Math 2025, What to learn for the final

• Time: Monday, Dec. 9 at 7:30–9:30 AM.

• Where: The usual class room, Lockett 239

• Look at all the old tests, quizzes, and homework!

• Functions, draw the graph of simple functions.

• Translation and dilation of functions. Draw the graph of f(t) and $f(\lambda t - r)$.

• Find λ and r using the graph.

• The ordered Haar wavelet transform and its inverse.

• The in place Haar wavelet transform and its inverse.

• The Haar wavelet transfrom of a function of two variables given by a 2×2 matrix and by a 4×4 matrix.

• Tensorproduct of functions, $f \otimes g(x,y) = f(x)g(y)$.

• How to represent a function on $[0,1) \times [0,1)$ by a matrix $(2 \times 2 \text{ and } 4 \times 4 \text{ matrix})$.

• Vector spaces. Be able to decide if a given set is a vector space or not. Examples:

(1) The kernel of a linear map $\{\mathbf{v} \in \mathbf{V} \mid T(\mathbf{v}) = \mathbf{0}\}.$

(2) The space of solutions to a system of linear equations like

$$\{(x_1,\ldots,x_n)\in\mathbb{R}^n\mid a_1x_1+\ldots+a_nx_n=0\}$$

where a_1, \ldots, a_n are real numbers. If there is **anything** other than zero in the right hand side, then the set is **not** a vector space.

(3) The subspace spanned by elements $\mathbf{v}_1, \dots, \mathbf{v}_k$, i.e.,

$$\mathbf{W} = \left\{ \sum_{j=1}^k s_j \mathbf{v}_j \mid s_1, \dots, s_k \in \mathbb{R} \right\}.$$

The space of polynomials of degree $\leq k-1$ is an examples of this, and so are the wavelet spaces V_N .

• Linear map. Be able to decide if a given map is linear or not. Examples are:

(1) All maps of the form $A\mathbf{x}$ where A is a $m \times n$ matrix. Notice that those maps have the form

$$\begin{bmatrix} a_{ij} \\ \vdots \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^n a_{1j} x_j \\ \vdots \\ \sum_{j=1}^n a_{mj} x_j \end{bmatrix}.$$

(2) Differentiation and integration,

(3) If you see any products like $x_i x_j$ or f'f, or powers like x_j^k , k > 1, then the map is not linear,

(4) If you see a nonzero constant added like x + 2y + 3x + 1 then the map is not linear. (The zero vector is not mapped to the zero vector).

• Inner products $\langle \cdot, \cdot \rangle$ and norms in

- (1) \mathbb{R}^n , $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{j=1}^n x_j y_j$;
- (2) \mathbb{C}^n , $\langle \mathbf{z}, \mathbf{w} \rangle = \sum_{j=1}^n z_j \overline{w_j}$;
- (3) and on spaces of functions on the interval [0, 1). If the functions are real valued then $< f, g > = \int_0^1 f(t)g(t) dt$. If they are complex valued then $< f, g > = \int_0^n f(t)\overline{g(t)} dt$.
- (4) Evaluate the inner product using the wavelet functions φ_j^N ;
- (5) Evaluate the norm of functions like φ_j^N , polynomials, and simple functions like cos and sin. Recall that $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ and that only the zero vector has norm zero. Furthermore the norm is always nonnegative.
- Orthogonal vectors, $\langle \mathbf{v}, \mathbf{u} \rangle = 0$.
- Orthogonal spanning sets; the set $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is orthogonal and every vector in \mathbf{W} can be written as a linear combination $\mathbf{v} = \sum_{j=1}^k s_k \mathbf{v}_j$. Recall that the constants s_j are then given by

$$s_j = \frac{\langle \mathbf{v}, \mathbf{v}_j \rangle}{\|\mathbf{v}_i\|^2}.$$

• Orthogonal projections: If $\mathbf{v}_1, \dots, \mathbf{v}_n$ is an orthogonal spanning set for the subspace $\mathbf{W} \subset \mathbf{V}$, then the orthogonal projection $P_{\mathbf{W}} : \mathbf{V} \to \mathbf{W}$ is given by

$$P_{\mathbf{W}}(\mathbf{v}) = \sum_{j=1}^{n} \frac{\langle \mathbf{v}, \mathbf{v}_{j} \rangle}{\|\mathbf{v}_{j}\|^{2}} \mathbf{v}_{j}.$$

- (1) Be able to work out the orthogonal projection of vectors in \mathbb{R}^n ;
- (2) Be able to work out the orthogonal projection of functions on [0,1) onto the wavelet spaces V_N . Recall that the wavelet space V_N is the space spanned by the **orthogonal** Haar wavelet functions φ_i^N . Thus

$$V_N = \{ \sum_{j=0}^{2^N - 1} s_j \varphi_j^N \mid s_0, \dots, s_{2^N - 1} \in \mathbb{R} \}.$$

• The Gram-Schmidt orthogonalization in \mathbb{R}^n and spaces of polynomials. Recall that the Gram-Schmidt orthogonalization works as follows:

Given a basis $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ for a subspace \mathbf{W} , then we can construct an orthogonal basis $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ for \mathbf{W} in the following way:

- (1) Let $\mathbf{v}_1 = \mathbf{u}_1$;
- (2) Let

$${f v}_2 = {f u}_2 - rac{<{f u}_2,{f v}_1>}{\|{f v}_1\|^2} {f v}_1$$
 .

(3) If we have already constructed $\mathbf{v}_1, \dots, \mathbf{v}_j$ and j < k, then we construct \mathbf{v}_{j+1} by

$$\mathbf{v}_{j+1} = \mathbf{u}_{j+1} - \sum_{s=1}^{j} \frac{\langle \mathbf{u}_{j+1}, \mathbf{v}_s \rangle}{\|\mathbf{v}_s\|^2} \mathbf{v}_s$$

- (4) Proceed until j = k.
- The discrete Fourier transform and its inverse for N=2 and N=4.