Math 2025, Homework #2, Due Tuesday, Nov. 4 Name: Recall the inner products: - 1) On \mathbb{F}^n : $\langle u, v \rangle = u_1 \overline{v_1} + \ldots + u_n \overline{v_n}$. - 2) If V is the space of piecwise continuous function on [0,1[then $< f,g> = \int_0^1 f(t) \ \overline{g(t)} \ dt$. Recall also that two vectors are said to be **orthogonal** if < u,v> = 0. The **norm** of a vector is the real number $||u|| = \sqrt{\langle u, u \rangle}$. Evaluate the following inner products: $$1) < (1, 3, 4), (3, -1, 4) > =$$ $$(i, 1+i, 3), (i, 2-i, 2) >=$$ 3) $$f(t) = t$$ and $g(t) = e^t$. 4) $$f(t) = \varphi_1^2(t)$$ and $g(t) = \varphi_3^2(t)$. $< f, g > =$ 5) $$f(t) = \varphi(t)$$ and $g(t) = \psi(t)$. $< f, g > =$ Evaluate the norm of the following vectors: 6) $$\mathbf{u} = (1, 2, -2)$$. $\|\mathbf{u}\| =$ 7) $$\mathbf{u} = (1, i)$$. $\|\mathbf{u}\| =$ 8) $$f(t) = t + it^2$$. $||f|| =$ 9) $$f(t) = \psi(t)$$. $||f|| =$ Are the following vectors orthogonal or not? 10) $$\mathbf{u} = (1, -1, 2)$$ and $\mathbf{v} = (1, 1, 0)$. 11) $$f(t) = \cos(2\pi t)$$ and $g(t) = \sin(2\pi t)$. 12) $$f(t) = \varphi_0^2(t)$$ and $g(t) = \psi_0^2(t)$. 13) $$f(t) = t$$ and $g(t) = t^2$. 14) $$f(t) = t$$ and $g(t) = 3t - 4t^2$.