An idea how to solve some of the problems

5.2-2. (a) Does not converge: By multiplying across we get

2k 1/2
> ek > kP —1/2 k> —1/2
22 -1~ k < - /2 k> /
Hence
2k 1/2
>
2k2 —1 — &k

As the series Y oo, % diverges the same must hold for the original series.
(b) Converges: We have (k — 1)/(k2¥) < 27% and the series > r, 27" converges.
(c) Divergent: In this case 1/(2k—1) > 1/(2k) (multiply in cross) and the series >~ 1/k diverges.

(d) Divergent:

5.2-4. Assume first that p > 1 and take f(x) = x7P. Then f is monotonically decreasing to zero.
Furthermore

/ oof(t)dt li Tt—pdt li Lopwy L .
= lim = Im —- —— = —— < 0.
1 T—o0o 1 T—>ool—p p—l p—l

The claim follows then from Theorem 5.2.2.

Let now p = 1. We have flT e 'dr = logT — oo as T — oo. It follows that [~ 1/zdz does
not exists and hence 220:1 k~! does not converge according to Theorem 5.2.2. If 0 < p < 1 then
1/k? > 1/k and hence Y-, k7 diverges.

5.2-8. Suppose z > 0 for all k£ € N, and suppose that limy_., /7, = L exists.

(a) If L > 1 then > 7, x) diverges: Let 1 < r < L. Then there exists N € N such that for all
n > N we have r < ¥/zj. Hence z; > r*. The claim follows now because Zz‘; N r* does not exists.

(b) If L < 1 then Y 7, xy converges: Let L < r < 1. Then there exists N € N such that ¢z, <r
for all n > N. This implies that x; < r* and hence

o o0
E T, = T1+...+TN-1T g Tk
k=1 k=N

o0
< x1+...+xN_1+Zrk<oo.
k=N



Hence the series converges.

(c) If L =1 there is no information: Let z; = 1 for all k. Then {/x; = 1 and the series Y ,- @y
diverges. On the other hand, if z;, = k72 then limj_.o /7, = 1 as we will see in a moment and this
time the series -, ) converges.

Let n € N and consider the sequence x; = v/ k™. Taking the log we see that (using L’Hospital)

nlogk . n

lim log x; = lim
k—o0 k—o0

Hence

lim z, =¢” =1.
k—oo

5.2-11: Test for convergence:
(a) Yooy k!/k*: Convergent because with ), = k!/k* we have

o RGr D AR Ves

(b) 32° k/e™: Convergent because

(k+1)et”

W = (1 + 1/k)€_2k_1 — 0

as k — oo.
(¢) So,1/(logk)*: Convergent. Use the root test (fill in the details).

5.3-1. We have
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5.3-2. If the sequence {c;} is summable then it follows that ¢ is bounded, i.e., there exists a C' > 0
such that |c;| < C for all k£ (use that lim ¢, = 0). Hence

o o
Z|ckzzk| < CZ|$|k < 00
k=1 k=1



for 0 <z < 1. If z = 1 then c;2* = ¢;, is summable by our assumption on cj.

5.3-6. We do (a) Let € > 0 be given. Let N > 2/e. Then, if n > m > N there exists p € (1/n,1/m)
such that

P = 51/m) = 70 (3= )

n m

As |f'(p)] < 11it follows that

1 1

n m

|f(1/n) = f(1/m)| <

< 3 <€
I .
It follows that {f(1/n)} is a Cauchy sequence and hence

lim f(1/n) =1L

n—o0

exists.

(b) Let now {zx} be an arbitrary sequence x; — 0. Then, by the same argument as above it
follows that {f(zx)} is a Cauchy sequence and hence lim f(zy) = L, exists. Define a new sequence
yor = 1/k and yorp 11 = . Then y, — 0 and the above argument show that limy f(yx) exists. Add
the details to show that this implies that L = L; (use subsequence).

5.4-4. It was shown that all the limits exists, so we will not do it here (on an exam you would have
to do the details). Let v,w € V and ¢ € R. Then

To(cv +w) = T, (v) + T, (w)
because T, is linear. As all the limits exists we have:
T(cv+w) = lim (T,(cv+ w))
= lim (¢T,(v) + T, (w))
= clim T,(v) + lim T, (w)
= cI'(v)+T(w)

which shows that 7' is linear.

5.4-6. First we have to show that || - || is a norm on £,. Let 2 = {zx},y = {yx} € ls and ¢ € R.
Note first that
e + Y| < [ezel + [yl = lellze] + lye] -



Hence

ez + ylloo = Sup ez + yi

IN

Sgp(lwfkl + |yx)
< ICISgplaflirSt;plykl
= ell|z]loo + [|¥loo

Furthermore ||z|| = 0 if and only if all x = 0 which happen if and only if 2 = 0.
Next we have to show that /., is complete. Let {z"} be a Cauchy sequence in f.,. Let ¢ > 0 be
given. Then there exists N € N such that for all n,m > N we have

|lz" — ™| = sup |z — x| < €/2.
k

It follows that the sequence {z}}, is a Cauchy sequence in R and hence there exists a z; € R such
that 2} — . Let © = {x;} we have to show that 2™ — z and that x € (.. Let N be as above.
Then

|z — | < €/2.

Letting m — oo this implies that
lzp — k] <€/2 < e
Thus
(Vn > N) |l — x]|o0 < €
and
2]loe = [l = 2™ + 2V [loo < [l — 2™ oo + |l2"]loo < €+ [|2™]|oo < 00

This proves both statements.

5.4-7: Recall that the sequence 2™ € ¢; is defined by 2} = (n + 1)/(n2%).
a) Show that 2" € ¢;: We have

> n+1 _k - —k
n — <
la"l =) ——27"<2) 27 <o
k=1 k=1
because
n+1

<l+1/n<2.



b) By the above we have that

lim 2f =27% =,
n—infty

exists and the sequence z = {z;} is in ¢; because > - 27" < co.

c¢) We have |2} — 2x| = —. Furthermore Y7, 27" = 1. Hence

[e.e]
1
2" —ally =) laf —aul = .
k=1 "

Let € > 0. Let N € N be such that N > 1/e. Then, if n > N we have

<1<
S €.

S|

2" =]y =

5.4-8 In this problem we define 2" by o = 1if k < n and 2} = k™2 if k > n.
(a) We have

o™y =D ap=n+ Y k*<oo. (1)
k=1

k=n+1
Hence z™ € /.

(b) Let k € N, then for all n > k we have 2} = 1. Hence x) = lim,,_, 2} = 1 for all k. In particular
x=A{xp} & 1.

(¢) The sequence {z"} can not be a Cauchy sequence because otherwise limz™ = = € ¢; would
exists.

5.5-2. If 0 < o < 1 show that >, 2% conveges uniformly on [0, a].

Solution: We have M, = sup,cpq [2"| = o* and hence the series y° | M}, converges. The claim
follows by the Weierstrass M-test.

5.5-4: If Y772 | fi, converges uniformly on D, prove that | f,,|| — 0 as n — co. Is the converse true?

Solution: As Y2 f converges uniformly it follows that the sequence of partial sums s,, = Y ,_, fi
is a Cauchy sequence in the supremum norm. Let € > 0. Then there exists a N € N such that

Vn,m > N IS — Smlleo < €.

In particular for n > N:
[ fallso = 1I$n — Sn—illoo < €.



The converse is not true. For that let fy(z) = 1 on [0,1]. Then || fx|| = 1/k — 0, but > 7=, fu(z)
does not even converge at x = 1.

5.5-5: (a) The sequence Y~ e " converges uniformly on [1, 00). For that note that on this interval
we have

eFr < e = (1/e)"
and the series Y 7o (1/e)* converges. The claim follows then by the Weierstrass M-test.

(b) >0, Sm(km converges uniformly on R because

sin(kx)

k3 =

1
a3

and the series Y r | 1/k? converges. The claim follows then by the Weierstrass M-test.
(c) The series Y ;2 sin®(x) converges uniformly on [0,7/4] because on this interval |sin®(z)| <
(1/+/2)* and the series Y 5, (1/v/2)* converges.

(d) No, the series Y -, tan® x does not even converge at z = /4.

5.6-2: (a) We have to show that

- (_1)k 2k+1
2 E+1

k=0

[\)

converges uniformly on [—1, 1]. We note that for all z € [—1, 1] the series >, % +1 CLE 2k g alternating

and xp = Q‘Ck—ifl — 0 monotonically Hence Zk x, exists and by Theorem 5.1.2 we we have with

5n(T) = D50 2k+1 " and s(z) = > o 2k+1

x2n 1

< .
2n+2 7 2(n+1)

250 (2) — ws(x)| = |2l|sn(2) = s(2)| < Tppy =2 -

Hence .

Zn (—1) 2k+1 1
-~ 7 _ < _
| e %1 s(@llee < 2(n+1)

which proves the claim.

(b) Define g(z) = >, (27ci)f 2% then it follows by (a) and Theorem 5.5.1, part a, it follows that
g(z) is continuous on [—1,1]. As g(z) = tan~'(z) for z € (—1,1) and tan~' z is continuous, it
follows that g(+1) = tan™!(+1).



(c) We know that tan™'(1) = §. Hence

7 =4tan (1) 4§: (1" :
— 2k +1

5.6-4: We have Y 7 tF = L

t

if |t| < 1. Hence, by Theorem 5.6.1 and Theorem 5.5.1:

=t N /t du
Z :Z—: = —log(l —u).
k:0k+1 k:lk 0o 1—u
Taking t = 1/2 we get
= 1
Z—z—log(l/?)zlogQ.
—~ k2

5.6-5: Find the interval of convergence of the series > cyz*. We use the ratio test: In case

Ck+1
Ck

lim

k—o00

=L

exists, then
R =

1
T
(In case L = 0 this reads R = oo and L = oo reads R = 0.)
(a) ¢ = 1/(k!). Then
Cpy1 1
—=——=0.
Ck kE+1
Hence the power series converges for all x € R.

(b) a = —1 and ¢ = (=1)*/(k 4+ 1). Then

Ck+1

Ck

lim =1
k—oo

and hence R = 1. If x = 0, then we have a alternating series so the power series converges at x = 0.
If x = —2 then we are looking at the series

© (_1)2k+1
2 T

k=0



which does not converge. So the power series converges on (—2, 1.

(c) cp = K!/kF so
IR I A T
/o= B - \Tv k) Ve

What about the endpoint?
(d) cx = 1/k*. Then

) K 1 B _ 1 0
PR T e+ )R T k1 \(k+1)) T k+1
Hence the power series converges for all z € R, i.e, R = cc.

5.7-2: The function e® is analytic at 0 and so is tan~1(x). It follows by Theorem 5.7.3 that e® tan~! x
is analytic at 0. There are two ways to find the coefficient of 2. First, just differentiate the function
four times and use that ¢, = f®(0)/k!. The other way is to use that if f(z) = > p,axz® and
g(x) =Y 72, bpa® for |z] < R, then

SIS 00 k
= Z Z akbjxj"‘k — Z (Z ajbk—j> flfk
k=0 \j=0

k=0 j=0

Hence the coefficient of z* is i
Z ajbk_ g -
§=0
It follows then from formula (5.2) p. 140 that the coefficient of z* is

i1 —1)4 1 1+1 1+1 "
——:— -+ ———+ — =simpli
)+1 9 710 18 24 Py

5.7-3: We have

I SO MPEE RS W A (O
tan™(z) Z 2k _|_ 1 B Z k! v

k=0 k=0

Note, that the coefficients for the even powers of x are all zero. Hence f(**™(0) = 0. In particular
fA90(0) = 0. We have 101 = 2-50 + 1, so k = 50, and hence

1
1010} = 101! - — = 100! .



5.7-4: (a) The function f(z) = |z| can not be analytic at zero, because it is not differentiable at
zero (recall: analytic functions are smooth!).

(b) The function can not be analytic at zero because we have

klx x>0
(k—1) _ )
P ={ a2

and this function is not differentiable at zero.

5.7-5: (a) True, the function is given by f(x) = x* on the interval (0,1).
(b) True, we have f(x) = 0 on the interval (—1,0).

(c) No (see problem 5.7-3 with k = 4.

5.7-6. Let La?
e x#0
f(x)_{ 0 , 2=0

Note that f is co-times differentiable at all points x # 0 as that holds for the exponential function
and the function z — —1/z2%.

(a) To see if f'(0) we need to see if the limit
f(h) = F(O) _ o e

lim = lim
h—0 h h—0

exists. Note that this limit is of the form 2 so we can use L'Hospital. We set u = 1/h and consider
the limit u — oo:

_ 2
o—1/h

. . u
lim = lim —
h—0 h, u—oo e

) 1
= lim ——
u—oo 2ueY
= 0

Hence, f'(0) exists and is equal to zero, f'(0) = 0.
Before we do the next parts let us note the following: Let £ € N, then

_ 2
o—1/h k

lim = lim —
h—0 hk U— 00 6“2




kuk—l
= lim
u—oo 2uet
k(k — 1)ur2
= lim —( > Ju 5
u—oo 2e%” 4 4uet
5 k!
T une gu)e”
=0

where q(u) = 2*u¥ + ... is a polynomial of degree k.

(b) We have

—1/22 /.3
pa={ a2

Hence, by the above argument
f'(h) = f'(0) _ 27"
h R

Hence the derivative at zero exists and f’(0) = 0.

—0 h—0.

(c) Use induction to show that there exists an n € N and constants ¢;, j =0, ..., n such that
n 6*1/12
f(k)(x) _ ijo Ci—— » T #0
0 , =20
Hence, the above argument shows, that f*+1)(z) exists for all z € R and f*+9(0) = 0.
5.7-8: We have .
SiIl(SL’) _ Z (_1)k x2k+1
YGYRIRERY] .
prd (2k + 1)!
Hence Smmﬁ is analytic and
sin(z) = i 7(_1)k z?
— (2k +1)! '

(Fill in the details.)

5.8-1: The function f(x) = 1/x is unbounded around 0, whereas every polynomial is bounded.
Hence, assume that p(x) is a polynomial. Then

> If(@) = pla)] = oo.

z€(0,1)



5.8-2: The function f(z) = e” is unbounded on R. Even more holds. Let p(z) = 3 7_;a;a’ be a
polynomial with a,, # 0. Then for = big, we have

e(E

— —ap —ap_1/T— ... —ag/x"| — 0

" | <

" —p(a)| =

as r — OQ.

5.8-3: (a) Assume that f € C([0,1]) and that fo x)z*dz = 0 for all k = 0,1,.... Assume that
f #0, Then

/1f(x)2d:c:A>O.
0

/0 f(@)p(z) do =
If—pl2 > / (f(z) — p(a))? da

_ /f dx—2/f d:l:+/1p( )2 da

> A>0.

Let p(z) be a polynomial. Then

and

Let 0 < ¢ < A. Then, by Weierstrass Approximation Theorem, there exists a polynomial p such
that

If = pllc <e< A
a contradiction.
(b) Define Ty(f) = fol f(x)z*dz, k = 0,1,.... Then Ty(af + g) = aTx(f) + Ti(g) because the
Riemann integral is linear. Furthermore

Tw(f)] = i x)z® dx
1 2)|x* dx

< / (@)

1
< 11fllo / i+ di

[ £l oo
E+1°



Hence T}, is bounded.

(c) Assume that f, g € C([0,1]) and that Ty(g) = Tx(f). Then Ty(g — f) = 0 for all k and hence by
() g— f=0org=1.

5.8-4: Let k(z) = Lyj_11(z) where x(_11 denotes the indicator function of the interval [—1, 1].

Then .
kn(x) = nk:(n:v) = §X[—1/n,1/n]

1 n 1/n
/kn(x)dx:—/ dr =1.
0 2 —1/n

If 6 > 0, then there exists an n € N such that + < § and hence k,(z) =0 for § < |z] < 1.

(fill in the detail) and



