Problems for the wavelet class

You have to turn in at **least** the solution to **one** problem every week. The problems are due in the beginning of class each Friday, i.e., **the deadline is Friday at 10:40**. You can turn in more than one problem from each excersise set, but I will only grade one problem in all details.

Exercise set 1. Due Friday Feb. 7

1) Evaluate the Fourier transform of the 1-periodic function given by

$$f(t) = t$$
, $-1/2 \le t < 1/2$.

Simplify the Fourier series by groupping together the even and odd n's and write the outcome as a series involing cos and sin.

2) Evaluate the Fourier transform of the 1-periodic function

$$f(t) = t$$
. $0 \le t < 1$.

Simplify the Fourier series by groupping together the even and odd n's and write the outcome as a series involing cos and sin.

Remark 1 If you have a graphical software so that you can plot the partial Fourier series $\sum_{n=-N}^{N} \hat{f}(n)e^{2\pi int}$ for different N's do that and discuss the result.

Remark 2 Notice that the functions in exercise 1 and exercise 2 agree for $0 \le t < 1/2$ but the Fourier coefficients are not the same. This is therefore one example on how **global** behaviour of the functions affects the Fourier transform.

Exercise set 2. Due Friday Feb. 14

1) Let $f \in L^2(\mathbb{R})$ and $g \in C_c^{\infty}(\mathbb{R})$, where C_c^{∞} stands for *smooth* and with *compact support*. Show that f * g is smooth and that for all $n \in \mathbb{N}_0 = \{0, 1, 2, \ldots\}$ we have

$$(f * g)^{(n)} = f * g^{(n)}$$
.

2) Show the following: Let $f \in L^1(\mathbb{R}^n)$ and $g \in C_c^{\infty}(\mathbb{R}^n)$. Assume that $g(x) \geq 0$, $g(0) \neq 0$ and $\int g(x) dx = 1$. For t > 0 define

$$g_t(x) := t^{-n}g(x/t).$$

Show that $\int g_t(x)dx = 1$ and that in the L^1 -norm.

$$\lim_{t\to 0} f * g_t = f.$$

3) Let A < B be arbitrary. Evaluate the Fourier transform of $\chi_{[A,B]}$.