Math 2025, Test #2 . Fall 2002 Name:

2 3
1[8P]) Apply the two dimensional Haar wavelet transform to the matrix ( s ) .

) 11/4 -5/4
Answer: < 14 32 >

4 -2 11 -1
2 0 &5 =3
20 -4 2 =2
8 2 -4 —4

2[12P]) Appy the two dimensional Haar wavelet transform to the matrix

17/8 13/8 2 5
~1/8 —21/8 15/2 1
1
1

Answer:
0 2 1

3/2 2 9/2
3[8P]) Let z =2+ 3i and w = 2%” Evaluate the following:
a)z-w=1I+%i

Notice first that for a compex number zi e have
1 1 T — 1y T y .
— = — - — = - 1,
r+iy z4iy z—dy 224y 22492
Hence w = (2 —4). Thus

1 . .
z-w=3(2+3z)-(2—z)

:%(2.2_(31').1')4-%(3@'-2%-2'(—i))
:%m+$+é@—2D=g+§i

b) z = 2 — 3i: Recall that for a complex number z + iy we have x + iy = = — iy.
)22=2-2=(2+3i)-(2+3))=(4—-9)+2-3i = -5+ 6i.

d) |w|® = %(4%— 1) = %

Recall that for any complex number z + iy the number |z + iy|? is a nonnegative real number give by

|z +iy* = (z +iy) - (z + iy)
= (z +1iy) - (z —iy)
=2’ +y%,

4[8P]) Evaluate the following multiplication of matrices:
1 2 2 1 4 4 -9 10
a) =
-1 3 1 -5 3 1 -16 5
Recall first of all that we can only multiply m x n matrix by an n x ¢ matrix and the outcome is always a m X ¢ matrix.
Furthermore if A - B = C then we have

n
Cij = ZAikBkj .
k=1

Thus



—1)-2+43-1 (=1)-1+3-(=5) (=1)-4+3-3

4 -9 10
1 -16 5

-

l 1-242-1 1-142-(=5) 1-442-3
(

=[11 9]

N NN

4 3
First notice that this is a product of a 1 x 4 matrix by a 4 x 2 matrix. The outcome should therefore by a 1 x 2 matrix (or

row vector):
2
[2 2 -1 1] Loy | FRIFZ 2 () ()1 4224224 (1) 24143

=[24+4+1+4,4+4-2+3]
=[11,9]

Before discussing the next problems let me recall few facts:
Definition: Let F be a field. A vector space V over F is a nonempty set with operations of vector addition, i.e., a map

VxV3uv)—nutveV

and a scalar multiplication, i.e., a map
FxV>s((ru)—r-veV

satisfying the following properties:
A1l (Commutativity of addition) For all vectors u,v € V we u +v = v + u;
A2 (Associativity for addition) For all u,v,w € V : u+ (v +w) = (u +v) + w;
A3) (Existense of additive identity) There exists an element, denote by 0 € V, such that for all u € V : u 4+ 0 = u;
A4) (Existense of additive inverse) For every u € V there exists an element, denoted by —u, such that u + (—u) = 0;
AS)Forallu eV :1-u=u;
6) (Associativity of scalar multiplication) For all r,s € F and v € V we have (rs) - u

)

)

>

=7-(s-u);
A7) (First distributive property) For all r € F and u,v € V we have r - (u +v) = (7 - u) + (r - v);
A8) (Second distributive property) For all r,s e Fand allu € V: (r+s)-u=(r-u)+ (s-u);

The first thing the check is therefore always: Is the addition and multiplication defined, and do those operations always give

an element in V!

From the axioms A1-A8 it follows that:
1. Wehave 0-u=0forallueV.
2. The additive inverse is —u = (—1) - u. That is, we take the vector v and multiply it by —1. This follows from
ut+(-1)-u=1-u+(-1)-u (by A5)
=1+ (=1))-u (by A8)
=0-u
=0 (by the remark just made)



Important examples of vector spaces:

1. The space F* = {(z1,...,2,) | 1,-..,2, € F}. Here the addition and scalar multiplication is given by

($17"'7mn)+(y17"'7yn) = ('Z'l + Y1, T2 +y277$n+yn)

(X1, L) = (M21,...,TTy) .

Notice that we can actually view F" as the space of row vectors (1 x n-matrices) or as the space of column vectors

(n x 1-matrices).

2. Let S be a set and let V = F° = the space of functions from S to F. Then we can define addition and scalar

multiplication by

(F +9)(s) = f(s) + 9(s)
(r-f)(s) =rf(s) -

We will not prove here that this gives us a vector space. Notice that in this example we can replace the target space F

by any vector space over F.

3. Let M(n x m,F) be the set of n x m matrices with coefficients in F. Define addition and scalar multiplication by

[aij] + [bi;] := [aij + by]

rlai;] = [rai;] -

Often we construct vector spaces in the following way:

1. We have given a vector space V. In particular we know that all the axiomes A1-A8 are valid for elements in V.

2. Then we define a subset S of V' by

S = {v € V| some conditions holds for v}

Thus S is in general not all of V' but only those elements that satisfy the given condition. Here are some examples:

(a)

Let F = R, and let I be a nonempty interval in R. Let V be the vector space of functions on I. According to
above, we know that V is a vector space. Now let us consider the condition continuous. Thus we set

CI)=A{f:1—R| fis continuous}

So a function on I is in the subset C'(I) if and only if f is continuous. Let for example I = [0,1) for a moment,
then the function f defined by f(z) = z? is in C([0,1)) but the function ¢? is not in S.

If F=C then we write C(I,C) for the set of functions f : I — C that are continuous.

Let V = R® and consider S = {(z,y,2) € R? | 3z —y + 22 = 0}. Then only those elements in R? that are solutions
to the equation 3z — y + 2z = 0 belonge to S. As an example the point/vector (1,3,0)isin S (3-1-3+2-0=0)
whereas (1,1,1) does not belonge to S (3-1—1+2-1 =4 #0). One can show that S is the plane of points in
R? that are perpenticular to (3,—1,2).

Let V = M(1xm,R) and let A be a m x k matrix. Consider S = {x € V | xA = 0}. Thus S is the set of solutions
of a system of k- equations with m unkowns.

Let V = RI, i.e., the space of functions on an interval I. Define S = {f € V' | f is piecewise continuous}. Then
all the continuous functions are in S as well as all the functions that are discontinuous at finitely many points.
For example if I = [0,1) then all the functions ¢} and all the functions ¢}’ are elements in S. Here the condition
that has to be satisfied is that f is piecewise continuous.



(f) Let V be the space of all functions on the real line R (thus we are looking at the above example with I = R).
Let S be the set be the set of polynomials of degree < n where n is some fixed nonnegative integer. Thus every

element in S can be written in the form p(z) = 37, ajz’ where a; are real numbers.

3. After defining a set S in this way we often need to know if S is a vector space or not. For that we again notice some
simple facts:

(a) If u and v are two elements in S then we can define v + v € V because both u and v are elements of the
vector space V and addition is defined in V;

(b) If u is in S and r € F then - again because V is a vector space - the vector r - v € V is defined.
(¢) As V is a vector space it follows that all the axioms A1-A8 are valid.

(d) What is missing is the first part in the definition: Are the vectors u + v and r - 4 again in S? If that
is the case it follows that S is in fact a vector space.

4. We collect this in the following:

Definition: Let V be a vector space and S a nonempty subset of V. Then S is said to be a (vector) subspace (of
V) if S with the addition and scalar multiplication from V' is a vector space.

Theorem: Let V be a vector space and S a nonempty subset of V', then S is a subspace of V if for all u,v € S and
r € F we have

(S is closed under addition): u +v € S;
(S is closed under scalar multiplication): r - u € S.

Notice that this implies that 0 € S by taking r = 0 and using that 0-u = 0 for all u € V. As S is supposed to be
closed under scalar multiplication it follows that 0 € S. We can therefore conclude:

Corollary: Suppose that S is a nonempty subset of V and 0 € S, then S is not a vector subspace.

Notice: This conclusion is only one way. From 0 € S it does not follows that S is a subspace. To show that a

subset is a vector subspace, we have to show that it is closed under addition and scalar multiplication!
Notice: We can replace the two conditions v +v € S and r - u € S by one condition: For all u,v € S and all r, s € F:
ru+svevV.

5. It can now be shown that all the examples for (a)-(f) above are vector spaces.

Let now V and W be two vector spaces. Then we are mainly interested in special kind of maps from V to W. Those are the
functions that preserve the algebraic structure that we have.
Definition: Let V and W be vector spaces. A map T : V — W is said to be linear if

T(ru+ sv) = rT(u) + sT(v)

for all r,s € F and all u,v € V.

Notice that this one condition can also be split up in two condition: T(u + v) = T(u) + T'(v) and T(ru) = rT(u) for all
u,v € V and all r € F.

Lemma: Let T: V — W be linear. Then T'(0y) = Oy where Oy is the zero element in V' and Oy is the zero element in W.
Proof: Let u € V and take r = 0. Then

TOy)=T(r-u) (because 0 - u = Oy)
=rT(u) (because T is linear)

:Ow.



Notice again, that this this is only a one way conclusion. 7(0) = 0 does not imply that T is linear!
Lemma: Let T : V — W be linear, then the set

S={ueV|T()=0}

is a subspace of V. This subspace is denoted by Ker(T').
Proof: Let u,v € Ker(T) and r,s € F. Then

T(ru+ sv) =rT(u) +sT(v) =0.

Hence ru + sv € Ker(T).
Lemma: Let T : V — W be linear, then the set

S={weW|weV:w=Tw)}

is a subspace of W. This space is denoted by Im(T).

Proof: Let w,z € Im(T) and r,s € F. To show that rw + sz € Im(T") we need to find a vector a € V such that T(a) =
rw + sz. The only thing we know for sure is, that by definition there are vectors u,v € V such that T'(u) = w and T'(v) =
Let a =ru+sv € V. Then

zZ.

T(a) =T (ru+ sv)
=rT(u) + sT(v)
=rw+ sz .
Lemma: Let V,W be vector spaces, let 5,7 : V — W be linear maps and let r,s € F. Then the map rR+sS:V - W,
u + rR(u) 4+ sS(u), is linear.
Proof: Let a,b € F and u,v € V. Then the following holds:
(rR + sS)(au + bv) = rR(au + bv) + sS(au + bv)
= arR(u) + brR(v) + asS(u) + bsS(v) (R and S are linear)
=a(rR + sS)(u) + b(rR + s5)(v) .

Remark: What we have in fact shown is that the space of linear maps from V to W is a vector space!
Let us now take few examples:

1. V=R" and W = R™ (both viewed as row vectors). Let A = [a;;] be a n x m matrix and define amap T :V — W by
T([x1,.--s2n]) = [Z1,...,2n]A .
Then T is linear. This follows from the rules of matrix multiplication: [rx + sy]A = r(xA4) + s(yA).

2. fT:R" — R™ is a linear map, then there exists a matrix A such that T'(x) = xA. To find A we let e; =[1,0,...,0],
e2 =[0,1,0,...,0],..., e, =0,...,0,1]. Let
a; =T(e;).
:Let
ai
A=
an

We leave it out as an exercise to show that T'(x) = xA.



5[28P]) Determine if the each of the following sets is a vector space or not, and state why:

a) The space of polynomials of degree < 5,i.e., V = {E?:o ajz? |Vj : aj € R}; Answer: This is a vector space.
Solution: As this is a subset of the vector space of all functions on the real line, we only have to show that V is closed
under addition and scalar multiplication.

Closed under addition: Let p(z) = 2?20 ajz’ and g(z) = 2?20 bjz? be elements in V. Then

5 5
P+ (z) =) aa’ + Y bl
j=0 =0

5
=) (aj+bj)zl €V
=0

Closed under scalar multiplication: Let r» € R, then
5 .
(p)@) =1y a0’
j=0

5
= Z(mj):cj ev.

=0

b) V = {(z,y,2) € R* | 22 + 2 — y + 22 = 0}. Answer: This is not a vector space.

Solution: Notice that (0,0,0) € V because 2-0+ 0% —0+2-0 = 0. We will now give different ways to show that this is not
a vector space.

Solution;: The vector (2,0,0) isin V. But 2-(2,0,0) = (4,0,0) ¢ V because

2-4—-4>=8-16=—8 #0.

Thus V is not closed under scalar multiplication. (This shows how one can use concrete examples to show that a set is not
closed under scalar multiplication).

Solution,: V is not closed under scalar multiplication. Let (z,y,2) € V and r € R. Then 2z + 22 — y + 22 = 0. On the
other hand we have r - (z,y,2) = (rz,ry,rz). We test now the condition:

2(rz) + (rz)? — (ry) + 2(rz) = r(2z + r2® —y + 22)
=r(2z+2° —y+22)+ (r — )ra®

=(r—1)rz?®.

Here I have used that 2z + 22 — y 4+ 2z = 0. I also added and substracted rz? to get it into the correct form. So we see that
the right hand is only zero if r = 0, r = 1, or z = 0. By taking (as above) element in S with z # 0 and take r # 0,1 we se
that V is not closed under scalar multiplication.

Solutions: V is not closed under addition. Let (z,y, 2), (r, s,t) € V. Then we have to test if (x + 7,y + s,z +1t) € V. For
that we calculate:

2@ +r)+(@+r)? —(y+s)+2z+t)=2@+r)+ 2> +r2+2zr — (y +5) +2(z + 1)
=z 42> —y+22)+ (2r+7r2 —s+2t) + 2zr

= 2zr .
The right hand side is only zero if zr = 0. So we take two elements in V' with the first coordinate not equal to zero, i.e.,

(2,0,0) in both cases.
c) V= {f € C([-1,1]) | f_ll f(t) dt = 0}; Answer: This is a vector space.



Solution: Let f,g € V and r,s € F then

1 1 1
/ rf—l—sgdt:r/ fdt+s/ gdt=04+0=0.
1 —1 1

Hencerf =sge V.

d) The space V3 of all functions on the interval [0,1) of the form 237‘:0 a;43%, with arbitrary real numbers ay,...,a7. Here
Y3 (t) = (8t — j). Answer: This is a vector space.

Solution: Let f = 217.:0 a3, g = E;:o bjy3 € V and r,s € R. Then

7 7
(rf +sg) = rZang +stj¢]3-

=0 =0

7
= Z(Taj + sbj)p e V.

Jj=0

e) Let A be an x m matrices and V = {x = [21,...,2,] € R* | xA = 0}. Answer: This is a vector space.
Solution: Let x,y € V and r,s € R. Then

(rx +ry)A =r(xA) + s(yA)
=0+0
- 0.

f) V={ueU|T(u) =y} where U and W are vector spaces, T : U — W is linear and y € W, y # 0. Anser: This is not a
vector space.

Solution: If T is a linear map, then T(0y) = Ow, so 0 ¢ V.

g) The space of functions on the real line R that are solutions to the differential equation y™ +a, 1y Y 4. +agy =0,
ie. V={yeC®R)|y™ +a,_1y™ "V +...+aoy = 0}. Answer: This is a vector space.

Solution: Let f,g € V and r,s € R. Then we have to show that

(rf+ sg)(") + an_1(rf + sg)(”_l) +...+ao(rf+s9)=0
But

(rf+359)" +ana(rf +59)" V4. +ao(rf+s9) =rf +anarfV 4. +raof +1g™ +an_159" + ..+ ragg
=r (f(") +anfOV 4+ aof) +s (g(”) +an1g™ Y+ 4 aog)
=0.

6[24P]) Determine if the following maps are linear or not, state why:

a) T:R - R T(x,y,2) = (2z + y — z,2y). Answer: This map is not linear because of the factor zy. (Do the details!)
b) V' the space of polynomials of degree < 5 and W the space of polynomials of degree < 4, T'(p)(z) = 2p'(x) + 3p"(z).
Answer: This map is linear because differentiation is linear amd linear combination of linear maps is linear. (You can also
show this directly by plugging a linear combination in the definition of T').

c) T:R* - R; T(x1,79,T3,24) = 271 + T9 — 373 + 4z4. Answer: Linear.

Solution: Write T' as

T(x) =x 3

4



and use that any map of this form is linear (see above or notes from class).

d)unmvz{sz sioN Vi =0,.. —1u”eR}MMT:mV+vw4ngby
2N 1 oN-1_ i
825 T 82541 _
T(Y sip)= D ——5 ¢
7=0 7=0

Answer: This map is hnear
N
Solution: Let f = EJ (; s,cpj and g = ZJ (; tj<p§-v be vectors in Vy. Then for r, s € R we get:

2N _1

rf = Z TSj(pj'V
7=0

2N _1

8g = Z stjgoﬁv
j=0

and
2N 1
rf+sg= Z (rs; + stj)goj-v
i=0
and hence
i t t
r82; + 182541 + Sla; + stojp1 N
T(rf + sg) = Z j j . J j <P§V 1
i=0
Pt toj +1t
S2j + S2j41 25 + t25+1 _
= 3 (T ) oy
4 2 2
Jj=0
2N 1 -1 2N 1_1
_ 82j + 82j+1 t2j tt2j41 N-1
R T
Jj= j=0

=rT(f) +sT(9)

e)T:R - R, T(x,y,2) = 2x+y — 32,3z +y + 2,2 — 4y + z). Answer: Not linear.
Solution: By direct calculation we get
7(0,0,0) = (0,2,0) # (0,0,0) .

f) T:C>®(R) - C>®(R), T(f) = f" + f'- f. Answer: Not linear because of the factor f’- f.

7[12P]) In the following problems, evaluate the given linear map T at the given point:

a) T:R - R, T(z,y,2) = (2z + 3y, -z + 4y), (x,y,2) = (2,—1,4). Answer: (1,—6)

b) T:C — C, T(z,2,23) = (1 +i)z1 + 220 —iz3, 21 + (1 — i) 22,22 — 15523), (21,%2,23) = (i,1+i,2+i). Answer:
(2+14,2+14,—5 + 3i)

¢) T+ C(R) - C®(R), <)

d) T:C(-1,1]) = R, T(f) =

= f” + 4f f =2cos(z) +sin(z) + e*. Answer: 6 cos(z) + 3sin(z) + 5e”
f ) dt, f(t) =t* +t + cos(wt). Answer: 2.



