Wavelets, Problems Due, Friday March 7

1) Suppose that $f, \psi \in \mathcal{S}(\mathbb{R}^n)$. Show that for each $x \in \mathbb{R}^n$ that the following integrals exists and

$$f(x) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} S_{\psi} f(b, \omega) \psi_{b,\omega}(x) \, d\omega db$$
$$= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} S_{\psi} f(b, \omega) \psi_{b,\omega}(x) \, db d\omega$$

- 2) Assume that n=1. Let $\psi(x)=e^{-\pi x^2/2}$. Find the reproducing kernel for the Hilbert space $\mathcal{H}_{\psi}=\operatorname{Im}(S_{\psi})$. (Hint: The reproducing kernel will again have something to do with the Gaussian.)
 - 3) Let $\psi \in L^2(\mathbb{R}^n)$. Show that $S_{\psi}: L^2(\mathbb{R}^n \times \mathbb{R}^n) \to L^2(\mathbb{R}^n)$ is given by

$$S_{\psi}^{*}(F)(x) = \int_{\mathbb{R}^{n}} \mathcal{F}_{2}(F)(b, -x)\psi(x - b) db$$

where \mathcal{F}_2 stands for the Fourier transform in the second variable. Thus, if $F \in L^2(\mathbb{R}^n \times \mathbb{R}^n)$ then $\omega \mapsto F(b,\omega) =: F_b(\omega)$ is in $L^2(\mathbb{R}^n)$ for almost all b and hence $\mathcal{F}_2(F)(b,\omega) := \mathcal{F}(F_b)(\omega)$ is well defined for almost all $b \in \mathbb{R}^n$. (Hint: Try first ψ and F in \mathcal{S} or even F of the form $F = f \otimes g : (x,y) \mapsto f(x)g(y)$ for $f,g \in \mathcal{S}$.)