§8 The real life inversion

Recall from the last lecture that for $f \in S(\mathbb{R}^d)$, in particular $f \in C_c^\infty(\mathbb{R}^d)$, i.e. a smooth function with compact support J, we have

$$f(x) = c \int \int_{J} \frac{\partial \hat{f}(\omega, p)}{x \cdot \omega - p} dp \, dw.$$

There are two obvious problems with this inversion formula:

- The singularity of the kernel function $\frac{1}{x \cdot \omega - p}$.

But note that it is mainly located at $p = x \cdot \omega$ which is the place where the measurements are done.

- The differentiation $\frac{\partial}{\partial p} \hat{f}(\omega, p)$.

Note, that both of these problems come from the multiplication by $|x|$ in the frequency domain

$$\hat{g}(\omega, t) = c \int |\omega| \hat{f}(\omega, r) \, dt.$$

The multiplication by $|x|$ can be
Factorized into two parts:
1. Multiplication by $\lambda \Leftrightarrow$ corresponds to the derivative ∂_p in the inversion formula.
2. Multiplication by $\text{sign} \lambda$ which corresponds to the Hilbert transform.

The simplest idea would be to replace $\lambda \Leftrightarrow M$ by a smooth version, that also vanishes at ∞.

This would replace
\[
\int_{-\infty}^{\infty} \partial_p Rf(w,p) \frac{dp}{x \cdot w - p}
\]
by
\[
\int_{-\infty}^{\infty} (x \cdot w - p) Rf(w,p) dp
\]
which can "easily" be discretized using a finite sum approximation to the integral. Another way to look at this is the "filtered backprojection" which is based on the following lemma.
Lemma. Let \(f \in S(\mathbb{R}^d) \) and \(g \in S(\mathbb{R}) \).

Then
\[
(R^v g) * f(x) = R^v(g * _p Rf)(x)
\]

Remark: Here the subscript \(p \) in the convolution signs indicates convolution in the \(p \)-variable.

\[
g * _p f(w, \cdot) = \int_{-\infty}^{\infty} g(p-t) f(q) \, dt
\]

Proof: We have
\[
(R^v g) * f(x) = \int_{\mathbb{R}^d} R^v g(y) f(x-y) \, dy
\]

\[
= \int_{\mathbb{R}^d} \int_{S^{d-1}} g(w, y \cdot w) \, d\sigma(w) f(x-y) \, dy
\]

\[
= \int_{S^{d-1}} \int_{\mathbb{R}^d} g(w, y \cdot w) f(x-y) \, dy \, d\sigma(w)
\]

\[
= \int_{S^{d-1}} \int_{\mathbb{R}^d} g(w, y \cdot w) f(x-pw-z) \, dz dp \, d\sigma(w)
\]

\[
= \int_{S^{d-1}} \int_{\mathbb{R}^d} g(w, p) f((x \cdot w - p)w - z) \, dz dp \, d\sigma(w)
\]

\[
= \int_{S^{d-1}} \int_{\mathbb{R}^d} g(w, p) Rf(w, x \cdot w - p) \, dp \, d\sigma(w)
\]
This can now be used to approximate the inversion in parallel-beam scan.

Other algorithms should be used for other types of scanning.

- If \(R^v \) would be the \(\delta \)-distribution then we have

\[
R^v g \ast f = \delta \ast f = f = R^v (g \ast Rf)
\]

which would give an exact inversion.

- So we choose \(g \) such that

1. \(g(w \cdot p) = g(p) = g(c - p) \) does not depend on the direction \(w \)
2. \(R^v g \) is "close" to the \(\delta \)-distribution
Then we get
\[f \sim R_y \ast p(x) = \int_{S^{d-1}} g \ast p \hat{f}(w, x, w) dw \]
approximate the inner integral by a Riemannian sum
\[\approx \int h \sum_{j} g (x \cdot w - jh) \hat{f}(w, jh) dw \]
the inner integral by a finite sum
we would readily only take finite sum
\[\approx \frac{h}{Nh} \sum_{k=0}^{N} \sum_{j} g (x \cdot w - k \cdot jh) \hat{f}(w, k \cdot jh) \]
\[\text{"known measurements"} \]

We know this for a finite sequence of inputs \(\{ x, w, k \cdot jh \} \) so we can easily program this.

Remark

1. The starting point is to fix the "filter" \(g \). A priori knowledge about \(f \) (the material) can help here (low pass filter etc.)

This way the linear map
\[S^{-1} g \ast p \]

can be chosen arbitrary close to
the inverse of the Radon transform on "good" functions, or so that it preserves, enhances, properties that we are interested in.

(2) The numbers $g(\mathbf{x} \cdot \mathbf{w} - h_j)$ can be stored and we do not have to redo them each time.

(3) We then get numbers that are close to $f(\mathbf{x}_k)$, but what does this "really" tell us about f, are there error estimates, ... see the book by Natterer.

§9 Sampling theory

The final question that we will now discuss is the following: We can only use finitely many \mathbf{x}, so how exactly do the numbers $2f(\mathbf{x}_k)$ determine the function f? How can we reconstruct f from the discrete values?
Probably the best known theorem is the Whittaker-Shannon-Kotel'nikov (WSK) - sampling theorem for band-limited functions. From now on we will assume that $d = 1$.

Definition. The function $f \in L^2(\mathbb{R})$ is called band-limited if \hat{f} has compact support, i.e., $\int_{|\lambda| > R} |\hat{f}(\lambda)|^2 d\lambda = 0$.

In this case,

$$f(x) = (2\pi)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \hat{f}(\lambda) e^{i\lambda x} d\lambda$$

which implies that f extends to a holomorphic function and hence f is determined if we know $\{f(x_j)\}_j$, any sequence $(x_j)_j$ which has a limit point. But this does not tell us how to construct f from $\{f(x_j)\}_j$.

Assume for simplicity that $R = \pi$, then the functions

$$\theta_n(x) = \frac{1}{\sqrt{2\pi}} e^{inx}$$

form an orthonormal basis for $L^2([-\pi, \pi])$ and hence

$$\hat{f} = \sum (\hat{f}, e_n) e_n$$

But

$$(\hat{f}, e_n) = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} \hat{f}(\lambda) e^{-in\lambda} d\lambda = f(-n)$$
We also note that

\[
\int_{-\pi}^{\pi} e^{i(nx)} e^{i(n+x)} dx = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} e^{i(n(n+x))} dx
\]

\[= \frac{1}{\sqrt{2\pi}} \frac{\sin(\pi(n+x))}{\pi(n+x)}\]

\[= \sqrt{2\pi} \sin c(\pi(x+n))\]

It follows that

Theorem (WSK). Assume that \(\text{supp} \hat{f} \subseteq [-\pi, \pi]\).
Then

\[f(x) = \sum_{n=-\infty}^{\infty} \hat{f}(m) \sin c(\pi(x-n)).\]

In general, if \(\text{supp} \hat{f} \subseteq [-R, R]\), then

\[f(x) = \sum_{n=-\infty}^{\infty} \hat{f}(\frac{n\pi}{R}) \sin c(R(x-\frac{n\pi}{R}))\]

The only problem with this formula is that

\[|\sin c(x)| \sim \frac{1}{1+x^2}, \quad |x| \gg 0\]

so the sum converges very slowly. One way is to replace \(X_{[-R, R]}\) by a smoother function

\[f(x) \sim 1 \text{ on } [-R, R].\]

Will need go more into that.
Now, if \(g \) has compact support as is the case in the Radon transform of "real" objects, then \(g \) is not analytic so \(g \) can not be bandlimited, thus for all \(R \):

\[
g(x) = \sum_{n=-\infty}^{\infty} g\left(\frac{n \pi}{R}\right) \text{sinc}\left(R(x - \frac{n \pi}{R})\right)
\]
as a function of \(x \).

Definition: Let \(\varepsilon > 0 \), \(R > 0 \). We say that \(f \in L^2(\mathbb{R}) \) is essentially \(R \)-bandlimited if

\[
\int_{|x| \geq R} |\hat{f}(x)| \, dx \leq \varepsilon
\]

Theorem: Assume that \(f \) essentially \(R \)-bandlimited

Then there exists a constant \(c > 0 \) so that

\[
\left| \sum_{n=-\infty}^{\infty} g\left(\frac{n \pi}{R}\right) \text{sinc}\left(R(x - \frac{n \pi}{R})\right) - g(x) \right| \leq c \cdot \varepsilon
\]

Note, that this is a bandlimited function that agrees with \(g \) at \(\frac{n \pi}{R} \), \(n \in \mathbb{Z} \), and is close to \(g \) in the \(\ell^2 \)-norm, whereas

\[
\hat{f} \mapsto \hat{f} \chi_{L-2R,2R} \mapsto \hat{f}^\prime \chi_{L-2R,2R}
\]
gives a bandlimited function which is close to \(f \) in the \(L^2 \)-norm.