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Abstract. A graph in which every connected induced subgraph has a
disconnected complement is called a cograph. Such graphs are precisely
the graphs that do not have the 4-vertex path as an induced subgraph.
We define a 2-cograph to be a graph in which the complement of every
2-connected induced subgraph is not 2-connected. We show that, like
cographs, 2-cographs can be recursively defined, and are closed under
induced minors. We characterize the class of non-2-cographs for which
every proper induced minor is a 2-cograph. We further find the finitely
many members of this class whose complements are also induced-minor-
minimal non-2-cographs.

1. Introduction

In this paper, we only consider simple graphs. Except where indicated
otherwise, our notation and terminology will follow [6]. An induced minor
of a graph G is any graph H that can be obtained from G by a sequence
of operations each consisting of a vertex deletion or an edge contraction. If
H ̸= G, then H is a proper induced minor of G. Let e be an edge of G.
Since we consider only simple graphs, we let G/e denote the simple graph
obtained from the multigraph that results from contracting the edge e, by
deleting all but one edge from each class of parallel edges.

A cograph is a graph in which every connected induced subgraph has
a disconnected complement. By convention, the graph K1 is taken to be
a cograph. Replacing connectedness by 2-connectedness, we define a graph
G to be a 2-cograph if G has no induced subgraph H such that both H
and its complement, H, are 2-connected. Note that K1 is a 2-cograph.
Cographs have been extensively studied over the last fifty years (see, for
example, [7, 14, 5]). They are also called P4-free graphs due to following
characterization [4].

Theorem 1.1. A graph G is a cograph if and only if G does not contain
the path P4 on four vertices as an induced subgraph.

In Section 2, we show that 2-cographs can be recursively defined, that
every induced minor of a 2-cograph is also a 2-cograph, and that the com-
plement of every 2-cograph is also a 2-cograph. In addition, we correct
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a result of Akiyama and Harary [1] that claims to characterize when the
complement of a 2-connected graph is 2-connected.

Because the class of 2-cographs is closed under induced minors, our initial
goal was to find all non-2-cographs with the property that every proper
induced minor is a 2-cograph. But, as we show in Section 3, in contrast to
Theorem 1.1, there are infinitely many such non-2-cographs. However, we
were able to determine all infinite families of such graphs. For all m ≥ 1, let
Mm and Nm be the graphs shown in Figures 3 and 4, respectively. Let M ′

m

and N ′
m be obtained from Mm and Nm by adding the edge st. Further, let

N ′′
m be the graph obtained from N ′

m by adding the edge uz; let Lm be the
graph shown in Figure 2; and, for all j ≥ 0, let Fj be the graph shown in
Figure 1. The next two theorems are the main results of the paper.

Theorem 1.2. Let G be a graph that is not a 2-cograph such that every
proper induced minor of G is a 2-cograph. Then

(i) |V (G)| ≤ 16; or
(ii) G is the complement of a cycle of length at least five; or
(iii) for some positive integer m, the complement of G is isomorphic to

Fm−1, Lm,Mm,M ′
m, Nm, N ′

m, orN ′′
m.

As we were unable to improve this bound of 16 vertices and the task
of finding induced-minor-minimal non-2-cographs with at most 16 vertices
seemed computationally infeasible, we were prompted to try to determine
those graphs G for which both G and G are induced-minor-minimal non-2-
cographs. The following theorem proves that, up to isomorphism, there are
finitely many such graphs G. Its proof occupies most of Section 4.

Theorem 1.3. Let G be a graph. Suppose that G is not a 2-cograph but
that every proper induced minor of each of G and G is a 2-cograph. Then
5 ≤ |V (G)| ≤ 10.

The unique 5-vertex graph satisfying the hypotheses of the last theorem
is C5, the 5-vertex cycle. In the appendix, we list all of the other graphs
that satisfy these hypotheses.

2. Preliminaries

Let G be a graph. A vertex u of G is a neighbour of a vertex v of G if
uv is an edge of G. The neighbourhood NG(v) of v in G is the set of all
neighbours of v in G. Viewing G as a subgraph of Kn where n = |V (G)|, we
colour the edges of G green while assigning the colour red to the non-edges
of G. In this paper, we use the terms green graph and red graph for
G and its complementary graph G, respectively. An edge of G is called a
green edge while a red edge refers to an edge of G. The green degree
of a vertex v of G is the number of green neighbours of v, while the red
degree of v is its number of red neighbours.

Let G1 and G2 be graphs. If their vertex sets are disjoint, their 0-sum,
G1 ⊕0 G2, is their disjoint union. Now, suppose that V (G1) ∩ V (G2) = T ,
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Figure 1. The complements of the induced-minor-minimal
non-2-cographs that are critically 2-connected.
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Figure 2. For each m ≥ 1, the complement of the above
graph Lm is an induced-minor-minimal non-2-cograph.

that G1[T ] = G2[T ], and that |T | = t. Then the union of G1 and G2, which
has vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2), is a t-sum,
G1 ⊕t G2, of G1 and G2.

For k ≥ 1, a graph G is a k-cograph if, for every induced subgraph H of
G, at least one of H and H is not k-connected. Thus a 1-cograph is just a
cograph. Clearly, every k-cograph is also a (k + 1)-cograph.

We omit the straightforward proofs of the next three results.
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Figure 3. Mm, a graph whose complement is an induced-
minor-minimal non-2-cograph.
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Figure 4. Nm, a graph whose complement is an induced-
minor-minimal non-2-cograph.
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Lemma 2.1. Let G be a k-cograph. Then

(i) every induced subgraph of G is a k-cograph, and
(ii) G is a k-cograph.

Lemma 2.2. For 0 ≤ t < k, a t-sum of two k-cographs is a k-cograph.

Lemma 2.3. Let G be a graph and let uv be an edge e of G. Then G/e is
the graph obtained by adding a vertex w with neighbourhood NG(u)∩NG(v)

to the graph G− {u, v}.

Cographs are also called complement-reducible graphs due to the following
recursive-generation result [4]. The operation of taking the complement of
a graph is called complementation.

Proposition 2.4. A graph G is a cograph if and only if G can be generated
from K1 using complementation and 0-sum.

Next, we show that, for k ≥ 2, the class of k-cographs can be generated
similarly.

Proposition 2.5. For all positive integers k, a graph G is a k-cograph if
and only if G can be generated from K1 using complementation and the
operation of t-sum for all t with 0 ≤ t < k.

Proof. Let G be a k-cograph. If |V (G)| ≤ 2, the result holds. We proceed
via induction on the number of vertices of G. Assume that the result holds
for all k-cographs of order less than |V (G)|. Since G is a k-cograph, G or
G is not k-connected. Without loss of generality, we may assume that G
is not k-connected. Therefore, for some t < k, we can write G as a t-sum
of two induced subgraphs G1 and G2 of G. By Lemma 2.1, G1 and G2 are
k-cographs and the result follows by induction.

Conversely, let G be a graph that can be generated from K1 using com-
plementation and t-sums. Since K1 is a k-cograph, the result follows by
Lemmas 2.1 and 2.2. □

The following recursive-generation result for cographs is due to Royle [12].
It uses the concept of join of two disjoint graphs G and H, which is the
graph G▽H that is obtained from the union of G and H by joining every
vertex of G to every vertex of H.

Proposition 2.6. Let C be the class of graphs defined as follows:

(i) K1 is in C;
(ii) if G and H are in C, then so is G⊕0 H; and
(iii) if G and H are in C, then so is G▽H.

Then C is the class of cographs.

For graphs G and H such that V (G) ∩ V (H) = T and G[T ] = H[T ],
suppose that |T | = t. We generalize the join operation letting G▽t H be
the graph that is obtained from the union of G and H by joining every
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vertex of V (G)− V (H) to every vertex of V (H)− V (G). Note that G▽t H

is the graph G⊕t H.
The next result generalizes Proposition 2.6 to k-cographs.

Proposition 2.7. For k ≥ 1, let C be the class of graphs defined as follows:

(i) K1 is in C;
(ii) if G and H are in C, then so is G⊕t H for all t with 0 ≤ t < k; and
(iii) if G and H are in C, then so is G▽t H for all t with 0 ≤ t < k.

Then C is the class of k-cographs.

Proof. Since G▽tH can be written in terms of t-sum and complementation,
every graph in C is a k-cograph. Conversely, let G be a k-cograph. If
|V (G)| = 1, then G ∈ C. We proceed by induction on |V (G)|. Let |V (G)| =
n ≥ 2 and assume that H ∈ C when H is a k-cograph with |H| < n.
By Proposition 2.5, G or G is a t-sum of two smaller k-cographs. If G is
the graph that can be decomposed as a t-sum, then the result follows by
induction. Therefore we may assume that G is G1 ⊕t G2 for two smaller
k-cographs G1 and G2. Observe that G = G1 ▽t G2. By Lemma 2.1, G1

and G2 are k-cographs and so are in C by induction. Therefore G is in C. □

Next we show that the class of 2-cographs is closed under contractions.

Proposition 2.8. Let G be a 2-cograph and e be an edge of G. Then G/e
is a 2-cograph.

Proof. Assume to the contrary that G/e is not a 2-cograph. Then there is an
induced subgraph H of G/e such that both H and H are 2-connected. Let
e = uv and let w denote the vertex in G/e obtained by identifying u and v.
We may assume that w is a vertex of H, otherwise H is an induced subgraph
of G, a contradiction. We assert that the subgraph H ′ of G induced on the
vertex set (V (H)∪{u, v})−{w} is 2-connected, as is its complement H ′. To
see this, note that, since H is 2-connected, H ′ is 2-connected unless one of
u and v, say u, is a leaf of H ′. In the exceptional case, we have H ′−u ∼= H,
so G has an induced subgraph for which both it and its complement are
2-connected, a contradiction. We deduce that H ′ is 2-connected.

By Lemma 2.3, the neighbours of w in H are the common neighbours of
u and v in H ′. Thus the degrees of u and v in H ′ each equal at least the
degree of w in H. Moreover, H ′ − u has a spanning subgraph isomorphic
to H and is therefore 2-connected. Since u has degree at least two in H ′, it
follows that H ′ is 2-connected, a contradiction. □

We show next that, for all k ≥ 3, a contraction of a k-cograph need not
be a k-cograph. We use the following construction for the proof. Start with
a graph G with vertex set {v1, v2, . . . , vn} and a copy G′ of G with vertex
set {v′1, v′2, . . . , v′n}. Take the disjoint union of G and G′, and add all the
edges joining vi to v′i. The resulting graph, G□K2, is the Cartesian product
of G and K2.
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Proposition 2.9. For k ≥ 3, the class of k-cographs is not closed under
contraction.

Proof. Let G2 = C5. For all m ≥ 3, let Gm = Gm−1□K2. One can easily
check that Gm is an m-connected, m-regular graph whose complement is
also m-connected.

Let G′
m be a graph having an edge e = v1v2 such that G′

m/e = Gm,
both v1 and v2 have degree less than m, and v1 and v2 have no common
neighbours. Note that every proper induced subgraph of G′

m has a vertex
of degree less than m and so G′

m is a k-cograph. However, G′
m/e is not a

k-cograph as it equals Gm. □

By Lemma 2.1 and Proposition 2.8, the class of 2-cographs is closed under
taking induced minors. In the rest of the paper, we will focus our attention
on 2-cographs. The next lemma is straightforward.

Lemma 2.10. All graphs having at most four vertices are 2-cographs.

Note that a graph G is a 2-cograph if and only if G or G can be de-
composed as a 0-sum or a 1-sum of two smaller 2-cographs. For an input
graph G and, for t in {0, 1}, the recognition algorithm in Figure 5 attempts
to decompose G as a t-sum of graphs having at most four vertices using
complementation. Since such graphs are 2-cographs by Lemma 2.10 and we
can compute the blocks of a graph in polynomial time [15, 4.1.23], the al-
gorithm recognizes 2-cographs in polynomial time. Since 2-cographs do not
have induced subgraphs isomorphic to odd cycles of length at least five or
their complements, it follows by the Strong Perfect Graph Theorem [3] that
all 2-cographs are perfect. However, this inclusion is proper. For example,
the well-known domino graph obtained from a 6-cycle by adding a chord to
create two 4-cycles is a perfect graph that is not a 2-cograph. We let C+

6
denote the domino.

Akiyama and Harary [1, Corollary 1a] claimed that a 2-connected graph
G has a 2-connected complement if and only if the red and green degrees
of every vertex of G are at least two and G has no spanning complete
bipartite subgraph. However, this result is not true. The graphs in Figure 6
are complements of each other. The first graph in the figure satisfies the
hypotheses of [1, Corollary 1a] but its complement, C4 ⊕1 C4, is not 2-
connected.

We can repair Akiyama and Harary’s result as follows.

Proposition 2.11. If G is a 2-connected graph, then G is a 2-connected
graph if and only if G has no complete bipartite subgraph using at least
|V (G)| − 1 vertices.

Proof. Note that if G is not 2-connected, then G has a spanning complete
bipartite subgraph or a complete bipartite subgraph on |V (G)| − 1 vertices.
The converse is immediate. □
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Require: Input a simple graph G
Set H ← G, BlocksList ← [G]
if |V (H)| ≤ 4 then

remove H from BlocksList
if BlocksList is empty then

return G is a 2-cograph and exit the algorithm
else

update H to be an element of BlocksList
if some K in {H,H} can be decomposed into 2-connected blocks then

remove H from BlocksList
add all the blocks of K to BlocksList
update H to be an element of BlocksList

else
return G is not a 2-cograph and exit the algorithm

Figure 5. Algorithm for recognizing a 2-cograph.

Figure 6. A counterexample to a result of Akiyama and
Harary.

3. Induced-minor-minimal non-2-cographs

We noted in Section 2 that 2-cographs are closed under induced minors.
In this section, we consider those non-2-cographs for which every proper in-
duced minor is a 2-cograph. We call these graphs induced-minor-minimal
non-2-cographs. The goal of this section is to characterize such graphs.
We begin by showing that there are infinitely many of them. Theorem 1.2,
whose proof appears at the end of this section, specifies all of the infinite
families of such graphs.

Because the proof of Theorem 1.2 is long, we now outline its key steps. A
2-connected graph H is critically 2-connected if H−v is not 2-connected
for all vertices v of H. In Lemma 3.10, we show that if G is a non-2-
cograph for which every single-vertex deletion is a 2-cograph, then either
G or G is critically 2-connected, or both G and G have vertex connectivity
two. Propositions 3.12 and 3.14 identify the induced-minor-minimal non-
2-cographs G for which, respectively, G is critically 2-connected, or G is
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critically 2-connected. We are then able to focus on 2-cuts in an induced-
minor-minimal non-2-cograph G. Lemmas 3.15-3.22 are a sequence of incre-
mental results whose aim is to determine the structure of G. Corollary 3.23
summarizes the information determined about this structure to that point.
Outcome (iii) of that corollary is that G has connectivity two, and, for every
2-cut {g1, g2} of G, there are exactly two components in G−{g1, g2} and one
of these has a single vertex. The rest of the proof of Theorem 1.2 deals with
this case. Much of the focus there and indeed throughout the section is on
the sets Vg and Vr of green-degree-two vertices and red-degree-two vertices
in G.

Lemma 3.1. Let G be the complement of a cycle C of length exceeding four.
Then G is an induced-minor-minimal non-2-cograph.

Proof. Certainly G is not a 2-cograph since both G and its complement are
2-connected. Moreover, by Lemma 2.1, G− v is a 2-cograph for all vertices
v of G because G − v is a path and is therefore a 2-cograph. It remains
to show that G/e is a 2-cograph for all edges e of G. By Lemma 2.3, the
complement of G/e is either a 0-sum of two paths and an isolated vertex,
or a 0-sum of a path and K2. This implies that the complement of G/e is a
2-cograph and, by Lemma 2.1, the result follows. □

Note that the complements of cycles of length at least five are not the
only induced-minor-minimal non-2-cographs. It can be checked that both
C+
6 and its complement are induced-minor-minimal non-2-cographs.
The following lemma is obtained by applying [11, Lemma 2.3] (see also

[10, Lemma 4.3.10]) to the bond matroid of a 2-connected graph.

Lemma 3.2. Let G be a 2-connected graph other than K3 and let v be an
arbitrary vertex of G. Then G has at least two edges incident with v, each
of whose contraction yields a 2-connected graph.

An edge e of a 2-connected graph G is contractible if G/e is 2-connected.
The following observation is immediate.

Lemma 3.3. Let G be an induced-minor-minimal non-2-cograph. Then both
G and G are 2-connected.

In the rest of the section, we use the next two theorems of Chan about
contractible edges in 2-connected graphs [2, Theorems 3.1, 3.3, and 3.5]. A
component of a graph is trivial if it has just one vertex. In a 2-connected
graph, a 2-cut is a 2-element vertex cut.

Theorem 3.4. Let G be a 2-connected graph that is not isomorphic to K3.
Suppose all the contractible edges of G meet a 3-element subset S of V (G).
Then either G− S has no edges, or G− S has exactly one non-trivial com-
ponent and this component has at most three vertices.

Theorem 3.5. Let G be a 2-connected graph that is not isomorphic to K3.
Suppose all the contractible edges of G meet a subset S of V (G) such that
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|S| ≥ 4. Then G−S has at most |S|−2 non-trivial components and, between
them, these components have at most 2|S| − 4 vertices.

We will also frequently use the following straightforward result.

Lemma 3.6. Let G be a 2-connected graph. If G has a 2-cut {g1, g2} such
that each of g1 and g2 has red degree at least two and the components of
G− {g1, g2} can be partitioned into two sets each of which contains at least
two vertices, then the red graph G is 2-connected.

Lemma 3.7. Let G be an induced-minor-minimal non-2-cograph such that
|V (G)| ≥ 6 and let wxyz be a path P of G such that both x and y have
degree two in G. Then w and z are adjacent.

Proof. Assume that w and z are not adjacent. By Lemma 3.3, G is 2-
connected, so there is a path P ′ joining w and z such that P and P ′ are
internally disjoint. This implies that G has C5 as a proper induced minor.
As C5 is not a 2-cograph, this is a contradiction. □

Lemma 3.8. Let G be an induced-minor-minimal non-2-cograph. If G has
two adjacent vertices of degree two, then |V (G)| ≤ 10.

Proof. Assume |V (G)| ≥ 11. Let a and b be two vertices of G of degree
two such that ab is a green edge. Let c be the green neighbour of a distinct
from b, and let d be the green neighbour of b distinct from a. Then c ̸= d,
otherwise G is not 2-connected, contradicting Lemma 3.3. By Lemma 3.7,
cd is a green edge. Observe that every vertex of V (G)− {a, b, c, d} has red
edges joining it to each of a and b. Thus G− {c, d} is 2-connected.

Suppose that both c and d have red degree at least three. Let w be a
red neighbour of d such that w ̸= a. It follows by Lemma 3.2 that w has a
contractible green edge incident to it, say e, such that the other endpoint of
e is not c. Then G/e is 2-connected, a contradiction.

Next suppose that both c and d have red degree two. First, we assume that
c and d have the same red neighbour, say v, in G−{a, b}. Since v has green
degree at least two, we have two green neighbours of v, say x and y. Note
that x and y are in V (G) − {a, b, c, d}. Since x and y are adjacent to both
c and d in the green graph, both the red and the green graphs induced on
{a, b, c, d, v, x, y} are 2-connected. This implies |V (G)| ≤ 7, a contradiction.
We may now assume that c and d have distinct red neighbours in G−{a, b};
call them v and w, respectively. Note that vdcw is a green vw-path.

3.8.1. G− {a, b} has no vw-path P internally disjoint from the path vdcw.

Assume that G − {a, b} has such a path. Observe that the red graph
and the green graph induced on the vertex set V (P ) ∪ {a, b, c, d} are 2-
connected and therefore, V (G) = V (P ) ∪ {a, b, c, d}. Now |V (P )| ≥ 7 since
|V (G)| ≥ 11. Let e be an edge in the path P such that neither of the

endpoints of e is in {v, w}. Note that G/e and G/e are both 2-connected, a
contradiction. Thus 3.8.1 holds.
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Let P1 and P2 be shortest vw-paths in G − {a, b, d} and G − {a, b, c}
respectively. By 3.8.1, P1 contains the vertex c and P2 contains d. Note
that V (G) = V (P1) ∪ V (P2) ∪ {a, b}. As |V (G)| ≥ 11, we may assume
that P1 − w has length at least three. Let e be an edge in P1 − w such
that the endpoints of e are not in {c, v}. Note that G/e and G/e are both
2-connected, a contradiction.

Finally, without loss of generality, we may assume that c has red degree
two and d has red degree at least three. Let v be the red neighbour of c
distinct from b. Suppose that dv is red. Let x and y be two green neighbours
of v and let P be a shortest path from d to {v, x, y} in G− {a, b, c}. Then,
for V ′ = {a, b, c, d, v, x, y} ∪ V (P ), the red and green graphs induced by V ′

are 2-connected, so V ′ = V (G). As |V (G)| ≥ 11, we may assume that P
has length at least three. Let e be an edge in P such that the endpoints
of e are not in {d, v, x, y}. Note that G/e and G/e are both 2-connected,
a contradiction. Therefore, dv is green. Let w be a red neighbour of d in
G−{a, b}. Let u be a green neighbour of v distinct from d. Observe that u ̸=
w, otherwise |V (G)| ≤ 6 since both G[{a, b, c, d, v, w}] and G[{a, b, c, d, v, w}]
are 2-connected. Let P be a shortest path from w to {d, u, v} in G−{a, b, c}.
Then V (G) = {a, b, c, d, u, v, w} ∪ V (P ), so we may assume that P has
length at least three. Then, for an edge e of P having neither endpoint in
{d, u, v, w}, both G/e and G/e are 2-connected, a contradiction. □

The next lemma shows that if a path of an induced-minor-minimal non-
2-cograph G has three consecutive vertices of degree two, then G ∼= C5.

Lemma 3.9. Let G be an induced-minor-minimal non-2-cograph such that
G has a path P of length exceeding three and all the internal vertices of P
are of degree two. Then G ∼= C5.

Proof. Let u and v be vertices of P such that the subpath Puv of P joining
u and v has length four. Since G is 2-connected, there is a uv-path P ′ such
that Puv and P ′ are internally disjoint. Assume that P ′ is a shortest such
path. Then contracting all but one edge in P ′ and deleting all the vertices
not in V (Puv), we obtain C5. Since G cannot have C5 as a proper induced
minor, G ∼= C5. □

Lemma 3.10. If G is a non-2-cograph such that G − v is a 2-cograph for
all vertices v of G, then G or G is critically 2-connected, or both G and G
have vertex connectivity two.

Proof. Certainly, G and G are 2-connected and, for all vertices v of G, either
G−v or G−v is not 2-connected. Observe that if neither G nor G is critically
2-connected, then G has vertices v and vc such that G − v and G − vc are
2-connected. It follows that G− vc and G− v are not 2-connected so both
G and G have vertex connectivity two. □
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Next we find those induced-minor-minimal non-2-cographs G such that
G or G is critically 2-connected. We will use the following result of Nebesky
[9].

Lemma 3.11. Let G be a critically 2-connected graph such that |V (G)| ≥ 6.
Then G has at least two distinct paths of length exceeding two such that the
internal vertices of these paths have degree two in G.

Proposition 3.12. Let G be an induced-minor-minimal non-2-cograph such
that G is critically 2-connected. Then G is isomorphic to C5 or C+

6 .

Proof. By Lemmas 2.10 and 3.1, it follows that C5 is the unique induced-
minor-minimal non-2-cograph with at most five vertices, so we may assume
that |V (G)| ≥ 6. Thus, by Lemma 3.11, G has two distinct paths P1 and
P2 of length exceeding two such that their internal vertices have degree two.
Since G is not isomorphic to C5, by Lemma 3.9, we may assume that both P1

and P2 have length three. Lemma 3.7 implies that, for each i, the endpoints
of Pi are adjacent. We deduce that G has C+

6 as an induced minor. As C+
6

is an induced-minor-minimal non-2-cograph, we deduce that G ∼= C+
6 . □

Lemma 3.13. A graph G is an induced-minor-minimal non-2-cograph for
which the graph G[Vr] induced on Vr has at least two disjoint red edges if
and only if G is a cycle with at least five vertices, or G is isomorphic to
H1, H2, or Fm for some m ≥ 0 where H1, H2, and Fm are shown in Figure
1.

Proof. First we observe that if G is a cycle with |V (G)| ≥ 5 or if G is
isomorphic to H1, H2, or Fm, then G[Vr] has at least two disjoint red edges.
Moreover, by Lemma 3.1, if G is a cycle with |V (G)| ≥ 5, then G is an
induced-minor-minimal non-2-cograph. It is straightforward to check that
if G is isomorphic to H1 or H2, then G is an induced-minor-minimal non-2-
cograph. Finally, we show that, for all m ≥ 0, the complement of Fm is an
induced-minor-minimal non-2-cograph. Since F0

∼= C+
6 and the complement

of the latter is an induced-minor-minimal non-2-cograph, we may assume
that m > 0. As both Fm and Fm are 2-connected, the graph Fm is not a 2-
cograph. We show that every proper induced minor H of Fm is a 2-cograph.
First assume that H is an induced subgraph of Fm. Deleting the vertex x
from Fm leaves a path, which is a 2-cograph. Thus we may assume that x
is a vertex of H. Once a vertex distinct from x is deleted from Fm, if we
were to find a non-2-cograph, it must be contained in one of the blocks of
the vertex deletion. Each block B of a vertex deletion of Fm that has at
least three vertices must have x as a vertex. Moreover, B has x adjacent
to all but at most one other vertex, so its complement is not 2-connected.
It is now straightforward to see that H is a 2-cograph. For an edge uv of
Fm, it follows by Lemma 2.3 that the complement of Fm/uv is either an
induced subgraph of Fm or a 1-sum of an induced subgraph of Fm with K2

or K3. Thus Fm/uv is a 2-cograph and so Fm is an induced-minor-minimal
non-2-cograph.
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Conversely, assume that G is an induced-minor-minimal non-2-cograph
for which G[Vr] has u1u2 and v1v2 as two disjoint red edges. Since C5 is
the unique induced-minor-minimal non-2-cograph with five vertices, we may
assume that |V (G)| ≥ 6, that G is not a cycle, and that no Fm for m ≥ 0 is
isomorphic to G. Next we show the following.

3.13.1. In G, no ui is adjacent to any vj.

Note that if we have a red edge connecting {u1, u2} to {v1, v2}, then G
has a path P of length three such that all the vertices of P have red degree
two. Let Q be a shortest path in G\E(P ) joining the endpoints of P . Then
G has as an induced subgraph a cycle with edge set E(P ) ∪ E(Q). This
cycle has at least five edges, a contradiction. Thus 3.13.1 holds.

In G, let x and y be the neighbours of u1 and u2, respectively, other than
u2 and u1; and let w and z be the neighbours of v1 and v2, respectively,
other than v2 and v1. Because G is 2-connected, it has a cycle C containing
u1u2 and v1v2. We show next that C is Hamiltonian. Assume it is not.
Certainly G[V (C)] is 2-connected. Consider G[V (C)]. In it, u1 and u2 are
adjacent to every vertex not in {x, u1, u2, y}, and v1 and v2 are adjacent to
every vertex not in {w, v1, v2, z}. In addition, u1 and v1 are adjacent to y
and it follows by symmetry that G[V (C)] is 2-connected. The minimality
of G implies that V (G) = V (C). Thus C is indeed Hamiltonian.

Assume that C consists of the path xu1u2y, a path Pyz from y to z, the
path zv2v1w, and a path Pwx from w to x. Now x and y must be distinct.
Likewise, w and z are distinct. If x = w and y = z, then G is either C6 or
C+
6 . As C+

6 = F0, this is a contradiction. Thus x ̸= w or y ̸= z.

The graph G−{u1, u2} is connected. Take a shortest path P in this graph
from x to y. This path P must be a single edge otherwise G has an induced
cycle of length at least five consisting of the union of P and the path xu1u2y.
By Lemma 3.1, the complement of this induced cycle is an induced-minor-
minimal non-2-cograph, so G is this complement, a contradiction.

By symmetry, we may assume that G has xy and wz as edges. Assume
that x = w but y ̸= z. Because the only cycles of G containing u1u2 and
v1v2 are Hamiltonian, the path Pyz in C is a shortest path from y to z

in G − x. Let Pyz = y0y1 . . . ym where y = y0 and z = ym. For each

i in {1, 2, . . . ,m − 1}, the only possible neighbour of yi in G other than
yi−1 and yi+1 is x. We argue by induction on i that yi is adjacent to x.
Suppose y1 is not adjacent to x. If y2 is adjacent to x, then G has C+

6 as
an induced subgraph, a contradiction. Thus y2 is not adjacent to x. As ym
is adjacent to x, for some j ≥ 3, the vertex yj is adjacent to x, but none

of yj−1, yj−2, . . . , y2, y1 is adjacent to x. Then G has a cycle of length at
least five as an induced subgraph, a contradiction. We conclude that y1 is
adjacent to x. Assume that all of y1, y2, . . . , yt are adjacent to x but yt+1 is
not. If yt+2 is not adjacent to x, then G contains an induced cycle of length
at least five, a contradiction. Thus yt+2 is adjacent to x and G has Ft as a
proper induced subgraph, a contradiction. We conclude that yt+1 is adjacent
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to x. Hence, by induction, yi is adjacent to x for all i in {1, 2, . . . ,m − 1}.
Thus G ∼= Fm, a contradiction.

It remains to consider the case when x ̸= w and y ̸= z. If xz and wy are
both green, then G − {v1, v2} and its complement are both 2-connected, a
contradiction. Suppose both xz and wy are red. Then G has a cycle using
u1u2 and v1v2 and having exactly eight vertices. Thus |V (G)| = 8. If both
xw and yz are green, then G − {u1, u2} ∼= C+

6 , a contradiction. Thus G is
isomorphic to either H1 or H2. Now assume that xz is red and wy is green.
If both xw and yz are red, then |V (G)| = 8 and G is isomorphic to H2. If
xw is green, then, using the paths Pyz and Pwz in G, we see that G−{v1, v2}
and its complement are both 2-connected. Thus we may assume that xw is
red. Likewise, yz is red otherwise G−{u1, u2} and its complement are both
2-connected, a contradiction. Hence G is isomorphic to H2. □

The following is a straightforward consequence of Lemmas 3.11 and 3.13.

Proposition 3.14. A graph G is an induced-minor-minimal non-2-cograph
for which G is critically 2-connected if and only if G is a cycle with at least
five vertices, or G is isomorphic to H1, H2, or Fm for some m ≥ 0.

The next three lemmas show that the number of vertices of an induced-
minor-minimal non 2-cograph is bounded above given some conditions on
the sizes of components after the removal of a green 2-cut and on the red
degrees of the vertices in that cut.

Lemma 3.15. Let {g1, g2} be a 2-cut of an induced-minor-minimal non-2-
cograph G such that each of g1 and g2 has red degree exceeding two and the
components of G−{g1, g2} can be partitioned into two subgraphs, A and B,
each having at least two vertices. Then |V (G)| ≤ 8.

Proof. Assume that |V (G)| > 8. Without loss of generality, let |V (A)| ≥ 4.
Suppose A contains no red neighbours of g1 or g2. Then all vertices in A are
incident to both g1 and g2 via a green edge. Let v be any vertex in A. Note
that both G− v and G− v are 2-connected, a contradiction. Therefore, we
may assume that A has a red neighbour, say a1, of g1. Lemma 3.2 implies
that we can find a contractible green edge, say e, of G incident to a1 such
that the other endpoint of e is in A. By Lemma 3.6, G/e is 2-connected, a
contradiction. □

Lemma 3.16. Let {g1, g2} be a 2-cut of an induced-minor-minimal non-
2-cograph G such that the red degree of g1 is two and the components of
G− {g1, g2} can be partitioned into subgraphs A and B such that |V (A)| ≥
|V (B)| ≥ 2. Suppose that A contains exactly one red neighbour v of g1, and
either g2 has no red neighbours in A−v, or g2 has red degree greater than two.
If all of the contractible edges of G having both endpoints in V (A)∪{g1, g2}
are incident to a vertex in {g1, g2, v}, then |V (A)| ≤ 4.

Proof. Assume that |V (A)| > 4. Let GA be the subgraph of G induced by
V (A)∪{g1, g2}, and let Q denote the vertex set {g1, g2, v}. By colouring the
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edge g1g2 green if necessary, we may assume that GA is 2-connected. Since
the contractible edges of GA must meet Q, by Theorem 3.4, either GA −Q
has no edges, or GA−Q has one non-trivial component and this component
has at most three vertices. First suppose that GA − Q is edgeless. Let
Γ = V (GA)−Q. Next we show the following.

3.16.1. There is no vertex γ in Γ such that GA − γ is 2-connected.

If such a vertex exists, thenG−γ is 2-connected. Moreover, by Lemma 3.6,
G− γ is 2-connected, a contradiction. Thus 3.16.1 holds.

3.16.2. The edge vg2 is red.

Suppose vg2 is green. Let α be a neighbour of v in Γ. Then g1αvg2g1 is a
cycle of GA. Because GA−Q is edgeless and GA is 2-connected, every vertex
in Γ− α is adjacent to at least two members of {g1, g2, v}. Thus GA − γ is
2-connected for all γ in Γ− α, a contradiction to 3.16.1. Thus 3.16.2 holds.

Observe that v and g2 have a common neighbour β in Γ otherwise, as
GA −Q is edgeless, g1 is a cut vertex of GA. By 3.16.2, v has a neighbour
α in Γ − β. Since g1αvβg2g1 is a cycle and all vertices in Γ − {α, β} are
adjacent to at least two vertices in {g1, g2, v}, we deduce that GA − γ is
2-connected for all γ in Γ− {α, β}, a contradiction.

We may now assume that GA − Q has one non-trivial component, say
CA, and a set IA of isolated vertices. Moreover, |V (CA)| ≤ 3. Then IA is
non-empty since |V (A)| > 4. Let αβ be an edge in CA. Note that αβ is not
contractible in GA, so {α, β} is a 2-cut of GA and, therefore, of G. Since
|V (B)| ≥ 2 and IA is non-empty, each of α and β has red degree at least
three in G. Therefore, by Lemma 3.15, as |V (G)| = |V (A)|+2+ |V (B)| > 8,
there is a vertex t of G whose only green neighbours are α and β. Since g1
is adjacent to all vertices in IA ∪ V (CA), it follows that t = v. This implies
that all vertices in IA are adjacent only to g1 and g2. Taking w in IA, we
see that GA − w is 2-connected, a contradiction to 3.16.1 □

Lemma 3.17. Let {g1, g2} be a 2-cut of an induced-minor-minimal non-2-
cograph G such that the components of G− {g1, g2} can be partitioned into
subgraphs, A and B, each having at least two vertices. If the red degree of
g1 is two and that of g2 is greater than two such that one red neighbour of
g1 is in A and the other is in B, then |V (G)| ≤ 10.

Proof. Without loss of generality, assume |V (A)| ≥ |V (B)|. Let GA be the
subgraph of G induced by V (A) ∪ {g1, g2}. Note that GA is 2-connected
since g1g2 is green. Denote the red neighbour of g1 in A by v and let
Q = {g1, g2, v}. Observe that if we have a contractible edge e of G having
both endpoints in V (A)∪{g1, g2} such that neither of the endpoints of e is in

Q, then, by Lemma 3.6, both G/e and G/e are 2-connected, a contradiction.
Therefore, we may assume that all contractible edges of G that have both
endpoints in V (A)∪ {g1, g2} meet Q. Thus, by Lemma 3.16, |V (A)| ≤ 4, so
|V (G)| ≤ 10. □
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Lemma 3.18. Let {g1, g2} be a 2-cut of an induced-minor-minimal non-2-
cograph G such that the components of G− {g1, g2} can be partitioned into
two subgraphs, A and B, each having at least two vertices. Suppose that, for
each i in {1, 2}, if gi has red degree two, then gi has no red neighbour in B.
Then |V (B)| = 2.

Proof. Suppose |V (B)| ≥ 3. If all vertices in B are green neighbours of
both g1 and g2, then G − z is 2-connected for all z in V (B). But, by
Lemma 3.6, G − z is also 2-connected, a contradiction. Thus B has a red
neighbour, say b, of g1. Note that g1 has red degree greater than two. Now,
by Lemma 3.2, we can find a contractible edge, say e, of G incident to b such
that the other endpoint of e is in V (B). By Lemma 3.6, G/e is 2-connected,
a contradiction. □

Lemma 3.19. Let {g1, g2} be a 2-cut of an induced-minor-minimal non-
2-cograph G such that the red degree of g1 is two and the components of
G− {g1, g2} can be partitioned into subgraphs A and B such that |V (A)| ≥
|V (B)| ≥ 2. Suppose that one of the following holds.

(i) A contains both the red neighbours {x, y} of g1, and g2 has no red
neighbour in A− {x, y} if the red degree of g2 is two; or

(ii) g2 has red degree two and A contains exactly one pair {x, y} of dis-
tinct vertices such that x is a red neighbour of g1, and y is a red
neighbour of g2.

If all contractible edges of G having both endpoints in V (A) ∪ {g1, g2} are
incident to a vertex in {g1, g2, x, y}, then |V (A)| ≤ 6.

Proof. Assume that |V (A)| > 6 and so |V (G)| > 10. Let GA be the graph
induced on V (A) ∪ {g1, g2}. Let Q = {g1, g2, x, y}. By colouring the edge
g1g2 green if necessary, we may assume that GA is 2-connected. Note that all
the contractible edges of GA must meet Q, otherwise we have a contractible
edge e of G such that G/e is 2-connected, a contradiction. By Theorem 3.5,
GA −Q has at most two non-trivial components and, between them, these
components have at most four vertices.

Let IA and NA be the sets of isolated and non-isolated vertices of GA−Q
respectively. We note the following.

3.19.1. If two vertices i1 and i2 in IA have the same green neighbourhood
in G, then {i1, i2} is a green 2-cut in G.

As G−{g1, g2, i1} is a complete bipartite graph with each part having at
least two vertices, it is 2-connected. Both g1 and g2 have at least two red
neighbours in G−{i1}. Thus G− i1 is 2-connected. Therefore G− i1 is not
2-connected. It follows that i2 is a cut-vertex of G − i1 and so {i1, i2} is a
green 2-cut. Thus 3.19.1 holds.

First suppose that NA is empty. As |V (A)| ≥ 7, we see that |IA| ≥ 5.
Suppose that g2 has red degree two. Then all vertices in IA are adjacent to
both g1 and g2 in G. Observe that if a vertex s in IA has green neighbour-
hood {g1, g2}, then both G− s and G− s are 2-connected, a contradiction.
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Since g1 and g2 have no red neighbours in IA, the green neighbourhood of
a vertex in IA is {g1, g2, x}, {g1, g2, y}, or {g1, g2, x, y}. It follows that there
are at least two pairs of vertices in IA such that each vertex in a pair has the
same green neighbourhood. Let {i1, i2} be such a pair. By 3.19.1, {i1, i2}
is a green 2-cut. Since the red degrees of both i1 and i2 are greater than
two, by Lemma 3.15, it follows that there is a vertex t of G that has green
neighbourhood {i1, i2}. Note that t is either x or y. Since we have at least
two such green 2-cuts, it follows that g2x and g2y are both red, and there is
a red edge connecting {x, y} to IA. Observe that B has no red neighbour of
g1 or g2. It now follows that, for each b in V (B), both G− b and G− b are
2-connected, a contradiction. Therefore g2 has red degree at least three. By
Lemma 3.18, |V (B)| = 2. Suppose there is no red edge connecting {x, y}
to IA. Then the possible green neighbourhoods of the vertices in IA are
{x, y}, {x, y, g1}, {x, y, g2}, or {x, y, g1, g2}. Thus, by 3.19.1, IA contains a
green 2-cut {i1, i2} of G. Then we get |V (G)| ≤ 8 by applying Lemma 3.15
to the green 2-cut {i1, i2}. Therefore there is a red edge connecting {x, y} to
IA. It follows that, for some b in V (B), both G−b and G−b are 2-connected,
a contradiction.

We may now assume that GA−Q has at least one non-trivial component.
Let C be such a component and let αβ be an edge in C. Since αβ is
a non-contractible edge of GA, we see that {α, β} is a green 2-cut of GA

and thus of G. Then GA − Q ̸= C otherwise, by Theorem 3.5, |V (A)| ≤
6, a contradiction. Thus both α and β have red degree at least three in
G. Therefore, by Lemma 3.15, G has a unique vertex t that has green
neighbourhood {α, β}. Since all vertices in GA except x and y are adjacent
to g1 via a green edge, t is either x or y. As αβ is an arbitrary green edge
in GA −Q, it follows that GA −Q has at most two edges and therefore has
either one non-trivial component with at most three vertices, or has two
non-trivial components each with two vertices.

Suppose that GA−Q has only one edge, αβ, and let t be the unique mem-
ber of {x, y} that has green neighbourhood {α, β}. Then |IA| ≥ 3 and the
green neighbourhood of every vertex in IA is contained in {g1, g2, s} where
{t, s} = {x, y}. It is clear that if a vertex w in IA has green neighbourhood
{g1, g2}, then G − w and G − w are 2-connected. It follows that the green
neighbourhood of a vertex in IA is either {g1, s} or {g1, g2, s}. As |IA| ≥ 3,
it contains vertices i1 and i2 that have the same green neighbourhood. By
3.19.1, {i1, i2} is a green 2-cut in G. As neither t nor s has {i1, i2} as its
green neighbourhood, Lemma 3.15 gives the contradiction that |V (G)| ≤ 8.
We now know that GA−Q has exactly two edges, so 3 ≤ |NA| ≤ 4. Observe
that IA ̸= ∅ and all vertices in IA have green neighbourhood equal to {g1, g2}
since x and y have their green neighbourhoods contained in NA. Thus, for
w ∈ IA, both G− w and G− w are 2-connected, a contradiction. □

Lemma 3.20. Let {g1, g2} be a 2-cut of an induced-minor-minimal non-2-
cograph G such that g1 and g2 are not adjacent in G and the components of
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G−{g1, g2} can be partitioned into two subgraphs, A and B, each having at
least two vertices. Then |V (G)| ≤ 10.

Proof. First suppose that both g1 and g2 have red degree two and that
the red neighbour v of g1 that is distinct from g2 is in A, and the red
neighbour u of g2 distinct from g1 is in B. We may assume that |V (A)| ≥
|V (B)|. Observe that, if we can find a contractible edge e of G having

both the endpoints in V (A) − v, then, by Lemma 3.6, G/e is 2-connected,
a contradiction. This implies that all the contractible edges of G that have
both endpoints in V (A) ∪ {g1, g2} are incident to {g1, g2, v}. By Lemma
3.16, |V (A)| ≤ 4 and so |V (G)| ≤ 10. Thus we may assume that both u
and v are in A and all contractible edges of G that have both endpoints in
V (A) ∪ {g1, g2} are incident to {g1, g2, u, v}. Note that u ̸= v, otherwise G
has a cut vertex. We get our result now by Lemmas 3.18 and 3.19. We may
now assume that the red degree of g2 exceeds two. By Lemma 3.15, we may
further assume that the red degree of g1 is two.

Let v be the red neighbour of g1 other than g2. We may assume that v
is in A. By Lemma 3.18, |V (B)| = 2. Note that all the contractible edges
of G that have both endpoints in V (A)∪ {g1, g2} are incident to {g1, g2, v}.
The result now follows by Lemma 3.16. □

Lemma 3.15 can be modified as follows.

Lemma 3.21. Let {g1, g2} be a 2-cut of an induced-minor-minimal non-2-
cograph G such that the components of G− {g1, g2} can be partitioned into
two subgraphs, A and B, each having at least two vertices. If g2 has red
degree greater than two, then |V (G)| ≤ 10.

Proof. Assume that |V (G)| ≥ 11. Then, by Lemma 3.15, the red degree of
g1 is two. Let x and y be the two red neighbours of g1. Note that if x is in
A and y is in B, then the result follows by Lemma 3.17. By Lemma 3.20,
we may suppose that the edge g1g2 is green and both x and y are in A.

The graph GA induced on V (A) ∪ {g1, g2} is 2-connected. Let Q =
{g1, g2, x, y}. Then every contractible edge e of GA must meet Q other-

wise, by Lemma 3.6, we obtain the contradiction that both G/e and G/e
are 2-connected. The result now follows by Lemmas 3.18 and 3.19.

□

We can generalize the above result by removing the condition on the red
degrees of the vertices in the 2-cut at the cost of raising the bound on the
number of vertices of G to 16.

Lemma 3.22. Let {g1, g2} be a 2-cut of an induced-minor-minimal non-2-
cograph G such that the components of G− {g1, g2} can be partitioned into
two subgraphs, A and B, each having at least two vertices. Then |V (G)| ≤
16.

Proof. Assume that |V (G)| ≥ 17. By Lemmas 3.20 and 3.21, we may as-
sume that the red degrees of both g1 and g2 are two and g1g2 is green.
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We may further assume that |V (A)| ≥ |V (B)|. The graph GA induced on
V (A)∪{g1, g2} is 2-connected. Let Q be the union of {g1, g2}, the set of red
neighbours of g1 in A, and the set of red neighbours of g2 in A. Then every
contractible edge e of GA must meet Q, otherwise, by Lemma 3.6, we ob-
tain a contradiction. Note that if |Q| = 2, then, by Lemma 3.18, |V (A)| = 2
and so |V (G)| ≤ 6, a contradiction. By Theorems 3.4 and 3.5, GA −Q has
at most four non-trivial components and between them, these components
have at most eight vertices.

Let IA and NA be the sets of isolated and non-isolated vertices of GA−Q,
respectively. We note the following.

3.22.1. |NA| ≤ 4.

Assume that |NA| > 4 and so GA−Q has at least three edges. Let αβ be
an edge of GA −Q. Because αβ is not a contractible edge of GA, it follows
that {α, β} is a green 2-cut ofG. Observe that each of α and β has red degree
at least three unless |IA| is empty, andGA−Q has one non-trivial component,
and |V (B)| = 2. The exceptional case does not arise since it implies, as
V (G) = (V (A)−Q)∪Q∪V (B), that |V (G)| ≤ 8+6+2 = 16, a contradiction.
By Lemma 3.15, there is a vertex t that has green neighbourhood {α, β}.
Note that the only vertices that could have green neighbourhood {α, β} are
the common red neighbours of g1 and g2. Since there are at most two such
vertices and at least three edges in GA − Q, each of which must have an
associated such vertex, we have a contradiction. Thus 3.22.1 holds.

Next we show the following.

3.22.2. |IA| ≤ 4.

Assume that |IA| ≥ 5. Note that all vertices in IA are adjacent to both g1
and g2. Suppose IA contains a vertex i such that all vertices in Q−{g1, g2}
have degree at least two in G− i. Then both G− i and G–i are 2-connected,
a contradiction. It follows that, for every vertex i of IA, there is a special
green edge joining i to a vertex q of Q−{g1, g2} such that q has green degree
two. The set Q′ of such vertices q is contained in Q−{g1, g2}. If a member
q′ of Q′ is a common red neighbour of g1 and g2, then it meets at most
two special green edges from IA. If, instead, q′ has a single red neighbour
in {g1, g2}, then it has a single green neighbour in {g1, g2} and so meets at
most one special green edge. Thus the number of red edges from {g1, g2} to
Q′ is an upper bound on the number of special green edges from IA. Hence
|IA| ≤ 4, a contradiction. Thus 3.22.2 holds.

3.22.3. |V (B)| ≥ 3.

Suppose that |V (B)| = 2. Then, by 3.22.1 and 3.22.2, |V (G)| ≤ 4 + 4 +
6 + 2 = 16, a contradiction. Thus 3.22.3 holds.

By 3.22.3, since |V (B)| ≠ 2, Lemma 3.18 implies that B contains at least
one red neighbour of {g1, g2}. Assume that B contains exactly one such red
neighbour v. Let x and y be two green neighbours of v in V (B)∪{g1, g2}. If
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V (B)−{v, x, y} contains a vertex t, thenG−t andG−t are both 2-connected.
It follows that |V (B)| ≤ 3. Again by 3.22.1 and 3.22.2, we get |V (G)| ≤
4+4+5+3 = 16, a contradiction. Note that if A contains exactly one of the
red neighbours of {g1, g2}, then, by Lemma 3.16, |V (A)| ≤ 4, so |V (G)| ≤ 10,
a contradiction. We may now assume that the red neighbourhood of {g1, g2}
has size four, and each of A and B contains exactly two of those vertices.
Then, by Lemma 3.19, |V (A)| ≤ 6, so |V (G)| ≤ 14, a contradiction. □

The following corollary summarizes our results about the induced-minor-
minimal non-2-cographs so far.

Corollary 3.23. Let G be an induced-minor-minimal non-2-cograph. Then

(i) |V (G)| ≤ 16; or
(ii) G is a cycle of length at least five; or
(iii) G has vertex connectivity two, and, for every 2-cut {g1, g2} of G, the

graph G− {g1, g2} has exactly two components, and one component
contains a single vertex.

If an induced-minor-minimal non-2-cograph G satisfies (iii) of the above
corollary, we say that G is an induced-minor-minimal non-2-cograph of type
(iii). The next lemma identifies several infinite families of such graphs.

Lemma 3.24. Let G be a graph such that G is isomorphic to Lm,Mm,M ′
m,

Nm, N ′
m, or N ′′

m for some m ≥ 1 where Lm,Mm, and Nm are shown in
Figures 2, 3, and 4, respectively, at the beginning of Section 2. Then G is
an induced-minor-minimal non-2-cograph of type (iii).

Proof. It is clear that G is not a 2-cograph as both G and G are 2-connected.
Assume that H is an induced subgraph of G such that both H and H are
2-connected. It is clear that v ∈ V (H) otherwise H or H is not 2-connected.
Note that V (H) also contains the vertices x and y since x and y are the
only green neighbours of v. It now follows that V (H) contains the red
neighbours of x and the red neighbours of y. It is now straightforward to
see that H = G. Therefore every proper induced subgraph of G and of
G is a 2-cograph. For an edge αβ of G, it follows by Lemma 2.3 that the
complement of G/αβ is either a proper induced subgraph of G or a proper
induced subgraph of G 1-summed with K2 or K3. Thus G/αβ is a 2-cograph
and so G is an induced minor-minimal non-2-cograph. Moreover, {x, y} is
its unique 2-cut and G is an induced-minor-minimal non-2-cograph of type
(iii). □

By a similar argument to that just given, we obtain the following.

Lemma 3.25. For a non-negative integer j, the graph Fj is an induced-
minor-minimal non-2-cograph of type (iii).

In the rest of the section, we find all the other classes of induced-minor-
minimal non-2-cographs of type (iii) thereby proving Theorem 1.2. Recall
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that, for a graph G, its sets of vertices of green-degree-two and of red-degree-
two are denoted by Vg and Vr, respectively.

Lemma 3.26. Let G be an induced-minor-minimal non-2-cograph of type
(iii). Then |Vg| ≤ 3 or G is of type (iii).

Proof. Suppose that G is not of type (iii). By Lemma 3.10 and Proposition
3.12, we may assume that G has vertex connectivity two. Take a red 2-cut
{r1, r2} of G such that the components of G − {r1, r2} can be partitioned
into subgraphs A and B, and |V (A)| ≥ |V (B)| ≥ 2. If |V (B)| ≥ 3, then all
vertices in V (G)− {r1, r2} have green degree at least three and so |Vg| ≤ 2.
Now suppose that V (B) = {b1, b2}. Note that there is at most one vertex a
in A that has green neighbourhood {b1, b2} since G is of type (iii). One can
now check that all vertices in V (G) − {r1, r2, a} have green degree at least
three, and so |Vg| ≤ 3. □

Lemma 3.27. Let G be an induced-minor-minimal non-2-cograph such that
|V (G)| > 10. Suppose that G is not isomorphic to a cycle or to Fm for some
m ≥ 0. Then the graph induced on the vertex set Vg is a complete red graph
and the graph induced on Vr has at most one red edge.

Proof. By Lemma 3.8, the graph induced on Vg is a complete red graph.
Assume that the graph induced on Vr has two red edges e = u1u2 and
f = v1v2. Note that if e and f are disjoint, then, by Lemma 3.13, we obtain
a contradiction. Therefore we may assume that u2 = v1. Let α and β be the
respective neighbours of u1 and v2 in G−v1. Note that α and β are distinct
otherwise we have a cut vertex in G, a contradiction. Let P be a shortest
αβ-path distinct from αu1u2v2β. Then P avoids {u1, u2, v2} and the red
graph induced on V (P )∪{u1, u2, v2} is a cycle. It follows by the minimality
of G that V (G) = V (P ) ∪ {u1, u2, v2} and so G is a cycle, a contradiction.

□

In the following lemma, we note that either |Vg| or |Vr| is bounded.

Lemma 3.28. Let G be an induced-minor-minimal non-2-cograph. Then
either |Vg| or |Vr| is at most three, or |Vg| = |Vr| = 4.

Proof. Note that there are at most 2|Vg| green edges and at most 2|Vr| red
edges joining a vertex in Vg to a vertex in Vr. Since there are |Vg||Vr| edges
joining vertices in Vg to vertices in Vr, we have

2|Vg|+ 2|Vr| ≥ |Vg||Vr|.
This inequality is symmetric with respect to |Vg| and |Vr|, so we may

assume that |Vg| ≥ |Vr|. Then 2 + 2 |Vr|
Vg
≥ |Vr|. Thus |Vr| ≤ 4. Moreover, if

|Vr| = 4, then |Vg| = 4. □

Next we note the following useful observation.
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Lemma 3.29. Let G be an induced-minor-minimal non-2-cograph such that
|V (G)| > 10. If all vertices of a subset S of V (G)− (Vg ∪ Vr) either have a
red neighbour in Vr or a green neighbour in Vg, then

3.29.1. |S| ≤ 2|Vg ∪ Vr| − |Vg||Vr|.

Moreover, when equality holds here, either each vertex in S has exactly one
green neighbour in Vg or has exactly one red neighbour in Vr but not both.
In particular, if S = V (G)− (Vg ∪ Vr), then

11 + |Vg||Vr| ≤ 3|Vg|+ 3|Vr|.

Proof. There are |Vg||Vr| red or green edges joining a vertex in Vg to a vertex
in Vr. There are at most 2|Vg| green such edges and at most 2|Vr| red such
edges. Thus among the green edges meeting Vg and the red edges meeting Vr

at most 2|Vg∪Vr|−|Vg||Vr| have an endpoint in V (G)−(Vg∪Vr). Therefore,
|S| ≤ 2|Vg∪Vr|−|Vg||Vr| and it is clear that, when equality holds, each vertex
in S satisfies the given condition. If S = V (G) − (Vg ∪ Vr), then it is clear
that 11 + |Vg||Vr| ≤ 3|Vg|+ 3|Vr| since |V (G)| ≥ 11. □

Lemma 3.26 can be improved in the following way.

Lemma 3.30. Let G be an induced-minor-minimal non-2-cograph of type
(iii). Then |V (G)| ≤ 10 or |Vg| ≤ 3.

Proof. By Lemma 3.26, it is enough to show that if G is of type (iii), then
|V (G)| ≤ 10 or |Vg| ≤ 3. Suppose that G is of type (iii). Since every vertex

of V (G) is either in a red 2-cut or a green 2-cut, and both G and G are of
type (iii), we have the following.

3.30.1. Every vertex in V (G) either has a green neighbour in Vg or a red
neighbour in Vr.

Since a vertex in Vg has no green neighbour in Vg by Lemma 3.8, it follows
by 3.30.1 that |Vg| ≤ 2|Vr| since the number of red-degree-two neighbours
of vertices in Vg is at least |Vg| and at most 2|Vr|. The following is an
immediate consequence of Lemma 3.29 and 3.30.1.

3.30.2. |V (G)| ≤ |Vg|+ |Vr|+2|Vr ∪Vg| − |Vg||Vr| = 3|Vg|+3|Vr| − |Vg||Vr|.

Note that if |Vg| = |Vr| = 4, then |V (G)| ≤ 8 and the result holds.
Therefore, by Lemma 3.28, we may assume that |Vr| is at most three. As
|Vg| ≤ 2|Vr|, by 3.30.2, checking the possibilities for |Vr|, we obtain that
|V (G)| ≤ 10. □

In the next proof, we adopt the convention that, for a 2-cut {x, y} of a
graph H, the graphs A and B are disjoint subgraphs of H − {x, y} with
V (A) ∪ V (B) = V (H − {x, y}) such that |V (A)| ≥ |V (B)|, and |V (B)| is
maximal.

Lemma 3.31. Let G be an induced-minor-minimal non-2-cograph such that
G is of type (iii). Then |V (G)| ≤ 16 or |Vg| ≤ 1.
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Proof. By Lemma 3.30, we may assume that |Vg| ≤ 3. The following obser-
vation is immediate.

3.31.1. Let {r1, r2} be a red 2-cut of G. If |V (B)| ≥ 3, then {r1, r2} ⊆ Vg.

Next we show the following.

3.31.2. There are at most two vertices outside of Vg that have neither a red
neighbour in Vr nor a green neighbour in Vg.

Every vertex v of V (G)−Vg is in a green 2-cut or a red 2-cut. In the first
case, because G is of type (iii), v has a green neighbour in Vg. In the second
case, let {v, r} be a red 2-cut. By 3.31.1, we may assume that |V (B)| ≤ 2.
If |V (B)| = 1, then v has a red neighbour in Vr. Suppose |V (B)| = 2. If
w is a vertex with green neighbourhood V (B), then V (B) is a green 2-cut.
As G is of type (iii), w is unique. If |Vg| = 3, it follows that {v, r} ⊆ Vg, a
contradiction, so 3.31.2 holds.

If |Vg| ≤ 1, then the lemma holds, so we may assume |Vg| = 2. For
the red 2-cut {v, r}, we know that |V (B)| = 2. Now each vertex u of
V (G) − V (B) − {v, r} has V (B) in its green neighbourhood. Thus {u, r}
cannot be a red 2-cut with the same V (B). Thus {v, r} is the unique red 2-
cut with the given V (B). As v /∈ Vg and G is of type (iii), the set V (B) is the
green neighbourhood of exactly one vertex in Vg. Since |Vg| = 2, it follows
that we have at most two red 2-cuts for which |V (B)| = 2. Moreover, each
such red 2-cut contains a member of Vg. Now 3.31.2 follows immediately.

By 3.31.2 and Lemma 3.29, |V (G)| ≤ 3|Vg| + 3|Vr| − |Vg||Vr| + 2. If
|Vg| = 3, then |V (G)| ≤ 11. Suppose |Vg| = 2. Then, by Lemma 3.27,
|Vr| ≤ 2|Vg|+ 2 + 2 = 8, so |V (G)| ≤ 16. □

Proof of Theorem 1.2. We may assume that G is of type (iii) otherwise we
have the result by Corollary 3.23. We may also assume that neither G nor
G is critically 2-connected, otherwise the result follows by Proposition 3.12
or Proposition 3.14. It is now clear that Vg is non-empty. Therefore, by
Lemma 3.31, |Vg| = 1 or |V (G)| ≤ 16. If |V (G)| ≤ 16, then we have our
result. Therefore we may assume that |Vg| = 1. It now follows that G has
a unique green 2-cut {x, y}. Thus every vertex not in {x, y} is in a red
2-cut. As G is not critically 2-connected, we may assume that G − {x} is
2-connected. Note that G − {x, y} has a non-trivial component A and a
trivial component, say {v}.

3.32.1. There is no vertex t in A such that G − {x, v, t} is connected and
each of x and y has at least two neighbours in G− {t} .

Assume that this fails. Since G−{x, v, t} is connected and v is adjacent to
all vertices of G−{x, t} except y, we conclude that G−{x, t} is 2-connected
as G− x is 2-connected and y has at least two neighbours in G− {x, t}. It
now follows that G− {t} is 2-connected since x has at least two neighbours
G− {t}. This is a contradiction since t is in a red 2-cut.
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3.32.2. G[A] is connected.

To show this, assume G[A] is disconnected. Because G−x is 2-connected,
G − {x, v} is connected. Since G[A] = G − {x, v, y}, it follows that y has
a neighbour in each component of G[A]. As G − {x, v} is connected, there
is a vertex t in A such that G − {x, v, t} is connected where, if possible, t
is chosen from a component of G[A] with at least two vertices. By 3.32.1,
t is a red neighbour of some z in {x, y} such that z has degree two in G.
Suppose z = y. Then, as G − {x, v, t} is connected, y is adjacent to t and
to each component of G[A], we deduce that {t} is a component of G[A]
and |V (A)| = 2. Thus |V (G)| = 5 and so, as G is a non-2-cograph, G is
a 5-cycle, a contradiction. We deduce that z = x and x has red degree
two. Thus G − {x, v} has exactly two vertices t for which G − {x, v, t} is
connected, and each such vertex is a red neighbour of x. It follows that
G − {x, v} is a path and the leaves of this path are the neighbours of x in
G− {v}. Therefore G− {v} is a cycle, a contradiction.

Similar to 3.32.1, we have the following.

3.32.3. There is no vertex t in A such that G − {y, v, t} is connected and
each of x and y has at least two neighbours in G− {t}.

Assume that this fails. If x has at least two neighbours in G−{y, t}, then
the proof follows as in 3.32.1 by interchanging x and y. Therefore we may
assume that x has exactly one neighbour in G− {y, t}. Thus G[A]− {t} is
connected and so G− {x, y, t} is 2-connected. Since each of x and y has at
least two neighbours in G−{t}, we conclude that G−{t} is 2-connected, a
contradiction.

We call a vertex t of G[A] deletable if G[A] − {t} is connected. By
combining 3.32.1 and 3.32.3, we obtain the following.

3.32.4. A deletable vertex t of G[A] is a neighbour in G of some z in {x, y}
where z has degree two in G.

3.32.5. The number of deletable vertices in G[A] is in {2, 3, 4}.

To see this, first observe that, since G[A] is connected having at least two
vertices, it has at least two deletable vertices. Now suppose that G[A] has at
least five deletable vertices. Then there is such a vertex t so that, in G−{t},
each of x and y has degree at least two. As G − {x, v, t} is connected, we
have a contradiction to 3.32.1. Thus 3.32.5 holds.

The rest of the proof treats the three possibilities for the number of
deletable vertices of G[A]. First suppose that G[A] has exactly two deletable
vertices s and t. Then G[A] is a path, which we may assume has at least five
vertices. Let s′ and t′ be the respective neighbours of s and t in G[A]. Note
that if either x or y has red neighbourhood {s, t}, then we have an induced
red cycle of size at least six, which is a contradiction. Thus, by 3.32.1 and
3.32.3, we may assume that both x and y have red degree two, and s is a
red neighbour of x, and t is a red neighbour of y. If xy is red, then G has
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an induced cycle of length at least seven, a contradiction. Thus both the
red neighbours of x and y are in A. We show next that the respective red
neighbourhoods of x and y are {s, s′} and {t, t′}. To see this, let {s, w} be
the neighbourhood of x in G and suppose w ̸= s′. If s′ is not a red neighbour
of y, then G − {y, v, s′} is connected and we get a contradiction to 3.32.1.
Taking z to be a vertex of A not in {s, t, w, s′}, we see that G− {x, v, z} or
G−{y, v, z} is connected and we get a contradiction to 3.32.1 or 3.32.3. We
conclude that {s, s′} is the red neighbourhood of x. By symmetry, {t, t′} is
the red neighbourhood of y. Thus G is isomorphic to Lm for some m ≥ 1.

Next suppose that G[A] has exactly three deletable vertices, s, t, and
u. Then G[A] has a spanning tree T having s, t, and u as its leaves. By
3.32.4, each vertex in {s, t, u} is adjacent to a red-degree-2 vertex in {x, y}.
Moreover, neither x nor y has red degree exceeding two, and xy is not red.
Now G[A] is connected, so G−{x, y} is 2-connected. As xy is red, it follows
that G − y is 2-connected. Recall that we already know that G − x is 2-
connected. By symmetry, we may assume that the red neighbourhood of x
is {s, t}, and so u is a red neighbour of y. Let u′ be the red neighbour of
u in T . Then the red neighbourhood of y is {u, u′} otherwise G− {x, v, u′}
is connected and we get a contradiction to 3.32.1. Similarly, the distance
between s and t in T is two otherwise we get a contradiction to 3.32.3. As
G[A] has exactly three deletable vertices, the only possible edge in G[A] that
is not in T is st. Thus G is isomorphic to Mm or M ′

m for some m ≥ 1.
Finally, suppose that G[A] has four deletable vertices, s, t, u, and z. We

may assume that the respective red neighbourhoods of x and y are {s, t}
and {u, z}. Again let T be a spanning tree of G[A] such that s, t, u, and z
are leaves of T . Note that the distance between s and t, and u and z in T
is two. Thus G is isomorphic to Nm, N ′

m, or N ′′
m for some m ≥ 1. □

We have now finished the proof of our first main result, Theorem 1.2.

4. Induced-minor-minimal non-2-cographs whose complements
are also induced-minor-minimal non-2-cographs

In this section, we consider G, the class of induced-minor-minimal non-
2-cographs G such that G is also an induced-minor-minimal non-2-cograph.
We show that all graphs in G have at most ten vertices. We give an exhaus-
tive list of all these graphs in the appendix. We begin the section with the
following immediate consequence of Lemma 3.8.

Corollary 4.1. Let G be a graph in G such that |V (G)| > 10. Then the
graph induced on the vertex set Vg is a complete red graph and the graph
induced on Vr is a complete green graph.

The next lemma shows that if the number of vertices of a graph G in G
exceeds ten, then V (G)− (Vg ∪ Vr) is non-empty.

Lemma 4.2. Let G be a graph in G such that |V (G)| > 10. Then V (G) ̸=
Vg ∪ Vr.
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Proof. Assume that V (G) = Vg ∪ Vr. There are 2|Vg| green edges and 2|Vr|
red edges joining a vertex in Vg to vertex in Vr. Thus

4.2.1. 2|Vg|+ 2|Vr| = |Vg||Vr|.

We may assume that |Vg| ≤ |Vr|. If |Vg| = |Vr|, then 4|Vr| = |Vr|2, so
|Vr| = 4, a contradiction. Therefore |Vg| ≤ |Vr| − 1 so, by 4.2.1, |Vg||Vr| ≤
4|Vr| − 2. Thus |Vg| ≤ 3. If |Vg| = 3, then, by 4.2.1, |Vr| = 6, so |V (G)| = 9,
a contradiction. If |Vg| ≤ 2, then we contradict 4.2.1. □

Next we note a useful observation about the vertices in V (G)− (Vg ∪Vr).

Lemma 4.3. Let G be a graph in G such that |V (G)| > 10. Then every
vertex in V (G) − (Vg ∪ Vr) either has a green neighbour in Vg or a red
neighbour in Vr.

Proof. Since every vertex of G is in either a red 2-cut or a green 2-cut, the
lemma follows by Lemma 3.21. □

Lemma 4.4. Let G be a graph in G such that |V (G)| > 10. Then neither
Vg nor Vr is empty.

Proof. It suffices to show that Vr is non-empty. Assume the contrary. By
Lemma 4.3, every vertex outside Vg has a green neighbour in Vg. Thus, by
Lemma 3.29, 11 ≤ 3|Vg|, so |Vg| ≥ 4. Let {r1, r2} be a red 2-cut T . Since

Vr is empty, applying Lemma 3.21 to G gives that T is contained in Vg. Let
v be a vertex in Vg − T and let α and β be the two green neighbours of v.

Consider the graph G−T . Note that G−T is disconnected and v is incident
to all the vertices in this graph except α and β. Let X be the component of
G−T containing v. Since the red graph G has no degree-two vertices, G−T
has exactly two components. The second component must have {α, β} as
its vertex set.

Let w be a vertex in Vg − T − v. As w is in a different component of

G − T from α and β, both wα and wβ are green edges. Since w has green
degree two, it follows that {α, β} is the green neighbourhood of each vertex
in Vg − T . By Lemma 4.3, each vertex in V (G) − Vg − {α, β} has a green
neighbour in Vg. This neighbour is not in Vg − T , so it is in T . Thus
|V (G) − Vg − {α, β}| ≤ 4. But |V (G)| > 10, so |Vg − T | ≥ 3. Therefore

G − v and G − v are both 2-connected, a contradiction. We conclude that
Vr is non-empty. □

We are now ready to prove the second main result of the paper.

Proof of Theorem 1.3. Assume that G ∈ G and |V (G)| > 10. Without loss
of generality, let |Vg| ≤ |Vr|. By Lemma 4.3, every vertex in V (G)−(Vg∪Vr)
either has a green neighbour in Vg or a red neighbour in Vr. By Lemmas 4.4
and 3.28, 1 ≤ |Vg| ≤ 4. Suppose |Vg| = 4. Then, by Lemma 3.28, |Vr| = 4.
Lemma 3.29 implies that V (G)− (Vg ∪ Vr) is empty. Therefore |V (G)| = 8,
a contradiction.
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Next we assume that |Vg| = 3. Then every vertex in Vr is a green neigh-
bour of at least one vertex in Vg. Thus |Vr| ≤ 6 as there are exactly six
green edges incident to vertices in Vg. Then, by Lemma 3.29, as |Vg| = 3,
we deduce that 11 ≤ 3|Vg|, a contradiction.

Now suppose that |Vg| = 2. Then, by Lemma 3.29, |Vr| ≥ 5. Let Vg =
{u, v}. Since there are only four green edges meeting Vg, there is a vertex
w in Vr whose red neighbours are u and v. Thus {u, v} is a red 2-cut.
Suppose that Vr−{w} contains at least two vertices that are joined to both
u and v by red edges. Then one can check that both G − w and G − w
are 2-connected, a contradiction. Thus Vr has at most two vertices that are
joined to both u and v by red edges. Therefore |Vr| ≤ 6 since Vg meets
only four green edges. Assume that |Vr| = 6. Then all the green neighbours
of u and v are in Vr and are distinct. Since |V (G)| ≥ 11, we see that
|V (G) − (Vg ∪ Vr)| ≥ 3. Let {w, x} be the vertices in Vr having both u
and v as their red neighbours. All the vertices in Vr − {w, x} have one red
neighbour in Vg. Since |V (G)− (Vg ∪Vr)| ≥ 3, Lemma 4.3 implies that each
vertex in V (G) − (Vg ∪ Vr) has at most two red neighbours in Vr − {w, x}
and thus has at least two green neighbours in Vr −{w, x}. Thus G−w and
G− w are 2-connected, a contradiction. We may now assume that |Vr| = 5
and |V (G)− (Vg ∪ Vr)| ≥ 4. By Lemma 3.29, |V (G)− (Vg ∪ Vr)| = 4. Thus,
as equality holds in 3.29.1, every vertex in V (G) − (Vg ∪ Vr) has at most
one red neighbour in Vr − w and so has at least three green neighbours in
Vr−w. Therefore we again have that both G−w and G−w are 2-connected,
a contradiction.

Finally, assume that |Vg| = 1. By Lemma 3.29, |Vr| ≥ 4. Let Vg = {v}
and let α ∈ Vr be a red neighbour of v. First, we show that Vr does not
contain a green 2-cut that contains α. Assume that {α, β} is a green 2-cut
where {α, β} ⊆ Vr. Then G − {α, β} has a component X that contains
Vr − {α, β} and all but at most two vertices of V (G) − {α, β}. Let Y be
a component of G − {α, β} different from X. Then |V (Y )| ≤ 2. Suppose
|V (Y )| = 1. Then the vertex in Y must be in Vg, so it is v. This is a
contradiction since αv is red. Thus |V (Y )| = 2 and G− {α, β} has exactly
two components. Then |V (X)| ≥ 7. Let x be a vertex in X such that x is
not a red neighbour of α or β, and X −{x} contains at least two vertices of
Vr − {α, β}. Since each vertex of Vr − {α, β} has its two red neighbours in
Y and so is adjacent in G to every vertex of X, it follows that G − x is 2-
connected. Moreover, by Lemma 3.6, G− x is 2-connected, a contradiction.
We conclude that Vr does not have a green 2-cut containing α.

Next, we show that no green 2-cut contains α. Assume that {α, z} is a
green 2-cut. Then z /∈ Vr. By Lemma 3.21, G − {α, z} has a single-vertex
component Y . Since the vertex in Y has green degree two, Y = {v}. Thus
αv is green, a contradiction. We conclude that deleting from G any red
neighbour of v in Vr leaves a green graph that is still 2-connected.

To complete the proof of the theorem, we show that v has a red neighbour
in Vr whose deletion from G leaves a 2-connected graph, thus arriving at a
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Require: n = 6, 7, 8, 9 or 10.
Set FinalList ← ∅, i← 0, j ← 0
Generate all two connected graphs of order n using nauty geng [8] and
store in an iterator L
for g in L such that vertex connectivity of g and g is 2 do

for v in V (g) do
h = g\v
if h is a 2-cograph then

i← i+ 1
for e in E(g) do

h = g/e
if h is a 2-cograph then

j ← j + 1
if i equals |V (g)| and j equals |E(g)| then

Add g to FinalList
for g in FinalList do

if FinalList does not contain g then
remove g from FinalList

Figure 7. Finding graphs in G of order at most ten.

contradiction. Let β be a red neighbour of v in Vr − {α}. If α and β have
the same red neighbourhood, say {x, v}, then {x, v} is a red 2-cut and we
obtain a contradiction by applying Lemma 3.21 to G. Thus α and β have
distinct red neighbourhoods, {x, v} and {y, v}, respectively. Note that if xv
is red, then G−α is 2-connected. Thus we may assume that both xv and yv
are green. This implies γv is red for each γ in Vr − {α, β} since v has green
degree two. Thus, for some fixed γ in Vr − {α, β}, the other red neighbour,
z, of γ is distinct from x and y. Since vz is red and γ has red degree two,
we see that G− γ is 2-connected, a contradiction. □

We have now finished the proof of our second main result, Theorem 1.3.

5. Appendix

We implemented the algorithm in Figure 7 using SageMath [13] and pro-
vide a list of all graphs in G up to complementation. The graphs in this
section are drawn using SageMath.

Graphs on six vertices. There are two graphs on six vertices in G,
namely, the graph shown in Figure 8 and its complement, which is the
domino.

Graphs on seven vertices. There are sixteen graphs on seven vertices
in G, the graphs in Figure 9 and their complements.
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Figure 8. A 6-vertex graph in G.

Figure 9. Graphs on seven vertices in G.

Graphs on eight vertices. There are 87 graphs on eight vertices
in G, of which five are self-complementary. Figure 10 shows these self-
complementary graphs. Figure 11 shows 41 non-self-complementary graphs
that, together with their complements, are the remaining 8-vertex graphs in
G.

Figure 10. Self-complementary graphs on eight vertices in
G.

Graphs on nine vertices. There are 86 graphs on nine vertices in G.
These are the 43 graphs in Figure 12 and their complements.

Graphs on ten vertices. There are two graphs on ten vertices in G,
the graph in Figure 13 and its complement.
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Figure 11. Graphs on eight vertices in G.
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Figure 12. Graphs on nine vertices in G.
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Figure 13. A 10-vertex graph in G.
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