1[8P]) Apply the two dimensional Haar wavelet transform to the matrix $\begin{pmatrix} 2 & 3 \\ 1 & 5 \end{pmatrix}$.

Answer:
$$\begin{pmatrix} 11/4 & -5/4 \\ -1/4 & 3/2 \end{pmatrix}$$

2[12P]) Apply the two dimensional Haar wavelet transform to the matrix $\begin{pmatrix} 4 & -2 & 11 & -1 \\ 2 & 0 & 5 & -3 \\ 20 & -4 & 2 & -2 \\ 8 & 2 & -4 & -4 \end{pmatrix}$

Answer:
$$\begin{pmatrix} 17/8 & 13/8 & 2 & 5 \\ -1/8 & -21/8 & 15/2 & 1 \\ 0 & 2 & 1 & 1 \\ 3/2 & 2 & 9/2 & 1 \end{pmatrix}.$$

3[8P]) Let z = 2 + 3i and $w = \frac{1}{2+i}$. Evaluate the following:

a)
$$z \cdot w = \frac{7}{5} + \frac{4}{5}i$$

Notice first that for a compex number $\frac{1}{x+iy}$ we have

$$\frac{1}{x+iy}=\frac{1}{x+iy}\cdot\frac{x-iy}{x-iy}=\frac{x}{x^2+y^2}-\frac{y}{x^2+y^2}i,$$

Hence $w = \frac{1}{5}(2-i)$. Thus

$$z \cdot w = \frac{1}{5}(2+3i) \cdot (2-i)$$

$$= \frac{1}{5}(2 \cdot 2 - (3i) \cdot i) + \frac{1}{5}(3i \cdot 2 + 2 \cdot (-i))$$

$$= \frac{1}{5}(4+3) + \frac{i}{5}(6-2) = \frac{7}{5} + \frac{4}{5}i$$

b) $\bar{z} = 2 - 3i$: Recall that for a complex number x + iy we have $\overline{x + iy} = x - iy$.

c)
$$z^2 = z \cdot z = (2+3i) \cdot (2+3i) = (4-9) + 2 \cdot 3i = -5+6i$$
.

d)
$$|w|^2 = \frac{1}{25}(4+1) = \frac{1}{5}$$
.

Recall that for any complex number x + iy the number $|x + iy|^2$ is a nonnegative real number give by

$$|x + iy|^2 = (x + iy) \cdot \overline{(x + iy)}$$
$$= (x + iy) \cdot (x - iy)$$
$$= x^2 + y^2,$$

4[8P]) Evaluate the following multiplication of matrices:

a)
$$\begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 2 & 1 & 4 \\ 1 & -5 & 3 \end{bmatrix} = \begin{bmatrix} 4 & -9 & 10 \\ 1 & -16 & 5 \end{bmatrix}$$

Recall first of all that we can only multiply $m \times n$ matrix by an $n \times q$ matrix and the outcome is always a $m \times q$ matrix.

Furthermore if $A \cdot B = C$ then we have

$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj} .$$

Thus

$$\begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 2 & 1 & 4 \\ 1 & -5 & 3 \end{bmatrix} = \begin{bmatrix} 1 \cdot 2 + 2 \cdot 1 & 1 \cdot 1 + 2 \cdot (-5) & 1 \cdot 4 + 2 \cdot 3 \\ (-1) \cdot 2 + 3 \cdot 1 & (-1) \cdot 1 + 3 \cdot (-5) & (-1) \cdot 4 + 3 \cdot 3 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & -9 & 10 \\ 1 & -16 & 5 \end{bmatrix}$$

b)
$$\begin{bmatrix} 2 & 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 2 \\ -1 & 2 \\ 4 & 3 \end{bmatrix} = \begin{bmatrix} 11 & 9 \end{bmatrix}.$$

First notice that this is a product of a 1×4 matrix by a 4×2 matrix. The outcome should therefore by a 1×2 matrix (or row vector):

$$\begin{bmatrix} 2 & 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 2 \\ -1 & 2 \\ 4 & 3 \end{bmatrix} = [2 \cdot 1 + 2 \cdot 2 + (-1) \cdot (-1) + 1 \cdot 4, 2 \cdot 2 + 2 \cdot 2 + (-1) \cdot 2 + 1 \cdot 3]$$
$$= [2 + 4 + 1 + 4, 4 + 4 - 2 + 3]$$
$$= [11, 9]$$

Before discussing the next problems let me recall few facts:

Definition: Let \mathbb{F} be a field. A **vector space** V over \mathbb{F} is a nonempty set with operations of vector addition, i.e., a map

$$V \times V \ni (u, v) \mapsto u + v \in V$$

and a scalar multiplication, i.e., a map

$$\mathbb{F} \times V \ni (r, v) \mapsto r \cdot v \in V$$

satisfying the following properties:

- A1 (Commutativity of addition) For all vectors $u, v \in V$ we u + v = v + u;
- A2 (Associativity for addition) For all $u, v, w \in V : u + (v + w) = (u + v) + w$;
- A3) (Existense of additive identity) There exists an element, denote by $\mathbf{0} \in V$, such that for all $u \in V : u + \mathbf{0} = u$;
- A4) (Existense of additive inverse) For every $u \in V$ there exists an element, denoted by -u, such that u + (-u) = 0;
- A5) For all $u \in V : 1 \cdot u = u$;
- A6) (Associativity of scalar multiplication) For all $r, s \in \mathbb{F}$ and $u \in V$ we have $(rs) \cdot u = r \cdot (s \cdot u)$;
- A7) (First distributive property) For all $r \in \mathbb{F}$ and $u, v \in V$ we have $r \cdot (u + v) = (r \cdot u) + (r \cdot v)$;
- A8) (Second distributive property) For all $r, s \in \mathbb{F}$ and all $u \in V$: $(r+s) \cdot u = (r \cdot u) + (s \cdot u)$;

The first thing the check is therefore always: Is the addition and multiplication defined, and do those operations always give an element in V!

From the axioms A1-A8 it follows that:

- 1. We have $0 \cdot u = \mathbf{0}$ for all $u \in V$.
- 2. The additive inverse is $-u = (-1) \cdot u$. That is, we take the vector u and multiply it by -1. This follows from

$$u + (-1) \cdot u = 1 \cdot u + (-1) \cdot u \quad \text{(by A5)}$$
$$= (1 + (-1)) \cdot u \quad \text{(by A8)}$$
$$= 0 \cdot u$$
$$= \mathbf{0} \quad \text{(by the remark just made)}$$

Important examples of vector spaces:

1. The space $\mathbb{F}^n = \{(x_1, \dots, x_n) \mid x_1, \dots, x_n \in \mathbb{F}\}$. Here the addition and scalar multiplication is given by

$$(x_1, \ldots, x_n) + (y_1, \ldots, y_n) = (x_1 + y_1, x_2 + y_2, \ldots, x_n + y_n)$$

 $r \cdot (x_1, \ldots, x_n) = (rx_1, \ldots, rx_n)$.

Notice that we can actually view \mathbb{F}^n as the space of row vectors $(1 \times n\text{-matrices})$ or as the space of column vectors $(n \times 1\text{-matrices})$.

2. Let S be a set and let $V = \mathbb{F}^S$ = the space of functions from S to \mathbb{F} . Then we can define addition and scalar multiplication by

$$(f+g)(s) = f(s) + g(s)$$
$$(r \cdot f)(s) = rf(s) .$$

We will not prove here that this gives us a vector space. Notice that in this example we can replace the target space \mathbb{F} by any vector space over \mathbb{F} .

3. Let $M(n \times m, \mathbb{F})$ be the set of $n \times m$ matrices with coefficients in \mathbb{F} . Define addition and scalar multiplication by

$$[a_{ij}] + [b_{ij}] := [a_{ij} + b_{ij}]$$

 $r[a_{ij}] = [ra_{ij}].$

Often we construct vector spaces in the following way:

- 1. We have given a vector space V. In particular we know that all the axiomes A1-A8 are valid for elements in V.
- 2. Then we define a subset S of V by

$$S = \{ v \in V \mid \text{some conditions holds for } v \}$$

Thus S is in general not all of V but only those elements that satisfy the given condition. Here are some examples:

(a) Let $\mathbb{F} = \mathbb{R}$, and let I be a nonempty interval in \mathbb{R} . Let V be the vector space of functions on I. According to above, we know that V is a vector space. Now let us consider the condition **continuous**. Thus we set

$$C(I) = \{f : I \to \mathbb{R} \mid f \text{ is continuous}\}\$$

So a function on I is in the subset C(I) if and only if f is continuous. Let for example I = [0, 1) for a moment, then the function f defined by $f(x) = x^2$ is in C([0, 1)) but the function φ_1^2 is not in S.

- (b) If $\mathbb{F}=\mathbb{C}$ then we write $C(I,\mathbb{C})$ for the set of functions $f:I\to\mathbb{C}$ that are continuous.
- (c) Let $V = \mathbb{R}^3$ and consider $S = \{(x, y, z) \in \mathbb{R}^3 \mid 3x y + 2z = 0\}$. Then only those elements in \mathbb{R}^3 that are solutions to the equation 3x y + 2x = 0 belonge to S. As an example the point/vector (1, 3, 0) is in S $(3 \cdot 1 3 + 2 \cdot 0 = 0)$ whereas (1, 1, 1) does not belonge to S $(3 \cdot 1 1 + 2 \cdot 1 = 4 \neq 0)$. One can show that S is the plane of points in \mathbb{R}^3 that are perpenticular to (3, -1, 2).
- (d) Let $V = M(1 \times m, \mathbb{R})$ and let A be a $m \times k$ matrix. Consider $S = \{\mathbf{x} \in V \mid \mathbf{x}A = \mathbf{0}\}$. Thus S is the set of solutions of a system of k- equations with m unknowns.
- (e) Let $V = \mathbb{R}^I$, i.e., the space of functions on an interval I. Define $S = \{f \in V \mid f \text{ is piecewise continuous}\}$. Then all the continuous functions are in S as well as all the functions that are discontinuous at finitely many points. For example if I = [0, 1) then all the functions φ_j^N and all the functions ψ_j^N are elements in S. Here the condition that has to be satisfied is that f is piecewise continuous.

- (f) Let V be the space of all functions on the real line \mathbb{R} (thus we are looking at the above example with $I = \mathbb{R}$). Let S be the set be the set of polynomials of degree $\leq n$ where n is some fixed nonnegative integer. Thus every element in S can be written in the form $p(x) = \sum_{j=0}^{n} a_j x^j$ where a_j are real numbers.
- 3. After defining a set S in this way we often need to know if S is a vector space or not. For that we again notice some simple facts:
 - (a) If u and v are two elements in S then we can define $u + v \in V$ because both u and v are elements of the vector space V and addition is defined in V;
 - (b) If u is in S and $r \in \mathbb{F}$ then again because V is a vector space the vector $r \cdot v \in V$ is defined.
 - (c) As V is a vector space it follows that all the axioms A1-A8 are valid.
 - (d) What is missing is the first part in the definition: Are the vectors u + v and $r \cdot u$ again in S? If that is the case it follows that S is in fact a vector space.
- 4. We collect this in the following:

Definition: Let V be a vector space and S a nonempty subset of V. Then S is said to be a (vector) subspace (of V) if S with the addition and scalar multiplication from V is a vector space.

Theorem: Let V be a vector space and S a nonempty subset of V, then S is a subspace of V if for all $u, v \in S$ and $r \in \mathbb{F}$ we have

(S is closed under addition): $u + v \in S$;

(S is closed under scalar multiplication): $r \cdot u \in S$.

Notice that this implies that $\mathbf{0} \in S$ by taking r = 0 and using that $0 \cdot u = \mathbf{0}$ for all $u \in V$. As S is supposed to be closed under scalar multiplication it follows that $\mathbf{0} \in S$. We can therefore conclude:

Corollary: Suppose that S is a nonempty subset of V and $0 \notin S$, then S is **not** a vector subspace.

Notice: This conclusion is only one way. From $0 \in S$ it does not follows that S is a subspace. To show that a subset is a vector subspace, we have to show that it is closed under addition and scalar multiplication!

Notice: We can replace the two conditions $u+v\in S$ and $r\cdot u\in S$ by one condition: For all $u,v\in S$ and all $r,s\in \mathbb{F}$: $ru+sv\in V$.

5. It can now be shown that all the examples for (a)-(f) above are vector spaces.

Let now V and W be two vector spaces. Then we are mainly interested in special kind of maps from V to W. Those are the functions that **preserve the algebraic structure that we have.**

Definition: Let V and W be vector spaces. A map $T: V \to W$ is said to be linear if

$$T(ru + sv) = rT(u) + sT(v)$$

for all $r, s \in \mathbb{F}$ and all $u, v \in V$.

Notice that this one condition can also be split up in two condition: T(u+v) = T(u) + T(v) and T(ru) = rT(u) for all $u, v \in V$ and all $r \in \mathbb{F}$.

Lemma: Let $T: V \to W$ be linear. Then $T(\mathbf{0}_V) = \mathbf{0}_W$ where $\mathbf{0}_V$ is the zero element in V and $\mathbf{0}_W$ is the zero element in W. **Proof:** Let $u \in V$ and take r = 0. Then

$$T(\mathbf{0}_V) = T(r \cdot u)$$
 (because $0 \cdot u = \mathbf{0}_V$)
= $rT(u)$ (because T is linear)
= $0_{\mathbf{W}}$.

Notice again, that this is only a one way conclusion. $T(\mathbf{0}) = \mathbf{0}$ does not imply that T is linear!

Lemma: Let $T: V \to W$ be linear, then the set

$$S = \{ u \in V \mid T(u) = \mathbf{0} \}$$

is a subspace of V. This subspace is denoted by Ker(T).

Proof: Let $u, v \in \text{Ker}(T)$ and $r, s \in \mathbb{F}$. Then

$$T(ru + sv) = rT(u) + sT(v) = 0.$$

Hence $ru + sv \in \text{Ker}(T)$.

Lemma: Let $T: V \to W$ be linear, then the set

$$S = \{ w \in W \mid \exists v \in V : w = T(v) \}$$

is a subspace of W. This space is denoted by Im(T).

Proof: Let $w, z \in \text{Im}(T)$ and $r, s \in \mathbb{F}$. To show that $rw + sz \in \text{Im}(T)$ we need to find a vector $a \in V$ such that T(a) = rw + sz. The only thing we know for sure is, that by definition there are vectors $u, v \in V$ such that T(u) = w and T(v) = z. Let $a = ru + sv \in V$. Then

$$T(a) = T(ru + sv)$$
$$= rT(u) + sT(v)$$
$$= rw + sz.$$

Lemma: Let V, W be vector spaces, let $S, T : V \to W$ be linear maps and let $r, s \in \mathbb{F}$. Then the map $rR + sS : V \to W$, $u \mapsto rR(u) + sS(u)$, is linear.

Proof: Let $a, b \in \mathbb{F}$ and $u, v \in V$. Then the following holds:

$$(rR+sS)(au+bv) = rR(au+bv) + sS(au+bv)$$

$$= arR(u) + brR(v) + asS(u) + bsS(v) \qquad (R \text{ and } S \text{ are linear})$$

$$= a(rR+sS)(u) + b(rR+sS)(v) .$$

Remark: What we have in fact shown is that the space of linear maps from V to W is a vector space! Let us now take few examples:

1. $V = \mathbb{R}^n$ and $W = \mathbb{R}^m$ (both viewed as row vectors). Let $A = [a_{ij}]$ be a $n \times m$ matrix and define a map $T: V \to W$ by

$$T([x_1,\ldots,x_n]) = [x_1,\ldots,x_n]A.$$

Then T is linear. This follows from the rules of matrix multiplication: $[r\mathbf{x} + s\mathbf{y}]A = r(\mathbf{x}A) + s(\mathbf{y}A)$.

2. If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear map, then there exists a matrix A such that $T(\mathbf{x}) = \mathbf{x}A$. To find A we let $e_1 = [1, 0, \dots, 0]$, $e_2 = [0, 1, 0, \dots, 0], \dots, e_n = [0, \dots, 0, 1]$. Let

$$\mathbf{a}_j = T(e_j).$$

:Let

$$A = \left[\begin{array}{c} \mathbf{a}_1 \\ \vdots \\ \mathbf{a}_n \end{array} \right] .$$

We leave it out as an exercise to show that $T(\mathbf{x}) = \mathbf{x}A$.

5[28P]) Determine if the each of the following sets is a vector space or not, and state why:

a) The space of polynomials of degree ≤ 5 , i.e., $V = \left\{ \sum_{j=0}^{5} a_j x^j \mid \forall j : a_j \in \mathbb{R} \right\}$; **Answer:** This is a vector space. **Solution:** As this is a subset of the **vector space** of all functions on the real line, we only have to show that V is closed under addition and scalar multiplication.

Closed under addition: Let $p(x) = \sum_{i=0}^{5} a_i x^i$ and $q(x) = \sum_{i=0}^{5} b_i x^i$ be elements in V. Then

$$(p+q)(x) = \sum_{j=0}^{5} a_j x^j + \sum_{j=0}^{5} b_j x^j$$
$$= \sum_{j=0}^{5} (a_j + b_j) x^j \in V$$

Closed under scalar multiplication: Let $r \in \mathbb{R}$, then

$$(rp)(x) = r \sum_{j=0}^{5} a_j x^j$$

= $\sum_{j=0}^{5} (ra_j) x^j \in V$.

b) $V = \{(x, y, z) \in \mathbb{R}^3 \mid 2x + x^2 - y + 2z = 0\}$. Answer: This is not a vector space.

Solution: Notice that $(0,0,0) \in V$ because $2 \cdot 0 + 0^2 - 0 + 2 \cdot 0 = 0$. We will now give different ways to show that this is not a vector space.

Solution₁: The vector (2,0,0) is in V. But $2 \cdot (2,0,0) = (4,0,0) \notin V$ because

$$2 \cdot 4 - 4^2 = 8 - 16 = -8 \neq 0.$$

Thus V is not closed under scalar multiplication. (This shows how one can use concrete examples to show that a set is not closed under scalar multiplication).

Solution₂: V is not closed under scalar multiplication. Let $(x,y,z) \in V$ and $r \in \mathbb{R}$. Then $2x + x^2 - y + 2z = 0$. On the other hand we have $r \cdot (x, y, z) = (rx, ry, rz)$. We test now the condition:

$$\begin{split} 2(rx) + (rx)^2 - (ry) + 2(rz) &= r(2x + rx^2 - y + 2z) \\ &= r(2x + x^2 - y + 2z) + (r - 1)rx^2 \\ &= (r - 1)rx^2 \; . \end{split}$$

Here I have used that $2x + x^2 - y + 2z = 0$. I also added and substracted rx^2 to get it into the correct form. So we see that the right hand is only zero if r=0, r=1, or x=0. By taking (as above) element in S with $x\neq 0$ and take $r\neq 0,1$ we se that V is not closed under scalar multiplication.

Solution₃: V is not closed under addition. Let $(x, y, z), (r, s, t) \in V$. Then we have to test if $(x + r, y + s, z + t) \in V$. For that we calculate:

$$\begin{split} 2(x+r) + (x+r)^2 - (y+s) + 2(z+t) &= 2(x+r) + x^2 + r^2 + 2xr - (y+s) + 2(z+t) \\ &= (2x+x^2 - y + 2z) + (2r+r^2 - s + 2t) + 2xr \\ &= 2xr \ . \end{split}$$

The right hand side is only zero if xr=0. So we take two elements in V with the first coordinate not equal to zero, i.e., (2,0,0) in both cases.

c)
$$V = \{ f \in C([-1,1]) \mid \int_{-1}^{1} f(t) \ dt = 0 \}$$
; **Answer:** This is a vector space.

Solution: Let $f, g \in V$ and $r, s \in \mathbb{F}$ then

$$\int_{-1}^{1} rf + sg \ dt = r \int_{-1}^{1} f \ dt + s \int_{-1}^{1} g \ dt = 0 + 0 = 0 \ .$$

Hence $rf = sg \in V$.

d) The space V_3 of all functions on the interval [0,1) of the form $\sum_{j=0}^{7} a_j \psi_j^3$, with arbitrary real numbers a_1, \ldots, a_7 . Here $\psi_j^3(t) = \psi(8t-j)$. Answer: This is a vector space.

Solution: Let $f = \sum_{j=0}^7 a_j \psi_j^3$, $g = \sum_{j=0}^7 b_j \psi_j^3 \in V$ and $r, s \in \mathbb{R}$. Then

$$(rf + sg) = r \sum_{j=0}^{7} a_j \psi_j^3 + s \sum_{j=0}^{7} b_j \psi_j^3$$
$$= \sum_{j=0}^{7} (ra_j + sb_j) \psi_j^3 \in V.$$

e) Let A be a $n \times m$ matrices and $V = \{ \mathbf{x} = [x_1, \dots, x_n] \in \mathbb{R}^n \mid \mathbf{x}A = \mathbf{0} \}$. Answer: This is a vector space.

Solution: Let $\mathbf{x}, \mathbf{y} \in V$ and $r, s \in \mathbb{R}$. Then

$$(r\mathbf{x} + r\mathbf{y})A = r(\mathbf{x}A) + s(\mathbf{y}A)$$
$$= 0 + 0$$
$$= 0.$$

f) $V = \{u \in U \mid T(u) = y\}$ where U and W are vector spaces, $T: U \to W$ is linear and $y \in W$, $y \neq 0$. Anser: This is not a vector space.

Solution: If T is a linear map, then $T(\mathbf{0}_U) = \mathbf{0}_W$, so $\mathbf{0} \notin V$.

g) The space of functions on the real line \mathbb{R} that are solutions to the differential equation $y^{(n)} + a_{n-1}y^{(n-1)} + \ldots + a_0y = 0$, i.e. $V = \{y \in C^{\infty}(\mathbb{R}) \mid y^{(n)} + a_{n-1}y^{(n-1)} + \ldots + a_0y = 0\}$. Answer: This is a vector space.

Solution: Let $f, g \in V$ and $r, s \in \mathbb{R}$. Then we have to show that

$$(rf + sg)^{(n)} + a_{n-1}(rf + sg)^{(n-1)} + \ldots + a_0(rf + sg) = 0$$

But

$$(rf + sg)^{(n)} + a_{n-1}(rf + sg)^{(n-1)} + \dots + a_0(rf + sg) = rf^{(n)} + a_{n-1}rf^{(n-1)} + \dots + ra_0f + rg^{(n)} + a_{n-1}sg^{(n-1)} + \dots + ra_0g$$

$$= r\left(f^{(n)} + a_{n-1}f^{(n-1)} + \dots + a_0f\right) + s\left(g^{(n)} + a_{n-1}g^{(n-1)} + \dots + a_0g\right)$$

$$= 0.$$

6[24P]) Determine if the following maps are linear or not, state why:

- a) $T: \mathbb{R}^3 \to \mathbb{R}^2$, T(x,y,z) = (2x+y-z,xy). Answer: This map is not linear because of the factor xy. (Do the details!)
- b) V the space of polynomials of degree ≤ 5 and W the space of polynomials of degree ≤ 4 , T(p)(x) = 2p'(x) + 3p''(x).

Answer: This map is linear because differentiation is linear amd linear combination of linear maps is linear. (You can also show this directly by plugging a linear combination in the definition of T).

c) $T: \mathbb{R}^4 \to \mathbb{R}$; $T(x_1, x_2, x_3, x_4) = 2x_1 + x_2 - 3x_3 + 4x_4$. Answer: Linear.

Solution: Write T as

$$T(\mathbf{x}) = \mathbf{x} \begin{bmatrix} 2 \\ 1 \\ -3 \\ 4 \end{bmatrix}$$

and use that any map of this form is linear (see above or notes from class). d) Let $V_N = \left\{ \sum_{j=0}^{2^N-1} s_j \varphi_j^N \mid \forall j=0,\ldots,2^N-1: a_j \in \mathbb{R} \right\}$ and $T:V_N \to V_{N-1}$ given by

$$T(\sum_{j=0}^{2^{N}-1} s_j \varphi_j^N) = \sum_{j=0}^{2^{N-1}-1} \frac{s_{2j} + s_{2j+1}}{2} \varphi_j^{N-1}.$$

Answer: This map is linear.

Solution: Let $f = \sum_{j=0}^{2^N-1} s_j \varphi_j^N$ and $g = \sum_{j=0}^{2^N-1} t_j \varphi_j^N$ be vectors in V_N . Then for $r, s \in \mathbb{R}$ we get:

$$rf = \sum_{j=0}^{2^{N}-1} rs_{j}\varphi_{j}^{N}$$

$$sg = \sum_{j=0}^{2^{N}-1} st_{j}\varphi_{j}^{N}$$

and

$$rf + sg = \sum_{j=0}^{2^{N}-1} (rs_j + st_j) \varphi_j^N$$

and hence

$$\begin{split} T(rf+sg) &= \sum_{j=0}^{2^{N-1}-1} \frac{rs_{2j} + rs_{2j+1} + st_{2j} + st_{2j+1}}{2} \varphi_j^{N-1} \\ &= \sum_{j=0}^{2^{N-1}-1} \left((r\frac{s_{2j} + s_{2j+1}}{2}) + s(\frac{t_{2j} + t_{2j+1}}{2}) \right) \varphi_j^{N-1} \\ &= r\sum_{j=0}^{2^{N-1}-1} \frac{s_{2j} + s_{2j+1}}{2} \varphi_j^{N-1} + s\sum_{j=0}^{2^{N-1}-1} \frac{t_{2j} + t_{2j+1}}{2} \varphi_j^{N-1} \\ &= rT(f) + sT(g) \end{split}$$

e) $T: \mathbb{R}^3 \to \mathbb{R}^3$, T(x, y, z) = (2x + y - 3z, 3x + y + 2, x - 4y + z). Answer: Not linear.

Solution: By direct calculation we get

$$T(0,0,0) = (0,2,0) \neq (0,0,0)$$
.

f) $T: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R}), T(f) = f'' + f' \cdot f$. Answer: Not linear because of the factor $f' \cdot f$.

7[12P]) In the following problems, evaluate the given linear map T at the given point:

- a) $T: \mathbb{R}^3 \to \mathbb{R}^2$, T(x,y,z) = (2x+3y,-x+4y), (x,y,z) = (2,-1,4). Answer: (1,-6)
- **b)** $T:\mathbb{C}^3\to\mathbb{C}^3,\ T(z_1,z_2,z_3)=((1+i)z_1+2z_2-iz_3,z_1+(1-i)z_2,z_2-\frac{1}{1+i}z_3),\ (z_1,z_2,z_3)=(i,1+i,2+i).$ Answer: $(2+i, 2+i, -\frac{1}{2}+\frac{3}{2}i)$
- c) $T: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R}), \ T(f) = f'' + 4f, \ f = 2\cos(x) + \sin(x) + e^x$. Answer: $6\cos(x) + 3\sin(x) + 5e^x$
- d) $T: C([-1,1]) \to \mathbb{R}, T(f) = \int_{-1}^{1} f(t) dt, f(t) = t^2 + t + \cos(\pi t)$. Answer: $\frac{2}{3}$.