Math 7311, Analysis 1, Homework #12.
Due Monday, Nov 19 at 11:30 in Class

As usually (X, A, μ) denotes a measurspace. λ_k stands for the Lebesgue measure on \mathbb{R}^k.

1) Let $X = Y = [0, 1]$, A the Borel σ-algebra and $B = \mathcal{P}([0, 1])$. Let λ_1 be the Lebesgue measure on $[0, 1]$ and μ the counting measure. Finally let $D = \{(x, x) | x \in [0, 1]\}$. Show the following:
 a) D is measurable.
 b) Let $f(x, y) = 1_D(x, y)$. Then
 \[
 \int_X \left(\int_Y f(x, y) \, d\mu(y) \right) \, d\lambda_1(x) \neq \int_Y \left(\int_X f(x, y) \, d\lambda_1(x) \right) \, d\mu(y).
 \]

2) (August 2011) Assume that $\mu(X) = 1$. If g, f are positive measurable functions on X such that $fg \geq 1$ then
 \[
 \int_X f \, d\mu \int_X g \, d\mu \geq 1.
 \]
 (Hint: Use Hölder's inequality and #3 from the last homework.)

3) (From the book, p. 113.) Let $f \in L^1(\mathbb{R}^2, \lambda_2)$.
 a) For $n \in \mathbb{N}$ show that
 \[
 F_n(x) = \int_0^1 f(x, y + n) \, d\lambda_1(y).
 \]
 exists for almost all $x \in \mathbb{R}$.
 b) Prove that $F_n \in L^1(\mathbb{R}, \lambda_1)$. Determine whether or not the sequence F_n has a limit in $L^1(\mathbb{R}, \lambda_1)$.

4) (From the book, p. 113.) Let $p : \mathbb{R}^n \to \mathbb{R}$ by a polynomial in n real variables. Assume that p is not the zero polynomial. Prove that the set $p^{-1}(0)$ is a λ_σ-null set. (Hint: Do first $n = 1$ and then use induction using Fubini.)
Define \(F : [0,1] \times [0,1] \rightarrow \mathbb{R} \), \(F(x,y) = x - y \). Then \(F \) is continuous and hence measurable w.r.t. \(\mathcal{B} \otimes \mathcal{B} \cap \mathcal{P}[0,1] \). Here \(\mathcal{B} \) is the Borel \(\sigma \)-algebra. It follows that \(F \) is measurable. Thus \(D = F^{-1}(\{0\}) \) is measurable.

b) \(\int f(x,y) \, d\mu(y) = 1 \) for all \(x \in [0,1] \). Hence
\[
\int \int f(x,y) \, d\mu(y) \, d\lambda_1(x) = 1.
\]
On the other hand, for fixed \(y \) we have \(f(x,y) = 0 \) for almost all \(x \). Thus
\[
\int f(x,y) \, d\lambda_1(x) = 0
\]
and
\[
\int (\int f(x,y) \, d\lambda_1(x)) \, d\mu = \int 0 \, d\mu = 0.
\]
2) We have
\[
1 \leq (\int g) \frac{1}{2} - \frac{1}{2} \int g^2 \leq \int g.
\]
Hence
\[
1 \leq \int g^{\frac{1}{2}} \leq (\int g) \frac{1}{2} (\int g^2) \frac{1}{2}.
\]
It follows that
\[
1 \leq \left[(\int g) \frac{1}{2} (\int g^2) \frac{1}{2} \right]^2 = \int f \, d\mu \int g \, d\mu.
\]
3) a) Note first that
\[
F_n(x) = \int \int f(x,y) \, d\lambda_1(y) = \int f(x,y) \, d\lambda_1(y) \leq (\int f(x,y) \, d\lambda_1(y)) (\int g(y) \, d\lambda_1(y))
\]
As \(|f(x,y)| \leq (\int f(x,y) \, d\lambda_1(y)) \) and \(f \) is integrable, it follows that
\[
(x,y) \mapsto f(x,y) \, d\lambda_1(y)
\]
is integrable. Hence Fubini's theorem implies that \(F_n(x) \) exists for almost all \(x \).
b) Fubini's theorem implies that \(F_n \in L^1 \). We also have
\[
\int |F_n(x)| \, d\lambda \leq \int \int |f(x,y)| \, \lambda_{\Sigma_{n+1}}(y) \, d\lambda(x) \, d\lambda(y)
\]
\[
= \int \int |f(x,y)| \, \lambda_{\Sigma_{n+1}}(y) \, d\lambda(x) \, d\lambda(y)
\]
where \(G(y) = \int \int |f(x,y)| \, d\lambda(x) \). As \(G \) is integrable it follows that for \(\varepsilon > 0 \) there exist \(R > 0 \) s.t.
\[
\int \int |G(y)| \, d\lambda(x) < \varepsilon \quad \text{(*)}
\]
Let \(\varepsilon > 0 \) and let \(R \) be so that \((*) \) holds.
Let \(M \in \mathbb{N} \), \(M > R \). Then for \(n > M \) we have
\[
\int |F_n(x)| \, d\lambda(x) < \int G(y) \, d\lambda < \varepsilon.
\]
(\(|y| > R \))

Hence \(F_n \to 0 \) in \(L^1 \).

4) If \(n = 1 \) then \(P^{-1}(0) = \bigcup_{j=1}^{k} \{ x_j \} \) is a finite union of points. Hence \(\lambda_1(P^{-1}(0)) = 0 \). In general we have
\[
P^{-1}(0) = \bigcap_{n \geq 1} \{ x_n \}
\]
Let \(m > 1 \). For fixed \((x_1, \ldots, x_{n-1}) \in \mathbb{R}^{n-1} \) we know that \(x_n \mapsto P(x_1, \ldots, x_{n-1}, x_n) \) is a polynomial. Hence
\[
\int \mathtt{sp}(x_1, \ldots, x_{n-1}, x_n) \, d\lambda \leq \lambda_2(0) = 0.
\]
The claim follows by Fubini because
\[
\lambda_2(P^{-1}(0)) = \int \lambda_2(0) = 0.
\]