1[42P]) Calculate the derivatives:

a) \(\frac{d}{dx} \sin \left(\frac{1}{x^2 + 1} \right) = \) ________________

b) \(\frac{d}{dx} \sqrt{6x + \sqrt{4x}} = \) ________________

c) \(\frac{d}{dx} \left(\frac{x(x + 2)}{(4x^2 + 1)(2x + 2)} \right) = \) ________________

d) \(\frac{d}{dx} \sin^{-1}(x^2 + x - 1) = \) ________________
2[8P]) Let \(h(x) = \sqrt{x} \). Find \(h''(1) = \) \underline{\hspace{2cm}} .

3[8P] Find the equation of the tangent line of \(x^2y + 2xy^2x + 2y \) at the point (1, 1).
Answer: The equation of the tangent line is \underline{\hspace{2cm}} .

4[9P]) A conical tank has height 3 \(m \) and radius 2 \(m \) at the top. Water flows in at a rate of 2 \(m^3/min \). How fast is the water level rising when it is 2 \(m \)? (The volume of conical tank is \(V = \frac{4}{3}\pi r^2h \))
Answer: The water level is rising \underline{\hspace{2cm}} .

5[8P]) Estimate the quantity \(\sqrt{26} - 5 \approx \) \underline{\hspace{2cm}} using the Linear Approximation. Show your work, calculator will give you the wrong answer!
For Partial Credit, show your Work. You may use that \[\sum_{j=1}^{N} j^2 = \frac{N(N+1)(2N+1)}{6} \.

1[30P]) Suppose that
\[
f(x) = \frac{1}{x} + \frac{1}{x-1}.
\]
Then
\[
f'(x) = \frac{x^2 + (x-1)^2}{x^2(x-1)^2} \quad \text{and} \quad f''(x) = \frac{2(2x-1)(x^2-x+1)}{x^3(x-1)^3}.
\]

(A) Find all critical values of \(f(x) \). If there are no critical values, enter \textit{None}. If there are more than one, enter them separated by commas.
Critical value(s) =

(B) Use \textit{interval notation} to indicate where \(f(x) \) is increasing. If it is increasing on more than one interval, enter the union of all intervals where \(f(x) \) is increasing.
Increasing:

(C) Use \textit{interval notation} to indicate where \(f(x) \) is decreasing. If it is decreasing on more than one interval, enter the union of all intervals where \(f(x) \) is decreasing.
Decreasing:

(D) Find the \(x \)-coordinates of all local maxima of \(f(x) \). If there are no local maxima, enter \textit{None}. If there are more than one, enter them separated by commas.
Local maxima at \(x = \)
(E) Find the x-coordinates of all local minima of $f(x)$. If there are no local minima, enter $None$. If there are more than one, enter them separated by commas.
Local minima at $x =$

(F) Use interval notation to indicate where $f(x)$ is concave up.
Concave up:

(G) Use interval notation to indicate where $f(x)$ is concave down.
Concave down:

(H) Find all inflection points of f. If there are no inflection points, enter $None$. If there are more than one, enter them separated by commas.
Inflection point(s) at $x =$

(I) Find all horizontal asymptotes of f. If there are no horizontal asymptotes, enter $None$. If there are more than one, enter them separated by commas.
Horizontal asymptote(s): $y =$

(J) Find all vertical asymptotes of f. If there are no vertical asymptotes, enter $None$. If there are more than one, enter them separated by commas.
Vertical asymptote(s): $x =$
(K) Use all of the preceding information to sketch a graph of f.

2[15P]) A landscape architect wished to enclose a rectangular garden on one side by a brick wall costing $60/ft and on the other three sides by a metal fence costing $10/ft. If the area of the garden is 42 square feet, find the dimensions of the garden that minimize the cost.
Length of side with bricks $x =$ ____________
Length of adjacent side $y =$ ____________

3[15P]) Use L'Hôpital's Rule to evaluate the following limits:

a) $\lim_{x \to 0} \frac{1 - \cos(2x)}{\sin(3x)} =$ ________
b) \[\lim_{x \to 0^+} \sqrt{x} \ln(x) = \ \]

\[\lim_{x \to \infty} \sqrt{x^2 + 3x + 2} - x = \ \]

4[15P]) Use Newton’s Method with the function \(f(x) = x^2 - 2 \) and initial value \(x_0 = 1 \) to calculate \(x_1 \) and \(x_2 \).
\[x_1 = \ \] \[x_2 = \ \]

5[10P]) Evaluate the following two antiderivatives:

a) \[\int x(x + 2x^3) \, dx = \ \]
b) \(\int e^{x^2} dx = \)

6[15P]) Let \(f(x) = 2x^2 + x \).

a) Calculate \(R_4 \) on \([0, 1] \). \(R_4 = \)

b) For \(N \) an integer calculate \(R_N \) on \([0, 1] \). \(R_N = \)

b) Use (b) to find the area below the graph of \(y = x^2 \) and above the interval \([0, 1] \). The area is: \(\)
For Partial Credit, show your Work. You may use that \[\sum_{j=1}^{N} j^2 = \frac{N(N+1)(2N+1)}{6}. \]

1[30P]) Suppose that \[f(x) = \frac{1}{x} + \frac{1}{x-1}. \]
Then \[f'(x) = -\frac{x^2 + (x-1)^2}{x^2(x-1)^2} \quad \text{and} \quad f''(x) = \frac{2(2x-1)(x^2-x+1)}{x^3(x-1)^3}. \]

(A) Find all critical values of \(f(x) \). If there are no critical values, enter \textit{None}. If there are more than one, enter them separated by commas.
Critical value(s) = \textit{None}
\[x^2 + (x-1)^2 > 0 \quad \text{for all } x \text{ where defined} \]

(B) Use \textit{interval notation} to indicate where \(f(x) \) is increasing. If it is increasing on more than one interval, enter the union of all intervals where \(f(x) \) is increasing.
Increasing: \textit{Not increasing}
\[f'(x) < 0 \quad \text{for all } x \text{ where defined} \]

(C) Use \textit{interval notation} to indicate where \(f(x) \) is decreasing. If it is decreasing on more than one interval, enter the union of all intervals where \(f(x) \) is decreasing.
Decreasing: \((-\infty) \cup (0,1) \cup (1,\infty) \)

(D) Find the \(x \)-coordinates of all local maxima of \(f(x) \). If there are no local maxima, enter \textit{None}. If there are more than one, enter them separated by commas.
Local maxima at \(x = \textit{None} \)
\[\text{No local max or min as } f'(x) \text{ is never zero} \]
(E) Find the x-coordinates of all local minima of $f(x)$. If there are no local minima, enter None. If there are more than one, enter them separated by commas.
Local minima at $x = \text{None}$

(F) Use interval notation to indicate where $f(x)$ is concave up.
Concave up: $(0, \frac{1}{2}) \cup (1, \infty)$

<table>
<thead>
<tr>
<th>x</th>
<th>$2x-1$</th>
<th>x^2-x+1</th>
<th>x^3</th>
<th>$(x-1)^3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>posnl</td>
<td>$x \geq \frac{1}{2}$</td>
<td>TR</td>
<td>$x > 0$</td>
<td>$x > 1$</td>
</tr>
<tr>
<td>never</td>
<td>$x < \frac{1}{2}$</td>
<td>never</td>
<td>$x < 0$</td>
<td>$x < 1$</td>
</tr>
</tbody>
</table>

(G) Use interval notation to indicate where $f(x)$ is concave down.
Concave down: $(-\infty, 0) \cup (\frac{1}{2}, 1)$

(H) Find all inflection points of f. If there are no inflection points, enter None. If there are more than one, enter them separated by commas.
Inflection points at $x = \frac{1}{2}$

(I) Find all horizontal asymptotes of f. If there are no horizontal asymptotes, enter None. If there are more than one, enter them separated by commas.
Horizontal asymptote(s): $y = 0$

(J) Find all vertical asymptotes of f. If there are no vertical asymptotes, enter None. If there are more than one, enter them separated by commas.
Vertical asymptote(s): $x = 0, 1$
(K) Use all of the preceding information to sketch a graph of f.

2[15P]) A landscape architect wished to enclose a rectangular garden on one side by a brick wall costing $60/ft$ and on the other three sides by a metal fence costing $10/ft$. If the area of the garden is 42 square feet, find the dimensions of the garden that minimize the cost.

Length of side with bricks $y = \frac{\sqrt{12}}{2}$

Length of adjacent side $x = \frac{42/\sqrt{12}}{2}$

$$
\text{area} = xy = 42, \quad x = \frac{42}{y}
$$

$$
\text{cost} = 60y + 20x + 10y
$$

$$
\text{cost} = 70y + \frac{840}{y}
$$

$$
\text{cost}^1 = 70 - \frac{840}{y^2} = 0, \quad y^2 = \frac{840}{70} = 12
$$

$$
y = \sqrt{12}
$$

$$
x = \frac{42/\sqrt{12}}{2}
$$

3[15P]) Use L'Hopital's Rule to evaluate the following limits:

a) $\lim_{x \to 0} \frac{1 - \cos(2x)}{\sin(3x)} = 0$

$$
\lim_{x \to 0} \frac{2 \sin(2x)}{3 \cos(3x)} = 0
$$
b) \(\lim_{x \to 0^+} \sqrt{x} \ln(x) = 0 \)

\[
\lim_{x \to 0^+} \sqrt{x} \ln(x) = \lim_{x \to 0^+} \frac{\ln(x)}{x^{-\frac{1}{2}}} = \lim_{x \to 0^+} \frac{-\frac{1}{x}}{x^{-\frac{3}{2}}} = \lim_{x \to 0^+} \frac{-2x^{\frac{3}{2}}}{x} = 0
\]

= \lim_{x \to 0^+} (-2\sqrt{x}) = 0

c) \(\lim_{x \to \infty} \sqrt{x^2 + 3x + 2 - x} = \frac{3}{2} \)

\[
\lim_{x \to \infty} \sqrt{x^2 + 3x + 2 - x} = \lim_{x \to \infty} \frac{\sqrt{\left(1 + \frac{3}{x} + \frac{2}{x^2}\right)} - 1}{x} = \lim_{x \to \infty} \frac{\sqrt{\left(1 + \frac{3}{x} + \frac{2}{x^2}\right)} - 1}{x} = \lim_{u \to 0} \frac{\sqrt{1+3u+2u^2} - 1}{u} = \lim_{u \to 0} \frac{3 + 4u}{2\sqrt{1+3u+2u^2}} = \frac{3}{2}
\]

4[15P]) Use Newton's Method with the function \(f(x) = x^2 - 2 \) and initial value \(x_0 = 1 \) to calculate \(x_1 \) and \(x_2 \).

\(x_1 = \frac{3}{2} \)

\[
x_{n+1} = x_n - \frac{f'(x_n)}{f'(x_n)} = x_n - \frac{x_n^2 - 2}{2x_n} = \frac{1}{2}x_n + \frac{1}{x_n}
\]

\(x_0 = 1 \):

\(x_1 = \frac{3}{2} + 1 = \frac{3}{2} \)

\(x_2 = \frac{3}{4} + \frac{2}{3} = \frac{9 + 8}{12} = \frac{17}{12} \)

5[10P]) Evaluate the following two antiderivatives:

a) \(\int x(x + 2x^3) \, dx = \frac{1}{3}x^3 + \frac{2}{5}x^5 + C \)

\[
\int x^2 + 2x^4 \, dx = \frac{1}{3}x^3 + \frac{2}{5}x^5 + C
\]
1[14P]) Evaluate the integrals:

a) \[\int_{-2}^{2} (1 + t^2 - t^3) \, dt = \frac{28}{3} \]

1 and \(t^2 \) are even, \(t^3 \) odd. The integral is therefore the same as

\[2 \int_0^2 1 + t^2 \, dt = 2 \left[t + \frac{t^3}{3} \right]_0^2 = 2 \left[2 + \frac{8}{3} \right] = \frac{28}{3} \]

b) \[\int_0^{\pi/4} \tan^2(x) \sec^2(x) \, dx = \frac{1}{2} \]

\(\text{Let } u = \tan^2(x). \) Then \(du = 2 \tan(x) \sec(x) \, dx \)

\[\int_0^1 u \, du = \frac{u^3}{3} \bigg|_0^1 = \frac{1}{2} \]

2[7P]) Calculate the derivative \(\frac{d}{dx} \int_0^x \sqrt{t} \, dt = \frac{d}{dx} x^{3/2} = 2x^{1/2}x \).

Use the chain rule and the fundamental theorem of calculus.

3[21P]) Evaluate the integrals:

a) \[\int x \sqrt{1 + x^2} \, dx = \frac{2}{3} \left(1 + x^2 \right)^{3/2} + C \]

\(\text{Set } u = 1 + x^2, \quad du = \frac{1}{2} \, 2x \, dx, \quad x \, dx = \frac{1}{2} \, du \)

\[\frac{1}{2} \int u^{1/2} \, du = \frac{1}{2} \cdot \frac{2}{3} u^{3/2} + C = \frac{1}{3} \left(1 + x^2 \right)^{3/2} + C \]
b) \[\int x^3 \sqrt{1 + x^2} \, dx = \frac{1}{2} \left(\frac{5}{2} \left(1 + x^2 \right)^{\frac{5}{2}} - \frac{1}{3} \left(1 + x^2 \right)^{\frac{3}{2}} \right) + C \]

\[u = 1 + x^2 \quad \text{and} \quad \frac{du}{dx} = 2x \]

\[\frac{1}{2} \int (u - 1) u^{\frac{1}{2}} \, du = \frac{1}{2} \int u^{\frac{3}{2}} - u^{\frac{1}{2}} \, du = \frac{1}{2} \left[\frac{2}{5} u^{\frac{5}{2}} - \frac{3}{3} u^{\frac{3}{2}} \right] + C \]

\[\int \frac{3}{9 + 4x^2} \, dx = \frac{1}{2} \arctan \left(\frac{2x}{3} \right) + C \]

\[\int \frac{3}{9 + 4x^2} \, dx = \frac{1}{3} \int \frac{dx}{1 + \left(\frac{2}{3} x \right)^2} \]

\[\text{Let } u = \frac{2x}{3}, \quad \frac{du}{dx} = \frac{2}{3} \]

\[= \frac{1}{2} \int \frac{du}{1 + u^2} = \frac{1}{2} \arctan(u) + C = \frac{1}{2} \arctan \left(\frac{2x}{3} \right) + C \]

4(14P) a) Sketch the region enclosed by the curves \(y = \frac{1}{x}, \quad y = \frac{1}{x^2}, \quad x = 2. \)

b) Find the area of the region in part (a). Area = \(\frac{\ln(2)}{2} - \frac{1}{2} \)

\[\int_{1}^{2} \frac{1}{x^2} \, dx = \ln x + \frac{1}{x} \bigg|_{1}^{2} = \ln(2) + \frac{1}{2} - 1 = \ln(2) - \frac{1}{2} \]
5(14P) Let \(V \) be the volume of a right circular cone of height \(h = 4 \) whose base is a circle of radius \(r = 2 \).

a) Find the area \(A(y) \) of the horizontal cross section at a height \(y \).
\[
A(y) = \frac{\pi}{r^2} \left(2 - \frac{y}{2} \right)^2 = \frac{\pi}{4} (4 - y)^2
\]

\[
\frac{h}{r} = \frac{z}{x} = \frac{4-y}{x}, \quad dx = 4-y \cdot x = 2 - \frac{y}{2}
\]

b) Calculate \(V \) by integrating the cross-sectional areas. \(V = 8\pi \).
\[
\frac{\pi}{4} \int_0^4 (4-y)^2 \, dy = -\frac{\pi}{4} \int_0^4 u^2 \, du
\]
\[
u = 4-y \quad \Rightarrow \quad du = -dy
\]
\[
= \frac{\pi}{4} \int_0^4 u^2 \, du = \frac{\pi}{8} u^3 \bigg|_0^4 = \frac{\pi}{8} (64) = 8\pi
\]
In the following three problems set up, but do NOT evaluate, an integral needed to find the volume. Do not forget the limits of integration:

6[10P]) Set up an integral for the volume of the solid obtained by rotating the region under the graph of the function \(f(x) = 3x^2 - x \) over the interval \([1, 2]\) about the axis \(y = -1 \).

\[
V = \int_{1}^{2} \pi \left((3x^2 - x + 1)^2 - 1 \right) \, dx \quad (\text{you can also simplify this})
\]

\[
R = f(x) + 1 = 3x^2 - x + 1
\]

\[
r = 1
\]

7[10P]) Set up an integral for the volume of the solid obtained by rotating the region enclosed by the graphs \(x = \sqrt{y} \) and \(x = y^2 \) about the \(y \)-axis.

\[
V = \pi \int_{0}^{1} y - y^2 \, dy
\]

\[
= \pi \left[\frac{y^2}{2} - \frac{y^3}{3} \right]_{0}^{1}
\]

8[10P]) Set up an integral needed to compute the volume of the solid obtained by rotating the region enclosed by the graphs of the functions \(y = x^2 \), \(y = 8 - x^2 \) and \(x = 0 \) about the \(y \)-axis by using the Shell Method.

\[
V = \int_{0}^{2} 2\pi x \left(8 - 2x^2 \right) \, dx
\]

\[
= 2\pi \int_{0}^{2} x \left(8 - 2x^2 \right) \, dx
\]

\[
= 8 - x^2 \quad (8 - x^2 - x^2 = 8 - 2x^2)
\]

\[
8 - x^2 = x^2 \quad 8 - 2x^2, \quad x = 2
\]