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Abstract. An integer matrix A is ∆-modular if the determinant of each rank(A) × rank(A)
submatrix has absolute value at most ∆. The class of 1-modular, or unimodular, matrices is of
fundamental significance in both integer programming theory and matroid theory. A 1957 result
of Heller shows that the maximum number of nonzero, pairwise non-parallel columns of a rank-r
unimodular matrix is

(r+1
2

)
. We prove that, for each sufficiently large integer r, the maximum

number of nonzero, pairwise non-parallel columns of a rank-r 2-modular matrix is
(r+2

2

)
− 2.
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1. Introduction. This paper is motivated by the theory of integer program-
ming. Given a constraint matrix A ∈ Zm×n and vectors b ∈ Zm and c ∈ Zn, a
fundamental problem of integer programming is to find an integer vector x in the
polyhedron {x ∈ Rn : Ax ≤ b} that maximizes the inner product cTx. In general,
one cannot expect to optimize an integer program efficiently, but better efficiency is
possible if the constraint matrix has special structure.

Given a positive integer ∆, an integer matrix A is ∆-modular if the determi-
nant of each rank(A) × rank(A) submatrix of A has absolute value at most ∆. A
1-modular matrix is unimodular, and integer programs with a unimodular matrix
can be optimized in strongly polynomial time, because every vertex of the polytope
{x ∈ Rn : Ax ≤ b} is integral [9]. This fact has led to considerable interest in the com-
plexity of integer programming with a ∆-modular constraint matrix (see, for example,
[14] and [1]). This complexity is unknown when ∆ ≥ 3, but a recent breakthrough
of Artmann, Weismantel, and Zenklusen [2] shows that integer programs with a 2-
modular, or bimodular, constraint matrix can be optimized in strongly polynomial
time. In view of this result, the structural properties of 2-modular matrices are of
significant interest. A well-known result of Heller [8] shows that a rank-r unimodu-
lar matrix has at most

(
r+1

2

)
nonzero, pairwise non-parallel columns. We prove the

analogous result for ∆ = 2.

Theorem 1.1. For each sufficiently large integer r, the maximum number of non-
zero, pairwise non-parallel columns of a rank-r 2-modular matrix is

(
r+2

2

)
− 2.

This was proven independently by Lee et al. [10], who showed that this bound
holds for all r. The previous best upper bound was

(
r+1

2

)
+C · r for a large constant

C, due to Geelen, Nelson, and Walsh [5]. The bound of Theorem 1.1 is tight, for
example, for the matrices Ar and A′r in Figure 1, where Dr is the r ×

(
r
2

)
matrix

whose columns consist of all r-tuples with exactly two nonzero entries, the first equal
to 1 and the second equal to −1.

We prove Theorem 1.1 using matroids. For each positive integer ∆, let M∆

denote the class of matroids with a representation over R as a ∆-modular matrix. We
say that such a matroid is ∆-modular. An integer matrix A is totally ∆-modular if the
determinant of every submatrix of A has absolute value at most ∆. We defineM∆ to
be the class of matroids with a representation over R as a totally ∆-modular matrix.
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Ar =


1 · · · 1

Ir Dr Ir−1



A′r =


1 · · · 1 1
1 · · · 1 1

Ir Dr 0

−Ir−2

...
0


Fig. 1. Ar and A′r.

Clearly M∆ ⊆ M∆ for each ∆ ≥ 1, because every totally ∆-modular matrix is also
∆-modular. Since every unimodular matrix is row-equivalent to a totally unimodular
matrix, the classes M1 and M1 are in fact equal.

The class M1 is the class of regular matroids. Tutte [13] proved that this class
coincides with the class of matroids representable over every field, and that there
are exactly three minor-minimal matroids not in M1. For ∆ ≥ 2, the class M∆ is
not very well-studied. It is proved in [5] that M∆ is minor-closed, and that every
matroid in M∆ is representable over every field with characteristic greater than ∆.
In particular, every matroid in M2 is representable over GF(3) and GF(5); such a
matroid is called dyadic.

In view of Tutte’s results and the fundamental significance of unimodular matri-
ces, there are several natural open questions concerning M∆.

Problem 1.2. Let ∆ be a positive integer.
(i) What is the maximum size of a simple rank-r matroid in M∆, and which ma-

troids attain this maximum?
(ii) What are the minor-minimal matroids that are not in M∆?

(iii) Is M∆ equal to M∆?
(iv) Is M∆ closed under duality?

Theorem 1.1 shows that the maximum size of a simple rank-r 2-modular matroid
is
(
r+2

2

)
− 2, if r is sufficiently large, and the vector matroids of Ar and A′r show

that there are at least two matroids that attain this maximum. In order to prove
Theorem 1.1, we show that (iii) and (iv) have affirmative answers for ∆ = 2, and we
find several excluded minors forM2, including U2,5, F7, U2,4 ⊕U2,4, and AG(2, 3)\e.
In fact, we prove the following result, which is stronger than Theorem 1.1. A line in
a matroid is a rank-2 flat, and a line is long if it contains at least three points, that is,
rank-one flats. The matroid R9 is the ternary Reid geometry [11, p. 654], which is the
simple rank-3 matroid consisting of long lines L1, L2, L3 with a common intersection
point x so that |L1| = |L2| = 4, |L3| = 3, and both elements in L3 − {x} are on four
long lines.

Theorem 1.3. For each sufficiently large integer r, the maximum size of a simple
rank-r matroid with no minor in {U2,5, F7, U2,4 ⊕ U2,4, R9} is

(
r+2

2

)
− 2.

While we make progress on Problem 1.2 for ∆ = 2, it is surprisingly difficult for
∆ ≥ 3. For fixed ∆ ≥ 3, the current best upper bound on the maximum size of a
simple rank-r matroid inM∆ is

(
r+1

2

)
+C ·r for a large constant C, proved by Geelen,
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Nelson, and Walsh [5]. Recently, Lee et al. [10] proved an upper bound of ∆2
(
r+1

2

)
,

which is the first bound that is polynomial in both r and ∆. Both of these are recent
additions to a long sequence of previous results; we direct the reader to [7] for more
details. However, it is unclear what the correct bound should be for ∆ ≥ 3. It is also
unclear in general what the rank-2 uniform excluded minor is for M∆. On a more
positive note, it follows from a result of D’Adderio and Moci [4, Theorem 2.2] thatM∆

is closed under duality for all positive ∆. In section 4 we present an elementary proof
of this result due to Marcel Celaya (private communication). However, for ∆ ≥ 3 it
is unknown whether M∆ =M∆, and whether M∆ is closed under duality. Some of
the difficulties of these open problems are discussed in section 4. After introducing
some preliminaries in section 2, we show in section 3 that Ar and A′r attain equality
in Theorem 1.1. The proofs of Theorem 1.1 and Theorem 1.3 are given in section 9.
A crucial case in the proof of the latter, when M has a spanning-clique restriction, is
treated in section 8. Prior to that, section 5, section 6, and section 7 consider 1-, 2-,
and k-element extensions of a clique.

2. Preliminaries. We follow the notation of [11], unless otherwise stated. For
a matroid M , we write |M | and ε(M) for, respectively, |E(M)| and the number of
points of M . For an integer ` ≥ 2, we denote by U(`) the class of matroids with no
U2,`+2-minor.

We first describe a construction that shows how the vector matroids of Ar and
A′r are related to M(Kr+2). If a matroid M is obtained from a matroid N by deleting
a non-empty subset T of E(N), then N is an extension of M . If |T | = 1, then N
is a single-element extension of M , and if |T | = k for k ≥ 2, then N is a k-element
extension of M . The single-element extensions of a matroid M are in one-to-one
correspondence with the modular cuts of M , which are the sets F of flats with the
following two properties:

(i) If F ∈ F and F ′ is a flat of M containing F , then F ′ ∈ F .
(ii) If F1, F2 ∈ F and rM (F1)+rM (F2) = rM (F1∪F2)+rM (F1∩F2), then F1∩F2 ∈
F .

A pair of flats that satisfies (ii) is a modular pair. A modular cut F is proper if it
does not contain all flats of M . The modular cut of M corresponding to a single-
element extension N of M by an element e is the set of flats of M that span e in N .
Conversely, Crapo [3] showed that, for every modular cut F of M , there is a unique
single-element extension N of M by an element e for which F is precisely the set of
flats of M that span e in N (see [11, Theorem 7.2.3]). Given a set F of flats of M ,
the modular cut of M generated by F is the intersection of all modular cuts of M
that contain every flat in F . If N is a single-element extension of M by an element
e corresponding to the modular cut generated by a single flat F , then we say that e
has been freely added to F .

A matroid M ′ is an elementary projection or an elementary quotient of M if
there is a single-element extension N of M by an element e so that M ′ = N/e. Thus,
every elementary projection of M corresponds to a modular cut of M . We prove in
the following section that the vector matroids of the matrices Ar and A′r are both
simplifications of elementary projections of M(Kr+2).

Two classes of matroids arise in the proof of Theorem 1.3: spikes and Reid ge-
ometries. A spike is a simple matroid S with an element t so that the simplification
of S/t is a circuit, and each parallel class of S/t has size two. The element t is a tip
of S. A spike S may have several elements that can serve as a tip. For example, the
Fano plane is a spike, and every element can serve as a tip. However, a spike of rank
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at least four has a unique tip. We will also make use of the fact that spikes are not
graphic (see [11, p. 662]).

A Reid geometry is a simple rank-3 matroid N consisting of long lines L1, L2, L3

with a common intersection point x so that |L1| = |L2| and |L3| = 3, while both
elements in L3−{x} are on |L1| long lines of N . If |L1| = 3, then N is the Fano plane
F7. If |L1| = 4, then N is the ternary Reid geometry R9.

3. The Maximum-Sized Matroids. In this section, we describe two matroids
that meet the bound of Theorem 1.3. We first show that the matrices Ar and A′r are
in fact 2-modular.

Lemma 3.1. For each integer r ≥ 2, the matrix Ar is 2-modular.

Proof. Let r be minimal so that the lemma is false. Then r > 2. Let A be an
r × r submatrix of Ar so that |det(A)| > 2. If A has a row with exactly one nonzero
entry, then the determinant of A is ±1 times the determinant of an (r − 1)× (r − 1)
submatrix of Ar−1, and so |det(A)| ≤ 2, by the minimality of r. Then each row of A
has at least two nonzero entries, and, since each column of Ar has at most two nonzero
entries, this implies that A has precisely two nonzero entries in each row and column.
By permuting rows and columns of A and multiplying some rows and columns of A
by −1, we may obtain a matrix A′ for which all but at most one column has nonzero
entries 1 and −1. If A′ has no column with two entries equal to 1, then |det(A′)| ≤ 1.
Otherwise, by expanding along a column with two ones, we see that the determinant
of A is the sum or difference of the determinants of two matrices with determinant in
{−1, 0, 1}. In either case, |det(A′)| ≤ 2. But |det(A′)| = |det(A)|, so this contradicts
the choice of A.

Lemma 3.2. For each integer r ≥ 2, the matrix A′r is 2-modular.

Proof. For each integer r ≥ 3, let Hr = [Ir|Dr|v], where v = [1,−1,−1, 0, . . . , 0]T .
Then A′r can be obtained from Hr+1 by pivoting on the first entry of the last column,
deleting the first row and last column, and then deleting two columns. This implies
that each r × r submatrix of A′r has the same determinant as an (r + 1) × (r + 1)
submatrix of Hr+1, so it suffices to show that Hr is 2-modular for each r ≥ 3.

Let A = [A′|v] be an r×r submatrix of Hr. Let A1 = [A′|e1−e2] and A2 = [A′|e3],
where ei is the ith unit vector. Then |det(A1)| ≤ 1 and |det(A2)| ≤ 1, since each
is a submatrix of [Ir|Dr]. Since the determinant is linear in the last column and
v = (e1 − e2)− e3, we have det(A) = det(A1)− det(A2), so |det(A)| ≤ 2.

The vector matroids of the matrices Ar and A′r are both simplifications of el-
ementary projections of M(Kr+2). For each integer r ≥ 2, the matroid Tr is the
simplification of the matroid obtained by projecting M(Kr+2) by an element freely
added to a 3-point line. The matrix Ar is a well-known representation of Tr [12], so Tr
is a 2-modular matroid by Lemma 3.1. Note that |Tr| = |M(Kr+2)| − 2 =

(
r+2

2

)
− 2.

We now define another single-element extension of M(Kr+2), by its corresponding
modular cut.

Proposition 3.3. Let L1 and L2 be 2-point lines of M(Kr+2) so that L1 ∪ L2

is a 4-element circuit. Then the set of flats of M(Kr+2) that contain L1 or L2

is a proper modular cut. Moreover, the corresponding single-element extension of
M(Kr+2) is represented over both R and GF(3) by the matrix [Ir+1|Dr+1|v], where
v = [1,−1,−1, 0, . . . , 0]T .

Proof. Note that the matrix Hr+1 = [Ir+1|Dr+1|v] is a submatrix of A′r+1, and is
thus 2-modular, by Lemma 3.2. Therefore, the vector matroids of Hr+1 over R and
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GF(3) are isomorphic; let M denote this matroid. In the matroid M , let e label the
last column of Hr+1. Then M\e is M(Kr+2). Let F be the set of flats of M\e that span
e in M . Note that F contains no 1-element flat, because M is simple. Let a, b, c, d
be the labels of the columns [1,−1, 0, . . . , 0]T , [0, 1, 0, . . . , 0]T , [0, 0, 1, 0, . . . , 0]T , and
[1, 0,−1, 0, . . . , 0]T , respectively, of Hr+1. Then {a, c, e}, {b, d, e}, and {a, b, c, d} are
circuits of M , and so {a, c} and {b, d} are flats of M(Kr+2) in F . Let F0 denote
the 6-element flat of M(Kr+2) spanned by {a, b, c, d}; then M(Kr+2)|F0

∼= M(K4).
It is straightforward to check that {a, c, e} and {b, d, e} are the only long lines of
M |(F0 ∪ {e}) that contain e.

Suppose that there is a flat F ∈ F that does not contain {a, c} or {b, d}. Since
F ∈ F and F0 ∈ F , the flat L = F ∩ F0 is in F as well, by property (ii) of modular
cuts. This flat L has rank less than three, since it does not contain {a, c} or {b, d}.
It has size at least two, since M is simple. But {a, c, e} and {b, d, e} are the only
long lines of M |(F0 ∪{e}) that contain e, which contradicts the existence of F . Thus,
F is precisely the set of flats that contain {a, c} or {b, d}. Since F is proper, the
proposition holds.

For each integer r ≥ 2, let T ′r denote the simplification of the matroid obtained
by projecting M(Kr+2) by an element corresponding to the modular cut of Proposi-
tion 3.3. It is not hard to see that the matrix A′r can be obtained from the real matrix
[Ir+1|Dr+1|v] by pivoting on the first entry of the last column, deleting the first row
and last column, and then deleting one column from each of the two parallel pairs.
Thus, A′r represents T ′r over R, and so T ′r is a 2-modular matroid by Lemma 3.2. Note
that |T ′r| = |M(Kr+2)| − 2 =

(
r+2

2

)
− 2. The matroids Tr and T ′r are likely the unique

simple rank-r 2-modular matroids of size
(
r+2

2

)
− 2 for r ≥ 5, but this seems difficult

to prove.

4. Duality and Excluded Minors. In this section, we find several excluded
minors forM2, show thatM2 =M2, and present a proof showing thatM∆ is closed
under duality for each positive integer ∆. We make use of the following result.

Lemma 4.1. Let A be a 2-modular representation of a rank-r matroid M , and let
e be a non-loop of M that labels the first column of A. Then there is a 2-modular
matrix A′ of the form [Ir|X] whose first column is labeled by e such that A′ is obtained
from A by elementary row operations, column swaps, and dividing rows by two.

Proof. We may assume that e labels the first column of A, that A has r rows,
and that r ≥ 2. Let B be a basis of M containing e, and let AB be the corresponding
submatrix of A. By performing elementary row operations, we may transform A into
another 2-modular matrix in which AB is in Hermite normal form. If each entry on
the diagonal of AB is 1, then the lemma holds. Otherwise, since A is 2-modular,
exactly one entry on the diagonal of AB is equal to 2 and all the rest are equal to
1. We may assume that the row of A with the entry 2 on the diagonal of AB has an
entry in {−1, 1}, or else we may divide this row by 2. By pivoting on that entry and
swapping columns, we obtain a 2-modular matrix of the form [Ir|X], where the first
column is labeled by e.

Since row operations do not change the vector matroid, Lemma 4.1 implies that
M2 is closed under duality (see [11, Theorem 2.2.8]). Also, since every ∆-modular
matrix of the form [Ir|X] is in fact totally ∆-modular, Lemma 4.1 implies thatM2 =
M2. Unfortunately, the analogue of Lemma 4.1 is false for ∆-modular matrices with



6 J. OXLEY AND Z. WALSH

∆ ≥ 3. For example, the matrix [
1 1 1
0 2 3

]
with the first column labeled by e is 3-modular, but is not row-equivalent to a matrix
with an I2-submatrix that uses the first column. This is the main difficulty in showing
that M∆ =M∆ for ∆ ≥ 3.

Next we present a proof showing that M∆ is closed under duality. This follows
from a result of D’Adderio and Moci concerning arithmetic matroids [4, Theorem 2.2],
but we present an elementary proof due to Marcel Celaya (private communication).
We also thank the anonymous referee for informing us that this result is in fact known.

We first develop some notation. Let A ∈ Zm×n be a matrix with columns indexed
by a set E. For every X ⊆ E, we write AX for the submatrix of A consisting of the
columns indexed by X. If A has full row-rank, then we write gcd(A) for the greatest
common divisor of the determinants of the m×m submatrices of A. We write [n] for
{1, 2, . . . , n}.

Theorem 4.2 (D’Adderio, Moci). For each positive integer ∆, the class M∆ is
closed under duality.

Proof. Let M be a ∆-modular matroid with ground set [n], and let A ∈ Zm×n

be a ∆-modular representation of M with full row rank. We first show that there is
a matrix C ∈ Z(n−m)×n with gcd(C) = 1 whose rows form a basis of ker(A). Let
C1 ∈ Z(n−m)×n be a matrix whose rows form a basis of ker(A). Let P ∈ Z(n−m)×(n−m)

and Q ∈ Zn×n be unimodular matrices so that PC1Q is the Smith normal form of
C1. Then PC1Q = [D|0], where D ∈ Z(n−m)×(n−m) is an invertible diagonal matrix.
Then D−1PC1Q = [I|0] is an integer matrix with gcd(D−1PC1Q) = 1. Since Q
is unimodular, so is Q−1, and therefore (D−1PC1Q)Q−1 = D−1PC1 is an integer
matrix. Clearly the Smith normal form of D−1PC1 is D−1PC1Q = [I|0]. Since a
matrix B with full row-rank has gcd(B) = 1 if and only if the Smith normal form of
B is [I|0], it follows that gcd(D−1PC1) = 1. Therefore, D−1PC1 is an integer matrix
row-equivalent to C1 with gcd(D−1PC1) = 1, so we may take C = D−1PC1.

We will show that C is a ∆-modular representation of M∗. For each set X ⊆ [n],
we write X̄ for [n] −X. Note that A and C both have columns indexed by [n], and
that B ⊆ [n] is a basis of M if and only if B̄ is a basis of M∗. By rearranging columns,
we may assume that B = [m] is a basis of M . Then A−1

B A = [Im|A−1
B AB̄ ]. Since

A−1
B A is row-equivalent to A, it represents M over Q. Let C ′ = [(A−1

B AB̄)T | − In−m].
Then by Theorem 2.2.8 in [11], C ′ represents M∗ over Q. Also, the rows of C ′ form
a basis of ker(A−1

B A) = ker(A), so C ′ is row-equivalent to C, and thus C represents
M∗ as well. Moreover, since C ′ and C are row-equivalent, there exists an invertible
rational (n−m)× (n−m) matrix Q such that C ′ = QC. Then each set B1 ⊆ E(M)
of size m satisfies det(C ′

B̄1
) = det(Q) det(CB̄1

).

Let B0 be a basis of M obtained from B by a basis exchange, so B0 = (B∪{j})−
{i} for some i ∈ B and j /∈ B. Then the matrix C ′

B̄0
is obtained from −In−m by

replacing the (j −m)th column with the ith column of (A−1
B AB̄)T , so

det(C ′B̄0
) = (−1)n−m−1(A−1

B AB̄)Tj−m,i(4.1)

= (−1)n−m−1(A−1
B AB̄)i,j−m(4.2)

= (−1)n−m−1(A−1
B A)i,j .(4.3)

Furthermore, the system (AB)x = A{j} has unique solution A−1
B A{j} = (A−1

B A){j},
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so by Cramer’s rule, the ith entry of the solution (A−1
B A){j} is

(A−1
B A)i,j =

det(AB0
)

det(AB)
.

Combined with (3), this implies that

det(C ′B̄0
) = (−1)n−m−1 det(AB0)

det(AB)
.(4.4)

Since C ′ = QC and det(C ′
B̄

) = (−1)n−m, (4) implies that

det(CB̄0
)

det(CB̄)
=

det(C ′
B̄0

)

det(C ′
B̄

)
= −det(AB0

)

det(AB)
.(4.5)

Since every basis of M can be obtained from any other basis by a sequence of basis
exchanges, (5) implies that each pair (B1, B2) of bases of M satisfies

det(CB̄1
)

det(CB̄2
)

= ±det(AB1
)

det(AB2
)
.(4.6)

Suppose that some basis B1 of M satisfies det(CB̄1
) = c ·det(AB1

) for some c ∈ Q
with |c| > 1. Then (6) implies that each other basis B2 of M satisfies det(CB̄2

) =
±c · det(AB2

). But then c · gcd(A) is an integer with absolute value greater than 1
which divides gcd(C), a contradiction. Thus, each basis B of M satisfies |det(CB̄)| ≤
|det(AB)| ≤ ∆, so C is ∆-modular.

We now turn our attention back to M2. To find excluded minors for M2, we
can use the fact that every matroid in M2 is dyadic. The excluded minors for the
class of dyadic matroids include U2,5, F7, AG(2, 3)\e, ∆(AG(2, 3)\e), T8, and their
duals. Here ∆(AG(2, 3)\e) is obtained from AG(2, 3)\e by a ∆-Y exchange, while
T8 is a self-dual ternary spike with the tip deleted [11, p. 649]. In fact, each of these
matroids is an excluded minor forM2. The proof, which we omit, amounts to finding
a 2-modular representation for each single-element deletion or contraction of each
of these matroids. Also, since the ternary Reid geometry R9 has AG(2, 3)\e as a
restriction, R9 is not in M2. There are two other known excluded minors for the
class of dyadic matroids, namely N1 and N2, and the question of whether this list is
complete is a long-standing open problem (see [11, Problem 14.7.11]).

Problem 4.3. Determine if

{U2,5, U3,5, F7, F
∗
7 ,AG(2, 3)\e, (AG(2, 3)\e)∗,∆(AG(2, 3)\e), T8, N1, N2}

is the complete list of excluded minors for the class of dyadic matroids.

The matroid N2 may be an excluded minor for M2, but N1 is not, as we shall
see shortly. To find excluded minors for M2 that are dyadic, we use Lemma 4.1.

Proposition 4.4. U2,4 ⊕ U2,4 is an excluded minor for M2.

Proof. Suppose A is a 2-modular representation of U2,4⊕U2,4 with four rows. By
Lemma 4.1, we may assume that A has an I4-submatrix. Since U2,4 is not regular,
this implies that A has a 4 × 4 block-diagonal submatrix where the determinant of
each nonzero block has absolute value at least two. But then the determinant of this
submatrix has absolute value at least four, a contradiction, so U2,4⊕U2,4 /∈M2. Each
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single-element contraction of U2,4⊕U2,4 is isomorphic to U1,3⊕U2,4, and it is easy to
see that this matroid is in M2. Since U2,4 ⊕ U2,4 is self-dual, this implies that every
minor of U2,4 ⊕ U2,4 is in M2.

The matroid U2,4⊕U2,4 is signed-graphic, which means that it has a representation
over GF(3) so that each column has at most two nonzero entries. In fact, M2 has at
least two other signed-graphic excluded minors, represented over R by the following
matrices:

1 0 1 1 0 0 1 0
0 1 1 −1 0 0 0 1
0 0 0 0 1 1 0 −1
0 0 0 0 1 −1 −1 0

 ,


1 0 1 1 0 0 0 0
0 1 1 −1 0 0 0 1
0 0 0 0 1 1 0 −1
0 0 0 0 1 −1 1 0


We write U8 for the vector matroid of the first matrix, and U ′8 for the vector matroid of
the second matrix. Both matroids are self-dual. One can prove that they are excluded
minors for M2 using a similar proof to that of Proposition 4.4. The excluded minor
N1 for the dyadic matroids has a U8-minor, but N2 does not have a minor isomorphic
to U2,4 ⊕ U2,4, U8, or U ′8, and thus it may be an excluded minor for M2.

Finding the excluded minors forM∆ likely becomes more difficult as ∆ increases.
Indeed, we have not yet solved the following.

Problem 4.5. Find the unique rank-2 excluded minor for M∆.

Since M∆ is closed under parallel extension and adding loops, each excluded
minor for M∆ is simple. Since every rank-2 simple matroid is uniform, this implies
that M∆ has a unique rank-2 excluded minor, which must be uniform. If p is the
smallest prime greater than ∆, then U2,p+2 /∈ M∆, because every matroid in M∆ is
GF(p)-representable. Also, it is not hard to see that U2,∆+2 ∈ M∆ for each ∆ ≥ 1,
by taking the representation with two rows, two unit columns, and all columns of the
form [1,m]T , where 1 ≤ m ≤ ∆. This implies that if ∆ + 1 is prime, then U2,∆+3

is an excluded minor for M∆. It is natural to conjecture that U2,p+2 is always an
excluded minor for M∆, where p is the smallest prime greater than ∆. However, it
appears (through Sage code) that the rank-2 excluded minor for M7 is U2,11, even
though nine is not prime. Thus, it is unclear what the correct answer to Problem 4.5
may be as a function of ∆.

5. Single-Element Extensions. The remainder of this paper is devoted to the
proof of Theorem 1.3. In this section, we show that, up to isomorphism, there are
only two rank-r non-trivial single-element extensions of a clique that have no minor
isomorphic to U2,5, F7, orR9. We need the following straightforward lemma to identify
R9.

Lemma 5.1. Let M be a simple rank-3 matroid on nine elements consisting of
three long lines through a common point. Then either M has a U2,5-minor, or M ∼=
R9.

Proof. Suppose that M has no U2,5-minor, and let x be a point that is on three
long lines. Since |M | = 9, two of these lines have four points, and one has three
points. Let L1 and L2 be the 4-point lines through x, and let {x, y, z} be the 3-point
line through x. Since M has no U2,5-minor, each element of L1 − {x} is on a long
line with y and a long line with z. Thus, y and z are both on four long lines of M , so
M ∼= R9.

We now show that, up to isomorphism, there are only two rank-r non-trivial



2-MODULAR MATRICES 9

single-element extensions of a clique that have no minor isomorphic to U2,5, F7, or
R9.

Proposition 5.2. Let M be a simple matroid of rank at least three with a set X
so that M |X ∼= M(Kr(M)+1), and let e ∈ E(M)−X. If M has no minor isomorphic
to U2,5, F7, or R9, then either
(a) the extension of M |X by e corresponds to the modular cut generated by a 3-point

line, or
(b) the extension of M |X by e corresponds to the modular cut generated by a pair of

2-point lines whose union is a circuit.

Proof. Let L denote the set of lines of M |X that span e. Since M |X ∼=
M(Kr(M)+1), each line in L has size at most three. The 3-point lines in L correspond
to triangles of Kr(M)+1, and the 2-point lines in L correspond to 2-edge matchings of
Kr(M)+1.

Claim 5.3. L is non-empty.

Proof. Assume that L is empty. Then (M/e)|X is simple. Let M1 be a minimal
simple minor of M of rank at least three so that

• e ∈ E(M1),
• there is a set X1 ⊆ X so that M1|X1

∼= M(Kr(M1)+1), and
• (M1/e)|X1 is simple.

Since M has no U2,5-minor and (M1/e)|X1 is simple, each plane of M1|X1 that
spans e has size at most four. Thus, r(M1) ≥ 4. By minimality, each element of X1 is
in a plane of M1|X1 that spans e. Each plane of M1|X1 has size 3 or 4, corresponding
to a 3-edge matching, or a triangle and disjoint edge. Since each plane of M1|X1 is
spanned by an M(Km)-restriction of M1|X1 for some m ≤ 6, the minimality of M1

implies that r(M1) ≤ 5.
Suppose r(M1) = 4. Then each element of X1 is in a 4-element plane of M1|X1

that spans e. Since |X1| = 10, there is some x ∈ X1 that is in at least two such planes.
Each element of X1 is on at least three long lines of M1|X1, and is thus on at least
three long lines of (M1/e)|X1, or else M1/e has a U2,5-restriction, since (M1/e)|X1 is
simple. But x is on two 4-point lines in M1/e, so Lemma 5.1 implies that M1 has a
minor isomorphic to U2,5 or R9, a contradiction. Thus, r(M1) = 5.

By the minimality of M1, each plane of M1|X1 that spans e has size three. More-
over, each element x ∈ X1 is in at least two planes of M1|X1 that span e; otherwise
e is spanned by a unique line of (M1/x)|(X1 − {x}), and this line has two points, so
M1/{x, e} has a U2,5-restriction. We may assume that the ground set of M1|X1 is the
edge set of the complete graph with vertex set {0, 1, 2, 3, 4, 5}. Let x = 01 and choose
y = 02. We will show that M1/{e, y} has at least three long lines through x, two of
which have four points, and obtain a contradiction using Lemma 5.1. Let Z be the
union of the three 3-point lines of M1|X1 that contain x but not y.

Note that Z does not span e or y in M1. Suppose (M1/{e, y})|Z is not simple.
Then there is a circuit {x1, x2, e, y} of M1 where x1 and x2 are in Z−{x}. Therefore,
{y, x1, x2} is not a 3-edge matching in the K6 corresponding to M1|X1, contradicting
the fact that each plane of M1|X1 spanning e has size three. Thus, (M1/{e, y})|Z is
simple, so there are at least three long lines of M1/{e, y} that contain x.

There is no plane of M1|X1 that spans e and contains both x and y, since such a
plane would have at least four elements. Since x is in at least two planes of M1|X1 that
span e, this implies that x is in at least two planes of (M1/y)|(X1 − {y}) that span e
in M1/y. Moreover, these planes each have at least four points, since si((M1/y)|(X1−
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{y})) ∼= M(K5) and so has no 3-point plane. Thus, in M1/{y, e}, the element x is on
at least two 4-point lines. Since x is on at least three long lines, Lemma 5.1 implies
that M1/{e, y} has an R9-restriction or a U2,5-minor, a contradiction.

Since L is non-empty, the sets in L are pairwise disjoint and pairwise coplanar.
To finish the proof, we will use the following two facts:

(i) If (F, F ′) is a modular pair of flats of M |X such that F and F ′ both span e,
then the flat F ∩ F ′ spans e as well.

(ii) If F and F ′ are flats of M |X, and M |F ′ is isomorphic to a clique, then (F, F ′)
is a modular pair.

First assume that L contains a 3-point line L. If F is a flat of M |X that spans
e, then F ∩ L is a flat of M |X that spans e, by (i) and (ii). Since M is simple,
r(F ∩ L) 6= 1, so F contains L. Thus, (a) holds, so we may assume that each
line in L has size two. Then each such line corresponds to a 2-edge matching in
Kr(M)+1. Since the lines in L are pairwise coplanar, the union of two such lines
corresponds to a 4-cycle of Kr(M)+1. Thus, |L| ≤ 3. Moreover, if L = {L1, L2, L3},
then M |(L1 ∪ L2 ∪ L3) ∼= M(K4). As every element of M |(L1 ∪ L2 ∪ L3 ∪ {e}) is on
three long lines, M |(L1 ∪ L2 ∪ L3 ∪ {e}) ∼= F7, a contradiction. Thus, |L| ≤ 2.

Let Z ⊆ X so that M |Z ∼= M(K4) and Z contains each line in L. If |L| = 1, then
(M/e)|Z ∼= U2,5, a contradiction. Therefore |L| = 2. Let L1 and L2 be the two lines
in L. If F is a flat of M |X that spans e, then F ∩ Z is a flat of M |X that spans e,
by (i) and (ii). Since M is simple, the flat F ∩Z has rank at least two. If F does not
contain L1 or L2, this implies that F ∩Z is a line of M |X other than L1 or L2. This
gives a contradiction as either L contains a 3-point line, or |L| > 2. We conclude that
F contains L1 or L2, and so (b) holds.

Let M be a matroid with a set X so that M |X ∼= M(Kr(M)+1). We say that an
element e ∈ E(M) −X is type-(a) if e is freely added to a 3-point line of M |X, and
is type-(b) if the extension of M |X by e corresponds to the modular cut generated
by a pair of 2-point lines of M |X whose union is a circuit. Proposition 5.2 says that
if M is simple and has no minor isomorphic to U2,5, F7, or R9, then every element
in E(M) − X is type-(a) or type-(b). Also note that e is type-(a) if and only if
si((M/e)|X) ∼= Tr(M)−1, and e is type-(b) if and only if si((M/e)|X) ∼= T ′r(M)−1.

6. Two-Element Extensions. We now analyze the structure of a 2-element
extension of a clique, under the additional assumption that U2,4 ⊕ U2,4 is excluded
as a minor. In a matroid M , for sets A,B ⊆ E(M), we write u(A,B) for rM (A) +
rM (B)− rM (A ∪B).

Lemma 6.1. Let M be a simple matroid of rank at least five with no minor in
{U2,5, F7, R9, U2,4 ⊕ U2,4}, and with a set X so that M |X ∼= M(Kr(M)+1). If e, f ∈
E(M) −X so that e is type-(a) and f is type-(b), then there is a set Z ⊆ X so that
M |Z ∼= M(K4) and e, f ∈ clM (Z).

Proof. Since e is a type-(a) element, there is a 3-point line L1 of M |X so that
e is freely added to L1. By Proposition 3.3, since f is a type-(b) element, there are
2-point lines L2 and L′2 of M |X so that L2 ∪ L′2 is a 4-element circuit, and a flat F
of M |X spans f if and only if F contains L2 or L′2.

We may assume that clM (L2∪L′2) does not contain e otherwise the lemma holds.
Thus u(L2∪L′2, L1) 6= 2. If u(L2∪L′2, L1) = 0, then L1∪{e} and clM |X(L2∪L′2) are
skew rank-2 sets in M/f each with four points, so M has U2,4 ⊕ U2,4 as a minor, a
contradiction. We deduce that u(L2 ∪ L′2, L1) = 1. Hence there is some Z ⊆ X such
that L1 ∪ L2 ∪ L′2 ⊆ Z and M |Z ∼= M(K5). Let Z ⊆ Y ⊆ X so that M |Y ∼= M(K6).
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We may assume that the ground set of M |Y is the edge set of the complete graph
with vertex set {0, 1, 2, 3, 4, 5}, and that the ground set of M |Z is the edge set of the
complete graph with vertex set {0, 1, 2, 3, 4}. As u(L2 ∪ L′2, L1) = 1, we may assume
that L1 = {01, 02, 12}, and L2 = {13, 24}.

Suppose that {z, e, f} is a circuit of M for some z ∈ Z. Then either z meets
precisely one of 0, 1, or 2, or z = 34. In the first case, L1 ∪ {z} spans an M(K4)-
restriction of M |X, so f is spanned by a plane of M |X that does not contain L2 or
L′2, a contradiction. If z = 34, then e ∈ clM (L2 ∪L′2), a contradiction. Thus, no such
element z exists.

Assume that L′2 = {14, 23}. As e /∈ clM (L2 ∪ L′2), the elements 13, 14, 12, 34 are
on distinct lines of M/e through f . Moreover, each element of (M/e)|(Z ∪ {f}) is on
one of these four lines, or else M/{e, f} has a U2,5-restriction. The sets {f, 13, 24}
and {f, 14, 23} have rank two in M/e, and do not span any element in {03, 04, 34},
otherwise e is spanned by a plane of M |Z that does not contain L1, a contradiction.
This means that each element in {03, 04, 34} is spanned in M/e by either {f, 12}
or {f, 34}. Since rM/e({03, 04, 34}) = 2, this implies that {03, 04, 34} is spanned
in M/e by {f, 34}, so {03, 04, 34, f} is a U2,4-restriction of (M/e)|(Z ∪ {f}). But
{01, 03, 04, 05} is a basis of (M/e)|Y , and {01, 05, 15, 25} is a U2,4-restriction of M/e,
since it spans L1 in M . Thus, M/e has a (U2,4 ⊕ U2,4)-restriction, a contradiction.

Now assume that L′2 = {12, 34}. Let N = (M/e)|(Z ∪ {f}), and let N ′ =
N \ {01, 02}. Then N ′ is a simple rank-3 matroid on nine elements. The sets
{12, 03, 13, 23} and {12, 04, 14, 24} are lines of N ′ because they span e in M , and
the set {12, 34, f} is a line of N ′ because it is a line of M that does not span e. But
then N ′ has a U2,5-minor or N ′ ∼= R9, by Lemma 5.1, a contradiction.

The following lemma imposes structure on a different 2-element extension of a
clique.

Lemma 6.2. Let M be a simple matroid of rank at least six with no minor in
{U2,5, F7, R9, U2,4 ⊕ U2,4} and with a set X so that M |X ∼= M(Kr(M)+1). Let C1

and C2 be distinct 4-element circuits of M |X so that, for each i ∈ {1, 2}, there is an
element ei ∈ E(M)−X spanned by both 2-point lines of M |X contained in Ci. Then
|C1 ∩ C2| = 2, and there is a set Z ⊆ X so that M |Z ∼= M(K5) and C1 ∪ C2 ⊆ Z.

Proof. We may assume that E(M) = X ∪ {e1, e2}. Note that e1 6= e2, and that
e1 and e2 are both type-(b). Let x and y be distinct elements in clM |X(C1) − C1.
Then either x or y is not in clM |X(C2), or C1 and C2 are contained in an M(K4)-
restriction of M |X and the lemma follows. Assume that x /∈ clM |X(C2). The matroid
(M/x)|(X − {x}) has a spanning-clique restriction, and e2 is spanned by both 2-
point lines of (M/x)|(X − {x}) contained in C2. Moreover, the simplification of
(M/x)|(C1∪{y}) is a 3-point line, L, that spans e1 in M/x. Then L∪C2 is contained
in an M(K4)-restriction of M/x, by Lemma 6.1. Since C1 spans x in M , this implies
that there is a set Z ⊆ X so that M |Z ∼= M(K5) and C1 ∪ C2 ⊆ Z.

We now prove that |C1 ∩ C2| = 2. We may assume that the ground set of
M |Z is the edge set of the complete graph with vertex set {0, 1, 2, 3, 4}. Assume that
|C1∩C2| 6= 2. Then |C1∩C2| = 1 since K5 has no edge-disjoint 4-cycle pairs. Up to re-
labeling vertices, we may assume that C1 = {01, 12, 23, 03} and C2 = {01, 14, 42, 02}.

Suppose there is an element z ∈ Z for which {z, e1, e2} is a circuit of M . As-
sume z is in clM (C1) or clM (C2). Then C1 or C2 spans both e1 and e2. Since
(clM (C1), clM (C2)) is a modular pair of flats of M whose intersection contains
{01, 12, 02} and e1 or e2, we deduce that e1 or e2 is spanned by {01, 12, 02}, a
contradiction. We conclude that z /∈ clM (C1) ∪ clM (C2), and so z = 34. The set
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clM ({12, 03, z}) contains neither {01, 24} nor {02, 14}, and thus e2 /∈ clM ({12, 03, z})
because e2 is type-(b). This implies that e2 /∈ clM/z({12, 03}). But e1 ∈
clM/z({12, 03}) because e1 ∈ clM ({12, 03}), and so e1 and e2 are not parallel in M/z,
a contradiction.

The set {01, 02, 03, 13} is a U2,4-restriction of M/e1. Since 01 and 23 are parallel
in M/e1 and {e2, 01, 24} is a line of M and {e1, e2} spans no element of X, the set
{01, 24, 34, e2} is a U2,4-restriction of M/e1. Since {01, 04, 14} is a U2,3-restriction
of M/e1 and M/e1 \{12, 23} is simple, Lemma 5.1 implies that M/e1 restricted to
the union of the three sets {01, 02, 03, 13}, {01, 24, 34, e2}, and {01, 04, 14} is either
isomorphic to R9, or has a U2,5-minor, a contradiction.

7. k-Element Extensions. In this section, we place structure on k-element
extensions of a clique with k ≥ 3, in three cases. We say that a point x of a simple
matroid M is special if it is on at least two 4-point lines, is a tip of at least two spike
restrictions of M , or is a tip of a spike restriction of M and is on a 4-point line.

Lemma 7.1. Let M be a simple matroid with no minor in {U2,5, F7, R9}, and with
a set X so that M |X ∼= M(Kr(M)+1). If |E(M) − X| ≤ 3, then M has at most 21
special points.

Proof. If r(M) ≤ 2, then |E(M)| ≤ |X|+ |E(M)−X| ≤ 6 and therefore M has
at most 6 special points, so we may assume that r(M) ≥ 3. Since |E(M) −X| ≤ 3
and M has no U2,5-restriction, the points in E(M)−X span at most three lines, each
of which spans at most two points in X. By Proposition 5.2, there are at most 12
elements in X that are on a line of M |X that spans an element of E(M)−X. Thus,
there are at most 18 elements in X that are on a long line of M that is not a long line
of M |X. Because no spike is graphic, M |X has no spike restriction. Therefore, at
most 18 elements in X are a tip of a spike or on a 4-point line. Since |E(M)−X| ≤ 3,
it follows that M has at most 21 special points.

We must work harder when |E(M)−X| is not bounded.

Lemma 7.2. Let M be a simple matroid with no minor in {U2,5, F7, R9, U2,4 ⊕
U2,4}, and with a set X so that M |X ∼= M(Kr(M)+1). If |E(M) −X| ≥ 4 and each
element in E(M) − X is type-(a), then M has exactly one special point. Moreover,
this point is in every 3-point line of M |X which spans an element in E(M)−X.

Proof. We may assume that the ground set of M |X is the edge set of the complete
graph with vertex set {0, 1, 2, . . . , r(M)}. Since each point in E(M)−X is type-(a),
each is freely added to a 3-point line of M |X. Let L denote the set of 3-point lines of
M |X that span an element of E(M)−X.

Claim 7.3. The lines in L intersect in a common point.

Proof. Suppose that the lines in L do not intersect in a common point. Since M
has no (U2,4⊕U2,4)-minor, each pair of lines in L has a common element. Then since
|E(M)−X| ≥ 4, M has a restriction N that can be obtained from M(K4) by freely
adding a point to each long line. Let z be an element of this M(K4)-restriction. Then
z is on at least two 4-point lines of N . Suppose z is on three or more long lines of
N . Then by Lemma 5.1, N has a minor isomorphic to R9 or U2,5, a contradiction.
Therefore z is on exactly two long lines of N . But since |N | = 10 and N has no
U2,5-restriction, this implies that N/z ∼= U2,5, a contradiction.

Without loss of generality, we may assume that the lines in L intersect in the
point x = 01. Since |L| ≥ 4, x is special. We will show that x is the unique special
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point of M . Note that the points of (M/x)|(X−{x}) of size at least two form a basis
of si((M/x)|(X − {x})); this implies that E(M)−X is independent in M .

Claim 7.4. Let e1, e2 ∈ E(M) −X, and, for each i ∈ {1, 2}, let Li be a line in
L that spans ei. If z ∈ X so that {z, e1, e2} is a circuit of M , then z is the unique
element in clM |X(L1 ∪ L2) − (L1 ∪ L2). Moreover, every 4-point line of M contains
exactly three elements of X including x.

Proof. Certainly z ∈ clM (L1 ∪ L2) since {z, e1, e2} is a circuit. If z ∈ L1, then
L1 spans e2. But then L1 is a flat of M |X that spans e2 but does not contain L2,
which contradicts Proposition 5.2(i). Thus, z /∈ L1, and, by symmetry, z /∈ L2. Since
| clM |X(L1 ∪ L2)| = 6 and |L1 ∪ L2| = 5, the element z is unique. As E(M) − X is
independent, it follows that each 4-point line of M contains exactly three elements of
X including x.

By Claim 7.4, if an element y of X is on a line in L, then each long line of M
through y is spanned by a long line of M |X through y. As no spike is graphic, y is
not a tip of a spike restriction of M . Moreover, if y 6= x, then y is on exactly one
4-point line of M , so X contains at most one special point of M that is on a line in
L.

If an element y of X is not on a line in L, then y is not on a 4-point line, since
E(M)−X is independent. By Claim 7.4, the element y is on at most one more long
line in M than in M |X, which implies that y is a tip of at most one spike restriction
of M . Thus, y is not a special point. Therefore, M has at most one special point in
X, namely x.

Now, let e ∈ E(M) − X. We will show that e is not special. We may assume
that e is freely added to the 3-point line L′ = {01, 02, 12} of M |X. By Claim 7.4,
each long line of M through e contains an element of X that uses the vertex 2. Let T
be a transversal of the points of M/e so that each element in T is in X and uses the
vertex 2; then T is independent in M |X. Also, T contains at most one of 02 and 12,
and so T does not span L′ in M |X. Since e is freely added to L′, this implies that T
does not span e in M . Since T is independent in M and does not span e, the element
e is not a tip of a spike restriction of M . Since e is on exactly one 4-point line of M ,
the element e is not special. Thus, x is the unique special point of M , so the lemma
holds.

We need an analogous lemma for a different case.

Lemma 7.5. Let M be a simple matroid with no minor in {U2,5, F7, R9, U2,4 ⊕
U2,4}, and with a set X so that M |X ∼= M(Kr(M)+1). If there is a 3-point line {x, y, z}
of M |X so that each element in E(M) − X is either freely added to {x, y, z}, or is
spanned by both 2-point lines of M |X in some 4-element circuit of M |X containing
x and y, then M has at most two special points.

Proof. Let L = {x, y, z}. We may assume that the ground set of M |X is the
edge set of the complete graph with vertex set {0, 1, 2, . . . , r(M)}, and that (x, y, z) =
(01, 02, 12). By Proposition 5.2, each element in E(M) −X that is not freely added
to L is type-(b). Let C denote the set of circuits C of M |X for which both 2-point
lines of M |X in C span a common element of E(M)−X. By hypothesis, each circuit
in C contains x and y.

The points of (M/x)|(X−{x}) of size at least two form a basis of si((M/x)|(X−
{x})) because they all use the composite vertex obtained by identifying 0 and 1. This
implies that E(M)−X is independent in M . Since E(M)−X is independent, there
is at most one 4-point line of M , namely clM (L).
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Claim 7.6. Let e1, e2 ∈ E(M)−X so that neither is freely added to L, and, for
each i ∈ {1, 2}, let Ci be a circuit in C that spans ei. If w ∈ X so that {w, e1, e2}
is a circuit of M , then w is the unique element in clM |X(C1 ∪ C2) − (clM |X(C1) ∪
clM |X(C2)).

Proof. Certainly w ∈ clM (C1∪C2), since {w, e1, e2} is a circuit. If w ∈ clM |X(C1),
then clM |X(C1) is a flat of M |X that spans e2, but does not contain either 2-point
line of M |X contained in C2, which contradicts that e2 is of type-(b). Thus, w /∈
clM (C1), and, by symmetry, w /∈ clM (C2). As C1 ∩ C2 = {x, y}, it follows that
| clM |X(C1 ∪ C2)| = 10 and | clM |X(C1) ∪ clM |X(C2)| = 9. Thus, the element w is
unique.

The following deals with a slightly different case.

Claim 7.7. Let e ∈ E(M)−X be freely added to L, and let f ∈ E(M)− (X ∪ e)
be spanned by a circuit C ∈ C. If w ∈ X so that {w, e, f} is a circuit of M , then w is
the unique element in clM |X(C)− (L ∪ C).

Proof. Certainly w ∈ clM |X(C), since C spans L and {w, e, f} is a circuit. If
w ∈ L, then clM (L) contains {x, y, z, e, f}, a contradiction. If w ∈ C, then there is
a 2-point line of M |X that contains w and spans e but does not contain L, which
contradicts the fact that e is freely added to L. Since | clM |X(C)| = 6 and |L∪C| = 5,
the element w is unique.

If w ∈ X −L is in a circuit in C, then w is incident to one of the vertices 1 and 2.
This implies that there is no pair (L,C) or (C1, C2) with C,C1, C2 ∈ C so that w is the
unique element in clM |X(C)− (L∪C) or clM |X(C1 ∪C2)− (clM |X(C1)∪ clM |X(C2)).
So, by Claim 7.6 and Claim 7.7, there is no pair of elements in E(M)−X that span
w. Since w /∈ L and each circuit in C contains x and y, the element w is in exactly
one circuit in C. Therefore, w is on exactly one long line, L′, of M that is not a long
line of M |X. Thus, w is a tip of at most one spike in M , otherwise M has a spike
not using the line L′, so the graphic matroid M |X has a spike, a contradiction. Since
w /∈ L, it is not on a 4-point line, so it is not special.

Since z = 12, we see that z ∈ L and z ∈ clM |X(C) for all C ∈ C. So, by Claim 7.6
and Claim 7.7, there is no pair of elements in E(M) −X that span z. This implies
that each long line of M through z is spanned by a long line of M |X through z, so z
is not a tip of a spike. Since z is on at most one 4-point line, it is not special.

If w ∈ X − L is not in a circuit in C, then there is at most one pair (L,C) or
(C1, C2) with C,C1, C2 ∈ C so that w is the unique element in clM |X(C) − (L ∪ C)
or clM |X(C1 ∪C2)− (clM |X(C1)∪ clM |X(C2)). So, by Claim 7.6 and Claim 7.7, there
is at most one pair of elements in E(M)−X that span w. Then, since w is not in a
circuit in C and is not in L, it is on at most one long line of M that is not a long line
of M |X. Thus, it is a tip of at most one spike. Since w /∈ L, it is not on a 4-point
line, so it is not special. Therefore, M has at most two special points in X.

Now, let e ∈ E(M) − X. We will show that e is not special. We consider two
cases. First assume that e is freely added to L. As E(M) − X is independent, by
Claim 7.7, each long line of M through e contains an element of X that uses the
vertex 0. Let T be a transversal of the non-trivial parallel classes of M/e so that each
element in T is in X and uses the vertex 0. Then T is independent in M |X. Also, T
contains at most one of 01 and 02, and so T does not span L in M |X, which implies
that T does not span e in M . Since T is independent in M and does not span e, the
element e is not a tip of a spike restriction of M . Since e is on at most one 4-point
line of M , the element e is not special.
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Now assume that e is not freely added to L. Then e is a type-(b) element and is
on no 4-point lines of M . Let C be a circuit in C so that both 2-point lines of M |X
in C span e. We may assume that C = {01, 13, 23, 02}. Then {01, 23} and {02, 13}
both span e. By Claim 7.7 and Claim 7.6, each long line of M through e contains
an element of X that uses the vertex 3. Let T be a transversal of the non-trivial
parallel classes of M/e so that each element in T is in X and uses the vertex 3. Then
T is independent in M |X. Note that T contains 13 and 23, and that T − {13} does
not span {01, 23} or {02, 13} in M . Since e is of type-(b), this implies that T − {13}
does not span e. Then T − {13} is an independent set that does not span e, and is a
transversal of all but one long line of M through e. Thus, e is a tip of at most one
spike. Since e is not on a 4-point line of M , this implies that e is not special. Thus,
M has no special point in E(M) − X, and at most two special points in X, so the
lemma holds.

8. The Spanning-Clique Case. We prove the following result for matroids
with a spanning-clique restriction. Recall that a point x of a simple matroid M is
special if it is on at least two 4-point lines, is a tip of at least two spike restrictions of
M , or is a tip of a spike restriction of M and is on a 4-point line.

Proposition 8.1. Let M be a simple matroid of rank at least six with a spanning-
clique restriction. If M has no minor in {U2,5, F7, R9, U2,4 ⊕ U2,4}, then

(i) |M | ≤
(
r(M)+2

2

)
− 2, and

(ii) M has at most 21 special points.

Proof. Let M |X ∼= M(Kr(M)+1). Note that |M | ≤
(
r(M)+2

2

)
− 2 if and only if

|E(M)−X| ≤ r(M)−1. By Proposition 5.2, each element of E(M)−X is either freely
added to a 3-point line of M |X, or corresponds to the modular cut generated by a
pair of 2-point lines of M |X whose union is a circuit. Let L be the set of 3-point lines
of M |X that span an element in E(M)−X. Let C be the set of 4-element circuits C
of M |X for which both 2-point lines of M |X contained in C span a common element
of E(M)−X.

Clearly each line in L spans exactly one element of E(M) −X, or else M has a
U2,5-restriction. If there is a pair {L,L′} of 2-point lines L and L′ of M |X whose union
is a circuit so that L and L′ each span elements e and f in E(M)−X, then L∪{e, f}
and L′ ∪ {e, f} are distinct lines of M that intersect in two points, a contradiction.
Thus, |E(M)−X| = |L|+ |C|.

We first deal with the case when two circuits in C span each other.

Claim 8.2. If there are distinct circuits C1 and C2 in C whose union is contained
in an M(K4)-restriction of M |X, then |E(M)−X| ≤ 3, and (i) and (ii) hold.

Proof. For each i ∈ {1, 2}, let ei be the element of M that is spanned by each 2-
point line of M |X contained in Ci. Since C1∪C2 is contained in an M(K4)-restriction
of M |X, there is a line {x, y} of M |X contained in both C1 and C2.

Suppose that L 6= ∅, and let L ∈ L. Then L ⊆ C1 ∪ C2, or else either (L,C1) or
(L,C2) violates Lemma 6.1. Either x or y is in L, since every triangle of K4 intersects
every size-2 matching; assume without loss of generality that x ∈ L. But then x is
on the 4-point lines clM (L) and {x, y, e1, e2}, and also a 3-point line other than L in
C1 ∪ C2, a contradiction to Lemma 5.1. Thus, L = ∅.

If there is some circuit C3 ∈ C that is not contained in C1 ∪ C2, then there are
at most two elements of C3 in C1 ∪ C2. Since |C1 ∩ C3| = 2 and |C2 ∩ C3| = 2
by Lemma 6.2, this implies that C3 contains {x, y}. But the only 4-element circuits
of M |X that contain {x, y} are C1 and C2. Thus, each circuit in C is contained in
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C1 ∪ C2. Since C1 ∪ C2 is contained in an M(K4)-restriction of M |X, it follows that
|C| ≤ 3. Then |E(M)−X| ≤ 3 so (i) holds, and (ii) holds by Lemma 7.1.

Next we treat the case when the lines in L do not share a common element.

Claim 8.3. If L contains a set of three lines that do not intersect in a common
point, then |E(M)−X| = 3, and (i) and (ii) hold.

Proof. Since M has no (U2,4⊕U2,4)-minor, each pair of lines in L share a common
element. Since the lines in L have no common point of intersection, there is a set
Z ⊆ X so that M |Z ∼= M(K4) and Z contains each line in L. Suppose |L| ≥ 4. Then
Lemma 7.2 shows that the lines in L intersect in a common element, a contradiction.
Thus |L| = 3, and so there are three elements x, y, z ∈ Z that are each on two lines
in L.

Suppose |C| ≥ 1. By Lemma 6.1, each circuit in C is contained in Z, and so
each circuit in C contains one of x, y, z, since |Z| = 6. But then one of x, y, z is on
two 4-point lines and a 3-point line of M | clM (Z), so M has an R9-restriction or a
U2,5-minor by Lemma 5.1. This is a contradiction, so C = ∅, and so |E(M)−X| = 3.
Then |E(M)−X| ≤ 3 so (i) holds, and (ii) holds by Lemma 7.1.

We now consider four cases, depending on the size of L. Suppose first that |L| ≥ 3.
By Claim 8.3, the lines in L share a common element x; thus, |L| ≤ r(M)− 1. Since
|L| ≥ 3, the set C is empty, or else there is a line L ∈ L and a circuit C ∈ C so that
(L,C) violates Lemma 6.1. Then |E(M)−X| = |L| ≤ r(M)− 1, and (i) holds. Also,
(ii) holds by Lemma 7.2 if |L| ≥ 4 and by Lemma 7.1 if |L| = 3.

Next assume that |L| = 2. The union of the two lines in L is contained in an
M(K4)-restriction M |Z of M |X, and by Lemma 6.1, each circuit in C is contained
in Z. By Lemma 5.1, the element x that is on both lines in L is in no circuit in C.
This implies that |C| ≤ 1, and so |E(M) − X| ≤ 3 ≤ r(M) − 1, and (ii) holds by
Lemma 7.1.

Now suppose that |L| = 1. Let L ∈ L, and let e be the element of E(M)−X that
is spanned by L. By Claim 8.2, we may assume that each circuit in C spans at most
one element of E(M)−X other than e. By Lemma 6.1, each circuit in C contains two
elements of L. If, for two different circuits C1 and C2 in C, we have C1 ∩L 6= C2 ∩L,
then, as r(C1 ∪ C2) = 4, we see that |C1 ∩ C2| = 1, which contradicts Lemma 6.2.
Thus, there are elements x and y in L that are contained in each circuit in C. This
implies that |C| ≤ r(M) − 2, and so |E(M) − X| ≤ r(M) − 1. Also, (ii) holds by
Lemma 7.5.

Finally, suppose that |L| = 0. By Claim 8.2, we may assume that each M(K4)-
restriction of M |X spans at most one element of E(M) − X. By Lemma 6.2, each
pair of these M(K4)-restrictions has a common triangle. If there is no shared triangle
among all of these restrictions, then there are exactly three M(K4)-restrictions of
M |X that span an element of E(M) − X, and they are contained in an M(K5)-
restriction of M |X. Then |E(M) − X| = 3, so (i) and (ii) hold, using Lemma 7.1.
Otherwise, there is a common triangle L contained in each M(K4)-restriction that
spans an element of E(M) − X. By the same reasoning at the end of the previous
case, there are elements x and y in L that are contained in each circuit in C, and so
(i) and (ii) hold.

9. The Proofs of the Main Results. In this section, we prove Theorem 1.3
and Theorem 1.1. We use two results of Geelen, Nelson, and Walsh from [5]. To
state these results, we need a notion of matroid connectivity. A vertical j-separation
of a matroid M is a partition (X,Y ) of E(M) so that r(X) + r(Y ) − r(M) < j and
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min(r(X), r(Y )) ≥ j. A matroid M is vertically k-connected if it has no vertical j-
separation with j < k. The first result [5, Theorem 6.1.3] finds structure in a minimal
counterexample. The second, which is a consequence of Theorem 7.6.1 in [5], allows
us to move from a clique minor to a spanning-clique restriction.

Theorem 9.1. There is a function r9.1 : R6 → Z so that, for all integers ` ≥ 2
and t, s ≥ 1, and any real polynomial p(x) = ax2 + bx + c with a > 0, if M ∈ U(`)
satisfies r(M) ≥ r9.1(a, b, c, `, t, s) and ε(M) > p(r(M)), then M has a minor N with
ε(N) > p(r(N)) and r(N) ≥ t such that either
(1) N has a spanning-clique restriction, or
(2) N is vertically s-connected and has an s-element independent set S so that ε(N)−

ε(N/e) > p(r(N))− p(r(N)− 1) for each e ∈ S.

Theorem 9.2. There are functions s9.2 : Z → Z and r9.2 : Z3 → Z so that, for
all integers ` ≥ 2, k ≥ 1, and m ≥ 3, if M is a vertically s9.2(k)-connected matroid
with no U2,`+2-minor and no Reid geometry minor, and with an M(Kr9.2(`,m,k)+1)-
minor and 2k special points, then M has a simple minor N of rank at least m with
an M(Kr(N)+1)-restriction and k special points.

In order to apply Theorem 9.2, we need the following result of Geelen and Whit-
tle [6].

Theorem 9.3. There is a function α9.3 : Z2 → Z so that, for all integers `, t ≥ 2,
if M ∈ U(`) satisfies ε(M) > α9.3(`, t) · r(M), then M has an M(Kt+1)-minor.

We now prove a restatement of Theorem 1.3 and then Theorem 1.1.

Theorem 9.4. There is a constant n1 so that if M is a simple matroid of rank
at least n1 with no minor in {U2,5, F7, R9, U2,4 ⊕ U2,4}, then |M | ≤

(
r(M)+2

2

)
− 2.

Proof. LetM be the class of matroids with no minor in {U2,5, F7, R9, U2,4⊕U2,4}.
Note that

(
x+2

2

)
− 2 = 1

2x
2 + 3

2x− 1 for any positive number x. Let n0 be an integer

so that
(
x+2

2

)
− 2 > α9.3(3, r9.2(3, 6, 22)) · x for all x ≥ n0. Define

n1 = r9.1

(1

2
,

3

2
,−1, 3, n0,max(s9.2(22), 44)

)
.

Assume that there is a simple matroid M ∈ M with r(M) ≥ n1 and with

|M | >
(
r(M)+2

2

)
− 2. By Theorem 9.1 with p(x) =

(
x+2

2

)
− 2 and t = n0 and s =

max
(
s9.2(22), 44

)
, there is a minor N of M so that r(N) ≥ n0 and |N | >

(
r(N)+2

2

)
−2,

and either
(a) N has a spanning-clique restriction, or
(b) N is vertically s9.2(22)-connected, and has a 44-element independent set S so that

each e ∈ S satisfies ε(N)− ε(N/e) ≥ r(N) + 2.
By Proposition 8.1(i), outcome (a) does not hold, so outcome (b) holds.

Claim 9.5. Each element in S is special.

Proof. For e ∈ S, let LN (e) denote the set of long lines of N that contain e. Then

ε(N)− ε(N/e) = 1 +
∑

L∈LN (e)

(
|L| − 2

)
.(9.1)

Let N1 = N |(∪L∈LN (e)L), and note that | si(N1/e)| = |LN (e)|. If e is on at least
two 4-point lines of N , then e is special. If e is on no 4-point line of N , then, since
ε(N) − ε(N/e) ≥ r(N) + 2, it follows from (1) that |LN (e)| ≥ r(N) + 1. Thus,
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| si(N1/e)| ≥ r(N) + 1. Since si(N1/e) has rank at most r(N) − 1, this implies that
si(N1/e) has corank at least two, and so it contains at least two distinct circuits.
Then e is a tip of two spike restrictions of N , and is thus special. If e is on exactly
one 4-point line of N , then (1) implies that si(N1/e) has corank at least one and thus
contains a circuit, so e is a tip of a spike restriction of N .

Since r(N) ≥ n0 and |N | >
(
r(N)+2

2

)
− 2, Theorem 9.3 and the definition of n0

imply that N has an M(Kr9.2(3,6,22)+1)-minor. Then, since N has no U2,5- or R9-
minor, Theorem 9.2 implies that N has a simple minor of rank at least six with a
spanning-clique restriction and at least 22 special points, which contradicts Proposi-
tion 8.1(ii).

Proof of Theorem 1.1. Let n1 be the constant from Theorem 9.4, and let A be
a 2-modular matrix of rank r ≥ n1 with no zero-column and no parallel pair of
columns. Let M be the vector matroid of A. Then M is a simple rank-r matroid
with no minor isomorphic to a matroid in {U2,5, F7, R9, U2,4⊕U2,4}. By Theorem 9.4,

|M | ≤
(
r(M)+2

2

)
− 2, so A has at most

(
r(M)+2

2

)
− 2 columns.
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