6.2.3.3) and recall that
S = exp(Cumax) E(ST") = explema){er | F € Fa(cone(A_))}

from Theorem 5.7.6

Further, we know from Theorem 6.1.7 that Mft = T(M9). Since
: MP — Mt is a quotient map by Theorem 6.1.6, it only remains to
prove that F|@ is injective. Let E € «(S). Then there exists g € G and

F € Fa(cone A_) such that E = g-Qp C O. Thus

IT(E)=IT(g-Qp) =g -ITQp)=g-Qr = E
because Qr = limy o exp(tX)- O for X € Intp1 (cax N F*) (cf. Theorem
5.7.6, Lemma 6.1.5). This proves the claim. |

6.3 The Stabilizers for M?'

We remain in the situation of Section 6.2. This section is devoted to the
study of the stabilizer groups in G of points in M(jrpt.
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Let X be an element of a™. We determine the connected component of
the isotropy group of the element lim; .. (exptX)-O in /\/lg We endow the
space of vector subspaces of g with the Vietoris topology which coincides
with the usual topology coming from the differentiable structure on the
Grafimann manifold.

Proposition 6.3.1 The limit by := lim;_ ., e*1'Xp exists and
bx =3, (X) +g(AT\ X).

Proof: We write g = m +a + @, go and
1
bryig b Y LY 4 r(Y)

for the projection of g onto h. Then

h=m+ @ prh(ga)

aEAT

because pry(ga) = pry,(g—a). The subspace m = 3;(a) is fixed under A and
for Y € go,a € AT we find that

Jim X pr (RY) = Jim AUXRY 4 7(Y)
= tlim R [em(x)Y + efm(X)T(Y)}
B pr, (RY), if a(X)=0
- 1 RY, if a(X) > 0.

We conclude that limy_ o e!?dXp exists and equals

bx=me P @) P sa=n)eAT\XD. D
aceAtNXL acAT\X L

Lemma 6.3.2 hy N (a+nf) = {0} and g = hx + a+n.

Proof LetY = Y1 + Yy = Zy + Zy € hx N (a + nf) with ¥} € 3,(X),
Yz € g(AT\ X1), Z1 € a, and Z5 € nf = g(A1)*. Then

Vi=Zi+Z-Ya€(a+ni+n)N3(X)=a8 P g

We conclude that Y5 = 0 because the sum a + nf + n is direct. Then
Y1 € (@ + nf) N bh = {0} and therefore Y = 0. This proves that
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hbx N (n* 4+ a) = {0}. The second assertion follows from dimbh =
dimbhy = dimg — (dim a + dimn¥). O
Note that Lemma C.0.10 implies
HXcHFZ:{QEGlg-QFZQF}, (69)
where Hx = (exp hx) because Qp = lim;_,, exp(tX) - O.
Proposition 6.3.3 Let hr be the Lie algebra of Hp. Then

br =bx + [hr N (a+nh)]

and
HpNB*=p_!ex)N B

Proof. The first assertion follows from Lemmas 6.3.2 and C.0.10. Write
ex = (1,7). We know already that Qr corresponds to v(2_) C n_ (cf.
Lemma 5.7.2 and Theorem 5.4.8) and that

Hp (B = {(n_,6) € B | (n_,8) -1(0) =1(2)}.
Let (n_,0) € Hp N B*. Then
ex(n—,8) - v(Q-) = ex - 7(Q-) = 4(2-).

Therefore ex(n_,d) € U(eX(SﬂBu)) = {ex} (Lemma 5.7.15.7)). We
conclude that (n_,d) € A\Jl(ex) C kery % NEA (Lemma 5.7.10.1)). Now

(a,9) - 1=a¢€~(Q-) C Im~ implies that
a € Im~yNkery={1}.

Next we have § (v(Q-)) C 7(Q-), which implies that §(Im~) C Im~ and
6 € A\;}(ex) entails that ¥0|pm y = 7. Thus 8|im 4 = idim 4, so (5.41) implies
that

Hp N 13‘j C p;g(ex).

Conversely, (n_,d)ex = ex entails that
(n_,8)-v(Q_)=(n_,0ex -Q_ =ex-Q_ =~(Q_). O
Corollary 6.3.4 Suppose that X € a* is relatively reqular. Then

hr=me Ak, &g AT\ X @a(Af Ak ) e @ pylaa).

QGA;

Proof. Remark 5.7.11, Proposition 6.3.1, and Proposition 6.3.3. O
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6.4 The Orbit Structure of Mt

We retain the hypotheses of Section 6.2. In this section we finally determine
the orbit structure of the order compactification of M.

Proposition 6.4.1 Let w € Nxnp(a) and X € cpax with
tlgrolo exp(tX) - O =Qp.
Then - _
tliglo exp (tAd(w)X) - O =w-Qp.
Proof. We have that
tlggo exp (tAd(w) - X)- O = tlinolowexp tX)w™ -0
= tlinolowexp(tX) -0 =w-Qp.
which proves the assertion. O
Corollary 6.4.2 For every orbit G - Qp there exists X € at such that
tlggo exp(tX) -0 € G- Qp.
Proof: Since cpax = Wo - a™ this follows from Proposition 6.4.1. O

Let X € a™, ex = (1,7) the corresponding idempotent of S N B?, and
F = Fx. We set

nx_:=g(Ax_)=Imy and Nx,_ :=exp(nx,__). (6.10)

Remark 6.4.3 Let L be a group acting on a space X and Y C & be a
subset. We define

Ny(L) = {g€Llg-Y=V},
Zy(L) = {gelL|VyelY:g-y=y}.

Then the subgroup Zy (L) of Ny(L) is normal. In fact,let y € Y, h € Ny(L)
and g € Zy(L). But then

hgh™t-y=h-lg-(h""-y)]=h-(h""-y)=y
because h~! -y € ) and this implies the claim. a

Recall from (6.7) that the Qp correspond to compact subsets Of of
Ocx.
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Lemma 6.4.4 The following assertions hold:

1) Qr isa compact subset of Nx _ - ox with dense interior.

2) Set Zp:={g€ G|V €Qp : g-v=2a}. Then

Zrp = {9€G|VreNx_-0:g-x=u}
- ﬂ gﬁmaxgil-
9gENX +

3) The normalizer of Zp contains A, M, and Hp.

Proof 1) This follows from the fact that Qp = [ep - exp(Q_)] - 0x and that
er - exp(Q)) = exp(2) N Nx _ is open in Ny _ (cf. Lemma 5.7.15).
2) The equality

{9€G|¥eNx_ox:g-y=y}= (] 9Puaxg '
gENX +

is clear, since gPnaxg~ ! is the stabilizer of g - oyx. It is also clear that
Zp contains this subgroup. To see that the converse inclusion holds, let
g € Zr. Then the mapping

®:Nx_—X, n_ »—»n:lgn,-o;(

is analytic and constant on the open subset exp(€2) N Nx _. Therefore it is
constant because Nx _ is connected. We conclude that g-(n_-ox) =n_-ox
foralln_ € Nx, _.

3) Lemma 6.4.3 shows that Zp is a normal subgroup of Hp. That M A
normalizes Zp follows from 2) and the invariance of Nx, _ - oy under M A.
To see this invariance, let g € M A. Then g-ox = ox because M A C Pyax
and therefore

1

gNX7,~OX:gNX7,gi -OX:N)(_’,-Ox. O

Lemma 6.4.5 Let Pr be the normalizer of 3p. Then Pg is a parabolic
subgroup of G containing Ppin = M AN.

Proof: Let pr be the Lie algebra of Pr. Then, by Lemma 6.4.4.3), hr+a C
pr and MA C Pr. The subalgebra generated by pr, (go) and a contains

go + 0o for every a € A% with X relatively regular (cf. Corollary 6.3.4).
So
m+at+g(AT)=m+a+nCpp.

Therefore Ppin = MAN C Pp and consequently Pr is a parabolic sub-
group. t
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Lemma 6.4.6 Let Qp, Qp be such that F # F' and F-Nemax, F' N emax
are faces of cmax generated by relatively regular elements X, X" inat. Then

G Qr £G Qp.

Proof. Suppose that G- Qr = G - Qps. Then there exists g € G such that
g-Qp = Qp/. Therefore Hpr = gHpg™' and gZpg~' = Zp,. This implies
also that gPrg~! = Pp,. But Pr and Pps are parabolic subgroups of G
containing Ppi,. Hence they are equal ([168], p. 46). Moreover, P is its
own normalizer. So g € Pp and Zp: = Zp. Thus

A)L(’Jr:gpﬂa:gpfﬂa:Aﬁg,#.

Then the faces Aﬁ@r N Cmax and Aﬁ‘(,_’Jr M Cmax are equal and F' = F' follows
from Remark 2.1.7. O
Proposition 6.4.1 and Lemma 6.4.6 now yield the following.

Theorem 6.4.7 The G-orbits of Qr and Qg for F,F' € Fa(cone(A_))
agree if and only if F and F' are conjugate under the Weyl group Wy.

Lemma 6.4.8 1) G-Q_ C KA-{Qr | F € Fa(cone(A_))}.
2) For all F € Fa(cone(A_)) we have G- Qp = KA - QF.

Proof: 1) In view of Theorem 5.7.6.2) and Theorem 5.7.6.4) this is exactly
what was shown in the first part of the proof of Theorem 6.2.1.
2) Using Corollary 6.4.2 and 1), we find

G-QrCG-Q_ =KA-{Qp | F' € Fa(cone(A_))}.

If g-Qp € KA-Qp, then we have G-Qp = G- Qg so Lemma 6.4.6 implies
that F' = w - F’ for some element w € Wy. But Wy - A = A and the action
of Wy on A is induced by conjugation with elements from K, so

KAQF = KA'ﬁw.F/ = KAw 'QF/ = Kw(uFlAw) 'QF/ = KAQF/
It follows in particular that g - Qp € KA - Qp. o

Lemma 6.4.9 Suppose that G - T(Qp/) C G-T'(Qp) for some F',F €
Fa(cone(A_)). Then there exists a Weyl group element w € Wy with
w-F' CF,ie,w-F isa face of F.

Proof: The hypothesis means that there exists a sequence of elements g, €
G such that Qp = lim, 00 gn -_QF. Lemma 6.4.8 shoivs that we can find
k, € K and a, € A satisfying Qp, = limy,_, o kna, - Qp. Without loss of
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generality we may assume that the k, converge to some k, € K, so that
k;l-Qp = lim, oo an - Qp € A-Qp. This implies that ep(k; ! - Qp) =
k;1-Qp. On the other hand, we know that I'(k; ' -Qp) = k; 1 -T(Qr) # 0.
Therefore Lemma 5.6.5 tells us that there exists an a, € A with k;1Qp €
CLOQF/ C aO(S n A)@ Thus

kot Qp € epASTH - O=AST - Qr= | A Qpr.
F'CF

Pick F” C F with k;l -ﬁpl € A-ﬁp//. Then G-ﬁpl = G~§F// entails that
F" e Wy - F' (cf. Theorem 6.4.7). O

Lemma 6.4.10 Let F € Fa(cone(A4)). Then the following assertions are
equivalent.

1) F = FNcone(A_) for an F € Fa(cone(—AT)).
2) There exists an X € at such that F = X+ N cone(A_).
3) There exists a relatively regular X € a™ such that

F=X"*nNcone(A_).
4) FL 0 cmax is generated by a relatively reqular element of at.

Proof 1) = 2): F € Fa(cone(—A™)) means that F = op(E) for some E €
Fa(cone(—AT)*) = Fa(—a™). If X € algint(E), then F = X Ncone(—AT)
and hence F = F' Ncone(A_) = X Ncone(A_).

2) = 3) follows from Lemma 5.7.8.2).

3) = 4): If F = X+ Ncone(A_), then

Crax N FJ_ = Cmax N a[]RX-l—Cone(A,]*)

RX max p—
= Cmax N Cl[ te ] = Cmax N [R+X - Cmax]7

where a® for cone C in a is the edge of the cone, is generated by X (cf.
Section 2.1 for the notation).

4) = 1): If F-Nepax is generated by X € at, then F = X+ Ncone(A_).
Let F:= X' Ncone(—At) € Fa(cone(—At)). Then F Ncone(A_) = F.
a

Remark 6.4.11 For all F € Fa(cone(A_)) one can find a v € W such
that «(F') satisfies the conditions from Lemma 6.4.10. If v(F) and ~/(F)
both satisfy these conditions, then Lemma 6.4.6 shows that v(F) = ~/(F).
O
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The space Fa(cone(A_)) carries a natural partial order <. It is given
by inclusion. The corresponding strict order will be denoted by <. On the
other hand, we introduce an ordering on the set of G-orbits in M°P via

G-m<G-m & GmcG-m, G-m#G -m;
G- m=<G-m
G m=<G-m & {or
G -m=G -m.

It is clear that the relation < on G\Mcl’t is reflexive and transitive. For
the antisymmetry, note that G-m < G -m’ < G - m implies that G -m
is strictly contained in G -m/, which in turn is contained in G- m. This
shows that G-m = G - m/, in contradiction to the hypothesis. Thus < is
a partial order. Note that G-m < G - m’ means that m € G- m/ and the
G-orbit of m is not dense in G - m/.

Lemma 6.4.12 Let F' C F be faces of ci,,,.. Then T'(Qp/) € G-T(Qp).

Proof: F C F’ implies that

epepr = Eep/eRp = Epr = lim exth’
t—o0

for X' € Int(pry1 (¢max N (F')*) (cf. Theorem 5.7.6). Using Lemma 5.7.2,
we can calculate

Qp =epQ_ = tlim exptX’ - erfl_
— 00

= tlim exptX' - Qp € G- Qp.

Thus F(QF/) €G- F(ﬁp) O

For an element E € M$ we define the degree d(E) := dimkerep ,
where E € G- Qp. We note that ep : n_ — n_ is a projection and
m = dimn_ — dimker er agrees with the topological dimension of the set
E =~ Qp =~ ep - Q_, which is an m-dimensional compact convex set. Upon
identification of Mf with (jrpt via I', we have the function d also on J\/lfft.

Proposition 6.4.13 Suppose that F, F' € Fa(cone(A_)) and F' is strictly
contained in F'. Then

G- F(QF/) < G- F(QF)
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Proof. Recall that —c¥ . is a polyhedral cone spanned by the elements

max
of A_. Thus the hypothesis shows that F' N A_ is strictly contained in
FnNA_. But then we have

d(Qp/) = dimkerep < dimkerer = d(QF).
So QO € {y € MY | d(y) > d(Qp) + 1} and hence G- Qp N MY C {y €
M | d(y) 2 d@) + 1} or
G-T(Qp)NMP C {ze MP |dx)>d(T(Qr)) + 1} (6.11)

But since I'(Q) is not contained in the right-hand side of this inclusion, it
is also not contained in G - T'(Qp/) N M, whence G -T'(Qp/) # G -T(Qr)
and the assertion follows from Lemma 6.4.12. O

Theorem 6.4.14 Let F := {F' € Fa(cone(A_)) | 3F € Fa(cone(—A™T)) :
FNcone(A_) = F}. Then the mapping

T:F — (MPN\{0})/G, F~ G Qp
is an order isomorphism.

Proof. The surjectivity of T follows from Lemma 6.4.8 and the injectivity
from Lemma 6.4.6 and Remark 6.4.11. According to to Proposition 6.4.13
it is order-preserving, and that the inverse is also order-preserving is a
consequence of Lemma 6.4.9. O

We describe the structure of the lattice F in more detail. Note first that
F is isomorphic to —F. Since cone(A™) is polyhedral and A* is generated
by a set T = {ao,..., o} of linearly independent elements (cf. Lemma
5.5.10), it is clear that the mapping

Fa(cone(AT)) —=2¥, Fs FNY
is an order isomorphism. So we have to determine the image of the mapping
2T - F, D — cone(D) N cone(Ay).

To each subset D C T there corresponds a subgraph of the Dynkin graph
of A. Recall that T contains only one noncompact root ag. Let Dy C D
correspond to the connected component of ag in the Dynkin graph. Then

(spanD) N A = [(spanDy) N A]U[span(D \ Dg) N A]
and therefore

cone(D) Ncone(A,) = cone(Dy) Ncone(Ay).
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Hence it suffices to consider subsets D C T such that ag € D and the cor-
responding subgraph is connected. The resulting lattices have been listed
in [55].

Example 6.4.15 In the situation of the SL(2,R) Example 5.7.7 we have
Qp, ={0} and Qp, =Q_

and F = {F}, F»}. In particular, M" \ {0} has two SL(2,R) orbits. O

Corollary 6.4.16 GI‘i(ﬁp) =UpcrG-TQp).

Proof. G -T'(Qp) is the disjoint union of G-orbits. For each of these G-orbits

G-z wehave G-z C G - T(Qr), so Lemma 6.4.9 implies that G-z = G-T'(Qx)
for some face F’' of F. This proves the inclusion C, whereas the reverse
inclusion is clear from Corollary 6.4.2. O

Theorem 6.4.17 For F € Fa(cone(A_)) we have
g-QreMl & g-QrcQ_.

Proof. Recall that Theorem 5.7.6.3) shows that Qp = lim;_, o, exp(tX)-Q_
for X € Intp. (cmax N FL).

= Ifg-Qp € M? and s € S°, then we have sg - Qp € (M?)O by
Theorem 6.1.7 and hence sgexp(tX)-Q_ € Mg for large t. We choose
Sy € S° with s, — 1 and t,, such that ¢,, — oo and

sngexp(t, X) - Q- € MY. (6.12)

Now the calculation in the proof of Lemma 6.1.5 shows that (6.12) holds
precisely when 7j(s,gexp(t,X)H) € J\/lipt because of Theorem 6.1.7. But
this in turn is equivalent to s,gexpt,X € S and hence to s,gexp(t,X) -
Q_ C Q_. If we let n tend to co we obtain g - Qr C Q_.

=: This time we choose s,, € S° and ¢, € R with s,, — 1, t, — o0
and s,gexp(t, X)-Q_ C Q_. Reading the argument in the first part of the
proof backwards, we find s,gexp(t,X) - Q_ € Mf and upon taking the

limit, g - Qp € M9. O

Corollary 6.4.18 Let F' € Fa(cone(A_)). Then

G-T(Qr)NMP =G - T(Qp) N MP".
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Proof: The inclusion C is obvious. To show the reverse inclusion, let F’
be a face of F' and note that I'(Qp/) = limy_.c exptX’ - T'(Qp) for X' €
Intprs (Cmax NEF'L). If 2 € G-T'(Qpr) ﬂ./\/l‘ft, then there exists a g € G such
that v = g-T'(Qp) € /\/lfrpt and Theorem 6.4.17 implies that g - Qp C Q_.
Choose s, € S° and t,, > 0 with s,, — 1, t,, — 00 and s,gexpt, X’ - Qp C
Q_. Then Theorem 6.4.17 shows that s,gexpt, X’ -T'(QFr) € ./\/lfft and in
the limit we find g - T'(Qp/) € M?". In other words,

G-T(Qr)NMP CG-T(Qp)N MP".
Finally, Corollary 6.4.16 shows that

MPNG - T@r) = | G- T@r)nMP G- TQp)NMT O
F'CF
For k € N, we set

(MPVe = {z e MP" | d(x) = K} (6.13)
Corollary 6.4.19 1) (MP"), = Ud(ﬁp):k(G T(Qr) N M.

2) Each G -T'(Qp) with d(Qp) = k is open in (Mft)k with respect to
the induced topology.

Proof: 1) is obvious. B
2) It suffices to show that each G -T'(Qr) N MP" is closed in MP*, since
the union is finite. Using Corollary 6.4.16 and Corollary 6.4.18, we calculate

G-TQp) NMP N (MPY = G-T(Qp)N(MP)
= U le-r@p1n P

F'CF
= G-T@Qp)NMP

since d(Qp/) < d(Qr) for F’ strictly contained in F. O

6.5 The Space SL(3,R)/SO(2,1)
We conclude this chapter with a detailed discussion of the space M =

SL(3,R)/SO(2,1). Thus we let G = SL(3,R), g = s(3,R). As a Cartan
involution g we use 6 : g — g, X — —'X, which yields K = SO(3),¢ =

s0(3,R) and
7{ A c
p= e —TrA

T4 — A,06R2}.
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As a maximal abelian subspace a of p we choose

r+s 0 0
a= 0 —-r+s 0 r,se€R
0 0 —2s
so that
aq 0 0
A=expa= 0 ay O a; > 0,a1az2a3 =1
0 0 as
Moreover, we have
M = ZK(C[)

=GO 56 S

Now consider the involution 7 : g — g given by
A b —tA ¢
x=(a) - (W %)

1 0 1 0

= (0 B 5

and its global counterpart, which is given by the same formula. Then

H = SO(2,1)

A b b, c € R?,

(tc d)ESL(?),R) deR,TAA —cle =1, ,
tAb = de, |2 — |dJ? = -1

h — 50(2,1)={<;‘2 8) fA:—A,beR2},
q = {(_f%c _TCM) tAzA,ceRz}.
The c-dual objects are
G° = SU(2,1)
A e M(2,C),
o [ R e

A% = de, |} ~ P = =1
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g°=bh+iq =

o

u

(2,
A+ZB b+lc t _ t o
( —ile —iTrB) A= A’B_B}’

{
- (40 )\AGU@}
{(0 ma)far--a

We write a = RH; + RHy with

EC

1 0 O 1 0 0
H =10 -1 0 and Ho:=|0 1 O
0 0 O 0 0 -2

and note that X° = %Hg is a cone-generating element in q,. As a system
of positive roots we choose

AT = {ai3, ag3, a12}

and note that

Oélg(T‘Hl + SHQ) = 2r
aos(rHy + sHe) = —r+3s
oa13(rHy + sHs) = r+3s,

so that
Ap = {agz, 003}, Af = {az}.

The corresponding root vectors are

0 1 0
FEi, = o o0 0],
0 0 O
0 0 O
FEys = 0o 0 11,
0 0 O
0 0 1
FEi3 = 0 0 O
0 0 O
Therefore we have
0 0 =«
ng = 0 0 yv]llz,yeR,,
0 0 O
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1 0 =z
Ny = 0 1 yllz,yeR,,
0 0 1
0 =z O
ng = 0 0 0)|zeR,,
0 0 O
1 =z O
Ny = 0 1 0)|zeR,,
0 0 1
1 % %
N = 0 1 =
0 0 1
and
1 0 O
Nt = « 1 0] p.
* k1
Moreover,

a 0 0
ac = 0 b 0 a,beC
0 0 —a—29»

is a Cartan algebra of gc = s[(3,C). This leads to

e = (3 e =3 Dec)
o= {( Dect o ={(2 D)

. A 0
ke = {(2 )| acaao),

and A
C C &
K&(PoY*t = { (o detA‘l) |A € GL(2,C),c € <C2}.

Now we can write down the maximal parabolic,

Poax = G N KE(PO)T = { <6‘ detljarl > ‘ A€GL2,R),b € RQ} ,

and identify the corresponding flag manifold as

G/ Puax = K/K 0 Ppax = SO(3)/0(2) = RP?.
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The domain (2_)c is given by

oe-{(2 9]

and the action of G¢ = SL(3,C) on (2_)c can be described by

because

(e 1) (5 D)= (eeranparmr 1) (0 a)

Next we compute the H-orbit of 0 € n_. Since (HNK)-0 = {0}, we have

A b .
t, d)EH. Since H = —H,

we may also assume that d > 0. Then d = /1 + [|b]|? and A = A implies
that A = /1 + b'b, where b € R? is arbitrary. In particular, we find that

g-0="b(/T+ PP

Since the spectrum of b'b is {0, ||b]|?} and _ is rotations-invariant, we see
that

to consider only symmetric elements g = (

Q. =H-0={zeR*:||z|| < 1}.
In order to compute the affine semigroup we consider the group

al 0 0
Bf = N*A = N_ x4 (NEA) = 0 as * a; >0y,
* * (alag)_l

which acts on N_ =~ R? via
a1 0 0 1 1

1
Z Q2 0 ) (x’,y/) = (_xl - Zy/ + (a2 - al)xa _y/) .
T y (alag)fl aiaz \ ai a2

The linear contractions A of Q_ are those with ||A|| < 1. Using the fact
that ||A||? = [|[AA*||, one obtains for example that

2
H<g l;) :%((a2+b2—|—02)+\/|(a2+b2+02)2—4a202|).
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al 0 O
Forg=1{ 2z aq 0 € NgA we have that
0 0 (alag)_l

g-(x,y>=<a1az>‘l(a61 a_;zl> @)

So g-Q_ C Q_ if and only if

2242 ((012 +ay® +2%) + \/|(af2 +ay” +22)? - 4(@1@2)20 <1

For z = 0 this is equivalent to max{a; 2, a;*}/(a}a3) < 1. So we find for
erts 0 0

g=exp(rH, +sHy)=[ 0 e 0
0 0 e 2s

the condition
Arl=6s < 1 «—  |r|-3s<0.
Because of
Cmax = {rHi+sHs||r| < 3s}
= RT(3H; + Hy) + RY(=3H; + Ha),
ax = {rHy + sHs | |r| < s}

Cmin = Cmax

R*(H, 4+ Hy) + RT(=H, + Hy),

this condition is also equivalent to rHy 4+ sHa € cmax-

The cone cone(A_) = —cf .. = —Cmin has four faces:
Fy = {O}a
F, = -RY(H,+ H,),
F| = —-RY(H, - H>),
and
Fy = —cuin -

The faces F; and Fy are conjugate under the Weyl group which acts by
reflections on the line RT H;. Corresponding to these faces we have four
idempotents in S¢*. Clearly ep, is the identity, whereas ep, = 0. We have
€F = €X with

-4 0 0
X=-3H—Hy=| 0 2 0])€a.
0 0 2
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An interesting feature in this example is that the causal Galois connection
I': F(X) — F(G) is not injective. To see this, let

e 0 0 e 0 0
ag:=[ 0 € 0 and a,:=| 0 e 0
0 0 e 0 0 e

Then a; - (z,y) = (¢%x,y),
hm ag - Q_ = ]R X [_17 1]7

t—o0
and a} - (z,y) = (x,e%y), so

lim a;-Q_ =[-1,1] x R.

t—o0

The sequences a,, and a), are not bounded in the order induced on A, hence

Lla:-Q-) =n(a) — 0
and _
D(a;- Q) =n(a;) — 0
in F(G). since
tlim ap-Q_ # tlim a,-Q_,
we see that I' is not injective.

We now describe the groups Hx and Hp. Let X = —3H; — Hs be as
before. Then Ax + = {aos} and

hx = lim X
t—o0

1 = pry (ga23) D gaix D Jais
= 3 (X) + 8ar D Baus

0 =z y
= 0 0 z||x,y,z€eR
0 2z 0

This is a solvable Lie algebra of the type R? x44ir R, where R? is the sum
of two real root spaces. The stabilizer algebra is given by

br =RX+bhx =RX & pry (gazs) D Faro D Fais-

Let us write ex = ep, = (1,7). Then

Imvy = g-qus,
kery J—ai3»
peglex) = exp(RX),
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and
L(ker /\ex) = @—a13 Xsdir (9*0&2 D RX)

The maximal parabolic Lie algebra p .. of dimension 6 is

ﬁmax = mo a@g(AO) @Q(AJF)
air a2 a3
= as1 a9 as3 aj; €R
0 0 —ai1 —ax
The set Qp, is v(2-) =] — 1, 1[-E32, and its pointwise stabilizer has the

Lie algebra
ﬂ Ad(y)ﬁmax =RX @ ga1, © Jass-

yElmy

The normalizer of its nilradical is the maximal parabolic algebra

pr=mdadg(AT) D g_ays-

Notes for Chapter 6

The material of this chapter has been developed in [55] in order to get a hold of
the ideal structure of the groupoid C*-algebra naturally associated to any ordered
homogeneous space (cf. [54], [108], and the notes for Chapter 9).



Chapter 7

Holomorphic
Representations
of Semigroups,
and Hardy Spaces

In the next three chapters we will give an overview of some of the applica-
tions of the theory of semigroups and causal symmetric spaces to harmonic
analysis and representation theory. We present here only a broad outline
of the theory, i.e., the main definitions and results, but mostly without
proofs. We refer to the original literature for more detailed information.
In the notes following each chapter the reader will find comments on the
history of the subject and detailed references to the original works.

In this chapter we deal with highest-weight modules, holomorphic repre-
sentations of semigroups, the holomorphic discrete series, and Hardy spaces
on compactly causal symmetric spaces. The original idea of the theory
goes back to the seminal article by Gelfand and Gindikin in 1977 [34], in
which they proposed a new approach for studying the Plancherel formula
for semisimple Lie group G. Their idea was to consider functions in L?(G)
as the sum of boundary values of holomorphic functions defined on domains
in Ge¢. The first deep results in this direction are due to Ol’shanskii [139)
and Stanton [159], who realized the holomorphic discrete series of the group
G in a Hardy space of a local tube domain containing G in the boundary.
The generalization to noncompactly causal symmetric spaces was carried
out in [63, 133, 135]. This program was carried out for solvable groups in

198
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[64] and for general groups in [91].

7.1 Holomorphic Representations
of Semigroups

Let G¢ be a complex Lie group with Lie algebra gc and let g be a real form
of gc. We assume that G, the analytic subgroup of G¢ with Lie algebra g,
is closed in G¢. Let C be a regular G-invariant cone in g such that the set
S(C) = GexpiC is a closed semigroup in G¢. Moreover, we assume that
the map

GxC>3(a,X)—aexpiX € S(C)

is a homeomorphism and even a diffeomorphism when restricted to G x
C°. Finally, we assume that there exists a real automorphism o of G¢
whose differential is the complex conjugation of gc with respect to g, i.e.,
o(X+iY) =X —iY for X,Y € g. All of those hypotheses are satisfied for
Hermitian Lie groups and also for some solvable Lie groups; cf. [64].

Let 7 : G — U(V) be a unitary, strongly continuous representation of G
in a Hilbert space V. A vector v € V is called a smooth or C*-vector if the
map

R>t— 9(t) :=m(exptX)v €'V

is smooth for all X € g. Here a map f: U — V, U C R” open, is called
differentiable at the point z, € V if there exists a linear map Df(z,) :=
T,,f:V — V such that

f(@) = f(zo) + Df(wo)(x — o) + o[l — o] -

The function f is of class C! if f is differentiable at every point in V' and
x — Df(z) € Hom(V,V) is continuous. Moreover, f is of class C? if
Df(z) is of class C!. We denote the differential of Df(x) by D?f(z). We
say that f is of class C**1 if DFf is of class C'. In that case we define
DF+1f .= D(D* f). Finally, we say that f is smooth if f is of class C* for
every k € N.

Let V° be the set of smooth vectors. V is a G-invariant dense subspace
of V. We define a representation of g on V> by

tX)v —
”°°<X>“:PI%M-

We denote this representation simply by 7 or use the module notation,
m(X)v = X -v. We extend this representation to g¢ by complex linearity,
(X +1Y) = n(X) +in(Y), X, Y € g. Let U(g) denote the universal
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enveloping algebra of gc. Then 7 extends to a representation on U(g),
again denoted by 7. The set V°° is a topological vector space in a natural
way, cf. [168]. Furthermore V is G-invariant and U(g)-invariant. As
m(g) exp(tX)v = exp(t Ad(g) X)7(g)v, we get

m(g)m(X)v = 7(Ad(g)X)7(g)v

for all g € G and all X € g. Define Z* = —0(Z), Z € gc. Then a simple
calculation shows that for the densely defined operator 7(Z), Z € gc, we
have w(Z)* = w(Z*). Define

C(n) ={X eg|VueV>®: (ir(X)ulu) <0},

where (-]-) is the inner product on V. Thus C(r) is the set of elements
of g for which 7(iX) is negative. The elements of C(r) are called negative
elements for the representation 7.

Lemma 7.1.1 C(7) is a closed G-invariant convex cone in g. O

Let C be an invariant cone in g. We denote the set of all unitary represen-
tations 7 : G — U(V) with C(7) C C by A(C). A unitary representation
7 is called C-admissible if 7 € A(C).

Let S be a semigroup with unit and let # : S — S be a bijective involutive
antihomomorphism, i.e.,

(ab)* = b%a* and o =a

We call ¥ an involution on the semigroup S and we call the pair (S, ¥) for a
semigroup with involution or involutive semigroup.

Example 7.1.2 The most important example will be the semigroup S(C)
with the involution

st =o(s)7?
(this is a special case of the involution * on p. 121 for general symmetric
pair). In this case (aexpiX)* = a ltexpiAd(a)X € S(C). O

Example 7.1.3 (Contraction Semigroups on a Hilbert Space)
Another example is the semigroup C(V) of contractions on a complex
Hilbert space V:

C(V) = {T € Hom(V) | |7 < 1}

Denote by T* the adjoint of T with respect to the inner product on V.
Then (C(V),x*) is a semigroup with involution. O
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Definition 7.1.4 Let (S,f) be a topological semigroup with involution,
then a semigroup homomorphism p : S — C(V) is called a contractive
representation of (S,1) if p(g*) = p(g)* and p is continuous w.r.t. the
weak operator topology of C(V). A contractive representation is called
irreducible if there is no closed nontrivial subspace of V invariant under

p(S). O

Definition 7.1.5 Let p be a contractive representation of the semigroup
S(C) C G¢. Then p is holomorphic if the function p: S(C)° — Hom(V) is
holomorphic. O

The following lemma shows that, if a unitary representation of the group
G extends to a holomorphic representation of S(C), then this extension is
unique.

Lemma 7.1.6 If f:S(C) — C is continuous and f|g(cye is holomorphic
such that flg =0, then f =0. O

To construct a holomorphic extension p of a representation m we have to
assume that 7 € A(C). Then for any X € C, the operator iw(X) generates
a self adjoint contraction semigroup which we denote by

TX (t) = etiﬂ—(x) .
For s = gexpiX € S(C') we define

p(s) == p(g)Tx (1)

Theorem 7.1.7 p is a contractive and holomorphic representation of the
semigroup S(C). In particular, every representation m € A(C) extends
uniquely to a holomorphic representation of S(C) which is uniquely deter-
mined by . O

For the converse of Theorem 7.1.7, we remark the following simple fact.
Let (S,4) be a semigroup with involution and let p be a contractive repre-
sentation of S. Let

G(S):={se S |sts=s5" =1}

Then G(S) is a closed subgroup of S and 7 := p|g(g) is a unitary represen-
tation of G(S). Obviously,

G C G(S(C)).

Thus every holomorphic representation of S(C) defines a unique unitary
representation of G by restriction.
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Theorem 7.1.8 Let p be a holomorphic representation of S(C). Then
pla € A(C) and the p agrees with the extension of p|a to S(C). O

Two representations p and 7 of the Ol’shanskii semigroup S(C) are (uni-
tarily) equivalent if there exists a unitary isomorphism U:V, — V. such
that

Up(s) =n(s)U Vs e S(C)

In particular, two contractive representations p and w of S(C) are equivalent
if and only if p|¢ and 7|g are unitarily equivalent. We call a holomorphic
contractive representation p of S(C) admissible if p|¢ € A(C) and write

—

p € A(C). We denote by S(C) the set of equivalence classes of irreducible
holomorphic representations of S(C).

Lemma 7.1.9 Let 7 be an irreducible holomorphic representation of S(C').
Then the function
O, (s) :=Trm(s)

is well defined for every s € S(C)°. Furthermore ©, : S(C)° — C is
holomorphic and positive definite. O

Theorem 7.1.10 (Neeb) Let m and p be irreducible holomorphic repre-
sentations of S(C'). Then m and p are equivalent if and only if O, = O,,.
O

A nonzero function a: S(C) — RT is called an absolute value if for all
s,t € S(C) we have a(st) < a(s)a(t) and a(sf) = a(s). Let a be an
absolute value. A representation p of S(C) is a-bounded if

lo(s)] < a(s)

for all s € S(C). Note that this depends only on the unitary equivalence
class of p. We denote by S(C)(«) the subset in S(C) of a-bounded repre-

sentations. If 7 € S(C'), then, by abuse of notation, a(s) := ||7(s)| is an
absolute value of S(C'). Let (p, V) and (m, W) be holomorphic represen-
tations of S(C). Let VOW be the Hilbert space tensor product of V and
W. Define a representation of S(C) in VoW by

[p@7|(s) := p(s) @ m(s)
Then p ® m € A(C). We denote the representation s — id by «.

Theorem 7.1.11 (Neeb, Ol’shanskii) Let (p, V) be a holomorphic rep-
resentation of the Ol’shanskii semigroup S(C) and let a(s) = ||p(s)||. Then
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—

there exists a Borel measure i on S(C) supported on S(C)(«) and a direct
integral of representations

(&) (&)
| punto), [ Vodu(o)
5(C)(a) S(C)(a)

1) (p, V) is equivalent to (f;%\c)(a) pwd,u(w),f;%\c)(a) de,u(w)).

such that:

—

2) There exists a subset N C S(C)(a) such that p(N) = 0 and if w €

S’/(a(a) \ N, then (p., V.,) is equivalent to (1, ® ¢, H,OW,,), where
T, € w and W, is a Hilbert space.

3) Ifwe S’/(E)(a) then set n(w) := dim Wy,. Then n is a u-measurable
function from S(C)(a) to the extended positive azis [0,00] which is
called the multiplicity function. O

7.2 Highest-Weight Modules

Representations with negative elements can exist only if there exists a non-
trivial G-invariant cone in the Lie algebra g. If g is simple, this implies in
particular that g is Hermitian. We will thus assume from now on that g is
a semisimple Hermitian Lie algebra. Thus G is a semisimple Hermitian Lie
group. For simplicity we will assume that G is contained in a simply con-
nected complexification G¢. Then G = GZ and (Gc, G) is a noncompactly
causal symmetric pair. Let Z° be a central element in £ defining a complex
structure on p. Then X = —iZY is a cone-generating element for (G¢, G)
and the corresponding eigenspace decomposition is

gc=ny BH*dn_

as before. A comparision with the standard notation for Hermitian Lie
algebras (cf. Example 5.1.10, p. 124) yields

ny=pt, no=p, and b"=tc.

Thus Ny corresponds to PT = expp™, N_ corresponds to P~ := expp™,
and G corresponds to K¢ = G%. Thus

G C PTKcP~
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(cf. Lemma 5.1.4, Remark 5.1.9, and Example 5.1.10). Let us recall some of
the notation introduced in Section 2.6.1. For z = pkq € PTKcP~ we write
pt(z) = p, p~(z) = q and kc(z) = k. By Lemma 5.1.2, the set GKcP~
is an open submanifold of the complex flag manifold X¢ = G¢/Kc P~ and
GNKcP~ = K. This implies that G/K is holomorphically equivalent to an
open submanifold D of X¢. We also have the map x — ((z) = log(x), which
maps G/ K biholomorphically into an open symmetric domain Q. C Q4 (cf.
Theorem 5.1.8). If Z € p* and g € G is such that gexpZ € PTKcP~,
then g-Z = z(gexp Z). Moreover, we have the universal automorphic factor
(g, Z) .= kc(gexp Z). For j we find

j(ka) = k,
j(p,Z) = 1,
j(abaZ> = ](a,bZ)j(b,Z),

ifke Ke, Z€p™,pe P, and a,b € G are such that the expessions above
are defined.
A (g, K)-module is a complex vectorspace V such that

1) V is a g-module.

2) V carries a representation of K, and the span of K - v is finite-
dimensional for every v € V.

3) For v € V and X € £ we have

Xy = iy SPUXY — v
t—0 t

4) For Y € g and k € K the following holds for every v € V:

k- (X -v) = (Ad(B)X) - [k - v].

Note that (3) makes sense, as K - v is contained in a finite dimensional
vector space and this space contains a unique Hausdorff topology as a topo-
logical vector space.

The (g, K)-module is called admissible if the multiplicity of every irre-
ducible representation of K in V is finite. If (7, V) is an irreducible unitary
representation of GG, then the space of K-finite elements in V, denoted by
Vi, is an admissible (g, K')-module.

Let t be a Cartan subalgebra of ¢ and g. In this section, let A denote
the root system A(gc, tc).
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Definition 7.2.1 Let V be a (g, K)-module. Then V is a highest-weight
module if there exists a nonzero element v € V and a \ € t{ such that

1) X -v=XAX)vforall X €t

2) There exists a positive system AT in A such that gc(A1)-v = 0.

3) V="U(g)-v.

The element v is called a primitive element of weight . O

Let now C € Coneg(g) and let (p, V) € A(C). We assume that —Z° €
C°. We assume furthermore that p is irreducible. Then V  is an irreducible
admissible (g, K)-module, and

Vi =@ Ve

Aew:

where Vg (A) = V(A tc). Let v € Vi (A) be nonzero. Let av € A(p™, t¢)
and let X € pt\ {0}. Then

XF v e V(A + ka).

In particular,

—iZ% (X% v) = [-iNZ°) + K]v.
This yields the following lemma.
Lemma 7.2.2 Let the notation be as above. Then the following holds:
1) —ix(Z°) <.
2) There exists a X such that p™ - V() = {0}. O

Furthermore, the following holds.

Lemma 7.2.3 Let W* be the K-module generated by Vi (\). Then W
is irreducible and Vi = U(p~ )W, O

Let A = A(fc, tc) and let Az be a positive system in Ag. Let u be the
highest weight of W* with respect to AZ‘ and let v* be a nonzero highest
weight vector. Then v is a primitive element with respect to the positive
system A UAT, where A,, = A(pc, tc) and A = A(pT,tc). As —iZ%isa
positive linear combination of the vectors H,, o € AT, we get the following
theorem.
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Theorem 7.2.4 Let (p, V) € A(C) be irreducible. Then the corresponding
(g, K)-module is a highest-weight module and equals U(p~)W?. In partic-
ular, every weight of Vi is of the form

v— g Na O .

a€A(pT,tc)
Furthermore, (v|a) <0 for all o € A} O

We will now show how to realize highest-weight modules in a space of
holomorphic functions on G/K. We follow here the geometric construction
by M. Davidson and R. Fabec [18]. For a more general approach, see [119].
To explain the method we start with G = SU(1,1). We set according to

Example 2.6.16: F = FE; = (8 (1)), F=F_|= ((1) 8) and H := H, =

(é _01) Thus Z° = £H and p* = CE, tc = CH and p~ = CF. Let

g= (% 6) € SU(1,1)

«

and let

v = (i Z) € SL(2,C).

We identify p+ with C by zE +— z and similarily ¢c ~ C by zH — z. Then
¢ induces an isomorphism ((g) = = of G/K onto the unit disc D = {z €
C| |z| < 1}. Furthermore,

az+b

cz+d

and
J(g,2z) = (ez+ d)f1 :

The finite-dimensional holomorphic representations of K¢ are the charac-
ters

Xn(exp ziH) = ™
In particular,
mn
n ZO =
Xn(Z7) = 5
or n
_an(ZO) =5

[\
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Let (m, V) be a unitary highest-weight representation of SU(1,1) and as-
sume that (7, V) € A(C). Then n < 0. Let V(n) be the one-dimensional
space of yp-isotropic vectors. Then

Vi =P V(n-2k),

keN

and the spaces V(m) and V (k) are orthogonal if m # k.
Let o be the conjugation of s[(2,C) with respect to su(1,1). Then o is

given by
a b o —77 c
“\e =a)) " b -a
so that o(E) = F. By n(T)* = —w(c(T)) for all T € s[(2,C) we get
m(F)" =n(—F).
Finally, it follows from [F, E] = —H that for v € V(n):

In(EYol2 = (w(F)*o| x(F)r)
— ((=X)*F)v | v)

Lemma 7.2.5 Let the notation be as above. Then

m(—E)r(F)fv = (—1)’%1%1)
= (—m)gv
where (a)y =ala+1)---(a+k—1). O
As
= _ |Z2|k _ _ 2\n
S = - ey
k=0 ’

(cf. [36]) converges if and only if |z| < 1, it follows that

o0
Fky
,7 =k
d(zE)V ‘= E < ol
k=0

converges if and only if zX € Q.

Let now G be arbitrary. Let o : gc — gc be the conjugation with
respect to g. We use the notation from earlier in this section. Using the
usual s[(2, C) reduction, we get the following theorem.
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Theorem 7.2.6 (Davidson—Fabec) Let T € pT. Define gr : W — V
by the formula

= o(T)*v
ao =y 2D,

n!
k=0
1) Ifv # 0, then the series that defines gr converges in the Hilbert space
V if and only if T € Q.
2) Let my be the representation of K on W*. Let

Ixg,Z) == mA(j(9,2)) -
Then
m(g)v = qg.0Jx(g,0)* 1w
for g € G and v € WH, O

It follows that the span of the gz W? with Z € Q is dense in V|, since V
is assumed to be irreducible. Define Q : Q, x Q, — GL(W?) by

QW.Z) = qwqz -
Then the following theorem holds.

Theorem 7.2.7 (Davidson—Fabec) Let the notation be as above. Then
the following hold:

1) Q(W, 2) = Jx(exp(—a(W)), T)*~1.

2) Q(W, Z) is holomorphic in the first variable and antiholomorphic in
the second variable.

3) (Q(W, Z)u|v) = (qzulgwv) for all u,v € Wy.
4) Q is a positive-definite reproducing kernel.
5) Qlg-W,g-2) = Jx(g,W)QW, Z)Jx(g,2)". =

For Z € Q4 and u € W?*, let Fz, : Q. — W? be the holomorphic
function
Fz.,(W):=QW, 2Z)u
and define
(FZ,u|FT,w)Q = (Q(T7 Z)uv U}) .
Let H(24, W?) be the completion of the span of {Fyz, | Z € Qy,u € W*}
with respect to this inner product. Then H(Q,, W*) is an Hilbert space
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consisting of W*-valued holomorphic functions. Define a representation of
G in H(Q;, W?) by

(p(9)F)W) := Ja(g~" W) F(g™ - W).

Then p is a unitary representation of G'in H(2,, W*) called the geometric
realization of (mw, V).

Theorem 7.2.8 (Davidson—Fabec) The map qzv — Fz, extends to a
unitary intertwining operator U between (mw, V) and the geometric realiza-

tion (p, H(Q, W), It can be defined globally by
Uw|(Z) =qzw, weV,ZecQ,. O

As the theorem stands, it gives a geometric realization for every unitary
highest-weight module. What is missing is a natural analytic construction
of the inner product on H(Q2,, W*). This is known only for some special
representations, e.g., the holomorphic discrete series of the group G. For
that, let p = %ZQGA+ « and let u denote the highest weight of the rep-
resentation of K on W*. Furthermore, let dZ denote the usual Euclidean
measure on p*. For f,g € H(Q,, W?), let

(flg)s == /G Q@21

Theorem 7.2.9 (Harish-Chandra) Assume that (u + pla) < 0 for all
a € AL, Then (f|g)x is finite for f,g € H(Q4, W) and there exists a
positive constant cy such that

(fl9)g = ex(flg)x -

Moreover, (p, H(Q, W y)) is unitarily equivalent to a discrete sumand in
L?(G). O

7.3 The Holomorphic Discrete Series

In this section we explain the construction of the holomorphic discrete series
of a compactly causal symmetric space M = G/H. In the next section we
will see that those are the admissible representations of the Ol’shanskii
semigroup that can be realized as discrete summands in L?(M). We start
with a simple structural fact about SU(1, 1).
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Define an involution on SU(1,1) by 7(a) = a, cf. Section 2.6.16:

He = SL(2,C) — {hz_<coshz sinhz)‘zec}

sinhz coshz

B a b
- b a
and H = SU(1,1)™ = +{h; | t € R}. Let a, be the maximal abelian

subalgebra of g, given by a, = RX,. Let

_ _ cosh(%) —1 sinh(%)
@ = exptXo = (isinh (%) cosh (%) , teR.

a,be(C,aQ—bQ_l}

Define

and
L ycosh(t/2) —ay?  iysinh(t/2) — by?

b a

Then

o2 o
=)
AN
N——
m
&

and a; = hkp.

Now we go back to the general case. Let a be a maximal abelian
subalgebra of q;. Then ia is a maximal abelian subspace of q;. Since
G¢/H C G¢/Hc is a noncompactly causal symmetric space as in Section
4.1 and 4.2, we find homomorphisms ¢; : SL(2,C) — G intertwining the
above involution on SL(2,C) and the given involution 7 on G¢. We may
assume that our algebra a, is spanned by the elements

Xj=—i(Ej — E_j) = ¢, <_7Z <£)Z é)) 7
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where 71, ..., 7, are the strongly orthogonal roots. Let A, := expa,. Using
G = HA,K (cf. [97]) and the fact that K¢ normalizes P, o(P*) = P~
and G = G~ = 0(@G), we get the following theorem.

Theorem 7.3.1 Let the notation be as above. Then

1) Letaf(ty,...,t;) =exp(3_7_, t;) € Ay = expa,. Then

1 T
a(ty,...,t,) € He exp§Z—log(coshtj)Hj P

j=1
2) G C HcKce P~ ﬂHcch+ﬂP_K(cH(cﬂP+K(cHC. O
If x = hkp € HcKcP~, we write
hz)=h, kp(z)=4k, and pgy(zx)=p.

Note that h(z) and kg (z) are only well defined modulo H¢ N K.

Let 7 be a holomorphic representation of K¢ with nonzero (Hc N K¢)-
fixed vector. Denote the highest weight of © by p,. A simple general-
ization of Theorem A.3.2 and Lemma A.3.5 to the reductive Lie group
(K N H)expiqy gives the following lemma.

Lemma 7.3.2 p, € ia and VEcNEe s one-dimensional. O

Let v, be a nonzero (HcN K¢ )-fixed vector. Define ®, : P~ KcHe — Vi
by
O, () :=n(kgy(z™ ") v, .

We define a map V,, — O(PTKcHc) v — ¢(m,v) by

p(m,0)(z) = (v]®x (7)), (7.1)

where O(PT KcHc) denotes the holomorphic functions on P*KcHc. By
construction we have the following lemma.

Lemma 7.3.3 Let the notation be as above. Then the following hold:

1) Let p € PT, h € He, and x € PTKcHc. Then o(m,v)(pzh) =
p(m, v)(x).

2) For k € Kc we have o(m,v)(k~1z) = ¢(m,n(k)v)(z); i.e., the map
v = p(m,v) is a Kc-intertwiner. O
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As p(m,v) is right He-invariant, we view it as a function on
P+KcH(c/H(C = P+K(C -0 C Mc.

As G C PYKcHg, we can by restriction view ¢(7,v) as a function on M.
To decide when ¢(,v) is in L?(M), we write the G-invariant measure on
M in polar coordinates using G = KA,H. Let o € A(g, a,). Let

Poa = dim{X €g,|07(X)=X},
¢do = dim{X €g,|07(X)=—-X}.

Then there is a positive constant ¢ such that
sinh (ZJ SjOé(Lj))

cf. [32], where A*(g,a,) is a positive system in A(g,a,). Recall that
A = A(ge,ac) = Age, tc). Then

Pa

da
dx = cHaeAﬂg’%) [cosh (Z] SjOé(Lj))i| dsi...dsrdk

A= A(Ec, aC)UA(p+, aC)UA(p_, Cl(c) .
Let A} be a positive system in A(tc, ac), let A := A(p*, ac), and finally,
let AT = AF UA}. Let
p=5 > [dimc(gc)al o
a€At

By Lemma 7.3.1.1), we get the following theorem.

Theorem 7.3.4 Letv € V., v #0. Then ¢(m,v)|pm € LE2(M) if and only
if (ur + pla) <0 for all € A 0

Theorem 7.3.5 Assume that (pur + pla) < 0 for all « € A, Let E, be
the closed, G-invariant module in L2(M) generated by {¢(m,v) |v € Vi}.
Then the following hold.

1) E, is irreducible.

2) Er is a highest-weight module with a primitive element p(7, w), where
w is a nonzero highest-weight vector for .

3) The multiplicity of Er in L2(M) is 1. O

Denote the representation of G in E by p.. The representations (o, E,)
are called holomorphic discrete series of M.
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As E is a highest-weight module, there exists an G-intertwining opera-
tor
T::E;, — H(Q., V).

To construct such an operator, define
\I]ﬂ'(gux) = ﬂ-(kﬁc(g))q)ﬂ(g_lx)u g e Gu VS P+K(CH(C-

Then g — U, (g, z) is right K-invariant and defines a holomorphic function
on G/K.

Theorem 7.3.6 The map T : E; — H(Q4, V), defined by

T4()i= [ 1@l ds
M
is a nonzero intertwining operator and
Home (Er, H(Q,, V,)) = CT. 0

Example 7.3.7 Let G be a connected semisimple Lie group and let G; =
G x G, H = diag(G). As we have seen, G = G1/H in this case. Further-
more, q = {(X,—X) | X € g}. The Cartan subspace a is constructed by
taking t to be a compact Cartan subalgebra of g, t C ¢, and then setting
a={(X,-X)| X €t}. Let @ € A(gc, tc) and let X+, € (gc)+a- Then

[(Xv _X)v (Xa7 X*Q)] = O[(X)(Xa, X*a)
for every (X, —X) € a. In this way we get a bijective map,
A(ge,tc) da— (o, —a) € A C ag.

We see also that the root spaces are exactly (gc)a X (gc)—qo- In particular,
79 = (Z° —Z°) and the space p], where p; = p x p C g, is given by
p = pT xp~. The bounded realization of G; /K1 is G1 /K, = G/K x G/K,
where —— means the opposite complex structure. So a holomorphic function
on (G1 /K is the same as a function f: Q4 x Q4 — C that is holomorphic
in the first variable and antiholomorphic in the second variable.

If 71 is an irreducible unitary representation of K1 = K x K, then m
is of the form 7 ® &, where m and § are irreducible representations of K.
In particular, V, ~ V. ® V5. Assume that u, is a nonzero diag(K) =
(K1 N H)-invariant element in V. Define ¢ : Vs — V% by

<u,p(v) >= (u®vlu,),
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where (+|) is the K;-invariant inner product on V. Then, for k € K,

<u,p(p(k)v) > = (u® p(k)v|u,)
= (m(k B)(m(k™")u® v)u,)
= (kY ® vluo)
= <ak Hu, o) >
= <u,m’(k)pv) >

Thus ¢ : Vs — VI is a K-intertwining operator. As both spaces are
irreducible, it follows that ¢ is an isomorphism. In particular, we have the
following lemma.

Lemma 7.3.8 Let m be an irreducible representation of K1 with a nonzero
diag(K)-fized vector. Then there exists an irreducible representation m of
K such that 1y ~mQ@mY. O

Now V. ® VE ~ Hom¢(V,, V) and the representation is carried over
to
71 (k,h)T = n(k)Tw(h)~".

The invariant inner product on Home(Vy, Vi) is (T']S) = Tr T'S*. In this
realization the invariant element u, is (up to constant) the identity id and

(T'|uo) = Te(T).

Let p be the highest weight of 7. Then < 7 + p,a >< 0 for every a €
A(pT,tc). Thus 7 corresponds to a unique holomorphic discrete series
representation E, of G. We have (cf. [135]) the following theorem.

Theorem 7.3.9 The holomorphic discrete series Er, s canonically iso-
morphic to E, @ EX. O

7.4 Classical Hardy Spaces

In this section we explain the construction of the Hardy space related to a
regular cone field on a compactly causal symmetric space. We start with a
short overview of the classical theory as it can be found, e.g., in the book
by Stein and Weiss [160].

Let C be a regular cone in R and let = C°. Let Z(Q) := R™ + Q.
Then =(Q2) is an open subset of C™. Let O(€2) be the space of holomorphic
functions on E(Q). If f € O(Q) and u € Q, then

R"3 2z fu(z):=fz+iu)eC
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is well defined. We define the Hardy norm of f with respect to C' be
1613 = 500 £ eoy = sup [ |7+ i)l da.
ue n

We can now define the Hardy space Ha(C) by
Ha(C) = {f € OEQ) [ [ fll2 < o0} (7.2)
Define the boundary value map 3 : Ha(C) — L?(R™) by
B = Jim F(+in)
Then 3 is an isometry into L?(R™). To describe the image of 3 let
F:L*(R") — L*(R")
be the Fourier transform, i.e.,

F(0) = mgare [, S@e o < ).

To simplify the notation we define the function e,,, u € C", by

C" 31— eu(w) — e(w‘u)

Theorem 7.4.1  Let E = {f € L2(R") | Supp(F(f)) C C*} ~ L%(C*).
Then Im(3) = E. O

Let us sketch the construction of the map E — Im(3). Consider f €
E.F = F(f) and let u € Q. As Supp(F') C C*, it follows that |Fe_,| < |F|.
Hence Fe_, € L?(R"), and we may define g : () — C by

g(x +iu) = F 1 (Fe_,)(z).

Formally, this is

- 1 ZI mu
glx +iu) = 271_)”/2/R F(X\)ei@tuld) gy
_ 1 / [F u|)\} i@IN) gy
27T)n/2 C*

By construction, g € H2(f2), and one has to show that 3(g) = f.
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We define the Cauchy kernel associated with the tube domain Z(Q2) by

1 .
K(z +iu) = Tk /Q* pi(@+iulA) gy

= F'(xare—u),

where x4 denotes the characteristic function of a set A C R™ and z + iu €
Z(Q). Then ||K(- + iu)||* = K(2iu) < oo. Thus K(- + iu) € L*(R").
Furthermore, we get the following theorem.

Theorem 7.4.2 Let F' € Ho(C'). Then

F(z)= . f(@)K(z — z)dx

for all z € Z(Q), where f = B(F). O
We define the Poisson kernel by

Pla,y) = % 2+ iy € 5(Q)

Theorem 7.4.3 Let f € Hy(Q2). Then

F(z + iy) :/ P(x —t,y)f(t)dt,

n

where f = B(F). O

7.5 Hardy Spaces

In this section G/H is a compactly causal symmetric space. Let C €
Conep (q) be such that C°NE # (). There are two different ways to generalize
the tube domain Z(2) from the last section to this setting. First, we may
construct a local tube domain in T'(M)¢ by G x g iC°. Second, we may
view Z(12) as the orbit of 0 € R™ under the semigroup R™ + i€Q2. The
corresponding construction in this setting is to consider the semigroup S =
G expiD°, where D € Coneg(g). Then Z(Q2) = S~'o C G¢/Hc. Here we
have to assume that G C G¢, where G¢ is a complex Lie group with Lie
algebra gc. The inverse is necessary, as we want the semigroup to act on
functions on =(C°).

We will use the second approach (cf. [64, 63]). In particular, we will
assume that G C G, where G¢ is a complex Lie group with Lie algebra gc
such that 7 integrates to an involution on G¢. We assume that H = G7.
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Let Hc = G and define M¢ := G¢/He. Then M C Mc, and Mc is
a complexification of M. Let C' € Coneg(q) and D be an extension of
iC to a G-invariant closed cone in ig such that D Niq = pr;,, D = iC,
cf. Section 4.5. Let S(D) be the Olshanskii semigroup GexpD. Then
S(D)° = S(D°) := GexpD® ~ G x D° # (. Define an open complex
submanifold Z(C°) C M¢ by

2(C°) := S(D°)o. (7.3)

Then Z(C) := S(D) 'o C E(C?), where the bar denotes the closure in
M. Furthermore, M C 9=(C). For simplicity we will write S for S(C),
S° for S(C°), = for Z(C), and E° for its interior Z(C°). That Z and
=Z° depend only on C' and not on the extension as indicated in the above
notation follows from the next lemma, which shows that =° locally is a tube
domain.

Lemma 7.5.1 The manifold Z(C) is independent of the extension D, and
E(C) ~ G xpg —iC°. O

As §°S C S°, it follows that (S°)~1= C Z°. In particular,

YTIMCEY, YyeS(C0) (7.4)

Thus, if f is a function on =° and s € S°, we can define a function s- f on
= by

[s- fl(z) = f(s ).
Let f € O(E°) and let s € S. By (7.4) the function s - f|rq is well defined
as long as s € S°. In particular, ||s - f|| is well defined, where || - || stands
for the L2-norm on M. Define the Hardy norm of a holomorphic function
f on =Z° by

[fll2 := sup [|s- f]

seSe

We define the Hardy space Ha(C) by
Ha(C) :={f € OE") | [[fll2 < oo} (7.5)

As we are using a G-invariant measure on M and GS° C S°, it follows that

Is- fll2 < [ fll=-
Define the “boundary value map” 3 : Hz(C) — L%(M) by

B(f) = lim(s - f)lrm,

s—1

where the limit is taken in L?(M).
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Theorem 7.5.2 Let the notation be as above. Then the following hold:
1) Ha(C) is a Hilbert space, and the action of G is unitary.
2) The map 3 : Ha(C) — L?(M) is an isometric G-intertwing operator.
3) Let pr be the holomorphic discrete series representation of G in E.
Then
Impg = @ E.,
prEA(D)

where D is some extension of C' to a G-invariant cone in g. If C =
Chin, then the sum is over the full holomorphic discrete series. O

Assume now that G/K is a tube domain and that 7 = 7;y,. We also
assume that G is contained in the simply connected group G¢. We know
from Section 2.6 that

G/H =G (B,~E) = {¢ € 8, | Un(¢) #0}.
We also have the following lemma.

Lemma 7.5.3 The G-invariant measure on G/K is given by

flg-(E,—E))dj = 8 FEIP2(8) 7" du(€)

G/H
where du is a suitably normalized K x K -invariant measure on Si. O

By the right choice of the cone C' = C}; we also know that the semigroup
S is just the contraction semigroup of the bounded domain G/K ~ Q4. In
particular, 2° C 4 x Q4. By construction ¥,, is holomorphic on Q4 x Q.
We then have the following theorem.

Theorem 7.5.4 =° = {{ € Qy x Q| ¥,,(§) # 0}. O

The classical Hardy space Ha can, via the biholomorphic Cayley trans-
form Cp, be viewed as space of holomorphic function on Q4 x Q4. The
semigroup acts on this space via

s f(zw) = (s 2) (s w) f(sTh 25T w)

which is well defined if —p,, is the lowest weight of a holomorphic represen-
tation of G¢. In that case we also have a holomorphic square rooth ¥ of
Wy, The result is Theorem 7.5.5.
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Theorem 7.5.5 (Isomorphism of Hardy Spaces) Denote by Ha(Q4 x
Q) the classical Hardy space on the bounded symmetric domain Q4 X Q.
Assume that g is not isomorphic to sp(2n,R) or so(2,2k + 1), k,n > 1.
Then

f

HQ(Q+ X Q+) > f (g \I/_ S HQ(C)
1
is an isometric G-isomorphism. a

For the remaining two cases one has to construct a double covering of
2%, M, G, and S and define the corresponding Hardy space. The classical
Hardy space is then isomorphic to the space of odd functions in that Hardy
space. Refer to [136] for the exact statements.

7.6 The Cauchy—Szego Kernel

For w € E(C?) the linear form f +— f(w) is continuous. Hence there exists
an element K, € Ho(C) such that for f € Ho(C) we have f(w) = (f|Kw).
Let

K(z,w) := Ky(2). (7.6)

The kernel (z,w) — K(z,w) is called the Cauchy—Szegé kernel. We note
that K (z,w) depends on the cone C used in constructing the Hardy space.
By Definition 7.1.4 we have

(= (s)f1g) = (flox(s")g)
for s € S(C) and f,g € Ho(C). This gives
Lemma 7.6.1 Let z,w € £(C°) and let s € S(C). Then
K(s7'z,w) = K(z,0(s)w). |

We collect further properties of the Cauchy—Szego kernel together in the
following theorem.

Theorem 7.6.2 Let Ha(C) be the Hardy space corresponding to an in-
variant reqular cone C' C q. Let K(z,w) denote the corresponding Cauchy-
Szego kernel. Then the following hold:

1) K(zyw) = K(w, ).
2) For fized z € 2(C°), the map
E(C°)swr— K(z,w)eC
extends to a smooth map on Z(C). If x € M, then
K(z,2) = B(K.)(x).
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3) Let K(z):= K(z,0), z € £(C°). Then K is holomorphic and
K (510,520) = K (s}s1)
for every s1,se € S(C°)7L.
4) The map B~':Im 3 — Ha(C) is given by

B7H(z) = /M f(m)K(z,m)dm. O

Let z € Z(C°). Then for a suitable u € V we have ¢, (z) # 0. Assume
that K(z,z) =0. As

K(z,w) = /M K(m,w)K(z,m)dm,

it follows that
K(z,z)= / |K (m, 2)|*dm >0,
M

and K (z,z) =0 if and only if K(m, z) =0 for every m € M. But then

oul(z) = / ou(m)K(z,m)dm =0,
M
a contradiction. Thus we obtain Lemma 7.6.3.
Lemma 7.6.3 Let z € Z(C°). Then K(z,z) # 0. 0

We can now define the Poisson kernel by

_KEmP

P(z,m) : K(.2)

(7.7)

Theorem 7.6.4 Let f be a continuous function on Z(C) which is holo-
morphic on E(C?). Then

for every z € Z(C°). In particular,

/ P(z,m)dm = 1. O
M
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Notes for Chapter 7

Holomorphic representations of the semigroup S(D) = G expiD were introduced
by Olshanskii [137]. The theory was generalized to the situation we present
here in [64]. For the general theory of holomorphic representations of Ol'shankii
semigroups, refer to the work of K.-H. Neeb, [122] and [121, 123], where the
Theorems 7.1.9, 7.1.10, and 7.1.11 were proved (cf. also [119]).

There is an extensive literature on highest-weight modules and the classifi-
cation of highest-weight modules. Our exposition follows closely the work of
Davidson and Fabec [18]. More general results were obtained by Neeb in [119].
The classification of unitary highest-weight modules can be found in [22, 71].
For the connection between positive-definite operator-valued kernels and unitary
representations, refer to [92].

The articles [38] and [39], where Harish-Chandra constructed the holomorphic
discrete series of the group, were the starting point of the analysis on bounded
symmetric domains, unitary highest-weight modules, and the discrete series of
the group. The analytic continuation was achieved by Wallach in [167].

Most of Section 7.3 is taken from [133] and [135] except for the “only if” part
in Theorem 7.3.4, which is from [63]. The construction of ¢(m,v) in [135] was by
using the dual representation 7. The construction here is taken from [82].

The general theory of the discrete series on M was initiated by the seminal
work of M. Flensted-Jensen [32], where he used the Riemannian dual of M to
construct “most” of the discrete series. The complete construction was done by
Oshima and Matsuki in [102, 142, 144]. The first construction of what is now
called the holomorphic discrete series can be found in [103], where S. Matsumoto
used the method of Flensted-Jensen to construct those representations.

The material in Section 7.4 is standard and can be found, e.g., in [160]. Most
of Sections 7.5 and 7.6 are from [63]. The introduction of the Poisson kernel is
new. The part on Cayley-type spaces is taken from [136]. Theorem 7.5.4 was also
proved in [15]. Further results on the H-invariant distribution character of the
holomorphic discrete series representations can be found in [132]. An overview
of the theory of Hardy spaces in the group case can be found in a set of lecture
notes by J. Faraut ([27]). In these notes the definition of the Poisson kernel was
given and Theorem 7.6.4 was proved for the group case. A shorter overview can
also be found in [30].



Chapter 8

Spherical Functions
on Ordered Spaces

In this chapter we describe the theory of spherical functions and the spher-
ical Laplace transform on noncompactly causal symmetric spaces as devel-
oped in [28] and [131]. The theory is motivated by the classical theory
which we explain in the first section. The second motivation is the Harish-
Chandra—Helgason theory of spherical functions on Riemannian symmetric
spaces (cf. [40, 41, 45]).

8.1 The Classical Laplace Transform

Before we talk about the Laplace transform on ordered symmetric spaces,
let us briefly review the classical situation. Let M = R” and let C be a
closed, regular cone in R"™, e.g., the light cone. As explained in Example
2.2.3, R™ becomes an ordered space by defining

z>ysc—yel.

Let
M<={(z,y) e M |z <y}.

Mc is closed in M x M. A causal kernel or Volterra kernel is a map
K : M x M — C such that K is continuous on M< and zero outside M<.
Let V(M) be the vector space of causal kernels. For F, G € V(M), define

F#G(x,y) := / F(z,2)G(z,y)dz (8.1)

[z,y]

222
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With this product V(M) becomes an algebra. The kernel K is invariant
if, for all z,y,z € M,

K(z+2,y+2) = K(z,y).
An invariant causal kernel corresponds to a function of one variable sup-
ported on C via F(z) = K(0,z), K(x,y) = F(y — ). The above product
is then given by the usual convolution of functions, F#G = F x G.

Associated to the Volterra algebra is the Volterra integral equation of
the second kind,

A(z,y) = B(z,y) + K(x,2)A(z,y) dz,

[=,y]

where B and K are given. If A and B are invariant kernels such that a and
b are the corresponding functions, this reads

a(xz) = b(x) + - K(x,z)a(z)dz.

Theorem 8.1.1 (M. Riesz) The Volterra equation has a unique solution
given by
A= B+ R#B,

where R is the resolvent R = Y 7o | K™ with K"+ = KMWAK . The
series defining R converges uniformly on bounded sets and R € V(M). O

For a,b and K = k invariant, the Volterra equation is
a=b+kx*a.

Recall the exponential functions e_) from p. 215 and assume that fe_y is
bounded for A € C + ¢R". Define the Laplace transform of f by

L(HA) = /67(A|x)f(x) dx for e C+iR".

If f has compact support, then £(f) is defined for every A in R™. Write
A=u+iy, ueC. Then L(f)(u+iy) = 27)"2F(fe.)(y). Hence

1

fe ) = o |

Lf(u+iy)e'¥®) de

or
_ 1 i) e(utiylz)
f(z) = o) /Rnﬁf(u—i—zy)e i) dg

Furthermore, the Laplace transform has the following two properties.
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1) If p(D) is a differential operator with constant coefficients, then

2) The Laplace transform is a homomorphism:
L(fg) =L(f)L(g) .

From 2) one sees that the Laplace transform transforms the Volterra
equation into

L(a) = L(b) + L(k)L(a),

which gives
)
L(a) = =20

8.2 Spherical Functions

In order to generalize the notion of the Laplace transform to ordered sym-
metric spaces, we need to find the functions corresponding to the exponen-
tial function e,. These will be the spherical functions. As one already sees
in the case of Riemannian symmetric spaces (cf. [45]), there are different
ways to define a spherical function.

1) The differential equation: The spherical functions are the normal-
ized, p(0) = 1, eigenfunctions of the commutative algebra D(G/K)
of invariant differential operators on G/K.

2) The integral equation: Spherical functions satisfy the integral equa-
tion

/ o(aky) dk = p(2)p(y)
K

3) The algebraic property: Denote the algebra of compactly supported,
K-bi-invariant function on G by C*°(G//K). Let ¢ be a K-bi-
invariant function on G. Then the map

C>(GJ/K) > f /G f@)p(z)dz € C.

is a homomorphism if and only if ¢ is a spherical function.
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4) The integral representation: For A € a}, and p half the sum over the
positive roots, we define

<p§( (z) = /K ef\( (kx) dk, (8.2)

where e (z) = e<A=Pax(®)> (cf. (5.18) on p. 136), with H replaced
by K. Then ¥ is spherical function, and every spherical function has
an integral representation of this form for a suitable A. Furthermore,
o = goff if and only if there is a w in the Weyl group of A such that
A =wu.

We remark here that there is no hope in general of using 4) to define a
function on M if we replace K by H. This is due to the fact that G # HAN
and H is not compact, so the integral does not converge for arbitrary x.

One of the reasons for the fact that all those different definitions give
the same class of functions in the Riemannian case is that D(G/K) con-
tains an elliptic differential operator. Thus every joint eigendistribution
is automatically an analytic eigenfunction. As this does not hold for the
non-Riemannian symmetric spaces, the different definitions may lead to
different classes of functions, distributions, or hyperfunctions.

Let M = G/H be an irreducible, noncompactly causal symmetric space
with G C G¢. We recall some basic structure theory. Let a be maximal
abelian in p contained in ¢, and A = Ag U A} U A_ be the set of roots of
a in g. Choose a positive system AT in A such that AT = AJ UA,. As
usual, we set

1 .
=13 limda,
a€At

Let C = C(A™) be the positive open Weyl chamber in a corresponding to
AT (cf. p. 116). Fix a cone-generating element X° € a such that A, =
{ae Al a(X% =1} and Ag = {a € A | a(X?) = 0}. Let C = Crax(X?),
(cf. (4.19) on p. 98). Finally, let S = S(C) = HexpC. Then S is a closed
semigroup and S C HAN (cf. Theorem 5.4.7). In particular, the function

ex(s) = efl(s) = e<rpan(®)> N e qx, (8.3)
is well defined on S.

Definition 8.2.1 A spherical function is a H-bi-invariant function ¢ de-
fined on the interior of S such that for all s,t € S°, the function

h — p(sht)
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is integrable over H and

/w@MMh=w@ww 0
H

We will often, without further comment, identify the H-bi-invariant
function on S or S¢ with the H-invariant function on M, and M9, re-
spectively. Thus we may view spherical functions as functions on M.

Let us fix a Haar measure on G and other groups before we go on. We
normalize the Haar measures on A and a* such that they are dual to each
other, i.e., the Fourier inversion formula for the abelian group A holds
without constants:

fOvi= [ f@a o= o) = [ Fga i
A a*
Further, we normalize the measures dn and dnf = 7(dn) on N and N* such

that
/ eIfQP(nﬁ) dnf =1.
Nt

We normalize the Haar measure on Ny and Ng in the same way by using
po = % Y weat dimgq o instead of p. We choose dny on Ny such that
0

dn =dng dng.

Let dn_ = 7(dny). We choose the measure dX on n_ such that for all
feC(N-),

. fn_)dn_ :/"7 flexp X)dX .

Then we relate the measures on G and H by

/Gf(x)d:c:/HA/Nf(han)a?Pdhdadn

for every f € C.(G) with Supp(f) C HAN.

Theorem 8.2.2 Let £ = {A € a¢ | YVa € Ay : Re(A + pla) < 0}. Let
A€ & and let s € S°. Then H 5 h— ex(sh) € C is integrable and

©x(s) ::/HeA(sh)dhe(C

is a spherical function. O
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The idea of the proof is to use the integral formulas in [128] to rewrite
the integral defining ¢, as an integral over K:

Px(s) = /KmHAN ex(sk)e_x(k)dk.

As the semigroup S° acts by compressions on H/(H N K), it follows that
HANNK 3k ex(sk) is actually bounded. A simple sly reduction shows
that the exstension of K N HAN > k — e_x(k) by zero outside K N HAN
is continuous if A € £. The proof actually shows that ) is a well-defined
spherical function on the set

&= {/\Gaé

/K L eme(R)dk < oo} . (8.4)

which in general is bigger than &£.
For g € G, the decomposition g = h(g)a(g)n(g) is just the usual Iwasawa
decomposition. Let

1
p+=3 Z MaQ . (8.5)

aEA 4

Then p = po+ p+. Let ¢} denote the spherical function on the Riemannian
symmetric space Go/(K N H):

() = / exsp, (k) di.
KNH

Denote the Go-component of g € HGoN by go(z).
Lemma 8.2.3 Let s € S° and A\ € £. Then

ox(s) = /H oo P (oolsh)

where dh denotes a suitable normalized invariant measure on H/(HNK).
In particular, p,x = @ for every w € Wy. O

Let D(M) be the algebra of invariant differential operators on M. To
A € af, there corresponds a homomorphism x : D(M) — C. In short, this
homomorphism can be constructed by choosing an element v in the univer-
sal enveloping algebra U(g) that corresponds to D by right differentiation.
Then project u to U(a) ~ S(a*) along hU(g) @ U(g)n and evaluate at A —p.

Lemma 8.2.4 Let A € £. Let A(C) := expC C A. Then ox|gacyn s
analytic and Doy = xx(D)px on HA(C)H. O
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8.3 The Asymptotics

In this section we describe the asymptotic behavior of ¢ on A(C). For
that we need three c-functions. Define

CQ(/\):/Qe,A(eXpX)dX, CO(/\):/ e_x(n*)dn?,

No

and
c(A) = ca(Neo(A)

The function ¢o(A) is the usual Harish-Chandra c-function for the sym-
metric space Mo = Go/(KNH) and has thus a well-known product formula
co(N) = HaeA& ca(Aa), cf. [35] or [45]. On the other hand, the function
ca(A) is known only for some special cases, cf. [26]. The integral defining
ca(A) converges exactly for A € £’. The integral defining co(A) converges
for A € a¥, such that Re(A|a) > 0 for every o € AJ. One should note that
one can replace A and p by A|anyg,,q0] a0d po, Tespectively, in all calculations
involving co(\).

Lemma 8.3.1 Let A € € be such that Re(Ala) > 0 for every a € Af.
Then

c(\) = / e_x(n*) dnf. O
NiNHAN
Let us introduce the notation
A(C)
a —5 0o

for the fact that a € A(C) and for all « € A* we have
lim a® = oo.

Rewriting the integral defining ¢y as an integral over N N HAN, we get
the following theorem.

Theorem 8.3.2 Let A € & be such that Re(Aa) > 0 for every a € Af.
Then

lim a” *px(a) = c()).
aA(—c>)oo

Furthermore,

lim et<p—A,X°>
t—o0

oxa(aexptX?) = Csz(/\)ﬁﬁg+p+ (a). .
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Example 8.3.3 (The Hyperboloids) Let G = SO,(1,n) and let H =
SO,(1,n — 1), n > 2, cf. Section 1.5. Let

cosht 0 sinh ¢
a=4q a = 0 I, 1 0 teR
sinh ¢ 0 cosht

Let X0 = Eipy1 + Eng1,1. Then a = RX?. We choose the positive
root such that «(X°) = 1 and identify a} with C by z — —za. Then
p = —(n —1)/2. The spherical function ¢, is given by

ox(ay) = / (cosht + sinh £ cosh §) ~*~ (=172 (sinh )" 246
0

Let Q¥ be the usual Legendre function of the second kind and let o F; be
the hypergeometric function. From [23] we get Theorem 8.3.4

Theorem 8.3.4 The integral defining @x(at) converges for t > 0 and
Re A < —(n — 3)/2. Furthermore,

(A - nT_3) Z-1

(A + 251 (sinh ) 51 "3

1\ I'(\ — n=3 ne
= 2n7°r <n > ( 2 )(QCosht)*)‘*Tl~

(cosht)

2N (at) = TIn

2 r(A+1)
AL A i 1
o F 2 2 1, ——
2 1( 2 72 AT 7(cosht)2>
where v, is a constant depending only on n. O

In particular, for n = 2,

I T
D) sinhte

In this case AT = Ay. Thus ¢(\) = cq(A) and

n—1>r(/\—”73)

N

ca(\) = 2"2r<

2 r'(A+1)
n—3 n—1
= 2" B(\-
(-
Furthermore,
1 R 1
o (AR A L)
CQ(A)w)\( 1) =2 1( 2 2 cosh? ¢

which extends to a meromorphic function on af, holomorphic for Re A > —1.
O
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Example 8.3.5 (The Group Case) Let G be a connected semisimple
Lie group such that G¢/G is ordered. Let a be a maximal abelian sub-
algebra of q = ig contained in p @ it. Note that ¢a is a compact Cartan
subalgebra of g. The Weyl group Wy is given as Nk (a)/Zk(a), which is
the Weyl group of a in K. Let e(w) = detw, w € W.

Theorem 8.3.6 The spherical function ) is given by

ZUJGWO E(w)€_<w>"X>

aent < A> ] cassinh <o, X >

or(exp X) = CH

for X e C°Na. O

We get for suitable constants 7y, g, and 1 such that vgy1 = 7,

0
A =
CO( ) HQEAOJF < /\,a >a
71
A =
ca(}) [loca, <Aa >’
and N
A) = .
C( ) Ha€A+ <Aa>
Furthermore,

ZUJEWD 6(,w)e—<w)\,X>

At X) =
c(A) a(exp X) [loc_n+sinh <a, X >

for X € C°Na and as a function of A this function extends to a holomorphic
function on ac. |

8.4 Expansion Formula
for the Spherical Functions

Let us recall the case of spherical functions on the Riemannian symmet-
ric space G/ K, cf. [40, 41, 45], before we talk about the causal symmetric
spaces. Let px(z) = [ ex(zk) dk as before. Let ¢"(A) = [y e—x(nf) dn?
be the usual Harish-Chandra c-function for the Riemannian symmetric
space GG/ K, which is isomorphic to the r-dual space G" /K" = M". Notice
that we can view A as a subset of M". If D € D(M?"), then the radial
part A (D) of D is a differential operator on A(C), such that for every
K—bi-invariant function F' on G we have

(DF)|aey = Amr(D)(Flacy) -
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In particular, this holds for the spherical functions %< "

A (D)X 1 aie)) = xa(D) (X N ace)) -

Let A = NA™ and construct the function '), p € A recursively by

[(ulp2) = 211N T, (V)
= 25 ma S Tpara V) ((u+ p — 2kala) — () -

aeAt k>0

Define for a € A(C):

®y(a) :=a " Z T,(Na " =a*" |1+ Z Tu(X)a" | . (8.6)
HEA neA\{0}

From [40, 45] we see

Theorem 8.4.1 Let W be the Weyl group of A. Then there exists an open
dense set U C af, such that for A € U, {®s\ | s € W} is a basis of the
space of functions on A(C) satisfying the differential equation

Apmr(D)® = x\(D)®, VD e DM"). O

For an H-bi-invariant function on HA(C)H, define a K"—bi-invariant
function 7 on K"A(C)K"” C G" by fV(kiaks) = f(a). Denote the natural
isomorphism D(M) ~ D(M") by 4. Then (Df)Y = DY f7. This, together
with Theorem 8.4.1 and the asymptotics for the spherical function ¢y (cf.
[130]), gives Theorem 8.4.2

Theorem 8.4.2 Let A\ € ENU and a € A(C). Then
pa(a) =ca(N) Y co(wA)Pu(a). O
weWy

As a corollary of this we get the following.

Corollary 8.4.3 The functions

ExAIC) > (\a) — %(A)cm(a), %m(a)

C

extend to ag x A(C) as meromorphic functions in X. O
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We will denote the H-bi-invariant extension hijahs — [1/cq(N)]¢a(a)
by the same symbol. Similarly we denote the H-bi-invariant function on
HA(C)H (or HA(C)o) that extends @, by the same symbol, ®5. Then the
product formula for ¢ shows that

c"(A) = cr(Neo(N),

where ¢y () is the part of the product coming from the roots in A;. As
A, is Wy-invariant, it follows that ¢y () is Wy-invariant. Thus

and ¢y (X)/cq(X) is Wy-invariant. Let

A = 3 N Bun(a)

weW

be the spherical function on M" for the parameter .

Theorem 8.4.4 Let the notation be as above. Then

he oy Ly e

8.5 The Spherical Laplace Transform

A causal kernel or Volterra kernel on M is a function on M x M which is
continuous on {(z,y) | z < y} and zero outside this set. We compose two
such kernels F' and G via the formula

F#G(x,y) = /MF(a:,m)G(m,y)dm

/ F(z,m)G(m,y)dm.
[.9]

This definition makes sense because M is globally hyperbolic (cf. Theorem
5.3.5). With respect to this multiplication, the space of Volterra kernels
V(M) becomes an algebra, called the Volterra algebra of M. A Volterra
kernel is said to be invariant if

F(gz,g9y) = F(z,y) VgeG.
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The space V (M)? of all invariant Volterra kernels is a commutative subal-
gebra of V(M), cf. [25], Théoreme 1. An invariant kernel is determined by
the function

f(m):F(Ovm)v m e My,

which is continuous on M, and H-invariant. On the other hand, for f a
continuous H-invariant function on M, we can define an invariant Volterra
kernel F' by

F(a-0,b-0) = f(a"'b-o0).

Under this identification the product # corresponds to the “convolution”

J#g(m) = (z-0)g(z™" - m)di.

G/H

So the algebra V (M)# becomes the algebra of continuous H-invariant func-
tions on S - o with the above “convolution” product.

The spherical Laplace transform of an invariant Volterra kernel F' is de-
fined by

LF(\) = /M F(o,m)ex(m)dm.

Here, by abuse of notation, we view the H-invariant function ey as a func-
tion on M. The corresponding formula for the H-invariant function on
S -z, is

L) = /M f(@)er(w) d.

Let D(f) be the set of A for which the integral converges absolutely. Using
Fubini’s theorem, we get Lemma 8.5.1.

Lemma 8.5.1 Let f,g € V(M)* be invariant causal kernels. Then D(f)N
D(g) C D(f#g). For A € D(f) N D(g) we have

L(f#9)(N) = LN Lg(N). =
Let M = Zynk(A). In “polar coordinates” on M,
H/M x A(C) > (hM,a) — ha-o0 € M,

we have, for f € C.(S/H),

/S/Hf(:z:) dr = C/H/A(C) f(hao)d(a) dX dh,
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where ¢ is some positive constant depending only on the normalization of
the measures, and

§(a) = H (sinh < a,loga >)™" .

a€At

Theorem 8.5.2 Let ¢ > 0 be the constant defined above. Let f : S/H — C
be continuous and H-invariant. If X € D(f), then @ exists and

Lf(A) = c[q(c)f(a)@A(a)é(a) da. O

To invert the Laplace transform, we define the normalized spherical func-
tion @y by
. 1
Palz) := T)\)%(I)

and the normalized Laplace transform by
LHW = [ F@p@i@da
A(€)

Then

Loy = 3 e s (o)3(0) do.

wew oA Jace

as cq(\) is Wo-invariant. Note that the unknown function cq(\) disappears
in this equation.
Let A € 7a*. Then

and
co(=A)co(A) = co(—w)co(wA) . (8.7)
Thus
co(w)\)’ _ co(—A) ’: co(N) ’
co(N) co(—wA) co(wA)
and ()
Colw
moakl

s0 A +— co(wA)/co(A) has no poles on ia*. Let C°(HA(C)H//H) be the
space of H-bi-invariant functions with compact support in H\HA(C)H/H.

Theorem 8.5.3 Let f € C°(HA(C)H//H). Then €3 X — L(f)(\) € C
extends to a meromorphic function on ap with no poles on ia*. O
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From the functional equation for ) we get

Z cr(w)\)ﬁ(f)(w)\) =aF(fM)N),

wEW,\W

where ¢ is a positive constant independent of f and A\, and F denotes the
spherical Fourier transform on M":

FUMHAN) = ; (@) (z) de.
Let Ex(hiahs) := ¢%(a) be the H-bi-invariant function on G with the same
restriction to A(C) as ¢%. By the inversion formula for the spherical Fourier
transform, [45], we have for some constant depending on the normalization

of measures and w = |W/|,

eft@) = ~ [ Fmm A

ey P

gl
—
*

)
—
~
S~—
—

g

>
~—

Q
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Yle
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>
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>
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I
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ia* CT(_A)
This proves the inversion formula at least for f € C°(HA(C)H//H):

Theorem 8.5.4 Let Ey := Ey/c"(\). Let f € C(HA(C)H//H). Then
there exists a positive constant ¢ that depends only on the normalization of
the measures involved such that for every a € A(C),

f(@) = / LB A 0

ia

8.6 The Abel Transform

As in the Riemannian case, we can define the Abel transform and relate
that to the spherical Laplace transform. The main difference is that in
this case A(f) does not have compact support even if the support of f is



236 CHAPTER 8. SPHERICAL FUNCTIONS

compact. On the contrary, by the nonlinear convexity theorem, the support
of A(f) can be described as a “cone” with a base constructed out of the
support of f.

Let f be an H-invariant function on M. We define the Abel transform,
Af:A— Cof f, by

A(f)(a) = a* /N f(an)dn

whenever the integral exists. Using the nonlinear convexity theorem, p.
151, we prove the following lemma.

Lemma 8.6.1 Let f be a continous H-invariant function on My (ex-
tended by zero outside M. ) such that n — f(an) is integrable on N for all
a € A. Let L C ¢max be the convex hull of log(Supp(f|sna)). Then

log (Supp(Af)) C L + cumin- O

We rewrite now the Integral over My C M as an integral over AN, cf.
[128], to get Theorem 8.6.2.

Theorem 8.6.2 Let f be an H-invariant function S/H and A € D(f).
Then

L) = / A Af(a)da = La(Af)(—N),

where L4 is the Fuclidean Laplace transform on A with respect to the cone
O

Cmax M

The Abel transform can be split up further according to the semidirect
product decomposition N = N4 Ny. Set

A f(go) = a?* f(gon+) dny
Ny
for go € Go. Then obviously A, (f) is Ko—bi-invariant and
Af(a) = a” AL (f)(ang) dng .

No

Denote by Ag the Abel transform with respect to the Riemannian symmet-
ric space Go/K N H. Then we have

Af(a) = Ao(Ay f)(a)

for all continuous, H-invariant functions f : S/H — C such that the above
integrals make sense and all @ € A. As it is well known how to invert
the transform A, at least for “good” functions, the inversion of the Abel
transform associated to the ordered space reduces to inverting A4 f.
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Theorem 8.6.3 If f : M — C is continuous, H-invariant, and such that
the Abel transform exists, then its Abel transform is invariant under Wy,
i.e.,

Af(wa) = Af(a) Vae A,weW. O

8.7 Relation to Representation Theory

The spherical functions are related to the representation theory on both G
and the dual group G°. Here we explain the relation to the representation
theory of G.

Let M be the centralizer of A in K and let P be the minimal parabolic
subgroup M AN. For A € af, let (m(\), H(\)) be the principal series rep-
resentation induced from the character yy : man — a* of P. The space of
smooth vectors in H(A) is given by

C®(\) = {f € C®°(G) | Yman € MAN,Vg € G : f(gman) = a~ P f(g)}

and
[r(M)(9)f)(x) = f(g~ ).

The bilinear form
€)% C¥(=3) 3 (F.9) =< fog >i= [ f(k)g(k)d

defines an invariant pairing C*°(\) x C*°(—\). Extend ey to be zero outside
HAN. Using the above pairing, we find that ey € C=>°(\)# for A € —€,
where C~°°()) is the continuous dual of C*°(\). Furthermore,

< fex >:/Kf(k)e,\(k)dk:/Hf(h)dh

for f € C°(A\) and A € —&. The linear form f —< f, ey > has a mero-
morphic continuation to all of af, as an H-invariant element in C~°°(\),
of. [2,3, 128, 140, 141, 145]. Let f € C°(G). Then 7;°°(f)ex € C=(—\).
Hence

f=0n(f) =< F;OO(f)e)\,e_k >

is well defined.

Definition 8.7.1 A distribution © on G is called H-spherical if

1) © is H-bi-invariant.
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2) There exists a character x : D(M) such that D(©) = x(D)®©. O

Theorem 8.7.2 O, is an H-spherical function and DOy = x»(D)O, for
every D € D(M). O

The relation between the spherical distribution ©, and the spherical
function ¢, is given by Theorem 8.7.3.

Theorem 8.7.3 If A\ € £ and Supp(f) C (S°)~1, then

0x(f) = /G F(@)por(a) da. 0

Notes for Chapter 8

The material in Section 8.1 is standard, but usually I is defined as the set {(z,y) €
M | z > y}. In that case the product for invariant kernels becomes F#G = G+ F.

Spherical functions on symmetric spaces of the form G¢ /G were introduced by
J. Faraut in [24], where they were used to diagonalize certain integral equations
with symmetry and causality conditions. Most of the material in Section 8.2,
Section 8.3, and Section 8.5 is from [28]. The proof of Theorem 8.3.6 in [63]
used the relation to the principal series in Section 8.7 and the formula of the
H-spherical character due to P. Delorme [19]. Examples 8.3.3 and 8.3.5 are from
[28]. Lemma 8.2.4 was proved in [131]. A more explicit formula for the spherical
function and the co(A) function for Cayley-type spaces was obtained by J. Faraut
in [26]. The inversion formula for the Laplace transform was proved in [28] by
using the explicit formula for the spherical functions. In the same article, an
inversion formula was proved for the rank 1 spaces by using the Abel transform.
The general inversion formula presented here was proved in [131].

The first main results on spherical functions on Riemannian symmetric spaces
are in [40, 41]. The theory was further developed by S. Helgason, cf. [43, 45]. The
isomorphism ~ : D(M) — ID(M") was first constructed by M. Flensted-Jensen
in [32].

A Laplace transform associated with the Legendre functions of the second kind
was introduced by [17]. In [164] this transform was related to harmonic analysis
of the unit disc. A more general Laplace-Jacobi transform associated with the
Jacobi functions of the second kind was studied by M. Mizony in [105, 106].

There is by now an extensive literature on the function e, and its general-
izations. Its importance in harmonic analysis on M comes from the generalized
Poisson transformation, i.e., the embedding of generalized principal series rep-
resentations into spaces of eigenfunctions on M. A further application is the
construction of the spherical distributions ©,. We refer to [2, 3], [12, 13], [128],
[140, 141, 145] and [161], to mention just a few.



Chapter 9

The Wiener-Hopf Algebra

The classical Wiener-Hopf equation is an equation of the form

[T+ W(H)]e=mn,

where n € L2(R™), ¢ is an unknown function on R*, and

winee - | " f(s— ) dr,

where f € L*(R). Equations of this type can be studied using C*-algebra
techniques because the C*-algebra Wg+ generated by these operators has a
sufficiently tractable structure. It contains the ideal K of compact operators
on L?(R*) and the quotient Wi+ /K is isomorphic to Cp(R).

There is a natural generalization of these Wiener-Hopf operators to op-
erators acting on square integrable functions defined on the positive do-
main in an ordered homogeneous space (cf. [54, 55, 108]). In this section
we consider Wiener-Hopf operators on the positive domain M of a non-
compactly causal symmetric space M = G/H. We recall the ordering <g
that has been used in the definition of the order compactification MP?
and the corresponding positive domain M, C M. Next we consider an
invariant measure paq on M and the corresponding unitary action of G on
L?(M) as well as the integrated representation mx of the group algebra
LY(G) on L3 (M), i.e.,

[ ()] (@) = /G f@)élgt ) ducla) ¢ € L*(M), f € LY(G).

The Wiener-Hopf algebra W4, is defined to be the C*-algebra generated
by the compressions of the operators ma((f) to the subspace L2(M). Our
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intention in this chapter is to describe the structure of the Wiener-Hopf
algebra in terms of composition series which are determined by the G-orbit
structure of Mt Further, we explain how the Wiener-Hopf algebra can
be obtained as the homomorphic image of the C*-algebra of a groupoid.

We start by showing the connection of the order compactification as
described in Section 2.4 with the functional analytic compactification using
the weak-star topology in L°°(G) and characteristic functions, which is
commonly used in the context of Wiener-Hopf algebras.

Lemma 9.1.1 The mapping
\I/:]:l(G)—>LOO(G), A xa,
where x 4 1s the characteristic function of A, is a continuous injection.

Proof: 1) U is injective: Let A,B € F|(G) with xa = x5 in L>®(G),
i.e., almost everywhere. Let a € Int(A). If x ¢ B, then there exists
a neighborhood U of a in A such that U N B = (. Therefore pu(U) <
u(A\ B) = 0, a contradiction. We conclude that Int(A) C B. In view of
Lemma 2.4.7, this implies that A C B. The inclusion B C A follows by
symmetry.

2) ¥ is continuous: Let A, — A in F|(G). We have to show that
lim x4, = x4 almost everywhere. We proceed in two steps:

a) Xmnt(4) < liminfxa,: Let a € Int(A). Then there exists b € Int(A) N
Int(7a). We choose a neighborhood U of b in 1 a which is contained in
A. Then there exists ny € N such that A, NU # 0 for all n > ny. Let
b, € A, NU. Then b, € Ta and therefore a €| b, C| A, = A,. This
shows that liminfy 4, (a) = 1.

b) limsupxa, < xa: Let a € G with limsupxa, (a) = 1. We have to
show that ya(a) = 1, i.e., a € A. To see this, let U be an arbitrary
neighborhood of @ in G. Then the condition limsupy 4, (a) = 1 implies for
every ng € N the existence of n > ng with a € A,,. It follows in particular
that A, NU # 0. Hence a € limsupA,, = A. O

Lemma 9.1.2 Let B:={f € L*(G) | |[fllcc <1} and set
g-f=fod for geG, febB,
where Ay is left multiplication by g in G. Then the mapping G X B —

B,(g,f) — g f is continuous, i.e., G acts continuously on the compact
space B.
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Proof Let go € G, fo € B and h € L'. We have to show that the function
(g,f) — {(g- f,h) is continuous at (g, f). For g € G and f € B we have

(g-f,h)—{go- fo,h) =(g-f—go-f.h)+{g0-f—go0- fo,h)
=(fog h—gg" - h)+{f— fo.g5" - h)

and both summands tend to 0 for ¢ — go and f — fy because go_1 -he Lt
and [|g™' - h— g5 hll1 — 0. O

Lemma 9.1.3 1) The mapping
v:F(G)— B, A xa

is a G-equivariant continuous and monotone mapping of compact G-
pospaces.

2) The mapping
MPE 5 L(@G), A xa

is a homeomorphism onto its image.

Proof: 1) follows from Lemma C.0.7, Proposition 9.1.1, and Lemma 9.1.2.
2) is a direct consequence of 1) and the compactness of M O
This lemma shows that there is no essential difference between the com-
pactifications in L>°(G) and in F(G).
Recall from Theorem 2.4.6 that M is open in M®Pt. Thus it is reasonable
to extend paq to MCP via pp (MPE\M) = 0. In particular, we can identify
M and ipt as measure spaces. We write pag, for pasa, . If now

p: LA(M, pipn) — LA (M, pany)

and
j : LQ(MJH,UM+) - LQ(MMUM)

are given by restriction and extension by 0, respectively, the Wiener-Hopf
operator

WM+ (f) : L2(M+7,UJM+) - LQ(MJH,UM+)
associated to the symbol f € L*(G) is given by Wiy, (f) :=pomam(f) o J,
ie.,

(W, (o) (z) = f(9)olg™" - ) duc(g),

(x)
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where ¢ is a suitable Haar measure on G (cf. Lemma 2.4.2). If we multiply
two such Wiener-Hopf operators we obtain for fi, fo € C.(G)

(W, (f1) e W, (f2)¢] (2)

= /_( : l . )fl(g)f2(g‘la) duc(g)| ola™ - x) dug(a) .

Thus the product of two such Wiener-Hopf operators is again some sort of
Wiener-Hopf operator with a two-variable symbol. To construct a domain
on which these symbols are functions, we need the notion of a groupoid. A
locally compact groupoid is a locally compact topological space G together
with a pair of continuous mappings satisfying the following axioms. The
domain of the first mapping is a subset G? C G x G called the set of compos-
able pairs, and the image if (z,y) € G? is denoted zy. The second mapping
is an involution on G denoted by = — 2~ 1. The axioms are as follows.

1) (2,9), (y,2) € G = (wy,2), (z,y2) € G* and (zy)z = z(y2);
2) (z,27Y),(z~1,2) € G2 for all z € G;
3) (z,), (2,2) € G2 = 2~ (wy) = y and (z2)z~! = 2.

The maps

d:G—G, vz 'z, r:G—g, x—azx !

are called the domain and range maps, respectively. They have a common
image G° called the unit space of G. Note that a pair (z,y) belongs to G2
if and only if d(x) = r(y), hence G2 is closed in G x G. Also, since u € G°
if and only if (u,u) € G2 and u? = wu, it follows that G is closed in G. Let
u € GO Then r~!(u) Nd~1(u) is called the isotropy group in u. It carries
the structure of a locally compact group. We say that two points u, v in
GY lie in the same orbit if d=(u) Nr~1(v) # 0. Note that this defines a
partition of G° into orbits because d(z~!) = r(z) for z € G. Finally, we
note that r(xy) = r(x) and that d(zy) = d(y) for z,y € G.

We consider the right action of G on M defined by A-g := g~ 'A. Our
groupoid will be the reduction of the transformation group Mt x G —
MePLto M (cf. [108], 2.2.4 and 2.2.5). This amounts to the following.
We set

G ={(z,9) e MT" x G| g € z}.

The domain of the multiplication is

G ={((z.9),(y,h) €GxG|x-g=y},
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the multiplication map G2 — G is

((z,9), (y, b)) = (z,9)(y, h) = (z,gh),

and the involution G — G is defined by

(@,9) = (2,9)7" = (2 g,97").

The domain and range maps for this groupoid are given by
d(,ﬁC,g) = (,Tg,l) and T'(.’L',g) = (‘Tul)

Thus the unit space G° of G is equal to ./\/lfft x {1}. We note that it
is instructive to visualize the elements (z,g) of the groupoid as arrows
from d(x,g) to r(x,g). Then the involution corresponds to inversion of
arrows and the composable elements are the arrows which fit together.
Moreover, multiplication is composition of arrows. We endow G with the
locally compact topology inherited from Mft x G.

Next we define a convolution product on the set C.(G) of all compactly
supported complex valued functions on G by

Py« Fy(z,9) = [ Fi(z,ga)Fa(z - ga, ail)xMim (z - ga) dug(a)
= fﬁ(m) Fi(z,a)Fy(a™t - z,a71g) duc(a)

which is obviously related to the product formula of our Wiener-Hopf op-
erators. We define a map C.(G) — C.(G) via

f=Ff fx9) = f9).

Note that the compactness of M7 implies that f € C.(G). Then C.(G) is
a x-algebra with respect to the involution

F*(z,9) = F((z,9)7")Ac(g) ™ = F(g~! 2,97 ) Ac(g) ™"
(cf. [54], I11.6). We define norms on C.(G) via (cf. [108], 2.7)

[Fllo:== sup [[F(z,-)[x and [[F[}1:=max{[|F|o,[[F" o}
ze/\/[ft

Now we write L'(G) for the normed *-algebra obtained form C.(G) by
completion with respect to the norm || - || (cf. [150], p. 51). We also
recall from [109], 2.11, that C.(G) and therefore L'(G) admits a two sided
approximate identity. Thus we obtain a universal enveloping C*-algebra
C*(G) as the subalgebra of C*(L*(G),) generated by L'(G). The following
result is proven in [54].
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Theorem 9.1.4 For F' € C.(G), the prescription

(W, (F)o](z) = 3 )F(w,g)ﬂﬁ(g‘l c2)/s(g7 1, %) dpcl(g),
n(x

where s(g~t, x) is a cocycle depending on the measure chosen on M, defines

a norm-contractive x-representation

W, : Ce(G) — B(L*(M4))

and the extension
W, : C*(G) — B(L*(My))

is a C*-representation with image Wy, . O

The preceding theorem shows that it is reasonable to try to describe the
ideal structure of the algebra Wxy, of Wiener-Hopf operators via the C*-
algebra C*(G) of the groupoid. But it should be noted here that it is an
open problem to determine the kernel of the representation W, .

t! t . . . . . .
Whenever a subset MY of MP" is invariant in the groupoid sense, i.e.,
satisfies

d(z,g) € M & r(z,g) e MT",

we set

Gpger = P MYy = d (M),

If J\/lipt/ is locally compact in J\/lfft, then G, eper is again a locally compact
+

groupoid and one can talk about its groupoid C*-algebra. Now one can
show (cf. [55]) the following.

Theorem 9.1.5 Let U be an open invariant subset of./\/lfft. Then we have
a short exact sequence of C*-algebras,

0— C*(Gu) 2% o*(g) % o (Gpierr) = 0.

For F € C.(G) the map By is given by restriction to = (MP*\ U). The
sequence splits if U is open and closed in M(jrpt. O

Recall that there are only finitely many different G-orbits in M* which
are in addition locally closed, i.e., each orbit is open in its closure, and we
also know that all other orbits in the closure of a given orbit have lower
dimension.
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Let My, denote the set of all orbits of dimension (dim M) — k in M¢°P?
and (M), := MP' 1 M, (cf. Section 6.4). Let

I, =C* (ngzo(M+Cpt)j)

for k € Ny and consider this set as an ideal of C*(G) according to Theorem
9.1.5. Then one finds (cf. [55]) the following theorem.

Theorem 9.1.6 Let z;, i = 1,...,i; be a set of representatives for the
different invariant subset of (Mft)k and Hy; the stabilizer of xy; in G.
Then the C*-algebra C*(G) has a composition series

Iy C...C lLaiimm = C*(g)

with .
In/In1 2= @D (C*(Hin) @ K(LA(IMP Tk, 1)) )
i=1
for k>1 and
Ip = C*(H) ® K(L2([MTP']o, o)),

where K(L?([Mycptli, px)) denotes the C*-algebra of compact operators
on the Hilbert space Lz([/\/l(ft]k,uk) and iy s a positive Radon measure
on [MP.

The main result of [54] is the following theorem, which contains all the in-
formation one has on the first ideal in the composition series of the Wiener-
Hopf algebra.

Theorem 9.1.7 Let K (L2(M.)) be the ideal of compact operators on
L?(My). Then K (L2(My)) C War,. More precisely, this ideal is the
image of C* (G, ) under the Wiener-Hopf representation.

Notes for Chapter 9

The groupoid approach to C*-algebras generated by Wiener-Hopf operators goes
back to Muhly and Renault [108] (cf. also [126, 109]). They also gave definitions
of Wiener-Hopf operators for arbitrary ordered homogeneous spaces, but treated
only the case of vector spaces ordered by polyhedral or homogeneous cones in
detail. First attempts to also deal with nonabelian symmetry groups are due to
Nica [127]. A more systematic approach is given in [54] (cf. also [53]). The case
of noncompactly causal symmetric spaces was developed in [55].



Appendix A

Reductive Lie Groups

In this appendix, on the one hand we collect the basic notation for semisim-
ple and reductive Lie theory used throughout the book. On the other hand
we quote, and in part prove, various results which are purely group theo-

retical but not readily available in the textbooks on Lie groups.

A.2 Notation

Let K be either R or C and b a finite-dimensional abelian Lie algebra
over the field K. Given a finite-dimensional b-module V, we denote the
corresponding representation of b on 'V by w. If A € K and T € End(V),

we define
VIAT) :={veV |Tv=Av}.

For X € b we set
VA X) =V 7(X)).

For a € b* we define V(«, b) by

V(b)) ={fveV|VXeb: X-v=aXp}= (] V(X),X)

Xeb

Furthermore,

V' = V(0,b).

If the role of b is obvious, we abbreviate V(«, b) by V. Define
A(V,b) :={a € b"\ {0} | Vo # {0}}
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and
V() =@ Va, 0 #T C A(V,b). (A.6)

acl

The elements of A(V,b) are called weights, as is the zero functional if
Vv £ {0}.

If V is a real vector space, we set V¢ := VQC. We define the conjugation
of V¢ relative to V by

U+ v = u — iv, u,v € V. (A7)

Sometimes we also denote this involution by o.

We denote Lie groups by capital letters G, H, K, etc., and the associated
Lie algebras by the corresponding German lowercase letter. For complexifi-
cations and dual spaces we use the subscript ¢, respectively the superscript
*. If ¢p: L — K is a homomorphism of Lie groups, we use ¢ for the corre-
sponding homomorphism of Lie algebras and complexified Lie algebras. In
particular, we have @(exp, (X)) = expg (p(X)) for all X € [.

We call a real Lie group semisimple if its Lie algebra is semisimple. A
Lie algebra is called reductive if it is the direct sum of a semisimple and
an abelian Lie algebra. In contrast to the Lie algebra case, there is no
generally agreed-on definition for real reductive groups. Therefore we make
explicitly clear that we call a real Lie group reductive if its Lie algebra is
reductive.

Let G be a semisimple connected Lie group with Cartan involution 6.
Let K = G? be the corresponding group of #-fixed points in G. The Lie
algebra of K is given by

t=g(1,0)={X eg|0(X)=X}.
Let p = g(—1,6). Then we have the Cartan decomposition
g=tdp. (A.8)

We denote the Killing form of g by B , i.e. , B(X,Y) = Tr(ad X ocadY).
For X,Y € g set

(X |Y):=(X|Y):=—B(X,0(Y)). (A.9)

Then (- | -)p is an inner product on g. We will denote the corresponding
norm by |- |o or simply by |- |. With respect to this inner product, the
transpose ad(X)T of ad(X) is given by —ad(f(X)) for all X € g. In
particular, ad(X) is symmetric if X € p.
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Let a be a maximal abelian subalgebra of p and m be the centralizer of
ain g ie.,
m = 3(a). (A.10)

As {ad X | X € a} is a commutative family of symmetric endomorphisms
of g, we get

g=moad @ fa-
a€A(g,a)

The elements of A = A(g, a) are called restricted roots. For X € a such
that a(X) # 0 for all « € A, one can define a set of positive restriced roots
to be

AT :={a e A|a(X) >0} (A.11)
Set
n= @ go = g(AT).
acAt

Then n is a nilpotent Lie algebra and we have the following Iwasawa de-
composition of g:
g=tdadn (A.12)

Let N =expnand A = expa. Then N and A are closed subgroups of G
and we have the Twasawa decomposition of G:

KxAXxN> (ka,n)— kan € G. (A.13)

This map is an analytic diffeomorphism. For a subset L of G and a subset
b of g, we denote by Z,(b) the centralizer of b in L:

Zpb)={beL|VX eb : Ad(h)X = X}. (A.14)
Similarly, we define the normalizer of b in L by
Np(b)={beL|VX b : Ad(D)X € b}. (A.15)

We fix the notation M = Zg (a), M* = Nk (a) and W := W(a) := M*/M.
The group W is called the Weyl group of A. We will use the following facts
that hold for any connected semisimple Lie group (cf. [44]).

1) If a and b, are maximal abelian in p, then there exists a k € K such
that
Ad(k)b = a. (A.16)

2) If ke M* and o € A, then k- = a o Ad(k™1) is again a root.
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3) Let A" be a set of positive roots in A. For k € M* we have k € M
if and only if k- AT = AT,

4) If A C A is a set of positive roots, then there exists a k € M* such
that k- A = AT,

Let Puin := MAN. Then Py, is a group. The groups conjugate to Pyin
are called minimal parabolic subgroups of G. A subgroup of G containing a
minimal parabolic subgroup is called a parabolic subgroup.

If X € a we define a character a — a* on A by

a* == expA(X), a =expX.

By restriction, (- | -)¢ defines an inner product on a and then also on a*
by duality. Choose a Cartan subalgebra t containing a. Then t is #-stable
and t = t;; @ a, where t;, = tN € C m. The elements of A(gc, tc) are called
roots . Similar to the case of restricted roots, one can choose a system of
positive roots. This can be done in such a way that AT (g,a) = {al, | @ €

A% (gc, te), ala # 0}

A.3 Finite-Dimensional Representations

Definition A.3.1 Let K be R or C and V a K-vector space. Given a
connected real Lie group G and a subgroup L C G, a representation m of
G on V is called L-spherical if there exists a nonzero L-fixed vector v € V
generating V as an L-module. We define

Vi={veV|VacL:nlaw=uv} (A.17)

Similarly, if [ is a subalgebra of the real Lie algebra g and w is a representa-
tion of g on V, then = is called I-spherical if there is a nonzero v € V such
that 7(l)v = {0}. O

If G is semisimple and L = K, then we call m spherical if it is K-spherical.
For the following theorem, see [45], p. 535.

Theorem A.3.2 Let G be a connected semisimple Lie group and m an
irreducible complex representation of G in the finite-dimensional Hilbert
space V.

1) w(K) has a nonzero fized vector if and only if m(M) leaves the highest-
weight vector of w fized.
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2) Let X be a linear form on it ®a, where t;, = tN€. Then X is the highest
weight of an irreducible finite-dimensional spherical representation m

of G if and only if
(Ale)
(ala)

Here (- | -) is the inner product on (ity, 4+ a)* abtained from the Killing
form by duality. O

AMig, =0 and Vo € At(g,a) : YA (A.18)

Lemma A.3.3 Let G be a connected semisimple Lie group with Cartan
involution 6 and (w, V) be a finite-dimensional (complex or real) represen-
tation of G. Then there exists an inner product on 'V such that w(z)* =
7(0(z)~Y). In particular, m(z) is unitary for all x € K and symmetric for
T € expp.

Proof: If V is real, we replace V by V. Since the real part of an inner
product on V¢ defines an inner product on V by restriction, we may assume
that V is complex. The corresponding representation of gc is again denoted
by m. Consider the compact real form u = € @ ip of gc and let U be a
simply connected Lie group with Lie algebra u. Then U is compact. As U
is simply connected, there exists a representation 7y of U whose derived
representation is w|,. Let (- | -)o be an inner product on V. Since U is
compact, we can define a new inner product by

(w]wv) = /U (ry (v)w | 7y (uw)v)o du.

Relative to this inner product, 7y is unitary. From the definition of u, it
now follows easily that for any = € G we have

m(z) = (0(z)""), (A.19)
and the lemma follows. O

Lemma A.3.4 Let G be a group and V an irreducible finite-dimensional
real G-module. Then the following statements are equivalent:

1) The complezified module V¢ is irreducible.
2) V carries no complex structure making it a complexr G-module.

3) The commutant of G in End(V) is R - Idy.
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Proof. Suppose that V¢ is not irreducible. Then we can find an irreducible
complex submodule W of V. If WNV = {0}, then WNV is an invariant
nonzero subspace of V. As V is irreducible, it follows that WNV = V. But
then W = V¢ and V¢ would be irreducible. Thus we have W NV = {0}.
Now we have W N'W = {0} because otherwise there would be a w € W,
w # 0, such that w € W. Then one of the vectors W + w, (W — w) is
nonzero and
W+ w, i(W—w) € VAW,

which contradicts V.N'W = {0}. This implies that the R-linear map
1
Waw»—>§(w + wev

is injective and G-equivariant. On the other hand, the image is nonzero.
Therefore the map is an R-linear G-isomorphism W ~ V. Thus V is a
complex G-module.

Conversely, if I is a complex structure on V for which V is a complex
G-module, then the complex linear extension of I to V¢ is an intertwiner
on V¢ which is not a multiple of the identity. Thus Schur’s lemma implies
that V¢ is not irreducible.

Clearly, 3) implies 2). Conversely, if 1) holds, the commutant of G in
Endc (Vc) is C- Idvc. Since EndR(V) NC- IdvC = R-Idv, we obtain 3) O

Lemma A.3.5 Let G be a connected semisimple Lie group and V a finite-
dimensional irreducible real G-module.

1) dimVE < 1.
2) If dim VE =1, then V¢ is irreducible.

Proof. 1) We apply Theorem A.3.2 to V. Let A € a* be a maximal weight
of V¢ and let v be a nonzero weight vector of weight A\. Multiplying by a
suitable scalar, we may assume that ¥ # —v. Then

(man) - v = a™v, meM, ac A neN.

In particular,
P-v=R"o. (A.20)

It follows that (man)-T = a*@. Thus u := v+ is in V and 7(man)u = a*u.

Let now vg € VE\ {0}. As G = KAN and (r(kan)u | vk) = a*(u | v),
we find that (u | vi) # 0. If dim VX > 1, we can choose a K-fixed vector
wg which is orthogonal to vg. But then (u | wi)vk — (u | vg)wk €
VEN\ {0}, whereas

(u | (u|wi)vg — (u| v )wg ) =0,
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which is impossible by the above argument. Thus dim V¥ < 1.

2) This is an immediate consequence of Lemma A.3.4 ,since a complex
G-module has even real dimension and VX is a complex subspace of V if
V carries a complex structure commuting with G. O

Lemma A.3.6 Let G be a connected semisimple Lie group acting irre-
ducibly on V. Assume that V is spherical so that V¢ is irreducible. Let
A € a* be the highest weight of V¢, u be a highest-weight vector, and
vk € VE be such that (u | vi) > 0. Further, let P = MAN be the minimal
parabolic subgroup of G with A™(g,a) = A(n,a). Then u € P-Rtvg.

Proof: Write vg = Y v, with v, € (V¢), \ {0}. As different weight spaces
are orthogonal and dim V) = 1, it follows that A occurs in the above sum
and that vy = cu with ¢ > 0. We can write u = X\ — > noa with n, >0
and o € At (gc, tc). But as vk is M-fixed, it follows that all the v,’s are
M-fixed. Thus «f, = 0. Now choose H € a such that a(H) > 0 for all
a € At(g,a). Let a; := exptH € P. Then

. —tN(H .
}E{}oe IAH) g, vge :tli}xgo cu—i—;\exp(—tZnaa(H))vH =cu
"

which proves the claim. O

Remark A.3.7 Let L be a connected reductive Lie group with Lie algebra

[ and G := L’ the commutator subgroup of L. Then G is a semisimple
connected Lie group, but not necessarily closed in L. However, if L is
linear, then G is closed (cf. [66]). O

Lemma A.3.8 Let L be a connected reductive Lie group and m a repre-
sentation on the finite-dimensional real vector space V. Suppose that the
restriction of w to the commutator subgroup of L is irreducible and spheri-
cal. Then the center of L acts by real multiples of Idv .

Proof: Since the restriction of m to G := L’ is spherical, Lemma A.3.5
implies that V¢ is an irreducible G-module. Therefore the commutatant
of 7|g is R -Idyv by Lemma A.34. Let Z := Z(L) be the center of L.
Then 7(Z) of L is contained in the commutatant of 7|¢ and this implies
the claim. o

A.4 Hermitian Groups

A Hermitian group is a real connected simple Lie group G for which the
corresponding Riemannian symmetric space G/K is a complex bounded
symmetric domain. In terms of group theory, this is equivalent to
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3(8) # {0}, (A.21)

where 3() is the center of € and g = € + p is a fixed but arbitrary Cartan
decomposition. We call a Lie algebra Hermitian if it is the Lie algebra of a
Hermitian group. For the results in this section, we refer to [44, 83, 84, 155].

If g is Hermitian, then g and ¢ have the same rank, i.e., there exists a
Cartan subalgebra t of g contained in . Moreover, 3(£) is one dimensional
and every ad Z|,, Z € 3(¢)\ {0} is regular (see [44], Chapter 6, Theorem 6.1
and Proposition 6.2). Further, there exists an element Z° € 3(¢) with eigen-
values 0,4, —i such that the zero-eigenspace is ¢, and ad, Z° is a complex
structure on p. The +i-eigenspace p* of ad Z°|,, is an abelian algebra.

Let g be Hermitian and G¢ a simply connected complex Lie group with
Lie algebra gc. Then the analytic subgroup G of G¢ with Lie algebra g is
Hermitian and closed in G¢. Let P* be the analytic subgroup of G¢ with
Lie algebra p*. The group P* is simply connected, and exp : p* — P+
is an isomorphism of Lie groups. Denote the inverse of exp|,+ by log :
Pt — pT. Then G C PYKcP~, where K¢ is the analytic subgroup of
G with Lie algebra €c, and we have the following embeddings of complex
manifolds:

G/K C P*/(KcP™) C Ge/(KcP™). (A.22)

Since PT 3 p+— p/KcP~ is injective and holomorphic, we get an embed-
ding

G/K < P /(KcP™) =~ Pt < p+. (A.23)

We denote this composed map by m — ((m) and call it the Harish-Chandra
embedding. Then ((G/K) is a bounded symmetric domain in p*. Further-
more, the map

PT x Kc x P~ 3 (p,k,q) — pkq € G¢

is a diffeomorphism onto an open dense submanifold of G¢ and G C
PTKcP~. If g € G, then g = p*(g)kc(9)p~ (g) uniquely with p*(g) € P,
k(g) € Kc and p~(g) € P~.

Let g be a Hermitian algebra and G C G¢ a Hermitian group with Lie
algebra g and simply connected G¢. We denote the complex conjugation
of gc w.r.t. g and the corresponding complex conjugation of G¢ by ¢ and
note that G = GZ (cf. Theorem 1.1.11). Let t be a Cartan subalgebra
of g containing Z° Then t C & Let A = A(gc, tc), Ar = A, tc) and
A, = A(pc, tc). The elements of Ay are called compact roots, whereas the
elements of A,, are called noncompact roots. Choose a basis Z1, Zs, ..., Z;
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of tN [ €. The lexicographic ordering of it* with respect to this basis is
now defined by A > p if the first nonzero number in the sequence (A —
w)(EZ0), (N = ) (iZ1), (A — p)(iZ2), ..., (A — p)(iZ;) is positive. Denote as
usual by a superscript T the corresponding set of positive roots. Note that
the ordering is chosen such that A} = A(p*,tc). For @ € A we choose
E, € (9¢)a such that E_, = 0(E,). The normalization of the E, can be
chosen such that the element H, = [E,, E_,] € it satisfies a(Hy) = 2 (cf.
[44], p. 387).

Two roots «, f € A are called strongly orthogonal if a3 ¢ A. Note that
strongly orthogonal roots are in fact orthogonal w.r.t. the inner product
on it* induced by the Killing form. We recall the standard construction
of a maximal system of strongly orthogonal roots: Let r be the rank of
D = G/K, i.e., the dimension of a maximal abelian subalgebra of p. Let
I, = A(p™,tc) and v, be the highest root in T',. If we have defined
I,>T_1D---DIy#0and~, €Ty, j=k,...r, we define I'y_; to be
the set of all v in Ty, \ {71} that are strongly orthogonal to . If T;_1 is not
empty (or, equivalently, k > 1), we let 74—1 be the highest root in I'y_1. Set
I:={m,...,%}. Then I' is a maximal set of strongly orthogonal roots in
A(pT,tc). We get a maximal set I := {v1,...,7,} of strongly orthogonal
roots. Let Ey; := Ey,, and H; := H,,. Further, we set

. 1
X; = —i(B;-E_j)ep, X, ::E;Xﬂ" (A.24)
1 T
Y; = Ej+E_jep, Yo::ggm, (A.25)
E, = Y Ejep" (A.26)
j=1

and
/[: T
Zo = §;HJ ct.

Furthermore, we let

a = PRX;Cpnd ((gc)y + (9c) ), (A.27)
j=1 yel

anp = @RYJ Cpn Z((EC)W + (9«:)77)7 (A.28)
j=1 yel
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and .
t =i PRH;.
j=1

The strong orthogonality of the roots v;,;, ¢ # j implies that the inner
automorphisms, C; € Aut(gc), j =1,...,r, defined by

Cj = Ad(cj), with C; = €Xp %X]‘,

commute. They are called partial Cayley transforms . Their product C :=
Cio...0C, € Aut(ge) is called the Cayley transform . It satisfies

C =Ad(c) with c=exp %XO, (A.29)

so in particular we have ¢® = 1.

Example A.4.1 For g = su(1,1) we get

10 0 1 00
m=p 5)-m=(00) == (1)

and
t (1 0 170 —i 1/0 1
Z"_E(o —1)’ X°_§<z 0>’ and Y"_§<1 o>
This gives

1 1 1
= — (]
G (—1 1)'
Define ¢; : 5[(2,C) — gc by
("2 Hl = Hj, E1 = Ej, and E_l = E_j.

Then [Im;,Imey] = 0 for j # k and ¢; o0 = 0 o ¢;. Thus, in particu-
lar, p;(su(1,1)) C g. As SL(2,C) is simply connected, ¢; integrates to a
homomorphism ¢; : SL(2,C) — G¢ such that ¢;(SU(1,1)) C G.

The use of the ¢; allows to reduce many problems to calculations in
SL(2,C). We give an application of this principle.

Lemma A.4.2 The elements Z,, X,, and Y, span a three dimensional
subalgebra of g isomorphic to su(1,1). Set ¢ = exp([7/2]Z,), cn =
exp ([i7/2)Y,), C := Ad(é), and Cp, := Ad(cy). Then we have
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1) C(H;) = -Y;, C(X;) = X;, C(Y;) = H;.
2) C(H;) = H;, C(X;) =Y;, C(Y;) = —X;.
3) Cun(Hj;) = X;, Cn(X;) = —Hj, Cu(Yj) =Y.

Proposition A.4.3 a and ap are mazimal abelian subalgebras of p. Fur-
thermore,

Cr(t™) =ta and C(t7) =iap. O

The following theorem of C. C. Moore [110] describes the set of restricted
roots A(g, ar). A similar statement is also true for a instead of ay,.

Theorem A.4.4 (Moore) Define aj = v 0 C™1. Then the set of roots
of a in g is given either by

1
A(g,a) = i{ajv§(04i toap)|1<i,5,k<rji<k}

or by
1 1 . .
A(g,a) = :I:{§aj,aj, 5(041- tag)|1<i,j,k<ri<k}.
Taking + gives a positive system of roots. The dimensions of the root spaces
for the roots :I:%(ozi + ay) all agree. O

Theorem A.4.5 (Koranyi—Wolf) The following properties are equiva-
lent:

1) The Cayley transform C € Aut(gc) has order 4.
2) 7% = Z,.

3) ad X, has only the eigenvalues 0 and £1.

4) The restricted root system is reduced.

If these conditions are satisfied, Q = Ad(Cp(L))(iE,) is an open convex
cone in g(1,X,), where L :== KcN(cGe™t). Moreover, the Cayley transform
induces a biholomorphic map

Cpocyp: C(G/K) — g(l,Xo) + i
defined by Z — C;,*(cp - Z) (cf. [155], p. 137). O

If the conditions of Theorem A.4.5 hold, the Riemannian symmetric space
G/K is called a tube domain .



Appendix B

The Vietoris Topology

In this appendix we describe some topological properties of the set of closed
subsets of a locally compact space. This material is needed to study com-
pactifications of homogeneous ordered spaces.

Let (K,d) be a compact metric space. We write C(K) for the set of
compact subsets of K and Cy(K) for the set of nonempty compact subsets.
For A € Co(K) and b € K we set

d(A,b) = d(b,A) := min{d(a,b) | a € A} (B.1)
and for A, B € Co(K) we define the Hausdorff distance:
d(A, B) := max { max{d(a, B) | a € A}, max{d(b,A) |be B}}. (B.2)

This metric defines a compact topology, called Vietoris topology , on Co(K)
([11], Ch. II, §1, Ex. 15). We set

d(A,0) =d(0,A) := cc. (B.3)
For two open subsets U,V C K we set
KUV)={FeCK)|FCUFNV #0D} (B.4)

Then the sets K(U,V) form a subbase for the Vietoris topology ([14], p.
162).

Let X be a locally compact space which is metrizable and o-compact.
We write F(X) for the set of closed subsets of X and C(X) for the set
of compact subsets. To get a compact topology on F(X), we consider
the one-point compactification X := X U {w} and identify X with the

257
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corresponding subset of X“. Note that our assumption on X implies that
X% is metrizable. We define the mapping

B:F(X) = Co(X¥), Fs FU{w) (B.5)

Then [ is one-to-one and we identify F(X), via 3, with the closed subset
Img3 ={K €Cy(X%)|we K}. As a closed subspace of Cyo(X*), the space
F(X) is a compact metrizable topological space. For a sequence (A, )neN
in F(X), we define

liminfA, := {z € X | Vm € N(Gn),Vn > ny, 1 d(z, A) < £} (B.6)
and
limsupA, := {z € X | Vm € N,Vng € N,3In > ng : d(z,A4,) < L}. (B.7)
We note that these sets are always closed.

Lemma B.1.1 The following assertions hold:

1) IfU C X, then {F € F(X) | FNU # 0} is open; and if A C X is
closed, then {F € F(X) | F C A} is closed.

2) Let A, be a sequence in F(X). Then A, converges to A € F(X) if
and only if
A = limsupA,, = liminfA4,,.

In this case A consists of the set of limit points of sequences (a,) with
an € Ap.

3) If AC X is closed, then {F € F(X)| A C F} is closed.

4) If A, 1s a sequence of connected sets, A, — A # 0, and for everyn €
N the set |J,,,, Am is not relatively compact, then every connected
component of A is noncompact.

5) The relation C is a closed subset of F(X) x F(X).
Proof: 1) The first assertion follows from the observation that
{FeFX)|FNU#0}=F(X)N{F €C(X*)| FNU #0}

because U is open in X“. The second assertion follows by applying the
first one with U := X \ A.

2) =: Let « € A. Then there exist numbers n,, € N such that A,
intersects the (1/m)-ball around a if n > n,,. W.l.o.g. we may assume that



259

the sequence n,, is increasing. For k = n,, + 1, ..., n;m4+1 we choose ay, € Ay,
with distance less than 1/m from a. Then a = limy_ o ax and therefore
a € liminf A,,. If, conversely, a € limsupA,,, then there exists a subsequence
Ny € N with n,, > m and elements a,, € A,,, with d(a,a,) < 1/m. We
conclude that a = lima,, € lim A,,,, = A. This proves that

limsupA,, C A C liminfA,,.

(<): We use the compactness of F(X). Let A,, be a convergent sub-
sequence of A,. Then the first part implies that lim A, = liminfA4,, .
Moreover, we have that

liminf A,, C liminfA4,,

and
limsupA,,, C limsupA,,.

Hence
A = liminfA,, C liminfA,,, C limsupA4,, C limsup4, = A

implies that lim A,,,, = A. Finally, the arbitrariness of the subsequence of
A,, entails that A4, — A.

3) This is an immediate consequence of 2).

4) Let a € A be arbitrary and C(a) the connected component of a in
A. We have to show that C(a) is noncompact. Suppose this is false. Then
C'(a) is a compact subset of X and there exists a relatively compact open
neighborhood V' of C(a) in X such that V' N A is closed ([11], Ch. II, §4.4,
Cor.]) and therefore compact. Let § := min{d(a’,b) | «’ € VN A,b €
X\V} >0 and e := min{d/4,d(w,V)/3}. Since a € lim 4,,, there exists
ny € N such that d(A4,,a) < € for all n > ny. Moreover, we may assume
that d(A4,,A U {w}) < e. Let a, € A, with d(a,,V N A) < e. Then
d(an,w) > € because d(w,V N A) > 3¢ and therefore d(a,, A) < e. Let
b € A such that d(a,,b) <e. Then d(b,V NA) <3e<d. Hencebe VN A
and this entails that d(a,,V N A) < e. Thus

{ce A, |d(c,ANV) €]e,2¢[} = 0.

Since A, is connected, this implies that A, C V. This contradicts the
assumption that [ J,,~,, Am is not relatively compact.

5) Let (A, B,) — (A, B) with A,, C B,,. Then 2) shows that A C B. O

We recall that a Hausdorff space Y endowed with a closed partial order
< is called a pospace. Thus we see that (F(X), C) is a compact pospace.
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Proposition B.1.2 Let iy : Gx X — X be a continuous action of a locally
compact group G on X. Then

Flp) : Gx F(X) = F(X), (9, F) — g(F)
defines a continuous action of G on F(X).

Proof: Let (g, F) = lim(gn, F,,) with g, € G and F,, € F(X). We have
to show that g,(F,) — g(F). To see this, we have to show that each
convergent subsequence converges to g(F'). So we may assume that g, (F,)
is convergent. Let f € F. Then there exists a sequence f, € F, with
fn — f. Hence g, - f, — g - f implies that g - f € lim g,,(F,). This proves
that g(F') C lim g, (Fy). If, conversely, f' = lim g, - f, € lim g,,(F%), then
fh=g2" g 1) =g f

entails that ' =limg- f] € limg(F,) = g(lim F,) = g(F). O
Proposition B.1.3 Suppose that the locally compact group G acts contin-
wously on X . Further suppose that O C X is open.

1) The set S:=S(0) ={ge€ G|g-O C O} is a closed subsemigroup of
G.

2) If X is a homogeneous G-space, then the interior of S is given by
S°={geGlg-OCO},
where O is the closure of O in X.

Proof: 1) According to Lemma C.0.6 the set {F' € F(X) | X\ O C F} is
closed. Therefore Proposition C.0.7 implies that also

S={9eG[X\OCy(X\0)}

is closed. Since S obviously is a semigroup, this implies the claim.
2) Let g € S° and U be a neighborhood of 1 in G such that Ug C S.
Then
g-0=g-0Cc(Ug)-OCS-0cCO.

Conversely, if g- O C O, then there exists a neighborhood U of 1 in G such
that (Ug) - O C O. In particular, we find Ug C S, whence g € S°. O

Proposition B.1.4 Let G be a Lie group. Set F(G)? = {F € F(G) |
Vh € H: Fh = F}. Then the mapping

™ F(G/H) — F(G)?, F s a Y(F)

is a homeomorphism.
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Proof. That 7* is a bijection follows from the fact that the quotient mapping
m: G — G/H is continuous. So it remains to show that 7* is continuous.
Let F,, — F in F(G/H) and set E,, := 7~ 1(F,) and E := 7~ }(F). We
may assume that F,, — E’. Then we have to show that £ = E’.

Let ¢/ € E' and e,, € E,, with e, — ¢’. Then w(e,) — w(e’) € im F,, =
F. Hence ¢’ € E and therefore E’ C E. If, conversely, e € E, then 7(e) € F
and there exists a sequence f,, € F,, with f,, — w(e). Using a local cross
section o : U — G, where U is a neighborhood of 7(e) and o (7(e)) = e, we
find that o(f,) — e € imE,, = F’. O

Lemma B.1.5 Let G be a Lie group acting on a locally compact space Y
and X € g. Forp e Y let gP be the Lie algebra of the group GP = {g € G |
g-p=p}. If g =limy_ o exp(tX) - p then

ad tX

limsup,_, e gp C gg-

Proof: Suppose Z € limsup, _,..e*d"Xg,. Then Z = limy_, €*4"XY}, for
suitable sequences Y € g, and (ng)ren. But then

expZ-q = klir{)lo (exp(niX) exp(Yy) exp(—ni X)) klgr;() exp(ngX) - p
= klir{)lo exp(niX) exp(Yy) exp(—ng X ) exp(np X) - p
= klir{)lo exp(niX)exp(Yy) - p
= klir{)lo exp(ngX) - p =

which proves the asertion. O
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The Vietoris Topology

In this appendix we describe some topological properties of the set of closed
subsets of a locally compact space. This material is needed to study com-
pactifications of homogeneous ordered spaces.

Let (K,d) be a compact metric space. We write C(K) for the set of
compact subsets of K and Co(K) for the set of nonempty compact subsets.
For A € Co(K) and b € K we set

d(A,b) =d(b, A) ;== min{d(a,b) | a € A} (C.1)
and for A, B € Co(K) we define the Hausdorff distance:
d(A, B) := max { max{d(a, B) | a € A}, max{d(b,A) | be B}}. (C.2)

This metric defines a compact topology, called Vietoris topology , on Co(K)
([11], Ch. II, §1, Ex. 15). We set

d(A,0) =d(0,A) := cc. (C.3)
For two open subsets U,V C K we set
K(UV)={FeCK)|FCUFNV #0p}. (C.4)

Then the sets K (U, V) form a subbase for the Vietoris topology ([14], p.
162).

Let X be a locally compact space which is metrizable and o-compact.
We write F(X) for the set of closed subsets of X and C(X) for the set
of compact subsets. To get a compact topology on F(X), we consider
the one-point compactification X% := X U {w} and identify X with the
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corresponding subset of X“. Note that our assumption on X implies that
X% is metrizable. We define the mapping

B:F(X)—C(XY), Fr— FU{w}. (C.5)

Then  is one-to-one and we identify F(X), via 3, with the closed subset
ImpB={K € Cy(X¥) |we K}. As a closed subspace of Co(X*), the space
F(X) is a compact metrizable topological space. For a sequence (A4 )nen
in F(X), we define

lim inf A, :={z € X |Vm € N(3ny,),Vn > ny, 1 d(z,4,) < =} (C.6)
and

lim sup 4, :={z € X |Vm € N,Vno € N,3In > ng : d(z,4,) < =}.
(C.7)

We note that these sets are always closed.

Lemma C.0.6 The following assertions hold:

1) IfU C X, then {F € F(X) | FNU # 0} is open; and if A C X is
closed, then {F € F(X) | F C A} is closed.

2) Let Ay, be a sequence in F(X). Then A, converges to A € F(X) if
and only if
A=1lim supA, =lim inf A4,.

In this case A consists of the set of limit points of sequences (a,) with
an € A,.

3) If AC X is closed, then {F € F(X)| AC F} is closed.

4) If Ay, is a sequence of connected sets, A, — A # 0, and for everyn €
N the set ,,>,, Am is not relatively compact, then every connected
component ofjél 18 noncompact.

5) The relation C is a closed subset of F(X) x F(X).
Proof: 1) The first assertion follows from the observation that
{FeFX)|FNU#0}=F(X)N{F eC(X?)| FNU #0}

because U is open in X“. The second assertion follows by applying the
first one with U := X \ A.

2) =: Let « € A. Then there exist numbers n,, € N such that A,
intersects the %-ball around a if n > n,,. W.lLo.g. we may assume that
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the sequence n,, is increasing. For k = n,, + 1, ..., n;m4+1 we choose ay, € Ay,
with distance less than % from a. Then a = limy_,, ar and therefore a €
lim inf A,,. If, conversely, a € lim sup A,,, then there exists a subsequence
Nm € N with n,, > m and elements a,, € A, with d(a,a,,) < L. We

conclude that a = lima,, € lim A,,,, = A. This proves that "
lim supA, C AClim inf A,.

(<): We use the compactness of F(X). Let A,, be a convergent subse-
quence of A,,. Then the first part implies that lim 4,,,, = lim inf A4, .
Moreover, we have that

lim inf A, C lim inf A, ,

and
limsupA,,, C lim sup A,.

Hence
A=1lim infA, Clim infA,,  Clim supA,,  Clim supA4, =A4

implies that lim A,,, = A. Finally, the arbitrariness of the subsequence of
A,, entails that A,, — A.

3) This is an immediate consequence of 2).

4) Let a € A be arbitrary and C(a) the connected component of a in
A. We have to show that C(a) is noncompact. Suppose this is false. Then
C(a) is a compact subset of X and there exists a relatively compact open
neighborhood V' of C(a) in X such that V' N A is closed ([11], Ch. II, §4.4,
Cor.]) and therefore compact. Let § := min{d(a’,b) | «’ € VN A,b €
X\ V} > 0and € := min{2, 2d(w,V)}. Since a € lim A, there exists
ny € N such that d(A4,,a) < € for all n > ny. Moreover, we may assume
that d(A,, AU {w}) < e. Let a, € A, with d(a,,V N A) < e. Then
d(an,w) > € because d(w,V N A) > 3¢ and therefore d(a,, A) < e. Let
b € A such that d(a,,b) <e. Then d(b,V NA) <3e<d. Hencebe VN A
and this entails that d(a,, V' N A) < e. Thus

{ce A, |d(c, ANV) €]e,2¢[} = 0.

Since A, is connected, this implies that A, C V. This contradicts the
assumption that (J,,~,, Am is not relatively compact.
5) Let (A, Bn) — (A, B) with A,, C B,,. Then 2) shows that A C B. O
We recall that a Hausdorff space Y endowed with a closed partial order

< is called a pospace. Thus we see that (F(X), C) is a compact pospace.
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Proposition C.0.7 Let y: Gx X — X be a continuous action of a locally
compact group G on X. Then

Flp) : Gx F(X) = F(X), (9,F) — g(F)
defines a continuous action of G on F(X).

Proof: Let (g, F) = lim(gn, F,,) with g, € G and F,, € F(X). We have
to show that g,(F,) — g(F). To see this, we have to show that each
convergent subsequence converges to g(F'). So we may assume that g, (F,)
is convergent. Let f € F. Then there exists a sequence f, € F, with
fn — f. Hence g, - f, — g - f implies that g - f € lim g,,(F,). This proves
that g(F) C lim g, (Fy). If, conversely, f' = lim g, - f, € lim g,,(F), then
fh=g2" g ) =g f

entails that ' =limg- f] € limg(F,) = g(lim F,) = g(F). O
Proposition C.0.8 Suppose that the locally compact group G acts contin-
wously on X . Further suppose that O C X is open.

1) The set S:=S(0) ={ge€ G|g-O C O} is a closed subsemigroup of
G.

2) If X is a homogeneous G-space, then the interior of S is given by
S°={geGlg-OCO},
where O is the closure of O in X.

Proof: 1) According to Lemma C.0.6 the set {F' € F(X) | X\ O C F} is
closed. Therefore Proposition C.0.7 implies that also

S={9eG[X\OCy(X\0)}

is closed. Since S obviously is a semigroup, this implies the claim.
2) Let g € S° and U be a neighborhood of 1 in G such that Ug C S.
Then
g-0=g-0Cc(Ug)-OCS-0cCO.

Conversely, if g- O C O, then there exists a neighborhood U of 1 in G such
that (Ug) - O C O. In particular, we find Ug C S, whence g € S°. O

Proposition C.0.9 Let G be a Lie group. Set F(G)? = {F € F(G) |
Vh € H: Fh = F}. Then the mapping

™ F(G/H) — F(G)?, Frsa Y(F)

is a homeomorphism.
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Proof. That 7* is a bijection follows from the fact that the quotient mapping
m: G — G/H is continuous. So it remains to show that 7* is continuous.
Let F,, — F in F(G/H) and set E,, := 7~ 1(F,) and E := 7~ }(F). We
may assume that F,, — E’. Then we have to show that £ = F’.

Let ¢/ € E' and e,, € E,, with e, — €’. Then w(e,) — w(e’) € im F,, =
F. Hence ¢’ € E and therefore E’ C E. If, conversely, e € E, then 7(e) € F
and there exists a sequence f,, € F,, with f,, — w(e). Using a local cross
section 0 : U — G, where U is a neighborhood of 7(e) and o (7(e)) = e, we
find that o(f,) — e € im E,, = F’. O

Lemma C.0.10 Let G be a Lie group acting on a locally compact space Y
and X € g. Forp e Y let gP be the Lie algebra of the group GP = {g € G |
g-p=p}. If g =limy_ o exp(tX) - p then

lim sup e*d*X

t—o0

gp C gq-

Proof. Suppose Z € lim sup,_, ., e ”Xgp. Then Z = limy_,00 €21™XY},
for suitable sequences Yj € g, and (ng)ken. But then

expZ-q = klir{)lo (exp(niX) exp(Yy) exp(—ni X)) klgr;() exp(ngX) - p
= klim exp(niX) exp(Yy) exp(—ng X ) exp(np X) - p
= klim exp(ngX)exp(Yy) - p

= lim exp(ngX) -p=gq.
k—o0
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Chapter 1

H, stabilizer of a base point: 2

7, a nontrivial involution on G and g: 1

G ={aeG|7(a) =a}: 2

g(1,7), the +1-eigenspace of 7: 2

h = g7, the Lie algebra of H: 2

q, the (—1)-eigenspace of 7: 2

o, the conjugation X + ¢Y — X — Y relative to g: 3
n=r1oo0:6

g(—1,7), (—1)-eigenspace of 7: 2

ady(X) = ad(X)|,, restriction of ad X, X € b, to q: 2
L, left translation by a: 4

M, the symmetric space G/H: 4

M, universal covering space of M: 5

bvku Bp, ks dp: 7

G, the analytic subgroup for g in the simply connected complexification: 6
G¢, the same with g replaced by g°: 6

H, the 7-fixed group in G: 6

M=G/H: 6

M =G/H: 6

7x = Ad(exp7X) = e™2dX: 8

ox = Ad (exp([r/2]X)) = elm/22d X g

g° = b @ iq, the c-dual Lie algebra: 6

€, the maximal compactly embedded algebra by @ iq, in g°: 8
pe = by @ iqy C g 8

q° = iq, the —1 eigenspace of 7|ge: 8

7% = 7 0 6, the associated involution: 9

be = g(+1,7%) = by @ qp: 9

q*=g(-1,7") =qp ®bhp: 9

267
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M, a symmetric space locally isomorphic to G/H*: 9

0" = 7|4 the Cartan involution on the Riemannian dual Lie algebra g™: 9

9" = br @ ib, ©igqr D qp, the Riemannian dual Lie algebra: 9

GT", a Lie group with Lie algebra g": 9

E=bh,dih,Cg: 9

K" = exp?”, the maximal almost compact subgroup of G": 9

M?" | the Riemannian dual space G"/K": 9

gi"K ={X cq|Vke HNK : Ad(k)X = X}: 12

qHo"K | the same as above with H replaced by H,: 12

3i(a) ={Y €| VX €a: [Y,X] =0}, the centralizer of a in [: 14

3(0) = 3(0), the center of I: 14

Y?, a central element in b, such that ad(Y?) has spectrum 0, 1 and —1 and
b= g(0,Y°): 21

Qp,q, the bilinear form z1y1 + ... + TpYp — Tpr1Yp+1 — - — TnYn: 24

Qir={zeR" | Qir(z,z) = £r}: 24

Ig= % —OIq , where Ij; is the (k x k)-identity matrix: 25

M (1 x m,K), the K-vector space of (k x m)-matrices: 25

Z(@), the center of G: 14

gt = g(+1,Y%), g = q(-~1,Y?), the irreducible components of q for
Cayley type spaces: 13

Chapter 2

V¢ = CnN—C, the largest vector space contained in the closed cone C: 29

< C >:=C — C, the vector space generated by the cone C: 29

C*={ueV|YweC,v#0 : (ujv) > 0}, dual cone: 29
={veV|VuelU: (vju) =0} 30

C° = int(C), the interior of C: 30

algint(C), the interior of C' in < C' >, the algebraic interior of C: 30

cone(S), the cone generated by S: 30

Cone(V), the set of regular, closed convex cones in V: 30

Q = cl(Q), the closure of Q: 30

Fa(C), the set of faces of the cone C: 31

op(F) = F+ N O, the face of C* opposite to the face I of C: 32

PY(C), the orthogonal projection of the cone C into V.C W: 32

IV (C) = C NV, the intersection of C' with V: 32

Aut(C)={a € GL( ) | a(C) = C}, the automorphism group of C: 33

Coneg(V): G-invariant cones in Cone(V): 33,38

EWL( C) = conv (L - C), the minimal L-invariant extension of C: 34

M(m,K) = M(m x m,K): 34
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H(m,K) = {X € M(m,K) | X* = X}, space of Hermitian matrices over
K: 34

H*(m, K), the cone of positive definite matrices in H(m, K): 34

conv(L), the convex hull of the set L: 36

ug = [ (k-u)dk € conv(K -u), a K-invariant vector in C' obtained as

the center of gravity of a K-orbit: 36

Chin, @ minimal invariant cone: 39

Cmax, a maximal invariant cone, Cinax = Chiiyt

o, the basepoint o = eH if M = G/H: 40

<, strict causality relation via connecting by causal curves: 41

=, the closure of the relation <,: 41

TA={yeY |JacA:a<y}: 41

lA={yeY |JacA:y<a}: 41

m,njl< ={zeM|m<z<n}=Tmn|n: 42

S< ={a € G|o<a-o}, the causal semigroup: 43

L(S<)={X € g|expRTX C S<}, the tangent cone: 44, 44

<s,9<sgif g €gS:44

Mon(S), the set of monotone functions: 44

F (M), the set of closed subset of M: 45

FI(G)={FeFG)||F=F}CcFG)H: 45

F\(G/H): 45

7:G/H — F|(G), ¢gHw~— |(gH), the causal compactification map: 46

My =Jo,00) =S - 0, the positive cone in M: 46

/\/let =7(M) = n(G) C F(G), the order compactification of M: 46
P (M) = n(S): 46

f I (G /H), elements of F|(G/H) with noncompact connected upper sets:
48

0A, the boundary of A: 49

Cr =Cy — C_ C g, a cone such that C{ M€ # (0: 53

Cp, =Cy 4+ C_ Cq,acone with Cg Np # 0: 53

Xi, (K N H)-invariants in q*: 52
C, a Cayley transform commuting with 7%: 56,255

pt(g9), kc(g),p (g9), the projections of g € PT K¢ P~ onto its components:
56

4, the bounded realization of G/K: 56

j(g, Z), the K¢ projection of gexp Z: 56

g - Z, the PT component of gexp Z: 56

S, the Shilov boundary of G/K: 56

((p) = log(p) € P*: 56

E = {(c), a base point in S: 56

S =8x8: 57

pn, half the sum of positive noncompact roots: 58

39
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Tm, irreducible representation of G¢ with lowest weight —mp,: 59
®,,(Z2) = (mm(c % exp Z)ug | uo): 59
U, (Z,W):=d,(Z—-W): 59

Chapter 3

X9, a cone-generating element in q: 77

Y = @zo, an isomorphism (g, 7,60) ~ (g,7%,6): 78
1p = pixo, an isomorphism (g, 7,0) ~ (g,7%,6)": 78
Y. = @;yo, an isomorphism (g, 7,0) ~ (g¢,7,7%): 78
Ag={aeA|a(X") =0}=A(H%a): 79

Ay ={aeA|a(X%==+1}:80

Nt = D a(x0)=+1 8a: 80

ng = ZQGA; ga C go: 80

Chapter 4

XA =)/|A\? € a: 92

Y, € ga, such that |Y,|? = #, Y_o =7(Ya). Thus [Y,,Y_,] = X*: 92

Ye=21(Y,+Y_4)€h, 93

7% = ;(Y,a —-Y,) € qx: 93

Xio=3(X*+2Z% €q: 93

©Ya, & T-equivariant homomorphism s[(2,C) — g¢: 93

5o =Impy: 94

A = A(ge, t¢): the roots of the Cartan subalgebra tc in ge: 95

Ay = A((p)F, &), the set of noncompact roots: 95

Ag = A( &, t&), the set of compact roots: 95

r= {1,...,%r}, a maximal set of strongly orthogonal noncompact roots:
96

aj,, maximal abelian subalgebra of h,: 96

Cimin(X?) = Chin = conv [Ad(H,) (Rt X?]), a minimal Ad(H,)-invariant
cone containing the cone-generating element X°: 98

Cmax(X?) = Cpax{X € q | VY € Cpin : B(X,Y) > 0} = Cpin(XY)*, the

maximal
cone containing X%: 98

Cmin(X%) = cmin = ZaEA+ Rar X = ZaeA+ Rar «, the minimal Weyl

group invariant regular cone in a: 98

Cmax(X%) = cmax = {X €a|Vae Ay : a(X) >0} =cl,,, the
corresponding maximal cone in a: 98

Crmin = GeA, Rar @, the minimal W-invariant cone in a Cartan subalgebra
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containing a: 102

Cmax = {X €t [Vae Ay :a(X) >0} = {X cit® | vae Ay :a(X) >0}
= ¢y 102

“min, & minimal G-invariant cone in 1g°: 103

(;'max = C';in, a maximal G°-invariant cone in ig®: 103

Wo = W(Ag) = Nge(t®)/Zr(t°): 115

C(Ay)={X €a|VaeAf :a(X) > 0}, open Weyl chamber: 116

Wolr)={we Wy |Tow=wor}: 117

Wo={we Wy |wl,=id}: 117

Chapter 5

Prax = H*N4, a maximal parabolic subgroup in G: 121

LG -G, grT(9)t 121

Af = exp ay, where a; C b, is maximal abelian: 121

O=(G)y 08 C X =G/Ppay: 122

X = G/Pyaz, the real flag manifold: 122

k:n_ — X, k(X) = (exp X) - Ppax, real Harish-Chandra embedding: 123

Q_ =k~1(0) C n_, real bounded domain, isomorphic to H/(H N K): 123

4, the bounded realization of H/(H N K) inside ny: 124

Xc = G¢/(Pmax)c, the complex flag manifold: 125

(Q4)c ~ G°/K*¢, the complexification of H/(H N K): 125

S(C) = H exp C, the closed semigroup in G with tangent cone h & C: 129

S(0), the compression semigroup {g € G |g-OC 0}:133

S(L,Q), the compression semigroup {g € G | gLQ C LQ} = S(LQ/Q):
134

O(g9) = diAg(Cmax + b), Vg € N*AH: 135

He,n) NYAH — NY*AH, g — tgh~': 135

I;,, the inner automorphism g — hgh~!': 135

ap, the causal Iwasawa projection, g € H exp(ag(g))N: 136

W(a) = Nk (a)/Zk(a), the Weyl group of a in G: 138

We(a)={seW(a)|s(anh)=anh}: 138

Wo(a) = Ngnu(a)/Zknu(a), the Weyl group of a in H*: 138

Sa=S(G", Pnax)° N Aq: 141

A = A(gc, t&), the set of roots of the Cartan subalgebra t&: 143

n=> sea+(gc)a: 143

a =4t 143

1 = exp(a): 143

=expn): 143

LxyV: 144

Ig:: F|(G) — F,(B), Fw~ FnB* 153

BN

=



272 NOTATION

npe: FI(G) — F| (B), Fw— FnNB* 154
Aff(N_)=N_ x End(N_) = N_ x End(n_): 159
Affeom(N_) = {(n_,7) € AF(N_) | n_~(Q-) C Q_}: 159
BE, the closure of B in Aff(N_): 160
Aex s Pex: Bt — ﬂ, left and right multiplication with ex in Bt 165
SP" = SN A = eXpemax C BF, the closure of S in Bf: 160
0, ifXegy,agFNA_
er i X {X, 1er§a,a§FmA_ + 160
Ex = (RX — ¢max) N Cmax, the face of cmax generated by X: 162
Fx=X1n —Chax = E}( N —Ch st 162
Ax = Ex NA: 162
Wx , the subgroup of Wy generated by the reflections fixing X : 163
Yx: 163
EX70 = E)l( n span{al, ey ak} = EX70)eff D EX)Q7ﬁx: 163
EXyO_’ﬁX = {Y S EX,O | (Vw S Wx) w-Y = Y}: 163
Exoer =span{w Y —Y |w e Wx,Y € Exo}: 163
U(T), the group of units in a monoid T: 168

Chapter 6

I: F(X) - F(G), Fw— {g€ G| g'! F c O}, causal Galois
connection: 173

:2¢ - FX), A— Nacaa- O, dual map of I': 173

MO ={g-0|ge G} CF(X), causal orbit: 176

1:G — M@, g g- O, causal orbit map: 176

Qr =ep - Q_, projection of Qp: 180

hyx = limy o0 €24¥h = 5, (X) + g(AT\ X1): 181

Hrp ={g€G|g-Qr = Qp}, stabilizer of a projection Qp: 182

br =bx + [bF N (a+ nﬁ)], the Lie algebra of Hp: 182

nx,_ = g(Ax,_), image of the idempotent ex: 183

NX7_ = exp(n)g_): 183

Ny(L)={g€L|g-Y=D)}: 183

Zy(L)={geL|VyeY g -y=y} 183

d(E) = dimker ep, the degree of E € G - Qp: 187

T:F — (MPN\A{D})/G, F+— G-Qp, classifying map for the G-orbits of
MePt: 188
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Chapter 7

V. the space of smooth vectors: 199

C(m), the cone of negative elements: 200

A(C), the set of C-admissible representations: 200
C(V), the space of contractions of V: 200

5'/(5), holomorphic dual of S: 202

O, the character of m: 202

Vi, the K-finite elements in V: 204

O, () := m(kg(x=1) v, 211

o(m,v)(z) = (v|®,(2)), the generating function for E, C L%(M): 211

E ., the holomorphic discrete series: 212

V. (g,7) = m(kc(g))®x(9 '), g € G, x € PTKcHc: 213

F, the classical Fourier transform: 215

ey, the function z — e(*®): 215

=(C),=°(C), the o-orbits of the Ol’'shanskii semigroups S(C) and S(C°):
217

Ho(C'), the Hardy space corresponding to the cone C: 215,217

B(f), the boundary value map: 217

K (z,w): The Cauchy-Szegd kernel: 219

P(z,m), the Poisson kernel: 220

Chapter 8

M< = {(z,y) € M | z <y}, the graph of the order <: 222

V(M), the Volterra algebra: 222,232

V(M)#, the algebra of invariant Volterra kernels: 233, 233

F#G(z,y) = f[w)y] F(z,2)G(z,y)dz, the product of two Volterra kernels:
999,232

D(M), the algebra of invariant differential operators on M: 224

C*(G//K), the algebra of K-bi-invariant functions on G with compact
support in K\G/K: 224

65(:17) — e<)\7p.,a1<(x)>7 e}\(x) — eil — eA—pan(T)>. 995

o (z) = [} eX (kx) dk, the spherical function on G/K: 225

=35 pear (dimgy) a: 225

©x(s) = [} ex(sh) dh, the spherical function with parameter \: 226

Po =5 Laeat dimgq a: 226

E={N€cac |Vae Ay : Re(A + pla) < 0}, domain of definition for

parameters for spherical functions: 226
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& ={xeal | [xnman - Rea(k)dk < co}. Same as above: 227
P+ =73 > aen, Mao: 227

D(M), the algebra of G-invariant differential operators on M: 227
A(C) :==expC C A: 227

ca(A) = [ e-a(exp X) dX, the causal c-function: 228

co(N) = fﬁo e_x(n*) dn?, classical c-function for H®/(H N K): 228
c(A) = ca(N)ep(N): 228

a 40 00, convergence to oo in a Weyl chamber: 228

¢"(A) = [ys e—a(n?) dn?, the classical c-function: 230

A (D): the radial part of D € D(M™): 230

r,: 231

@y (a) = a = > e Tu(Xa=#: 231

cyr(\): 232

LFE(A) = [, F(0,m)ex(m)dm, the Laplace transform of a Volterra kernel:
233

CX(HA(C)H//H), the space of H-biinvariant functions on HA(C)H that

have compact support in H\HA(C)H/H: 234

D(f), domain of definition of the Laplace transform of f: 233

ox(z) = [1/c(N)]ea(x), the normalized spherical function: 234

L(F)N) = [1/¢(N]L(f)(\), the normalized Laplace transform: 234

f7, the K"-bi-invariant extension: 231

Bh(2) = <o (2): 235

E\(hiahs) := ¢4 (a): 235

oy = oy B 235

(f)(a) = a” [, f(an)dn, the Abel transform: 236

(
+f(g0) = a”+ fN+ f(gony)dny: 236

NP

Chapter 9

W(f), classical Wiener-Hopf operator with symbol f: 239

W, , C*-algebra generated by all Wiener-Hopf operators: 239
W, (f): Wiener-Hopf operator with symbol f: 241

G, a groupoid: 242

G?, composable pairs in G: 242

d(x), domain map for G: 242

r(x), range map for G: 242

G, unit space of G: 242

LY(G), closure of C.(G): 243

C*(G), C*-algebra generated by L(G) w.r.t. suitable norm: 243
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W, , Wiener-Hopf representation of C*(G): 244

Appendixes
V(A T)={veV]|Tv=M\v}, eigenspace of T for the eigenvalue \: 246
V(A X) = V(A n(X)), for a representation 7: 246
V(a,b) = V,, simultaneous eigenspaces: 246
VP =V(0,b): 246
A(V,b), the set of weights: 246
V(') =, Va, the sum of weight spaces: 247
f, the Cartan involution: 247

t = g%, the maximal compactly embedded subalgebra: 247

p=g(—1,60): 247

a, a maximal abelian subalgebra in p: 248

m =% 248

A = A(g,a): 248

n = g(A™T), the sum of positive root spaces; Iwasawa n: 248

W (a) = W, the Weyl group of (g,a): 248

Vi={veV|VaeL:a v=uv}, L-fixed vectors in V: 249

Z9, a central element in € defining a complex structure on p: 253

Ak, the set of compact roots: 253

A,,, the set of noncompact roots: 253

E,, root vectors for a € A,, (suitably normalized): 254

H,, co-roots for a:: 254

T", maximal set of strongly orthogonal positive noncompact roots:
254

E. j, normalized root vectors for v; € I': 254

Hj, corresponding co-roots: 254

Xj = —Z(EJ — E,j): 254

Y, =E; +E_j;: 254

Xo =13 X;: 254

Y, =35> Y;: 254

E,: 254

Zy: 254

t~, the subspace of t generated by H;: 254

C,, partial Cayley transform: 255

C(K), the space of compact subsets of K: 262

Co(K), the space of nonempty compact subset of K: 262

d(A,b), the Hausdorf distance: 262

d(A, B): 262

K(U,V), a subbasis for the Vietoris topology: 262
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F(X), the space of closed subsets of X: 262
X“, the one-point compactification of X: 262
[, the one-point compactification map: 263
liminf, the limes inferior for sets: 263

limsup, the limes superior for sets: 263
F(G)™, the set of H-fixed points of F(G) under translation: 265
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