1. LINEAR GROUPS

1.1. Manifolds. Lie groups are mathematical objects with two different struc-
tures:

(1) Analytical structure: Locally they look like Euclidean space R, we can
talk about differentiable functions, we can differentiate those functions, in
short: We can do analysis.

(2) Algebraic structure: We have group structure, so that we can compose
element in the group. We can let the group then act on spaces, functions
etc. We can then try to understand how those objects behave under the
action of the group.

Those two structures are related by the requirement, that the algebraic opera-
tions are smooth. One can formulate this in one definition:

Definition 1. Assume that G is a group an o manifold. Then G is called a Lie
group if the map
GxG>(ab)—altbeG

is smooth.

Let us recall the definition of a smooth map. Let U # () be an open set in R",
n € N. Let ey, ..., e, be the standard orthonormal basis for R". Le.

ejz(oa"'7071707"'70)T

1 at the jth—place

Let FF: U —» R™ . Define

_OF F(x + he;j) — F(x)

D,;F(z) = =1
J (CL’) 63:]- (:E) hlE}I%) h
if the limit exists. Let m = (my,...,my) € Z% be a multi-index. Let

D™F(z) = D™ ... D™ F(z)

be defined inductively in the obvious way. Then we say that F' is smooth if all the
partial derivatives D™F, m € 77, exists on U and are continuous maps D™F :
U—R™.

We can now define a manifold. Let M be a topological space with a countable
basis for the topology. Let p € M. A chart around pis a pair (U,x) where U C M
is an open neighborhood of p and x : U — V C R, is a homeomorphism, where V
is an open subset of R”. Thus x is continuous, bijective, and x~1 : V' — U is also
continuous. An atlas for M is a collection A = {(U,xy) | U C M open} such that

M= U U
(Uxy)eA

and (U,xy) is a chart (around any point p € U). We say that the atlas is contin-
uous, smooth, etc. if all the coordinate changes

xyoxy' :x(UNV) = R

are continuous, smooth, etc. Notice that x(U NV) is an open subset of R” because
xy : U = x(U) is a homeomorphism and U NV is an open subset of U.
1
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Definition 2. A set M is a n-dimensional manifold if M is a topological space
with a countable basis for the topology and there exists a maximal smooth atlas for
M.

If M is a m-dimensional manifold, then we write M™ to indicate the dimension.
We will also use the notation Aj,s for a maximal atlas for M without comments. If
(U,x) is a chart, then we will write

x(p) = (z1(p),-- - Tm(P))
and call the functions z; : U — R the coordinates. If M is a manifold and N C M
open and non-empty. Then N is a manifold with an atlas
An = {(U N N,xy|lvnn) | (U,x) €Ap, UNN # 0}

If M™ and N™ are manifolds, then the product

M™xN"™={(p,q) |[p€ M,q € N}
is a (m + n)-dimensional manifold with atlas

J4Alef:::44Al X f4n ::{((] XHV;X X y)| ajax) 644ﬂl7(v2yj € J4Df}'

The manifold M x N with this structure is called the product manifold.
Definition 3. Let M™ and N™ be manifold with maximal atlas Ay and Ay re-
spectively. Let F': M — N be a continuous function. Then F is called smooth if
the maps

yoFox ':x(UNnFY(V)) - R"
are smooth for all (U,x) € Ay and (V,y) € An such that UNF~Y(V) # 0.

Example 1 (Vector spaces). Let E be a finite dimensional vector space over R.
Fix a basis fi,..., fv for E. Define a map x ' :RF = E by

k
x_l(:cl, .. ,a:k) = ijfj
Jj=1

Then A = {(E.x)} is an atlas for E. It follows in particular that any open, non-
empty subset of a finite dimensional vector space over R is a manifold.

Example 2 (The sphere S™). Let S™ = {z € R"™ | ||z||=1}. Then S™ is a
manifold.

1.2. The General Linear Group GL(n,R). Let M = M (n,R) be the space of
n X n matrices X = (mij):.fj:l. Then M is a n?-dimensional vector space and hence
a manifold. In this section we will discuss some examples of submanifold of M.
First define

det : M - R
to be the determinant function
det(X) = Z sign(a);cl,,(l) et Tng(n)
€S,

where S, is the permutation group of n-elements. Then det is polynomial and
hence smooth (in fact analytic). Thus

GL(n,R) = {a € M(n,R) | det(a) # 0}
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is an open subset of M and hence a n2-dimensional manifold. Denote the coordinate
functions (ai;) — ai; by x;;. The multiplication of two matrices a = (a;;) and
b = (b;;) is given by

x;;(ab) = E aipby;

and is a polynomial function in a and b. In partlcular

GL(n,R) x GL(n,R) > (a,b) — ab € GL(n,R)
is smooth. Similarly it follows by Cramers rule that the inversion map a — a1 is

a rational function in the coordinates of a:

xij(a_l) (d tl() ) de tAJz

and hence smooth. Thus GL(n, R) is a Lie group. As the determinant is continuous
it follows that the group

SL(n,R) = {a € GL(n, R) | det(a) = 1}

is a closed subgroup. The group GL(n, R) is called the general linear group and
the group SL(n, R) is the special linear group.

1.3. Orthogonal group. To be added: Bilinear form and orthogonal groups.

1.4. The Heisenberg group.

2. THE EXPONENTIAL MAP

Let F=Ror=C and let X,Y € M(n,F). Then we define the inner product
(X |Y) by
(X 1Y) =Te(XY™)
where Y* = Y7, Then

X|Y)= th]y“.
i.j=1

The corresponding norm is given by

X1l =

This is set up so that our canonical isomorphism M (n,F) ~ F° is an unitary
isomorphism. Using the norm M (n,F) becomes a metric space. In particular
the notation of convergence and Cauchy sequences. Notice that a sequence
(Xn) € M(n,F) is convergent if and only if it is a Cauchy sequence. We will also
need the operator norm |[|-||,, of a matrix X. This norm is denoted by

X
X1, = sup [|Xul] = sup 224
= uz0 ||l

If X is symmetric, and hence diagonalizable, we have

1X1],p, = max|A;]
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where A1,..., A, are the eigenvalues of X. Notice that there exists constants
A, B > 0 such that

AlX < 1XTl,, < BIIX]] -

Lemma 1. Let X,Y € M(n,F). Then the following holds:
(W) X = I1X]| and [|X*|],, = [|X]],,
@) 1IXYlop < 11X T[op [Y1l,p-

op —

(Add few words on analytic functions and power series). Let X €

M (n,TF) and define

Assume that n < m. Then

||Xm_X"||op: Z F
k=n+1 : op
m k
[1X1]5p
<>
k=n+1
As the series
o0 k
x5~ X llop
k!
k=0

converges it follows that for each € > 0 there exists an N € N such that for
m >n > N we have

k
— |IX]

0,

Xllop

[|Xn — Xml| < E o <e€
k=n+1

Hence {Xy},,c7, is a Cauchy sequence and

N vk x vk
eX = lim X— = X—
k=0 k=0

exits. The map X ~ eX is called the (matrix) exponential function.

Example 3. If a1,...,a, € F denote by d(ai,...,a,) the diagonal matriz with
diagonal entries ay,-..,a,. Thus

ap 0 0
0 a 0 0
dlay,...,an)=| : 0 . 0 :
0 : 0 ap1 O
0 0 ap

Assume that X =d(ay,...,a,). Then



Example 4. A matriz X is called upper triangular if z;; = 0 for all i > j.
Assume that

a *
X=| o --. =d(a1,...,an) + N
0 0 a,
where N is upper triangular with zero on the main diagonal. Then eX is upper
triangular with diagonal entries e®*, ... e%".
Example 5. Let X = ( e ) and Y = tX. Then Y? = —£2I, and by
induction
Y2k — (—l)kt2kI, Y2k+1 — (_l)kt2k+1X .
Hence
- ( t2k ® ktzk-',-l
= — T
=3 Gpr !t P L @)
k=0 k=0

B ( cos(t) sin(t) )
—\ —sin(t) cos(t) /-
Notice that this examples implies that the exponential map is not injective.
Let X € M(n,F) and consider the map
vx : R = GL(n, F)
given by

vx(t) = etX.

Then vx is continuous, and in fact analytic. Furthermore by the above
Tx(t+8) =yx(H)rx(t) .

By direct calculation one can show that vx is differentiable:

‘Vx(t+h)—“rx(t) _‘etxe’”‘—f
h op h op
ehX — 1
(2.1) <le
Al
(2.2) <|le [

It follows that the limit A — 0 exists and in fact

(2.3) tim PO 205D o (1) = x0)x

Lemma 2. Let I C R be an open interval containing zero. Let v : I — M(n,F) be
differentiable and

Then
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Proof. Let F(t) = e~*X~(t). Then

F'(t) = —e X Xr(t) + 7%/ (1)
= tX (=X + X) ()

Hence F is constant = F(0) = v(0) on I. Hence the claim. O
Definition 4. A one parameter subgroup of GL(n,F) is a continuous map
v:R ->GL(n,F) such that

V(s + 1) =(s)y(D).

Notice that if 7 is a one parameter subgroup, then v(R) CGL(n,F) is a subgroup
of GL(n,F).

Lemma 3. Let A € M(n,F) and assume that ||[A — I|| < 1. Then A € GL(n,F).

Proof. Assume that Au = 0. Then (A — I)u = —u and hence |[A-I|[,, > 1 a
contradiction. O

Lemma 4. Let v be a one parameter subgroup. Then v is differentiable and there
exists a X € M (n,F) such that

T=7x
Proof. We have v(0) = I and hence

Thus we only have to show that v is differentiable at 0. As v(0) = I and 7 is
continuous, there exists a € > 0 such that

H%ﬂ*—fmp<ﬂ2

for |t| < e. Choose f € C.(R) such that Supp(f) C (—¢,€), f(t) >0, [ fdt = 1.
Let

30 = [ fnt-udu = [ ¢ - vy du.
In particular 4 is smooth. Furthermore
30 = [ St - v)du
=0 [ (™ du
=7(t)A
where A = [ f(u)y(u) "' du. If we can show that A is invertible then

y(t) =5 A"



and it follows that ~ is smooth. But if z € F” then

14 =1, = | [ St du -1

op

< [ £ | - 1| du
1

Si/f(“)du
1

2

hence A € GL(n, ).
It follows now from (2.4) that

dy, . (dy
T0=(70)0.
Let X =+'(0). Then Lemma 4 and the fact that v(0) = I implies that
(1) = e,

The exponential function has the following properties:

Lemma 5. Let X,Y € M(n,F). Then the following holds:
(1) XY =eXeV if XY =Y X.
2) X" = (eX)T.
(3) Let a € GL(n,F) then

-1
X = ge¥al.

(4) det(eX) = e™X) . In particular det(eX) # 0 so eX € GL(n,F).
Proof. 1) Consider the curves y(t) = e!X*Y) and B(t) = e!Xe!¥. Then both
satisfies the differential equation
F'(t) = (X +Y)F(t) FO)y=1.
Hence the claim.

2) To be added.
3) Let N € N. Then

N N
XkE\ (aXa 1)*
¢ (Z H) =2
k=0 k=0
Then claim now follows by taking the limit N — oco. The
¢) Choose a € GL(n,F) orthogonal such that aXa” = aXa™' = Y is upper
triangular. Then Tr(aXa~!) = Tr(Y) and
det(eX) = det(e“X“_l)
= det(eY)
= Tr(Y)

£ Tr(X)



8

Definition 5. Let U,V C R™ be open and nonempty. A map F : U =V is a said
to be a diffeomorphism if

(1) F is bijective;

(2) F and F~1 are smooth.

Theorem 1 (Inverse Function Theorem). Let U,V C R™ be open and nonempty.
Let F : U — V be smooth and © € U. If DF(z) : R* — R™ is regular then there
exists x € Uy C U open and F(x) € Vo C V open such that F : Uy — Vi is a
diffeomorphism.

Lemma 6. Let | and m be subspaces of M (n,R) such that {Nm = {0}. Define
¢:Ixm—> Mn,R) by
H(X,Y) =eXeV .
Then D¢(0,0) : I x m — M (n,R) is given by
D¢(0,0)(X,Y)=X+Y.
In particular D¢(0,0) is injective. If L& m = M(n,R) then D¢(0,0) is an in-
somorphism. In that case there exists open sets 0 € U C I, 0 € V C m, and
e € W C GL(n,R) such that ¢ : U x V — W is a diffeomorphism.
Proof. Let t e R, X € [, Y € m. Then
d

D¢(0,0)(X,Y) = E¢(tXa tY)e=o
d
— EetXetYh:O
tX ty
_ (de > O | 0X (de >
dt ), at /,—o
—X+Y
If (dm = M (n,R) then D¢(0,0) is an isomorphism and the inverse function theorem
implies that ¢ is a local diffeomorphism. a

Corollary 1. There exists a open set U C M(n,R), 0 € U, and an open set
e € V. C GL(n,R) such that exp : U — V is a diffeomorphism.

We will not need the exact form of the map (exp |U)_1 : V = U, but few remarks
are at place. Define

> A —id)*
1 — _1\k—1 ( .
og(4) = Y (-1)F 1 =
k=1
As .
o0 . k o) .
k1 (4 —id) |4 —id|[g,
DN <Y <
k=1 op k=1
if
[|A - id||0p <1

it follows that log(A) is well defined for A € By 4p(id) = {B € M(n) | ||B —id||,, < 1}.

By Lemma 3 it follows that Bj op(id). As in the case of real numbers it can be
shown that locally exp olog = id and logoexp = id.

Lemma 7. Let X, Y € M(n,R) andt € R. Then
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(1) There exists a & > 0 such that for |t| < § we have e* 'Y =exp(t(X + V) + O(t?))

(2) There exists a 6 > 0 such that for [t| < § we have e!XetY e tXe 1Y =
exp(t? [ X, Y] + O(t?))

Proof. 1) For Z € M(n,R) and t € R write
& tk—ZZk

F(t,Z):=>)_ —

k=2
The series converges for all ¢ and Z.. Furthermore
e et = (I +tX +°F(t, X)) (I +tY +°F(t,Y))

=T+t(X+Y)+t3(F(t,X)+ F(t,Y) + t?XY)
+3(F(t,X)Y + XF(t,Y)) + t*F(t, X)F(t,Y)
=T+t(X+Y)+#G(X,Y)

where

Gt,X,)Y)=F(t,X)+F(t,Y)+t* XY+t (F(t, X)Y + XF(t,Y))+t*F(t, X)F(t,Y)

is continuous in ¢, X, and Y. In particular G is bounded on compact subset. Let
U,V be such that exp : U — V is a diffeomorphism. Choose § > 0 such that
etXetY € V for all t € (—6,5). Then it follows that

log (eXe!) = (X +Y) + O(¢?)

which implies the claim.
2) The prove of (2) goes almost exactly as (2) by multiplying out on the left
hand side. 0

Theorem 2. Let X, Y € M(n,R) then the following holds

(1) exp(X 4+Y) = limg_,00 (exp (%X) exp (%Y))k

(2) exp ([X,Y]) = limj_y0o (exp (%X) exp (%Y) exp (—%X) exp (—%Y))kQ.
Proof. 1) We have according to Lemma 7 for k big:

(o0 (1) e (1)) = (o0 (Lo amr w02 )

1
=exp(X+Y + O(E))
and hence
1 1.\\"

lim [exp{ =X Jexp | =Y =exp(X +Y).

k—oo k k
2) This goes exactly the same way by using (2) in Lemma 7. O
Exerise:

1) Show that a group G which is also a manifold is a Lie group if and only if the
maps
G3ara'ed
and
GxG>3(a,b)—»abe G
are smooth.
2) Show that S! is a manifold.
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3) Let F: C* — R?" be the real linear isomorphism:
F((x1 + iy, Tn +iyn)T) = (L1, oy Try Y1y - -y Yn
If T:C* — C" is Clinear, define T : R2® — R2" by
Tp:=FoToF!
In this way we get a linear injective map
¥:M(n,C) - M(2n,R).

(1) Find the matrix J := ¥(T) of the linear map T'(z) = iz.
(2) Find the matrix I,, , := ¥(conj) where conj(z) = z.
(3) Show that

Im(P) = {4 € M(2n,R) | JA = AJ}

_ {( i b ) |a,ﬂeM(n,R)} N GL(2n, B)

a

4) Show that the group O(2,1) has four connected components.
5) This is a generalization of problem (4): Show that O(p,q) has 4 connected
components if pg # 0, but O(p) has two connected components.

3. THE LIE ALGEBRA OF A LINEAR GROUP

3.1. Lie algebras. Let g be a vector space over F with a bilinear map [-,-] : gx g —
g. Then g (or (g,[,]) to be exact) is called a Lie algebra if the following holds:
(1) (Anticommutative) VX,Y € g: [X,Y] = —[Y, X].

(2) (Jacobi identity) For all X,Y,Z € g we have
[X,[Y, Z]| + [, [2, X]| + [Z,[X, Y] = 0.

Let g be a Lie algebra and h a subspace. Then § is a Lie subalgebra if [X,Y] €
for all X,Y € h. It is easy to see that (h,[-,]) is a Lie algebra. The subspace b is
an ideal if [X,Y] € hforall X € gand all Y € bh. In this case h is a Lie subalgebra.

Example 6. Let A be an associative algebra over F. Define for a,b € A:
[a,b] = ab— ba

then (A,[-,-]) is a Lie algebra. In particular M(n,R) is a Lie algebra. The Lie
algebra M (n,F) is usually denoted by gl(n,F).

Example 7. Let A be a real symmetric matriz n X n-matriz. Define
o(4A)={X e Mn,R) | XTA+AX =0} .

Then o(A) is a Lie algebra. The only thing that we need to show is that for X,Y €
0(A) we have [X,Y] € 0(A). For that we simply calculate

(X, Y]TA+A[X,Y] = (XY = YX)T A+ A(XY - YX)
= (YTXTA-XTYTA) + AXY — AYX
=YTAX - XTAY + AXY — AYX
= AYX — AXY + AXY — AYX
=0
where we have used that XTA = AX and YTA =Y A.
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Example 8. As Tr(XY — Y X) =0 for all X,Y we have that
sl(n,F) = {X € gl(n,F) | Tr(X) = 0}
is an ideal in gl(n,F).
Theorem 3. Let G C GL(n,R) be a linear group. Define
g:={X € gl(n,R) | RX G} .
Then g is a Lie algebra.

Proof. Let A € R and X € g. Then R(AX) C RX and hence AX € g. Let X,Y € g
and t € R.. Then

k
exp (t(X +Y)) = lim {exp EX exp EY .
By definition of g it follows that

exp (%X) , exXp (%Y) €qG.

Hence, as G is a group, exp (1 X)exp (£Y) € G. As G is a closed subgroup it
finally follows that

k
t t
exp(t(X +Y))= lim {exp{-X |exp| Y eq
As t was arbitrary it follows that X +Y € g. By the second part of Theorem 2 we
have

kZ
exp (t[X,Y]) = kll)rr;o (exp (%X) exp (%Y) exp (—%X) exp (—%Y)) €q.
O

Definition 6. Let G C GL(n,R) be a closed group. Then the Lie algebra
g={X egl(n,R) |Vte R:e"* € G}
is called the Lie algebra of G.

Example 9 (The Lie algebra of SL(n,R)). Recall that SL(n,R) is the group of
elements g € GL(n,R) such that det(g) = 1. Then X is in the Lie algebra of
SL(, R) if and only if
det(e!X) =1
for allt € R. As
d
p7 det(etX)|j=o = Tr(X)
it follows that Tr(X) = 0. On the other hand assume that Tr(X) = 0. Then
% det(etX) = (% det(etX)) . det(etX)
= Tr(X) det(e"*)
=0.
Hence t — det(e!X) is constant. As e®X = I it follows that this constant in 1, or
e € SL(n,R) for all t € R. Thus the Lie algebra of SL(n,R) = sl(n, R).
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Example 10 (The orthogonal groups). To be added

Our next aim is to show that exp : g — G is a local diffeomorphism. We will
then use that to turn G into a Lie group.

Lemma 8. Let G be a Lie group with Lie algebra g. Let [ C gl(n,R) be a comple-
mentary subspace, i.e., gl(n,R) = [® g. Then there exists 0 e V C [, 0€ U C g,
and e € W C GL(n,R), open and such that

(1) ¢:VxU—=W, (X,Y)— eXeY is a diffeomorphism,

(2) Let X €V andY € U. Then p(X,Y) € G if and only if X = 0.

Proof. ByAssume that the Lemma does not hold. We can find Bg(0) C g and
Bs(0) C ['such that ¢ is a diffeomorphism. Assume that for all n € N, there a

Theorem 4. Let G be a Lie group with Lie algebra g. Then there exists a zero
neigborhood V C g, and a e-neighborhood U C G such that

exp:V =U
is a homeomorphism.
Exercise:
(1) Let A be an associative algebra over F. Show that A with the Lie product
[a,b] = ab— ba

is (4,[,-]) a Lie algebra.
4. HOMOGENEOUS SPACES
Definitions

Example 11. Let GL(n,R) acts on R™ in the canonical way

(A,z) —» Az.

As A0 = 0 it follows that {0} is one orbit. Let v € R*, x # 0. Extend = to
a basis {x = x1,z2,...,2n} of R" and let A be the matriz with columns z;, A =
[z1,22,...,2,]. Then A € GL(n,R)

Aey = .
Hence R™ \ {0} is another orbit. Suppose that Ae; =e1. Then

A= [61, *]
where *x stands for arbitrary elements xa, ...,x, € R" \ {0} such that e1,x2,...,2,

is linearly independent. It follows that

H = GL(n,R)** = {( (1) Z ) |mT€]R"_1,A€GL(n—1,]R)} .

We will later in this section show that GL(n,R)/H is diffeomorphic to R™ \ {0} .

Lemma 9. Let H C G be a closed subgroup. Then there exists a unique differen-
tiable structure on M = G/H such that the following holds:
(1) The quotient map k : G — G/H, a — aH, is smooth
(2) If N is a manifold and f : G/H — N is continuous, then f is smooth if
and only if f ok :G — N is smooth.
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Corollary 2. The group G acts smoothly on G/H.
Proof. We have to show that the map
G xG/H > (a,bH) —» abH € G/H
is smooth. But we can factorize this map as
(a,b) — ab— k(ab)

which is smooth. O

We will need the Baire Category Theorem for the next Theorem.

Definition 7. Let X be a topological space. A set A C X is nowhere dense if
its closure has no interior. Sets which are countable unions of nowhere dense sets
are said to be of first category. The set A is of the second category if it is not
of the first category.

Theorem 5 (Baire Category Theorem). A complete metric space or a locally com-
pact Hausdorff space is second category.

Let us now fix some notations before we state and prove the next theorem. Let
M be a G space. Denote the action of G on G/H by £(a) and the action of G on
M by 7(a). Thus

£(a)(bH) = (ab)H
and
T(a)m=a-m.
Fix p € M and let H = GP. Then we can define a map ®,: G/H — M by
®,(aH)=a-p.
Then &, is well defined because aH = bH implies that b~ 'a = h € H and hence
a-p=(bh)-p=b-(h-p)=h-p.
Furthermore ®, 0k : G — M is given by
(4.1) ®,0k(a)=a-p
and hence smooth. Let a,b € G. Then
®,(¢(a)bH) = ®,(abH)
= (ab)-p
=a-(b-p)
= 7(a)(®p(bH)) -
Thus @, is a G-map. Let us now fix a subspace [ C g such that
g=1ah.
Then [ ~ T,y (G/H) where X € [ is viewed as a tangent vector by

Xenr(f) = & f(exptX - H)lezo.
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The differential dl(a)eyr : Ten(G/H) — Tou(G/H) is an isomorphism. Thus
Teu(G/H) ~ [ where the isomorphism is now given by

Xou(f) = Xen(f o l(a))
= & faexp(iX) - H)lizo.
If we differentiate the relation (4.1) we get
(4.2) (d®y)am o (dl(a))err = (dT(a))p 0 (d®p)cn -
Identifying T, (G/H) with [ as above this reads:

(dq)p)aH(XaH)f = (d(I)p)aH((dE(a))eHXeH)f
d
= %f(anPtX “P)le=o0 -
We also see that (d®p).m(Xem) = 0 if and only if (d®p)erm (Xer) = 0.

Lemma 10. Let M be a G-space, p € M, and H = GP. Then the map
G/H > aH 2 ape M

is a G-diffeomorphism.

Proof. We only have to show that ® is a diffeomorphism. If we can show that
there exists an open set eH € U C G/H and an open set p € V C M such that
® : U — V is a diffeomorphism, then we are done. In fact let ¢ € M. Then there
exists an a € G such that a-p=¢q. We have aH € aU CG/H andg€a-V C M
and ®~!:aV — aU is given by
ma'm = (®y) " (am) = a(®|y) " Haim)
and all those maps are smooth. Choose a subspace [ C g as above, i.e., such that
g=1[adh.

We will now show that (d®).m is bijective.

Let X € [ and assume that (d®).g(X) = 0. Let (V,;y = (y1,.-.,ym)) be

coordinates around p € M. As ®,0k is continuous there exists aopensete € U C G
such that ®,(UH) C V. Then (d®),u(Xoam) =0 for all a € U and

(dq))aH(X)(yj) = XaH(yj ° q))

d
= Eyj(aexth -D)|t=0
=0

Choose § > 0 such that exp(sX) € U for all s € (—6,§). Then it follows that the
maps
(—=9,0) = yj(expsX - p)
are all constant equal to y;(p). It follows that exp(sX) -p = p for all s € (—4,9).
But then
exp(n(—4,0)X) C H

for all n € N which implies that exp(RX) C hor X € h. AsINh = {0} we get
X =0 or (d®,),m is injective for all a € G.

We now show that ®, is an open map. Let V' C G/H be open and U = @,(V).
Let ¢ € U. Choose aH € V such that ®,(aH) = ¢q. Let W be a symmetric
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neighborhood around e such that ax(W?) C V and W is compact. Then - because
G has a countable basis for the topology - there exists a finite or countable infinite
set J and elements a; € G, j € J, such that

G:UajW.

As G acts transitively it follows that
M= UakW-pCUakW-p.
jeJ
in particular Uay,W -p = M. As a;,W is compact and &, 0 k is continuous it follows
that axW - p is compact and hence closed. It follows that
ayW -p=arW - p.
By the Baire Category Theorem there exists a jo € J such that
(arW -p)° #0.
But then, as each 7(z), = € G, is a diffeomorphism, (W -p)° #0. Choose z € W
such that z - p € (W - p)°, then - again because 7(x)~! is a diffeomorphism -
p€ (r(@)'W-p)° c (W?.p)°
As ax(W?) C V it follows that
g=a-pea(W?.-p)°caW?-pcU.
Thus ¢ is an inner point. As ¢ was arbitrary it follows that U is open. Let (U, x)

be coordinates around eH € G/H and (V,y) coordinates around p € M. We may
then assume that ®,(U) C V. Then the map

yod,ox ' :x(U) = y(VN&,U))
is a homeomorphism. By the invariance of dimension it follows that
dimx(U) = dimy(V N &,(0))
or
dim(G/H) = dim(M).
As (d®p) o is injective, it follows from dim To 5 (G/H) = dim Ty, (M) that (d®p)en

is surjective. By the inverse function theorem it follows that &, is locally a diffeo-
morphism and hence globally a diffeomorphism. a

Example 12. Let k € N, and n = (n1,na,...,ng) withny <mng < ... <ng <n.
A n-flag is a array (E1,...,Ey) of subspaces of R® such that
E; CEjq
and
dim EJ' = ’I’Lj .

Let M (n) be the set of all n-flags. At the moment we do not put any topology on
M(n). Let E = (En,...,E;) € M(n) and g € GL(n,R). Define

9-E=(9(E1),--.,9(Ey))-
It is clear that g - E € M (n) and that this defines a GL(n, R)-action on M (n). Let
€1,...,en be the standard basis of R™ and define E; by

Ej:Rel EB@]RenJ
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Then

E=(Ey,...,E;) € M(n).
Let F = (Fy,...,F) € M(n). Let f1,...,fn, be an orthonormal basis for Fi.
Extend it to an orthonormal basis fi,..., fn, of F>. In that way we construct an
orthonormal basis fi,..., fn; of Fj such that fi,..., fn;_, is an orthonormal basis
for F;_1. We can assume (by replacing fi by —fi if necessary) that fi,..., fn has
a positive orientation. Define g € SO(n,R) by

gej =
Then
g-E=F.
Thus SO(n,R) (and then also GL(n,R)) acts transitively on M(n). We next de-

termine the stabilizer of E. First we notice that g € GL(n,R)F if and only if
9(E;) = Ej. Thus if i < nj then
g(ei) = Z 9riCr
r<n;
or
gri =0 if T>n;j.
It follows that g has the block form

A x * *
0 A2 X
9= .
: L%
0 --- 0 Ay
As every matriz of this form stabilizes E it follows that
A1 * *
0 A2 % *
GL(n,R)¥ = P(n) = . . | A; € GL(n; —nj_1)
: Lk
0 --- 0 A

where we have put ng = 0. In particular
M (n) = GL(n,R)/P(n).
Recall now that SO(n) acts transitively on M (n). Furthermore

A4 0 ... 0

0 A 0 A;€0(n; —n;_
SO(n) N P(n) = : .. : | det;ll - ..(.-Jdet;lkl)z 1

0 --- 0 A

=S0(n1) X...x0(ng —ng_1))-
Thus M (n) is a compact connected manifold.

Exerise:
1) Let M = {2 € C||z| < 1}. For

geG:SU(l,l):{(

a

QI ™

) el = 181" =1}

™I
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define
_az+p
Caz+ B’
(1) Show that g -2z € M and that this defines a SU(1,1) action on M.
(2) Show that there are exactly two G-orbits, the boundary T = {z € C | |z| = 1}
and the interior B1(0) = {z € C| |z| < 1}.
(3) Determine the stabilizers of 0 € B1(0) and 1 € T.

2) For g = ( Z Z ) € SL(2,R) and z € C* := {z € C | Im(z) > 0} define

= ¥ +b
ez +d’
Show that this defines a transitive SL(2,R)-action on Ct and that SL(2,R)! =
SO(2).
a

3) Let S = 0 a-!

4) Let G1 and Gs be Lie groups and let M; and M» be manifolds. A (G1,G2)
map from M; to M> is a pair (®,¢) where & : M; — M, is smooth, ¢ : G; = G
is a Lie group homomorphism, and furthermore

®(g-m) = ¢(g) - ®(m).

Let the notation be as in problems 1 and 2. Define & : B;(0) - C and ¢ :
SU(1,1) — GL(2,R) by

. Then § is diffeomorphic to C*.

zZ+1
P(2) =
(2) z+1

a b 11 g a b 1 —i
\lea))Tzin c d - 1 )
Show that (®,¢) is a (SU(1,1), SL(2, R))-isomorphism of B;(0) onto CT.

5) Let G = SL(2,R) act on it Lie algebra sl(2,R) by conjugation (a,X) —
Ad(a)X = aXa !. Show that we have the following type of orbits:

a) The hyerbolic orbits H; =Ad(G) ( é _Ot ), t>0.

b) Elliptic orbits & =Ad(G) ( _Ot é ), te R .

¢) The nilpotent orbits Ny = {( 8 é ) |t > 0} and N = {( 8 (t) ) |t < 0}
d) The trivial orbit {0}.

and

5. VECTOR BUNDLES

In this section F = R or C. We will always assume that vector spaces are over F
and state if necessary if I is assume to be R or C.

Definition 8. Let M be a manifold. A vector bundle over M is a pair (E, ) where

(1) E is a manifold,
(2) m: E — M is a smooth surjective map,
(3) #'(p) = E, is a vector space,
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(4) For each p € M there exists p € U C M open and a diffeomorphism
fu:By=7YU)—>UxF"
such that Fy has the form
fulu,v) = (u, T (u)v), (u,v) € By := " (u)
with T'(u) : E, = F* a linear isomorphism.
We sometimes write 7 : E — M or E 5 M for a vector bundle. If dim E, =1

for all p € M then we say that E is a line bundle over M. The vector space E,
is called the fiber over u.

Definition 9. Let E 5 M and F 5 M be two vector bundles over M. A bundle
map from E to F is a smooth map ¢ : E — F such that ¢(Ep) C F, for allpe M

and ¢, = P|lg, : Ex — Fy is linear. We say that E 5 M and F 5 M are
isomorphic if there ezists a bundle map ¢ : E — F which is a diffeomorphism.
Remark 1. The maps fy is called a local trivialization of the bundle.

Example 13. Let E = M x F" and with the product topology and w(m,v) = m.
Then E is a vector bundle. Any vector bundle over M which is isomorphic to
M x F™ is called the trivial bundle over M.

Example 14. Let M = M™ be a manifold. Then T(M) is a vector bundle over
M. Let (U,x) be local coordinates around p € M. Then (dx), : T,M — R™ is
a linear isomorphism and u — (dx), is smooth by the definition of the manifold
structure on TM. Define
fu(u,v) := (u, (dx)gl(v)) € Ty(M).

Example 15. Let k € N, k < n. Let M(k) = M((k)) be the compact space of
k-dimensional subspaces of R™. Define a vector bundle over M (k) by

E={(V,;V)e M(k) x M(k) |V € M(k)}
with projection (V,z) — V where x is any point in V.

We will now discuss how to construct vector bundles. The idea is to glue together
trivial vector bundles over open subsets of M. To motivate the construction let
U,V C M be open such that U NV # () and such that we have local trivialization
of the vector bundle £ — M, denoted by

fuiBy > UxF",  fu(u,v) = (u, Tu(u)v)
and
fV:EV%VXFna fv(U,UJ)Z(U,TV(U)UJ).
Then we can define a map gy,y : UNV — GL(n,F) by
gv,u(w)z = pry(fy o fi' (u, ))

where pr, is the projection onto the second factor

VxF" > (v,z) »zel".
Thus in particular

(u,z) = gvu(u)z
is smooth and
gU,U(u) =id.
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If W is a third open set in M such that UNV NW # @ then we have the following
cocycle relation:
gv.w (W) gwu(w)z = pry (fv o fi! (u, gw,u(u)z)
=pry (fv o fiy' (w,pra(fw o fry' (u, 2)))
= pro((fv o fg') o (fw © fr ) (u, 2))
= pry(fv o fry' (u, 7))
(5.1) = gvu(u)z
In particular we have
gvu(w)™ = guv(u)
Given a covering W and families of maps {gv,i} satisfying the cocycle relation (5.1)
we call {gv,r} for a cocycle adapted to W.
Example 16. The cocyle for the tangent bundle.

Let now W be an open covering of M such that each U € W is a coordinate
neighborhood. Furhtermore assume that {gy,v} is a cocycle such that gy, : UN
V — GL(n,F) is smooth. We would like to construct a vector bundle E over M
such that the corresponding cocycles are exactly the ones that we started with. Let

X :={(p,z,U) e M xF' xW |peU}.

We make M x F* x W into a topological space by considering the product topology
with the discrete topology on W. On X we concider then the relative topology. We
say that (p,z,U),(q,y,V) € X are equivalent, denoted by (p,z,U) « (q,y, V), if

) p=g

(2) UNV #0;

3) gvu(u)z =y.

It is then easy to see that the cocycle relation is exactly what we need to make

~ into an equivalence relation. Let

E=X/

If (p,z,U) € X then we denote the corresponding equivalence class by [p, z, U]. We
make F into a topological space by requiring the canonical quotient map (p, z,U) —
[p, z, U] is continuous. Notice that for fixed p and U the map

F* 5z~ [p,z, Ul €E
is injective because gy.i(p) = id. Define 7 : E — M by
m([p,z,U]) =p.

Then 7 is well defined because [p, z,U] = [q,y, V] implies that p = q.

The next step is then to define the vector space structure on E, = 7n~1(p),
p € M. Let v,w € E, and A € F. Then there exists a U € W and z,y € F* (only
depending on U) such that v = [p, z,U],w = [p,y, U]. Define

Av+w = [p, Az +y,U].

We have to show that this is well defined. Notice that our only choice was that of
U. So assume that we have v = [p,z1,V] and w = [p,y1, V]. Then by the definition
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of the equivalence relation we have

z1 = gvu(p)x
y1 = gv,u(p)y
and hence
Az1 +y1 = gvu(p)(Az +y) .
It follows that
[p, Az +y,U] = [p,Az1 +y1,V].

The final step before we state our theorem is to make E into a manifold such
that 7 : E — M is smooth. Let U € W. Let xy : U — xy(U) be the corresponding
coordinate map. Define gy : U x F* — 7=1(U) by

gU(pa .’L') = [pa T, U] .
Then by the definition of the topology on E it follows that gy is a homeomorphism.
Let fu : m Y(U) = U x F" be the inverse. We will now make E into a manifold
such that the maps fy are smooth. For that let w € E. Then there exists U € W
and p € U such that w = [p,z,U]. Define a map yy: n~1(U) — x(U) x F* by
yu(e) :== (xu(pry(fu(e))), pra(fule))) -
Thus
YU([q, T, U]) = (XU(Q)a .’L') .
Let V € W be such that U NV # (). Then we have coordinates xy and yy. But

yv oyg' (u,2) = (xy" o xu(u), gvv(xy' (w))z)
which is obviously smooth. We have now proven the following Theorem:
Theorem 6. Let YW be an open covering of M consisting of coordinate neighbor-
hoods. Assume that we have a smooth cocycle {gV’U}(V,U)EWxW,VOU;ﬁ(Z)' Define E
and {fu}ycy as above. Then E 5 M is a vector bundle with fiber isomorphic to

F™, local trivialization maps Fyy, U € W, and cocycles given by the functions gy,u.

The following Theorem decribes if two vector bundles are isomorphic in terms
of their cocycles.

Theorem 7. Let E 5 M and F % M be two vector bundles with GL(n, F)-valued
W-cocycles {gu,v} and {hy,v} respectively. Then E and F are isomorphic if and
only if for each U there exists a smooth map sy : U — GL(n,F) such that for each
pair U and V with U NV # 0 we have

(5.2) gvu(p) = sv(Phvu(p)sup)™, pelUNnV.

Proof. Assume first that ¢ : E — F is an isomorphism. Assume that {gy,v}
corresponds to the local trivialization {ey} and that {hyy} corresponds to the
local trivialization {fr}. Define sy : U — GL(n,F) by

su(p)z =pryoeyo¢ o fr'(p,2).
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Then

sv(D)hv,u(p)su(p) 'z = sv (p)hv,u (p)pra(fu(d(ey' (9, 2)))))
= sy (p)(pry(fv o f' o fu o dleg (p,x))))
= sy (p)(pra(fv o poey' (p,x)))
=prylevo¢ o fi;l o fyogpoey'(p,x))
=pry(ev(eg (p, )
= QV,U(p)JJ
Assume now that (5.2) holds. Then E = X/ ~g and F = X/ ~p where
(p,z,U) ~g (¢,y,V) if and only if
) p=g
(2) UNV £
(3) gvulp)z =y.
Similarly for ~g with gy, replaced by hy,y. We denote the corresponding
equivalence classes by [...]g respectively [...]z. Define a map & : X — X by
q)((p, z, U)) = (pa SU(p)_l.Z', U) .
Assume that (p,z,U) ~g (p,y,V). Then
hv.u(P)su(p) ™'z = sv(p) ' gvu(p)x
=sv(p) 'y.
Hence ®((p,z,U)) ~r ®((p,z,U)) and we can define ¢ : E — F by

¢([p7 T, U]E) = [pa SU(p)il'lL.a U]F
We need to show that ¢ is a linear isomorphism.
a) ¢ is linear because sy (p)~! is linear.
b) Assume that ¢([p,z,U]r) = 0r, = [p,0,U]r. As sy(p)~" is an isomorphism
it follows that 2 = 0 and hence [p,z,U]g = Op,. Thus ¢ is injective.
c) Let [p,y,U] € F,,. Let = sy(p)y. Then

¢([p,2,U]) = [p,y, U]
and it follows that ¢ is surjective. a
Definition 10. Let E 5 M be a vector bundle over M. A section of E is a

smooth map s : M — E such that wo s = idyr. We denote the set of section by
T'(M,E).

Remark 2. Let A € F and s1,s2 € T'(M, E). Then we can make T'(M, E) into a
vector space be defining

(As1 + 82) (p) := As1(p) + s2(p) -

Example 17. Let E = T M be the tangent bundle of M. Then a section of E is
just a vector field on M.

Lemma 11. Let W = {U;},.; be a open covering of M with cocycles {gv,u}. Let
sy : U = T be a family of smooth functions. Then {sy} ¢,y defines a section of
E if and only if

(5.3) sv(p) = gv,u(p)su(p)



22

for alU, V€W, andpeUNV.

Proof. Assume first that (5.3) holds. Recall that E
gv,u(p)su(p) it follows that (p,su(p),U) ~ (p,sv(p),

M — E by
S(p) = [p7SU(p)7U] -
Then s : M — E is a smooth section.

Assume now that s : M — FE is a smooth section. Let fyy : By — U x F" be a
local trivialization. Define {sy },; by

~ X/ ~. As sy(p) =
V) and we can define s :

su(p) :==prafu(s(p)), peU.
Then sy : U — F™ is smooth. Suppose that p € V NU. Then

sv(p) = prafv(s(p))
=profv o fi (fu(s(p)))
=pry(fv o fi1)(p, su (D))
= gvu(p)su(p) .

6. CONSTRUCTIONS WITH VECTOR BUNDLES

6.1. The dual bundle. Let V be a vector space over F. Denote by V* = Homg(V, )
the space of continuous linear maps from V to F. If dim V' < oo then every linear
form is automatically continuous. If V is finite dimensional then V* ~ V. This
works actually for any Hilbert space V' but in the rest of this section we will assume
that V is finite dimensional. Let (- | -) be a inner product on V. For v € V define
fu € V* by

fulz) = (z ] u).
Then V 5 u — f, € V* is a cojugate linear isomorphism. In particular let f € V*.
Then there exists a unique u € V such that

f(z) = (x| u) Ve eV.

If {v1,...,v,} is a basis for V then the dual basis {f1, ..., fn} for V* is determined
by

< fi,U,' >= (5,',]- .
If F:V — W is a linear map between two finite dimensional vector space, then we
define a linear map F7 : W* — V* by

< FT(f),z >=< f,F(z) > .

Assume that W = V. Let {v1,...,v,} be a basis and {fy,..., fn} the dual basis.
Then F' corresponds to a matrix A = {a;;} determined by

F(CJ‘) = Z aij€; .
=1
Similarly FT corresponds to a matrix B = {b;;} in the basis {fi,..., fo}:

FT(f)) = bijfi
i=1
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Thus
aij =< fi, F(ej) >=< FT(fi),e; >= bj;
Thus
B=A"T.
Notice that A — A” is an anti-homomorphism in the sense that (AB)? = BT AT

Let now E 5 M be a vector bundle with local trivialization {fu} ¢y, and corre-
sponding cocycle {gy,r}. Then as a set E is the disjoint union:

E=JE

pEM

Define as a set:

Er = E;.
peEM

We can then make E* into a vector bundle with cocycle hy,u(p) = gu,v(p)T. The
cocycle relation holds because

hv,w (P)hw,u () = gw,v ()" gu,w (p)”

= (!JU,W(p)gW,V(P))T
=guv(p)”
= hv,u(p) -

Assume that E = TM. The bundle TM* = T*M is called the cotangential
bundle of M. If f : M — R is smooth, then we define a section df : M — T*M
by

df (p) X, = Xp(f) -
We also write df,, for df(p). Let {U}ycy be an open covering of M such that
(U,xy) are coordinates. For p € U let

0

oz, = (dxu(p)) " (e;)

p

be the standard basis of T,(M). Write xy = (¢1,...,2,). Then z; : U = R is
smooth and dx; : U — T™* My is well defined. We have
P

0 0
dwj (6.73, p> - 6.’13,
(x7 (x(p) + tei))

"

(z5)

t=0

d
= PO Hie)

= 0 (a5 0) + tory )

= 5.

t=0
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3

,...7mp

Hence {dz1(p),...,dz,(p)} is the dual base to { 8%1
P

T*(M) is called a one-form on M. Let w be a one-form. Then locally

}. A section of

wu(p) =Y ai(p)dzi(p).
=1
Whe have

0

prai(p) = wp <6mi )

and hence a; € C*°(U). If (V,y) is an other system of coordinates around p. Then

wi) =3 (52) 0

and hence
wy (p) = Z b; (p)dy; (p)
=203 (52) @)
= b;(p) dz;(p)
; (; ’ <8$">1))
Hence n
) =3 0) (52
N w®\ . B0
N ( o (p)), | :
an(p) vI=t bn(p)

which shows that the cocycle is smooth. Hence T*M is a smooth vector bundle
over M.

Let Vj,5=1,...,N, and W be finite dimensional vector spaces over F. A map
B: Vi x...xVy — W is called multilinear (or N-linear) if for all j € {1,...,N}
and fixed v; € V;, i # j the map

V}' ST B(Ul,...,'l)j_l,.’L',Uj+1,...,UN) ew
is linear. Let M} (V') be the space of k-linear mapst into F. For k = 0let My (V) = F.
If k =1 then My(V) = V*. If N = 2 then we say that 3 is bilinear. Let S be
the permutation group of k-elements. For 8 € M (V) and o € Sy, define
o-Bvr,...,v) = ﬂ(va(l)a---avo(k))'
This defines an action of Sy on My(V).
Definition 11. The k-linear form 8 € My(V) is said to be symmetric if for all
oc€eS:
o-B=p
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and alternating if

o- B =sign(o) 8.
We denote by S, (V) the space of symmetric k-forms on'V and by A, (V) the space
of alternating k-forms.

Let a € A, (V) and 8 € As(V). Define aAB € A.15(V) by
1

rls!

Z Sign(a) a(va(l)a s UO'(T))IB(UO'(T+1)) s 7U0'(7'+s))

OESr+s

aABWr,...,Upgs) =

Then A(V) = @52,A4,(V) is an algebra. We notice the following properties:
(1) Let a € A,(V) and 8 € A4(V). Then
aANB=(-1)"BANa.

In particular if 7 is odd and o € A, (V) then a Aa = 0.
(2) Ax(V) = {0} for k > dim(V).
(3) Let n = dim(V). Let fi,..., f, be a basis of V*. Then

{fil/\./“1'2/\.../\.)%,\1 |ij€N, 11 <i2<...<in}
is a basis for A(V). Thus

dim(Ax(V)) = (Z) = k'(%ik),

In particular dim A,, = 1. Define det € A, (V) by
det(z1,...,2,) := det (fi(z;))

then A, = Fdet.

(4) Let A = ®jcsA; be an algebra, where S = Z>¢ or S = Z /pZ. Then A is
graded if A;Ap C Ajy. Then AR(V) is a graded algebra.

(5) Let F:V — W be linear. Define A"F : A, (W) — Ax(V) by

AN'F(a)(z1,...,zp) = a(F(z1),...,F(z,)).
Then A" F is linear. If G : W — U then
AN (GoF)=A"FoAG.

In particular, if F' is an isomorphism, then A" F' is an isomorphism.
(6) If r = dim V then A"F(w) = det(F)w for all w € A,(V).

We apply this now to the tangent bundle TM 5 M. Define
A(T(M)) = | An(Tp(M)).

pEM
For each p € M and (U, x) coordinates around p we have a basis
de;, A...Ndx;,
for A, (T,(M)). If (V,y) is another set of coordinats then, as we have seen

0x;
doj) =3 (52) o).
vi ),
Let us first assuming that » = 2. Then
dy; A dy;j = —dy; N\ dy;
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and hence

i

N Z (6.’1721 6;L'i2 _ 6.’13,'1 8-’1312) dy~ /\dy-
dyi dy;  Oy; Oy ) T

vt (£(5) ) (5 (32))

i<j
8 . 2
= Z det ( ;’“ ) dy; A dy;
i<j Yo a=1,b=1,j

Similarly we get for general r:

(@) ) rn (2 (5) )

1
Z det (gxl“ ) dy;, N ... ANdy;, .
1<j1<..<Jm Yiy, a,b=1
This gives us the cocycle for for the vector bundle A,.(T'(M)). Notice that Ag(T'M) =
C>®(M) and A, (T(M)) =T* (M).

Definition 12. We set Qi (M) = T'(Ax(T(M))). The elements w of Qi are called
k-differential forms on M. If m = dim(M), then a volume form on M is an element
w € Qpy (M) such that w(p) # 0 for allp e M.

Lemma 12. Let M, N be manifolds. For f € C*°(M,N), r € Z>o andw € Q,(N).
Then

de;, A ...Ndx;,

(f*w)P(Ula s 7UT‘) = Wr(p) ((df)p(vl)7 ) (df)P(UT‘))
is in Qn.(M) and f* : Q.(N) = Q.(M) is contravariant, i.e., (f o g)* = g* o f*. If
r = dim(M) = dim(N), w € Q.(N), and n € Q.(M), then there exists a smooth
function ¢ : M — R such that

ffw=cen.
Definition 13. An atlas A for the manifold M is oriented if

det (6””—‘]) >0
6$Vj

for all (U,x),(V,y) € A, UNV # 0. The manifold M is said to be orientable if
there exists an oriented altas for M.

Lemma 13. The following is equivalent:

(1) M is orientable;
(2) There exists a volume form on M.

From now on we assume that there exists a volume form w € Q,,(M). Let
A = {(U,x)}, be an oriented atlas for M. We will now define the symbol

Ju?

for any f € C.(M). Let p e M. If (U,x) are coordinates around p. Then
wy = fudzi A... Ndxy,
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for some fy € C*°(U). As w is a volume form sign(fy(q)) is constant on U. We
can assume that fy(q) > 0 for all ¢ € U. Let (V,y) be another set of coordinates.
Then

wy = fudxi A ... Ndzx,

(6.1) = fy det (635,) dyr A ... Ady,
Oy

=Wy .

and det (g;}) > 0. Hence fy = fy det (8w:> is also positive. Assume that
f € C.(M) andt Supp(f) C U. Define

/fw = / fox Nar,...,xn)fuox H@1,...,xn)dey ... dTy .
Rn
Recall the following transformation rule for integrals of functions on R™:

Lemma 14 LetU,V C R™ be open, U,V #0. Let F : U — V be a diffeomorphism.
Let f € C.(V) then

/f )) |det(DF(z))| dxl...dmnz/vf(a:)da;l,,,dm

and

/f ))dzy .. nz/f(m)|detDF*1(x)|dml...da:n
1%

Assume that (V,y) € A is such that Supp(f) C V. Then by (6.1) and the the
above Lemma

/ fox ' (z) fuox '(z)da
wnv)

as

1 ]
det (LXOY )’) = det (6%) .
dy; 9y

To generalize this to arbitary f € C.(M) some preparation is needed. We start
with a well known lemma from calculus:

Lemma 15. The function

{ e 1/t 0<t

w(t) = 0 otherwise
is smooth on R and 0 < p(t) <1 for allt € R.

Lemma 16. Let 0 < r < R. Then there exists a smooth function ¢ € C.(R™) with
the following properties:

(1) 0<9(z) <1
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(2) Y(z )—lforalleB 0)={zeR"||z|| <r};
(3) Supp(¥) C Br(0).

Proof. Choose § such that 7 < § < R. Define g € C*(R) by

g(t) = 9(8* = t)p(t —1?).
Then 0 < g(t) <1, and g(t) = 0 for ¢t > §? and t < r2. Let

Fg(t)dt
G(a) = Sz 9Ot
oo 9(t)dt
Then G is well defined as g # 0. Furthermore G(z) = 0 if z > ¢% and G(z) = 1 if
z < r2. Finally we define
Y(x) = G(||a|).
O

Lemma 17. Let M be a manifold. Then there exists a sequcen {K;}, finite or
countable infinite, of compact subsets of M such that KJ # 0, M = U;K; and
K; C K3.

Proof. Let p € M then there exists an open set U such that p € U and U compact.
Let K1 := U. Assume that we have defined K1 CK§ C K> C ... C KJ“ C K such
that Ki,...,K; are compact. Then for each ¢ € K chose U(q) open, ¢ € U(g),
U(q) compact. Then as K is compact there are gq,...,q; € K; such that K; C
U(g1)U...UU(gg)- Let

Kj+1 :U(ql)UUU(qk)

Then K1 is compact and K; C K7. As M is second countable it follows that we
are done after finite or countable finite number of steps. a

Lemma 18. Let M™ be a manifold. Then there exists an altals A = {(U;,x;)}
J finite or countable, such that:
( ) M= UUJ:
(2) If x € M then there are only finitely many j € J such that x € U;.
( ) x; (U;) = B2(0);
(4) {x*1 (B1(0))} il is a covering of M.
We call any atlas of this form a good atlas.

JEI

Proof. Let K1 C ... C K; C K¢ 7+1 C ... be a sequence of compact subsets as
in Lemma 17. Let p € K1 and let (U,y) be local coordinates around p. By
replacing U by U N K3 we can assume that U C K$ Let V = y(U) C R™. Then
there exits a R > 0 such that Br(y(p)) C V. Let z(u) := 35 (y(u) — y(p)),
U; =UNz~ ! (By(0)), and x; = z;1|y. Then (U, x1) gives local coordinates around
p such that 3 holds. Repeting this construction for all p € K; using that Ki
is compact, we can find coordinates (Uy,x1), B, (U,,x1) such that 3 holds and
{x;'(B }: covers K. Let us set K; = () if 5 < 0. Suppose that for j > 2 we
have found {(U,,x,)}sj 1 such that 3 holds, UU; C K7, and K; C Ux; ' (B1(0)).
Notice that K1 \ K is compact and (Kj1 \K )N K;j—1 = (. By the above

construction we can find local coordinates (U,,x,)z_s 41 such that 3 holds,

8+1
Uiy, +1Ui CKj o\ Kj1,



29

and
Kin \Kj CUZ  Us.

In this way we get a finite or countable infinite collection of local coordinates
{(U;,x;)} such that 1, 3, and 4 holds. Let z € M. Then there is a j such that
z € K; \ Kj_;. By construction it follows that z can also be contained in U}, for
Sj—1 S k S Sj+41- O
Lemma 19 (Partition of unity). Let A be a good atlas. Then there exists ¢; €
Cx® (M), j €, such that

(1) 0<9; <1y

(2) Supp(v;) C U;

(3) Zje.]] Yi(x) =1 for allx € M;

Notice that the sum in (8) is finite. We say that the collection {zbj}jeJI is a

partition of unity subordinate to the altals A.

Proof. Let j € J. Let ¢ be the function ¢ in Lemma 16 for r = 1 and R = 2.

Define
. | #(xi(a) g€
vila) = { 0 otherwise

The function ¢; is smooth as ¢|
xj_l(Bl (0)) and

< (U\Bs o) = 0- Furthermore ¢;(q) = 1 for ¢ €

Supp (;) C x5 (Bs(0)) C x5 (B2(0)) C U;.

Let ¥(z) := Y ,cy¢;(z). Then ¥ € C (M) - as M = Ux; ' (Bi(0)) - ¥(z) > 0
for all z. Hence 1/¥ is smooth. Define now

W, ::%EC“’(M).

Then 0 < 9j(z) <1 and 3 ¢;(z) = $§§§ =1 0

Let A be a good atlas for M and {¢;} a partition of unity subordinate to A. If
f € Ce(M) then Supp(fi;) C U; is compact and hence

/ fijw

is well defined. Furthermore Supp(f) C UgniteU;. Define

[ro=% [t e.

Assume that {V;}, is another good atlas and {y;} a subordinate partition of unity.
Then Supp(fe;ij) C U; NV; and hence

> [uwe=Y% [tee
:ZZ/(ﬁPz’)%w
=Y [y w
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and therefore [ fw is well defined. Furthermore there exists a unique Radon mea-

sure ,, on M such that
[ o= sau.
M

We denote by L? (M, du,,) the corresponding LP-spaces.

7. INVARIANT INTEGRATION

Let F': M — M be a diffcomorphism. Then (F*w), = det(dF)yw,. By the
transformation formula for integrals in R™ we get:

Lemma 20. Let F : M — M be a diffeomorphism. Then
/fF*w =/f0F_1w
for all f € C.(M).

Let G be a linear Lie group acting on M. Denote by 7(g) the corresponding
diffeomorphism. Define an action of G on 2 (M) by

g-w=71(g ") w.
If w is a volume form then (g - w), = (g, p)wp for some smooth function ¢ : Gx M —
R*. In particular if w is G-invariant then ¢(g,p) = 1 for all g and p and

/fgpduw /fduw

for all f. In particular p,(g - E) = p,(E) for all measuralbe sets E. Thus p,, is
G-invariant.

Lemma 21. Let G be a Lie group. Then the following holds:
(1) Let fi,...,fn € g be a bais. Define wj(g) = fj o dX\(g)~'. Then w; €
2 (6)°
(2) The map
% (G)% 3w wle) € Ay (g)
s an isomorphism with inverse
Ar(g) 31~ (9= nodr(g) ") € WG

In particular {wi, N ... Aw;, |91 < ... <k} is a basis for Q @)°.
(3) dimQ,, (G)G = 1. In particular there exists a volume form w which is
G-invariant.

Proof. Let fi,..., fn € g* be a basis. Denote by A(g) : G — G the left multiplica-
tion  — g-z. Recall that dA(g) : g = T4(G) is an isomorphism. Define w; € Q1 (G)
by

wj(g) = fjodi(g)™
Then

(A(9)*wj) () = wj(gz) 0 dA(9)«
= fjo (d\(z) ! odX(g) " 0 dA(g))
= fjod\(z)™!

= w;(7) -



It follows that that w; is G-invariant. Let ¢y < ... < iy and define
wW=wi N . Aw;,, -
Then w € Q (G) is a G-invariant.
On the other hand let w € Q (G). Then w(e) € Ax(g). Hence
w(e) = Z @iy ... 5 fl A...A f,'k
1< <l
for some aj,,....;, € R. We have

w(g) o dX(g) = (97" w),

because w is G-invariant. Thus
w(g) = w(e) o dA(g) ™"

= E iy, i, Wiy N oo N Wiy, -
11<...<%g

This proves (1) and (2). (3) follows now directly.
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Fix a G-invariant measure pug on G corresponding to a left invariant volume form
w. It is unique op to multiplication my a positve scalar. Any such choice is called
a (left)-Haar measure on G. We will often write write dz for dug. If G is compact,
then the constant function x — 1 is compactly supported and hence integrable
and its integral is pug(G) < oo. We will allways assume that pg(G) = 1if G is
compact. The Haar measure is in general not invariant under right multiplication
p(g)x = xg. The group G is called unimodular if p(g9)*w = w. We notice the

following:
/f(wg) dp = /f(g‘lwg) dy
:/fo (Int(g™")) w
= [ f(g)y).
Thus

p(9)*w = Int(g)*w.
As p(g9)*w is G-invariant it follows that

p(g)"w = c(g)w.
As dInt(g). = Ad(g) it follows that
c(g) = det (Ad(g)) -
Thus we have proved that:

Theorem 8. Let G be a linear Lie group with left-invariant volume form w. Then

p(g)*w = det (Ad(g)) w

for all g € G. In particular G is unimodular if and only if det Ad(g) = 1 for all

geQ@G.

Lemma 22. Let G be a compact Lie group. Then G is unimodular.
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Proof. The map G 3 g — det Ad(g) € Rt is a continuous homomorphims. Hence
det Ad(G) is a compact subgroup (under multiplication) of RT. If there exists a
g € G such that ¢ = det Ad(g) # 1. Then we can assume that det Ad(g) > 1
(otherwise replace g by g~!). But then

" = det Ad(g") = o©
contradicting the compactness of det Ad(G). O

Let M = G/H where H is compact. Then if f € C.(M) the function f o &,
k: G = G/H the canonical map, is compactly supported and we can define

/MfduM = /fon-(x)dw

Then du s is G-invariant. It follows that:

Theorem 9. Let M = G/H be a homogeneous G-space with H compact. Then
there exists an unique (up to scalar) G-invariant measure on M.

Proof. We have seen that

£ / £ o #(@) dunr ()

defines an invariant measure on M. Suppose that ¢ is a G-invariant measure on
M. Fix a Haar-measure dh on H such that [dh =1. Let f € C.(G). Then, as H
is compact,

£o(@) = [ sty an
is continuous with compact support, and right H-invariant. Define g : G/H — C
by
9(zH) = f°(z).
Then g € C.(G/H) and hence [,, g(m)do(m) is well defined. We can therefore
define a Radon measure n on G by

[ 1@ dntz) = [ g(amao (@)

_ /G y /H F(wh) dh do(zH).

By the G-invariance of ups it follows that n is G-invariant. Thus there exists a
¢ > 0 such that

1N = cdpg.
But then do = cduas. O

Lemma 23. Assume that G is a connected Lie group such that
0,0l ={[X,Y] | X, Y e g} =g.
Then G is unimodular.

Proof. Let X € g. Then
det Ad(eX) = ¢Tr(2d(X))
Choose X;,Y; € g such that

X = Z[XJ’YJ] :
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Then
ad(X) =) ad[X;,Y]]

:zadX- ade]
—Z (ad(X;)ad(Y;) — ad(Y;)ad(X;)) -

As
Tr (ad(X;)ad(Y;) — ad(Y;)ad(X;)) =0
it follows that
Tr(ad(X)) =0.
Hence
det (Ad(e*)) = 1.
As exp : g — G is a local diffeomorphism around 0 it follows that there exists an

open neighborhood U 3 e in G such that det Ad(g) =1forall g € U. As G = UU"
it finally follows that det Ad(g) =1 for all g € G. O

Example 18. Here is an example of a linear group that is not unimodular. Let

Gz{x(a,x)z(g a”ﬁl ) |a>0,$€R}.

For f : G — C write f(a,b) = f(z(a,b)). Then if f € C.(G):

/fdll / (x(a,2)) dada:
Then

/f (( 8 bgfl ) ( 8 afl )) dadz /f ab,bz +a”'y) dadx.

Let
u = ba and v=bz+aly
Then
du = bda and dv = bdx

Hence

dadb  dudv

2wz

and hence

/f(<8 bg1><8 aﬂfl»dadw /f ) dad

It follows that u is left-invariant. As

a b oy \ _[ab ay+blz
0 at 0ot/ o0 (ab)'
it follows that

Jr((3 ) (3 0) 5 - frmmenati
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Let u = ab, and v = ay + b~ 'z. Then du = bda and dv = b= dx. Thus
/ f(ab,ay + b~'z) d‘“jx = > / Fluv) 2

a u2

We can also see this by using Theorem 8. Choose a basis
1 0 01
x=(s 5) 7=(00)
forg. Let g = x(a,x) € G. Then

(3200 2)(% %)
()6 7)

det Ad(z(a,z)) = a®.

Ad(g)X

and

Ad(g)Y

Il
o

Y.
It follows that

Exercises:

(1) Show that o - B(vi,...,v) := B(vsq),- - -, Vs(k)) defines an action of Sy, on
M (V).
(2) Define a map pr : My(V) — Mp(V) by

pr(B)vr, -, ve) = 71 3 SE(@)8 oty vt

gESk
Show that pr is a projection onto Ag (V).
(3) Let ¢ € M. Show that ¢ is alternating if and only if v; = v;, j # 4, implies

QO(Ula" 'avk) =0.
(4) Let M™ be a manifold. Define a map d : Qi (M) — Q41 (M) by

d Z fz-l,_,,J-,cdx,-l AN...A dZUz'k

1<i1<...<ix<m

= Z dfiy,....in Z firoiny Ndziy Ao AN dzy,

1<i1 <. <ip<m 1<i1 <. <ip<m
(a) If Xl,...,Xk+1 S X(M) then
k+1

dw(Xl, e ,Xk+1) = Z(—l)j+1Xj (w(Xl, .. .,Xj, e ,Xk+1))

Jj=1
+ Z(—l)’“w <[X1,XJ], Xl, [N ,Xz', .- .Xﬁ Ly Xk+1)
i<j
where Xn indicates that the element X,, should not be counted.
(b) Show that d is well defined.
(c) Show that d? = 0. In particular im(d) C ker(d).
(d) Twe N, and g € Qs then d(w An) =dwAn+ (—1)"wAdn.
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(5) Show that the function

() = e/t o<t
i) = 0 otherwise

is smooth on R.

8. REPRESENTATIONS

Let (H,(- | -)) be a Hilbert space over F. Denote by GL(H) the group of
continuous, invertible linear maps from to H.

Definition 14. Let G be a Lie group and (H, (- | -)) o Hilbert space. A represen-
tation of G in H is a homomorphism p : G — GL(H) such that the map

G xH 3 (a,v) » pla)v € H
is continuous. The representation p is unitary if p(g) is unitary for all g € G.
Remark 3. If p is unitary, then p(9)* = p(g™?).

Most of the time we will only consider complex Hilbert spaces, but there are
some very natural representations in real Hilbert spaces. The most natural bee-
ing the canonical embedding G C GL(n,R) for a linear group G. We will call
representations in a real Hilbert space real representations and use the notion
representations for representations in a complex Hilbert space. We write (p, H) for p
a representation of GG in the Hilbert space H. We list here some standard definitions
for representations. From now on (p, H), (7, K) etc. will denote representations of
G. We say that dim H is the dimension of p, denoted by d(p).

(1) Let (p,H) and (7, K) be two representations of G. An intertwining operator
is a continuous linear operator 7' : H — K such that

Tp(g) = n(9)T
for all g € G. We denote by I(p, ) the space of intertwining operators. If
m = p, then we set I(p) = I(p, p).

Lemma 24. Let p be a unitary representation of G. Then I(p)* = I(p).
Proof. Let T € I(p), u,v € H and g € G. Then
(u | Tp(g)v) = (Tu | p(g)v)

= (p(g™")Tu | v)

= (Tplg Hu|v)

= (plg™")u | T*v)

= (u | p(g)T"v).
As this holds for all u and v it follows that

T*p(g) = p(g)T™

and hence T* € I(p). As T = T** it follows that I(p)* = I(p)- O

(2) The representations p and 7 are said to be equivalent if I(p,7) contains
an isomorphis. If p and 7 are unitary and I(p,7) contains an unitary
isomorphism, then p and 7 are said to be unitary equivalent. We say that
p is a subrepresentations of 7 if I(p,7) contains an injective operator.
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(3) A subspace L C H is invariant if p(g)L C Lforall g€ G. Les LC H
be an invariant subspace. Then (pr,L) defined by pr(g) := p(g)|r for all
g € G, is a representation of G in L. We say that p is irreducible if the
only invariant subspaces of H are H and {0}.

(4) Let L C H be invariant. Then we can define a representation of G in H/L
by

pu/L(9)(u+L) = p(g)u+ L.

The representation (7, K) is a quotient of p if 7 is equivalent to pg/r, for
some invariant subspace L C H.

Example 19. Let G = SO(n) and let C*[R"] be the space of polynomials of degree
< k. Let C,[R™] be the subspace of polynomials of degree k. This is exactly the
space of polynomials that are homogeneous of degree k i.e.,

p(Ax) = Mp(x).
Define a representation p of G on CF[R"] by
[oe(@)P](z1, - - 20) = p(g™ 1, g7 Tn) -

This representation is not irreducible because Cix[R"] is invariant. Thus the re-
striction of pr to the space of polynomial that are homogeneous of degree n is a
representation of G. But even this representation is not irreducible.

Lemma 25. The multiplication operator M : C*~2[R"] —» CF[R"], p(x) = (2% +
ot 22)p(z) = ||z])* p(z) is an intertwining operator. In particular it follows that
Im(M) is an invariant subspace. If n > 2 then Im(M) # CF[R"].

Proof. We have
(M pr—2(9)p)(2) = ||2|I” pr—2(g)p(x)

= |lz|l*p(g ™)

=llg~"=|"p(97"x)

= pi(9)(Mp)(z)
where we have used that ||g~'z|| = ||z|| because g, and hence also g~!, is or-
thogonal. That Im(M) is invariant follows now from lemma ??. If n > 2 then
z¥ ¢ Im(M) and hence Im(M) # C*[R"]. O

(1) Let (p;,H;), j € J, be a collection of unitary representations, where J is a
finite or countable index set. Let

2
PH; =1 (u)),e; | uj € Hy, D [fuyl* < 00

jel JEI
with inner product
((wg) | (7)) := D _(uj | vj)m,
Jj€el
Then @;; H; is a Hilbert space. Define @;p; : G = GL (@jej H]’) by

(@;p;) (9) (uj) = (pj(g)u;) -
Then @;p; is an unitary representation. The representation @;p; is called

the direct sum of (p;),;.
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Lemma 26. Let (p,H) be unitary and L C H be invariant {0} # L # H.
Then

L'={ucH|YveL:(u|v)=0}
is G-invariant and H=L oLt .

Proof. Let v € L, u € L+, and g € G. Then
(v | plg)u) = (p(g™ v |u) =0
and hence p(g)u € L*. a

This lemma is not valid in general if we do not assume that p is unitary.
Define 2-dimensional representation p of R by

=g 1)
Then L = Ce; is invarinat. We have Lt = Ce, but
p(t)es =te; + ey g L.
Assume that we have some invariant subspace K such that C2 = L @ K.
Let u € K, u # 0. Then u = ae; + bes, with b # 0. Furhtermore
p(t)u = (a + tb)er + bes

Let b = —a/b. Then it follows that e; € L. But dimL = 1 and hence
L = Ces contradicting the fact that Ces is not invariant.

(2) It is too much to ask for that every unitary representation is a direct sum of
irreducible representations. Let (p, H) be a representation. A vector u € H
is called cyclic if p(G)u spanns H.

Theorem 10. Let p be a unitary representations. Then p is unitary equiv-
alent to a direct sum of cyclic representations.

The following theorem is also true for infinite dimensional representations, but
the prove requires the spectral theorem for selfadjoint operators in a Hilbert space,
so we only formulate it for finite dimensional representations.

Theorem 11 (Schur’s Lemma). Let p be a finite dimensional irreducible unitary
representations of G. Then I(p) = I(p,p) = Cid.

Proof. Let T € I(p). Then
1 1
T=§@+Tﬂ+§@—Tﬂ

= 5 (T+T%) + 5 (i(T ~ 1))

As the operators T 4+ T* and (T — T*) are both symmetric it is enough to show
that every symmetric intertwining operator is of the form Aid for some A € C. So
we can assume that 7' is symmetric. But then there exists an eigenvalue A € C.
Let

H(\) :={ueH|T(u)=Au}#{0}.
Let g € G and u € H()\) then

T(p(g)u) = p(9)T (u) = Ap(g)u..
Hence H()\) is G-invariant. As p is irreducible it follows that H = H(\). O
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Theorem 12. Let p be a unitary representation of G. Then p is unitary equivalent
to a direct sum of cyclic representations.

Proof. Let u € H be non-zero. Let

H(u) = [p(G)u] i= {Z Niplg)u| A €C, g € G} -
finite

Then p|H(u) is a cyclic sub-representation of p. If H(u) = H then we are done.

If H(u) # H let S be the collection of all sets U = {H;}icr where H; is a cyclic

sub-representation of H and H; L H; if i # j. Then {H(u)} € S so S # 0. For

UWeSletd <WifU CW. Let C be a chain in S. Then

V= U Ues
Uec
and U <V for all Y € C. It follows that S has a maximal element. Let & € S be

maximal. Let
W = @ U.
ueu
Then each U is cyclic. We claim that W = H. If H # W. Then W+ # {0} is
G-invariant. Let u € WL, u # 0, and let H(u) = [p(G)u] as before. Then H(u) is
cyclic and perpendicular to all U € . Hence YU {H(u)} € Sand U S UU{H(u)}
contradicting the maximality of &/. Hence W = H. O

9. FINITE DIMENSIONAL REPRESENTATIONS AND (G-BUNDLES

Constructions with vector bundles: Hom(E, F), E*, EQF, Q" E, A" E, differen-
tial forms, integration on manifolds, invariant measure on Lie groups, the modular
function. Invariant measure on G/K, G compact, K C G, close, G-bundles, basic
representation theory, hermitian structure, induced representations, representations
of compact groups and compact symmetric spaces. Spherical harmonics.



