1[8P] Apply the two dimensional Haar wavelet transform to the matrix \(\begin{pmatrix} 2 & 3 \\ 1 & 5 \end{pmatrix} \).

Answer: \(\begin{pmatrix} \frac{11}{4} & -\frac{5}{4} \\ -\frac{1}{4} & \frac{3}{2} \end{pmatrix} \)

2[12P] Apply the two dimensional Haar wavelet transform to the matrix \(\begin{pmatrix} 4 & -2 & 11 & -1 \\ 2 & 0 & 5 & -3 \\ 20 & -4 & 2 & -2 \\ 8 & 2 & -4 & -4 \end{pmatrix} \).

Answer: \(\begin{pmatrix} \frac{17}{8} & \frac{13}{8} & 2 & 5 \\ -\frac{1}{8} & -\frac{21}{8} & 15/2 & 1 \\ 0 & 2 & 1 & 1 \\ \frac{2}{3} & 2 & \frac{9}{2} & 1 \end{pmatrix} \).

3[8P] Let \(z = 2 + 3i \) and \(w = \frac{1}{2+i} \). Evaluate the following:

a) \(z \cdot w = \frac{7}{5} + \frac{4}{5}i \)

Notice first that for a complex number \(\frac{1}{x+iy} \), we have

\[
\frac{1}{x+iy} = \frac{1}{x+iy} \cdot \frac{x-iy}{x-iy} = \frac{x}{x^2+y^2} - \frac{y}{x^2+y^2}i,
\]

Hence \(w = \frac{1}{5}(2 - i) \). Thus

\[
z \cdot w = \frac{1}{5}(2 + 3i) \cdot (2 - i)
\]

\[
= \frac{1}{5}(2 \cdot 2 - (3i) \cdot i) + \frac{1}{5}(3i \cdot 2 + 2 \cdot (-i))
\]

\[
= \frac{1}{5}(4 + 3) + \frac{i}{5}(6 - 2) = \frac{7}{5} + \frac{4}{5}i
\]

b) \(\bar{z} = 2 - 3i \): Recall that for a complex number \(z = x + iy \) we have \(\bar{z} + iy = x - iy \).

c) \(z^2 = z \cdot z = (2 + 3i) \cdot (2 + 3i) = (4 - 9) + 2 \cdot 3i = -5 + 6i \).

d) \(|w|^2 = \frac{1}{25}(4 + 1) = \frac{1}{5} \).

Recall that for any complex number \(z = x + iy \) the number \(|x + iy|^2 \) is a nonnegative real number give by

\[
|x + iy|^2 = (x + iy) \cdot (x + iy)
\]

\[
= (x + iy) \cdot (x - iy)
\]

\[
= x^2 + y^2
\]

4[8P] Evaluate the following multiplication of matrices:

a) \[
\begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 2 & 1 & 4 \\ 1 & -5 & 3 \end{bmatrix} = \begin{bmatrix} 4 & -9 & 10 \\ 1 & -16 & 5 \end{bmatrix}
\]

Recall first of all that we can only multiply \(m \times n \) matrix by an \(n \times q \) matrix and the outcome is always a \(m \times q \) matrix. Furthermore if \(A \cdot B = C \) then we have

\[
C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}
\]

Thus
\[
\begin{bmatrix}
1 & 2 \\
-1 & 3
\end{bmatrix}
\begin{bmatrix}
2 & 1 & 4 \\
1 & -5 & 3
\end{bmatrix}
= \begin{bmatrix}
1 \cdot 2 + 2 \cdot 1 & 1 \cdot 1 + 2 \cdot (-5) & 1 \cdot 4 + 2 \cdot 3 \\
(1) \cdot 2 + 3 \cdot 1 & (-1) \cdot 1 + 3 \cdot (-5) & (-1) \cdot 4 + 3 \cdot 3
\end{bmatrix}
= \begin{bmatrix}
4 & -9 & 10 \\
1 & -16 & 5
\end{bmatrix}
\]

\(b) \ \begin{bmatrix}
2 & 2 & -1 & 1 \\
2 & 2 & 1 & 2 \\
-1 & 2 & 4 & 3
\end{bmatrix}
= \begin{bmatrix}1 & 9\end{bmatrix}.

First notice that this is a product of a \(1 \times 4\) matrix by a \(4 \times 2\) matrix. The outcome should therefore by a \(1 \times 2\) matrix (or row vector):

\[
\begin{bmatrix}
1 & 2 \\
2 & 1 \\
-1 & 2 \\
4 & 3
\end{bmatrix}
\begin{bmatrix}
2 & 2 & -1 & 1 \\
2 & 2 & 1 & 2 \\
-1 & 2 & 4 & 3
\end{bmatrix}
= \begin{bmatrix}2 & 1 + 2 \cdot 2 +(-1) \cdot (-1) + 1 \cdot 4, 2 \cdot 2 + 2 \cdot 2 + (-1) \cdot 2 + 1 \cdot 3 \\
= \begin{bmatrix}2 & 4 + 1 + 4, 4 + 4 - 2 + 3 \\
= \begin{bmatrix}11, 9\end{bmatrix}
\]

Before discussing the next problems let me recall few facts:

Definition: Let \(F\) be a field. A vector space \(V\) over \(F\) is a nonempty set with operations of vector addition, i.e., a map

\[V \times V \ni (u, v) \mapsto u + v \in V\]

and a scalar multiplication, i.e., a map

\[F \times V \ni (r, v) \mapsto r \cdot v \in V\]

satisfying the following properties:

A1 (Commutativity of addition) For all vectors \(u, v \in V\) we \(u + v = v + u\);

A2 (Associativity for addition) For all \(u, v, w \in V\) : \(u + (v + w) = (u + v) + w\);

A3) (Existence of additive identity) There exists an element, denote by \(0 \in V\), such that for all \(u \in V\) : \(u + 0 = u\);

A4) (Existence of additive inverse) For every \(u \in V\) there exists an element, denoted by \(-u\), such that \(u + (-u) = 0\);

A5) For all \(u \in V\) : \(1 \cdot u = u\);

A6) (Associativity of scalar multiplication) For all \(r, s \in F\) and \(u \in V\) we have \((rs) \cdot u = r \cdot (s \cdot u)\);

A7) (First distributive property) For all \(r \in F\) and \(u, v \in V\) we have \(r \cdot (u + v) = (r \cdot u) + (r \cdot v)\);

A8) (Second distributive property) For all \(r, s \in F\) and all \(u \in V\) : \((r + s) \cdot u = (r \cdot u) + (s \cdot u)\);

The first thing the check is therefore always: Is the addition and multiplication defined, and do those operations always give an element in \(V\)!

From the axioms A1-A8 it follows that:

1. We have \(0 \cdot u = 0\) for all \(u \in V\).

2. The additive inverse is \(-u = (-1) \cdot u\). That is, we take the vector \(u\) and multiply it by \(-1\). This follows from

\[
\begin{align*}
u + (-1) \cdot u &= 1 \cdot u + (-1) \cdot u \quad \text{(by A5)}
&= (1 + (-1)) \cdot u \quad \text{(by A8)}
&= 0 \cdot u
&= 0 \quad \text{(by the remark just made)}
\end{align*}
\]
Important examples of vector spaces:

1. The space \(\mathbb{F}^n = \{(x_1, \ldots, x_n) \mid x_1, \ldots, x_n \in \mathbb{F}\} \). Here the addition and scalar multiplication is given by

\[
(x_1, \ldots, x_n) + (y_1, \ldots, y_n) = (x_1 + y_1, x_2 + y_2, \ldots, x_n + y_n)
\]

\[
r \cdot (x_1, \ldots, x_n) = (rx_1, \ldots, rx_n).
\]

Notice that we can actually view \(\mathbb{F}^n \) as the space of row vectors (\(1 \times n \)-matrices) or as the space of column vectors (\(n \times 1 \)-matrices).

2. Let \(S \) be a set and let \(V = \mathbb{F}^S = \) the space of functions from \(S \) to \(\mathbb{F} \). Then we can define addition and scalar multiplication by

\[
(f + g)(s) = f(s) + g(s)
\]

\[
(r \cdot f)(s) = rf(s).
\]

We will not prove here that this gives us a vector space. Notice that in this example we can replace the target space \(\mathbb{F} \) by any vector space over \(\mathbb{F} \).

3. Let \(M(n \times m, \mathbb{F}) \) be the set of \(n \times m \) matrices with coefficients in \(\mathbb{F} \). Define addition and scalar multiplication by

\[
[a_{ij}] + [b_{ij}] := [a_{ij} + b_{ij}]
\]

\[
r[a_{ij}] = [ra_{ij}].
\]

Often we construct vector spaces in the following way:

1. We have given a vector space \(V \). In particular we know that all the axioms A1-A8 are valid for elements in \(V \).

2. Then we define a subset \(S \) of \(V \) by

\[S = \{v \in V \mid \text{some conditions holds for } v \} \]

Thus \(S \) is in general not all of \(V \) but only those elements that satisfy the given condition. Here are some examples:

(a) Let \(\mathbb{F} = \mathbb{R} \), and let \(I \) be a nonempty interval in \(\mathbb{R} \). Let \(V \) be the vector space of functions on \(I \). According to above, we know that \(V \) is a vector space. Now let us consider the condition continuous. Thus we set

\[C(I) = \{f : I \to \mathbb{R} \mid f \text{ is continuous} \} \]

So a function on \(I \) is in the subset \(C(I) \) if and only if \(f \) is continuous. Let for example \(I = [0,1) \) for a moment, then the function \(f \) defined by \(f(x) = x^2 \) is in \(C([0,1)) \) but the function \(\varphi_0^2 \) is not in \(S \).

(b) If \(\mathbb{F} = \mathbb{C} \) then we write \(C(I, \mathbb{C}) \) for the set of functions \(f : I \to \mathbb{C} \) that are continuous.

(c) Let \(V = \mathbb{R}^2 \) and consider \(S = \{(x, y, z) \in \mathbb{R}^3 \mid 3x - y + 2z = 0 \} \). Then only those elements in \(\mathbb{R}^3 \) that are solutions to the equation \(3x - y + 2z = 0 \) belong to \(S \). As an example the point/vector \((1, 3, 0)\) is in \(S (3 \cdot 1 - 3 + 2 \cdot 0 = 0) \) whereas \((1,1,1)\) does not belong to \(S (3 \cdot 1 - 1 + 2 \cdot 1 = 4 \neq 0) \). One can show that \(S \) is the plane of points in \(\mathbb{R}^3 \) that are perpencular to \((3,-1,2)\).

(d) Let \(V = M(1 \times m, \mathbb{R}) \) and let \(A \) be a \(m \times k \) matrix. Consider \(S = \{x \in V \mid xA = 0 \} \). Thus \(S \) is the set of solutions of a system of \(k \)-equations with \(m \) unknowns.

(e) Let \(V = \mathbb{R}^I \), i.e., the space of functions on an interval \(I \). Define \(S = \{f \in V \mid f \text{ is piecewise continuous} \} \). Then all the continuous functions are in \(S \) as well as all the functions that are discontinuous at finitely many points. For example if \(I = [0,1) \) then all the functions \(\varphi_0^N \) and all the functions \(\psi_0^N \) are elements in \(S \). Here the condition that has to be satisfied is that \(f \) is piecewise continuous.
(f) Let V be the space of all functions on the real line \mathbb{R} (thus we are looking at the above example with $I = \mathbb{R}$). Let S be the set be the set of polynomials of degree $\leq n$ where n is some fixed nonnegative integer. Thus every element in S can be written in the form $p(x) = \sum_{j=0}^{n} a_j x^j$ where a_j are real numbers.

3. After defining a set S in this way we often need to know if S is a vector space or not. For that we again notice some simple facts:

(a) If u and v are two elements in S then we can define $u + v \in V$ because both u and v are elements of the vector space V and addition is defined in V;

(b) If u is in S and $r \in \mathbb{F}$ then - again because V is a vector space - the vector $r \cdot u \in V$ is defined.

(c) As V is a vector space it follows that all the axioms A1-A8 are valid.

(d) What is missing is the first part in the definition: Are the vectors $u + v$ and $r \cdot u$ again in S? If that is the case it follows that S is in fact a vector space.

4. We collect this in the following:

Definition: Let V be a vector space and S a nonempty subset of V. Then S is said to be a (vector) **subspace** (of V) if S with the addition and scalar multiplication from V is a vector space.

Theorem: Let V be a vector space and S a nonempty subset of V, then S is a subspace of V if for all $u, v \in S$ and $r \in \mathbb{F}$ we have

- (S is closed under addition): $u + v \in S$;
- (S is closed under scalar multiplication): $r \cdot u \in S$.

Notice that this implies that $0 \in S$ by taking $r = 0$ and using that $0 \cdot u = 0$ for all $u \in V$. As S is supposed to be closed under scalar multiplication it follows that $0 \in S$. We can therefore conclude:

Corollary: Suppose that S is a nonempty subset of V and $0 \not\in S$, then S is not a vector subspace.

Notice: This conclusion is only one way. From $0 \in S$ it does not follows that S is a subspace. To show that a subset is a vector subspace, we have to show that it is closed under addition and scalar multiplication!

Notice: We can replace the two conditions $u + v \in S$ and $r \cdot u \in S$ by one condition: For all $u, v \in S$ and all $r, s \in \mathbb{F}$: $ru + sv \in V$.

5. It can now be shown that all the examples for (a)-(f) above are vector spaces.

Let now V and W be two vector spaces. Then we are mainly interested in special kind of maps from V to W. Those are the functions that preserve the algebraic structure that we have.

Definition: Let V and W be vector spaces. A map $T : V \to W$ is said to be **linear** if

$$T(ru + sv) = rT(u) + sT(v)$$

for all $r, s \in \mathbb{F}$ and all $u, v \in V$.

Notice that this one condition can also be split up in two condition: $T(u + v) = T(u) + T(v)$ and $T(ru) = rT(u)$ for all $u, v \in V$ and all $r \in \mathbb{F}$.

Lemma: Let $T : V \to W$ be linear. Then $T(0_V) = 0_W$ where 0_V is the zero element in V and 0_W is the zero element in W.

Proof: Let $u \in V$ and take $r = 0$. Then

$$T(0_V) = T(r \cdot u) \quad (\text{because } 0 \cdot u = 0_V)$$

$$= rT(u) \quad (\text{because } T \text{ is linear})$$

$$= 0_W.$$
Notice again, that this this is only a one way conclusion. \(T(0) = 0 \) does not imply that \(T \) is linear!

Lemma: Let \(T : V \to W \) be linear, then the set
\[
S = \{ u \in V \mid T(u) = 0 \}
\]
is a subspace of \(V \). This subspace is denoted by \(\text{Ker}(T) \).

Proof: Let \(u, v \in \text{Ker}(T) \) and \(r, s \in \mathbb{F} \). Then
\[
T(ru + sv) = rT(u) + sT(v) = 0 .
\]

Hence \(ru + sv \in \text{Ker}(T) \).

Lemma: Let \(T : V \to W \) be linear, then the set
\[
S = \{ w \in W \mid \exists v \in V : w = T(v) \}
\]
is a subspace of \(W \). This space is denoted by \(\text{Im}(T) \).

Proof: Let \(w, z \in \text{Im}(T) \) and \(r, s \in \mathbb{F} \). To show that \(rw + sz \in \text{Im}(T) \) we need to find a vector \(a \in V \) such that \(T(a) = rw + sz \). The only thing we know for sure is, that by definition there are vectors \(u, v \in V \) such that \(T(u) = w \) and \(T(v) = z \). Let \(a = ru + sv \in V \). Then
\[
T(a) = T(ru + sv) = rT(u) + sT(v) = rw + sz .
\]

Lemma: Let \(V, W \) be vector spaces, let \(S, T : V \to W \) be linear maps and let \(r, s \in \mathbb{F} \). Then the map \(rR + sS : V \to W \) \(u \mapsto rR(u) + sS(u) \), is linear.

Proof: Let \(a, b \in \mathbb{F} \) and \(u, v \in V \). Then the following holds:
\[
(rR + sS)(au + bv) = arR(u) + asS(u) + brR(v) + bsS(v) \quad (R \text{ and } S \text{ are linear})
\]
\[
= a(rR + sS)(u) + b(rR + sS)(v) .
\]

Remark: What we have in fact shown is that the space of linear maps from \(V \) to \(W \) is a vector space!

Let us now take few examples:

1. \(V = \mathbb{R}^n \) and \(W = \mathbb{R}^m \) (both viewed as row vectors). Let \(A = [a_{ij}] \) be a \(n \times m \) matrix and define a map \(T : V \to W \) by
\[
T([x_1, \ldots, x_n]) = [x_1, \ldots, x_n]A .
\]

Then \(T \) is linear. This follows from the rules of matrix multiplication: \([rx + sy]A = r(xA) + s(yA) \).

2. If \(T : \mathbb{R}^n \to \mathbb{R}^m \) is a linear map, then there exists a matrix \(A \) such that \(T(x) = xA \). To find \(A \) we let \(e_1 = [1, 0, \ldots, 0] \), \(e_2 = [0, 1, 0, \ldots, 0] \), \ldots, \(e_n = [0, \ldots, 0, 1] \). Let \(a_j = T(e_j) \).

Let
\[
A = \begin{bmatrix}
a_1 \\
\vdots \\
a_n \\
\end{bmatrix} .
\]

We leave it out as an exercise to show that \(T(x) = xA \).
Determine if the each of the following sets is a vector space or not, and state why:

a) The space of polynomials of degree \(\leq 5 \), i.e., \(V = \left\{ \sum_{j=0}^{5} a_j x^j \mid \forall j : a_j \in \mathbb{R} \right\} \); Answer: This is a vector space.

Solution: As this is a subset of the **vector space** of all functions on the real line, we only have to show that \(V \) is closed under addition and scalar multiplication.

Closed under addition: Let \(p(x) = \sum_{j=0}^{5} a_j x^j \) and \(q(x) = \sum_{j=0}^{5} b_j x^j \) be elements in \(V \). Then

\[
(p + q)(x) = \sum_{j=0}^{5} a_j x^j + \sum_{j=0}^{5} b_j x^j = \sum_{j=0}^{5} (a_j + b_j) x^j \in V
\]

Closed under scalar multiplication: Let \(r \in \mathbb{R} \), then

\[
(rp)(x) = r \sum_{j=0}^{5} a_j x^j = \sum_{j=0}^{5} (ra_j) x^j \in V.
\]

b) \(V = \{(x, y, z) \in \mathbb{R}^3 \mid 2x + x^2 - y + 2z = 0\} \); Answer: This is not a vector space.

Solution: Notice that \((0, 0, 0) \in V \) because \(2 \cdot 0 + 0^2 - 0 + 2 \cdot 0 = 0 \). We will now give different ways to show that this is not a vector space.

Solution 1: The vector \((2, 0, 0)\) is in \(V \). But \(2 \cdot (2, 0, 0) = (4, 0, 0) \notin V \) because

\[
2 \cdot 4 - 4^2 = 8 - 16 = -8 \neq 0.
\]

Thus \(V \) is not closed under scalar multiplication. (This shows how one can use concrete examples to show that a set is not closed under scalar multiplication).

Solution 2: \(V \) is not closed under scalar multiplication. Let \((x, y, z) \in V \) and \(r \in \mathbb{R} \). Then \(2x + x^2 - y + 2z = 0 \). On the other hand we have \(r \cdot (x, y, z) = (rx, ry, rz) \). We test now the condition:

\[
2(rx) + (rx)^2 - (ry) + 2(rz) = r(2x + rx^2 - y + 2z)
= r(2x + x^2 - y + 2z) + (r - 1)rx^2
= (r - 1)rx^2.
\]

Here I have used that \(2x + x^2 - y + 2z = 0 \). I also added and substracted \(rx^2 \) to get it into the correct form. So we see that the right hand is only zero if \(r = 0, r = 1, \) or \(x = 0 \). By taking \((x, y, z) \) element in \(S \) with \(x \neq 0 \) and take \(r \neq 0, 1 \) we se that \(V \) is not closed under scalar multiplication.

Solution 3: \(V \) is not closed under addition. Let \((x, y, z), (r, s, t) \in V \). Then we have to test if \((x+r, y+s, z+t) \in V \). For that we calculate:

\[
2(x+r) + (x+r)^2 - (y+s) + 2(z+t) = 2(x+r) + x^2 + r^2 + 2xr - (y+s) + 2(z+t)
= (2x + x^2 - y + 2z) + (2r + r^2 - s + 2t) + 2xr
= 2xr.
\]

The right hand side is only zero if \(xr = 0 \). So we take two elements in \(V \) with the first coordinate not equal to zero, i.e., \((2, 0, 0)\) in both cases.

c) \(V = \left\{ f \in C([-1, 1]) \mid \int_{-1}^{1} f(t) \, dt = 0 \right\} \); Answer: This is a vector space.
Solution: Let \(f, g \in V \) and \(r, s \in F \) then
\[
\int_{-1}^{1} rf + sg \, dt = r \int_{-1}^{1} f \, dt + s \int_{-1}^{1} g \, dt = 0 + 0 = 0.
\]
Hence \(rf = sg \in V \).

d) The space \(V_3 \) of all functions on the interval \([0,1]\) of the form \(\sum_{j=0}^{7} a_j \psi_j^3 \), with arbitrary real numbers \(a_1, \ldots, a_7 \). Here \(\psi_j^3(t) = \psi(8t-j) \). Answer: This is a vector space.

Solution: Let \(f = \sum_{j=0}^{7} a_j \psi_j^3, g = \sum_{j=0}^{7} b_j \psi_j^3 \in V \) and \(r, s \in \mathbb{R} \). Then
\[
(r f + s g) = r \sum_{j=0}^{7} a_j \psi_j^3 + s \sum_{j=0}^{7} b_j \psi_j^3 = \sum_{j=0}^{7} (ra_j + sb_j) \psi_j^3 \in V.
\]

e) Let \(A \) be a \(n \times m \) matrices and \(V = \{ \mathbf{x} = [x_1, \ldots, x_n] \in \mathbb{R}^n \mid \mathbf{x} A = \mathbf{0} \} \). Answer: This is a vector space.

Solution: Let \(\mathbf{x}, \mathbf{y} \in V \) and \(r, s \in \mathbb{R} \). Then
\[
(r \mathbf{x} + r \mathbf{y}) A = r(x A) + s(y A)
= 0 + 0
= 0.
\]

f) \(V = \{ u \in U \mid T(u) = y \} \) where \(U \) and \(W \) are vector spaces, \(T : U \to W \) is linear and \(y \in W, y \neq 0 \). Answer: This is not a vector space.

Solution: If \(T \) is a linear map, then \(T(0_U) = 0_W \), so \(0 \notin V \).

g) The space of functions on the real line \(\mathbb{R} \) that are solutions to the differential equation \(y^{(n)} + a_{n-1} y^{(n-1)} + \ldots + a_0 y = 0 \), i.e. \(V = \{ y \in C^\infty(\mathbb{R}) \mid y^{(n)} + a_{n-1} y^{(n-1)} + \ldots + a_0 y = 0 \} \). Answer: This is a vector space.

Solution: Let \(f, g \in V \) and \(r, s \in \mathbb{R} \). Then we have to show that
\[
(r f + s g)^{(n)} + a_{n-1} (r f + s g)^{(n-1)} + \ldots + a_0 (r f + s g) = 0.
\]
But
\[
(r f + s g)^{(n)} + a_{n-1} (r f + s g)^{(n-1)} + \ldots + a_0 (r f + s g) = r f^{(n)} + a_{n-1} f^{(n-1)} + \ldots + a_0 f + s g^{(n)} + a_{n-1} g^{(n-1)} + \ldots + a_0 g = r \left(f^{(n)} + a_{n-1} f^{(n-1)} + \ldots + a_0 f\right) + s \left(g^{(n)} + a_{n-1} g^{(n-1)} + \ldots + a_0 g\right) = 0.
\]

6[24P)] Determine if the following maps are linear or not, state why:

a) \(T : \mathbb{R}^2 \to \mathbb{R}^2, T(x, y, z) = (2x + y - z, xy) \). Answer: This map is not linear because of the factor \(xy \). (Do the details!)

b) \(V \) the space of polynomials of degree \(\leq 5 \) and \(W \) the space of polynomials of degree \(\leq 4 \), \(T(p)(x) = 2p'(x) + 3y''(x) \). Answer: This map is linear because differentiation is linear and linear combination of linear maps is linear. (You can also show this directly by plugging a linear combination in the definition of \(T \).

c) \(T : \mathbb{R}^4 \to \mathbb{R}; T(x_1, x_2, x_3, x_4) = 2x_1 + x_2 - 3x_3 + 4x_4 \). Answer: Linear.

Solution: Write \(T \) as
\[
T(x) = \begin{bmatrix} 2 \\ 1 \\ -3 \\ 4 \end{bmatrix}
\]
and use that any map of this form is linear (see above or notes from class).

d) Let \(V_N = \{ \sum_{j=0}^{2^{N-1}} s_j \varphi_j^N \mid \forall j = 0, \ldots, 2^N - 1 : a_j \in \mathbb{R} \} \) and \(T : V_N \to V_{N-1} \) given by

\[
T \left(\sum_{j=0}^{2^{N-1}} s_j \varphi_j^N \right) = \sum_{j=0}^{2^{N-1}-1} \frac{s_{2j} + s_{2j+1}}{2} \varphi_j^{N-1}.
\]

Answer: This map is linear.

Solution: Let \(f = \sum_{j=0}^{2^{N-1}} s_j \varphi_j^N \) and \(g = \sum_{j=0}^{2^{N-1}} t_j \varphi_j^N \) be vectors in \(V_N \). Then for \(r, s \in \mathbb{R} \) we get:

\[
rf = \sum_{j=0}^{2^{N-1}} r s_j \varphi_j^N
\]

\[
sg = \sum_{j=0}^{2^{N-1}} s t_j \varphi_j^N
\]

and

\[
rf + sg = \sum_{j=0}^{2^{N-1}} (r s_j + s t_j) \varphi_j^N
\]

and hence

\[
T(rf + sg) = \sum_{j=0}^{2^{N-1}-1} \frac{r s_{2j} + s t_{2j} + s t_{2j+1}}{2} \varphi_j^{N-1}
\]

\[
= \sum_{j=0}^{2^{N-1}-1} \left(r \frac{s_{2j}}{2} + s \frac{t_{2j} + t_{2j+1}}{2} \right) \varphi_j^{N-1}
\]

\[
= r \sum_{j=0}^{2^{N-1}-1} \frac{s_{2j}}{2} \varphi_j^{N-1} + s \sum_{j=0}^{2^{N-1}-1} \frac{t_{2j} + t_{2j+1}}{2} \varphi_j^{N-1}
\]

\[
= r T(f) + s T(g)
\]

e) \(T: \mathbb{R}^3 \to \mathbb{R}^3, T(x, y, z) = (2x + y - 3z, 3x + y + 2, x - 4y + z) \). **Answer:** Not linear.

Solution: By direct calculation we get

\[
T(0,0,0) = (0,2,0) \neq (0,0,0).
\]

f) \(T: C^\infty(\mathbb{R}) \to C^\infty(\mathbb{R}), T(f) = f'' + f' \cdot f \). **Answer:** Not linear because of the factor \(f' \cdot f \).

7[12P] In the following problems, evaluate the given linear map \(T \) at the given point:

a) \(T: \mathbb{R}^2 \to \mathbb{R}^2, T(x, y, z) = (2x + 3y, -x + 4y), (x, y, z) = (2, -1, 4) \). **Answer:** (1, -6)

b) \(T: \mathbb{C}^3 \to \mathbb{C}^3, T(z_1, z_2, z_3) = ((1 + i)z_1 + 2z_2 - iz_3, z_1 + (1 - i)z_2, z_2 - \frac{1}{1 + i} z_3), (z_1, z_2, z_3) = (i, 1 + i, 2 + i). \) **Answer:** (2 + i, 2 + i, -\frac{1}{2} + \frac{3}{2} i)

c) \(T: C^\infty(\mathbb{R}) \to C^\infty(\mathbb{R}), T(f) = f'' + 4f, f = 2 \cos(x) + \sin(x) + e^x \). **Answer:** 6\cos(x) + 3\sin(x) + 5e^x

d) \(T: C([-1, 1]) \to \mathbb{R}, T(f) = \int_{-1}^{1} f(t) \, dt, f(t) = t^2 + t + \cos(\pi t) \). **Answer:** \frac{2}{3}.