Math 2025, Homework #2, Due Tuesday, Nov. 4

Name:

Recall the inner products:

- 1) On \mathbb{F}^n : $\langle u, v \rangle = u_1 \overline{v_1} + \ldots + u_n \overline{v_n}$.
- 2) If V is the space of piecwise continuous function on [0,1[then $< f,g> = \int_0^1 f(t) \ \overline{g(t)} \ dt$. Recall also that two vectors are said to be **orthogonal** if < u,v> = 0.

The **norm** of a vector is the real number $||u|| = \sqrt{\langle u, u \rangle}$.

Evaluate the following inner products:

$$1) < (1, 3, 4), (3, -1, 4) > =$$

$$(i, 1+i, 3), (i, 2-i, 2) >=$$

3)
$$f(t) = t$$
 and $g(t) = e^t$.

4)
$$f(t) = \varphi_1^2(t)$$
 and $g(t) = \varphi_3^2(t)$. $< f, g > =$

5)
$$f(t) = \varphi(t)$$
 and $g(t) = \psi(t)$. $< f, g > =$

Evaluate the norm of the following vectors:

6)
$$\mathbf{u} = (1, 2, -2)$$
. $\|\mathbf{u}\| =$

7)
$$\mathbf{u} = (1, i)$$
. $\|\mathbf{u}\| =$

8)
$$f(t) = t + it^2$$
. $||f|| =$

9)
$$f(t) = \psi(t)$$
. $||f|| =$

Are the following vectors orthogonal or not?

10)
$$\mathbf{u} = (1, -1, 2)$$
 and $\mathbf{v} = (1, 1, 0)$.

11)
$$f(t) = \cos(2\pi t)$$
 and $g(t) = \sin(2\pi t)$.

12)
$$f(t) = \varphi_0^2(t)$$
 and $g(t) = \psi_0^2(t)$.

13)
$$f(t) = t$$
 and $g(t) = t^2$.

14)
$$f(t) = t$$
 and $g(t) = 3t - 4t^2$.